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Abstract. The technique of Abstract Interpretation has allowed the de­
velopment of very sophisticated global program analyses which are at the 
same time provably correct and practical. We present in a tutorial fashion 
a novel program development framework which uses abstract interpre­
tation as a fundamental tool. The framework uses modular, incremental 
abstract interpretation to obtain information about the program. This 
information is used to validate programs, to detect bugs with respect 
to partial specifications written using assertions (in the program itself 
and/or in system librarles), to genérate and simplify run-time tests, and 
to perform high-level program transformations such as múltiple abstract 
specialization, parallelization, and resource usage control, all in a prov­
ably correct way. In the case of validation and debugging, the assertions 
can refer to a variety of program points such as procedure entry, proce-
dure exit, points within procedures, or global computations. The system 
can reason with much richer information than, for example, traditional 
types. This includes data structure shape (including pointer sharing), 
bounds on data structure sizes, and other operational variable instantia-
tion properties, as well as procedure-level properties such as determinacy, 
termination, non-failure, and bounds on resource consumption (time or 
space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm pro­
gramming system, which implements the described functionality, will be 
used to illustrate the fundamental ideas. 
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1 Introduct ion 

The technique of Abstract Interpretation [12] has allowed the development of 
sophisticated program analyses which are at the same time provably correct and 
practical. The semantic approximations produced by such analyses have been 
traditionally applied to high- and low-level optimizations during program com-
pilation, including program transformation. More recently, novel and promising 
applications of semantic approximations have been proposed in the more general 
context of program development, such as verification and debugging. 

We present a novel programming framework which uses extensively abstract 
interpretation as a fundamental tool in the program development process. The 
framework uses modular, incremental abstract interpretation to obtain informa-
tion about the program, which is then used to validate programs, to detect bugs 
with respect to partial speciñcations written using assertions (in the program 
itself and/or in system librarles), to genérate run-time tests for properties which 
cannot be checked completely at compile-time and simplify them, and to per-
form high-level program transformations such as múltiple abstract specialization, 
parallelization, and resource usage control, all in a provably correct way. 

After introducing some of the basic concepts underlying the approach, the 
framework is described in a tutorial fashion through the presentation of its im-
plementation in CiaoPP, the preprocessor of the Ciao program development sys­
tem [2]. Ciao is a multi-paradigm programming system, allowing programming 
in logic, constraint, and functional styles (as well as a particular form of object-
oriented programming). At the heart of Ciao is an efficient logic programming-
based kernel language. This allows the use of the very large body of approxima-
tion domains, inference techniques, and tools for abstract interpretation-based 
semantic analysis which have been developed to a powerful and mature level 
in this área (see, e.g., [37, 8, 21, 3, 22, 26] and their references). These techniques 
and systems can approximate at compile-time, always safely, and with a signif-
icant degree of precisión, a wide range of properties which is much richer than, 
for example, traditional types. This includes data structure shape (including 
pointer sharing), independence, storage reuse, bounds on data structure sizes, 
and other operational variable instantiation properties, as well as procedure-level 
properties such as determinacy, termination, non-failure, and bounds on resource 
consumption (time or space cost). 

In the rest of the paper we ñrst discuss briefly the speciñc role of abstract 
interpretation in different parts of our program development framework (Sec-
tion 2) and then illustrate in a tutorial fashion aspects of how the actual process 
of program development is aided in an implementation of this framework, by 
showing examples of CiaoPP at work (Section 3). 

Space constraints prevent us from providing a complete set of references 
to related work on the many topics touched upon in the paper. Thus, we only 
provide the references most directly related to the papers where all the techniques 
used in CiaoPP are discussed in detail, which are often our own work. We ask the 



reader to kindly forgive this. The publications referenced do themselves contain 
much more comprehensive references to the related work. 

2 The Role of Abstract Interpretation 

We start by recalling some basic concepts from abstract interpretation. We con-
sider the important class of semantics referred to as fixpoint semantics. In this 
setting, a (monotonic) semantic operator (which we refer to as Sp) is associated 
with each program P. This Sp function operates on a semantic domain which is 
generally assumed to be a complete lattice or, more generally, a chain complete 
partial order. The meaning of the program (which we refer to as |P]]) is deñned 
as the least ñxpoint of the Sp operator, Le., [[P] = lfp(S'p). A well-known result 
is that if Sp is continuous, the least ñxpoint is the limit of an iterative process 
involving at most ui applications of Sp and starting from the bottom element of 
the lattice. 

In the abstract interpretation technique, the program P is interpreted over 
a non-standard domain called the abstract domain Da which is simpler than 
the concrete domain D. The abstract domain Da is usually constructed with 
the objective of computing safe approximations of the semantics of programs, 
and the semantics w.r.t. this abstract domain, Le., the abstract semantics of 
the program, is computed (or approximated) by replacing the operators in the 
program by their abstract counterparts. The abstract domain Da also has a 
lattice structure. The concrete and abstract domains are related via a pair of 
monotonic mappings: abstraction a : D t-^ Da, and concretization 7 : Da 1—> D, 
which relate the two domains by a Galois insertion (or a Galois connection) [12]. 

One of the fundamental results of abstract interpretation is that an abstract 
semantic operator Sp for a program P can be deñned which is correct w.r.t. Sp 
in the sense that 7(lfp(Sp)) is an approximation of [[P]], and, if certain conditions 
hold (e.g., ascending chains are ñnite in the Da lattice), then the computation 
of lfp(Sp) terminates in a ñnite number of steps. We will denote lfp(Sp), Le., 
the result of abstract interpretation for a program P, as [[P]]a-

Typically, abstract interpretation guarantees that |P]] a is an cwer-approximation 
of the abstract semantics of the program itself, a([[P]]). Thus, we have that 
[[-Pla 2 a([I-PJ), which we will denote as |P] ] a + . Alternatively, the analysis can 
be designed to safely wnder-approximate the actual semantics, and then we have 
that [[PJa C a([[PJ), which we denote as [ P ] a - . 

2.1 Abstract Verification and Debugging 

Both program veriñeation and debugging compare the actual semantics of the 
program, Le., [[PJ, with an intended semantics for the same program, which we 
will denote by I . This intended semantics embodies the user's requirements, 
Le., it is an expression of the user's expectations. In Table 1 we deñne classical 
veriñeation problems in a set-theoretic formulation as simple relations between 
[[P] and 1. 



Property 

P is partially correct w.r.t. P 
P is complete w.r.t. P 
P is incorrect w.r.t. X 
P is incomplete w.r.t. X 

Deñnition 

llPi c X 
P c [P] 
[P] g p 

P 2 [P] 

Table 1. Set theoretic formulation of verification problems 

Using the exact actual or intended semantics for automatic veriñcation and 
debugging is in general not realistic, since the exact semantics can be typically 
only partially known, infinite, too expensive to compute, etc. On the other hand 
the abstract interpretation technique allows computing safe approximations of 
the program semantics. The key idea in our approach [5,27,40] is to use the 
abstract approximation |[P]|a directly in program verification and debugging 
tasks. 

A number of approaches have already been proposed which make use to 
some extent of abstract interpretation in verification and/or debugging tasks. 
Abstractions were used in the context of algorithmic debugging in [31]. Abstract 
interpretation for debugging of imperative programs has been studied by Bour-
doncle [1], by Comini et al. for the particular case of algorithmic debugging 
of logic programs [10] (making use of partial specifications) and [9], and very 
recently by P. Cousot [11]. 

Our first objective herein is to present the implications of the use of ap­
proximations of both the intended and actual semantics in the verification and 
debugging process. As we will see, the possible loss of accuracy due to approxi­
mation prevenís full verification in general. However, and interestingly, it turns 
out that in many cases useful verification and debugging conclusions can still be 
derived by comparing the approximations of the actual semantics of a program 
to the (also possibly approximated) intended semantics. 

In our approach we actually compute the abstract approximation [P]]a of 
the concrete semantics of the program [[P]] and compare it directly to the (also 
approximate) intention (which is given in terms of assertions [39]), following 
almost directly the scheme of Table 1. This approach can be very attractive 
in programming systems where the compiler already performs such program 
analysis in order to use the resulting information to, e.g., optimize the generated 
code, since in these cases the compiler will compute \P\a anyway. Alternatively, 
\P\a can always be computed on demand. 

For now, we assume that the program specification is given as a semantic 
valué Ia <G Da. Comparison between actual and intended semantics of the pro­
gram is most easily done in the same domain, since then the operators on the 
abstract lattice, that are typically already defined in the analyzer, can be used 
to perform this comparison. Thus, it is interesting to study the implications of 
comparing Ia and [[PJa, which is an approximation of a([[P]]). 



Property 

P is partially correct w.r.t. Ta 

P is complete w.r.t. Ta 

P is incorrect w.r.t. Ta 

P is incomplete w.r.t. Ta 

Deñnition 
a([[Pi)Cla 

I . C « ( [ P ] ) 
a ( [P] )gXa 

i.2«(Pl) 

Sufflcient condition 

PL+CXa 
z« c [PL-

[ P ] a _ g J a , o r 
[ P ] a + n l a = 9A[[Pia^9 

i° í [[Pia+ 

Table 2. Validation problems using approximations 

In Table 2 we propose (sufficient) conditions for correctness and completeness 
w.r.t. 2a, which can be used when [[P] is approximated. Several instrumental 
conclusions can be drawn from these relations. 

Analyses which over-approximate the actual semantics (i.e., those denoted as 
|P]] a +) , are specially suited for proving partial correctness and incompleteness 
with respect to the abstract speciñcation Ia. It will also be sometimes possible 
to prove incorrectness in the extreme case in which the semantics inferred for 
the program is incompatible with the abstract speciñcation, i.e., when |[P]|a+ n 
Ia = 0. We also note that it will only be possible to prove completeness if the 
abstraction is precise, i.e., |P]] a = a([[P]]). According to Table 2 only |P] ] a - can 
be used to this end, and in the case we are discussing [[PJa+ holds. Thus, the 
only possibility is that the abstraction is precise. 

On the other hand, if analysis under-approximates the actual semantics, i.e., 
in the case denoted [[P]]a-, it will be possible to prove completeness and incor­
rectness. In this case, partial correctness and incompleteness can only be proved 
if the analysis is precise. 

If analysis information allows us to conclude that the program is incorrect or 
incomplete w.r.t. Ia, an (abstract) symptom has been found which ensures that 
the program does not satisfy the requirement. Thus, debugging should be initi-
ated to lócate the program construct responsible for the symptom. Since [[PJa+ 
often contains information associated to program points, it is often possible to 
use the this information directly and/or the analysis graph itself to lócate the 
earliest program point where the symptom occurrs (see Section 3.2). Also, note 
that the whole setting is even more interesting if the Ia itself is considered an 
approximation (i.e., we consider X+ and I ~ ) , as is the case in the assertions 
providing upper- and lower-bounds on cost in the examples of Section 3.2. 

It is important to point out that the use of safe approximations is what 
gives the essential power to the approach. As an example, consider that classical 
examples of assertions are type declarations. However, herein we are interested 
in supporting a much more powerful setting in which assertions can be of a much 
more general nature, stating additionally other properties, some of which cannot 
always be determined statically for all programs. These properties may include 
properties deñned by means of user programs and extend beyond the predeñned 
set which may be natively understandable by the available static analyzers. Also, 
only a small number of (even zero) assertions may be present in the program, i.e., 



Property 

L is abstractly 
executable to true in P 
L is abstractly 
executable to false in P 

Deñnition 

RT(L,P) CTS(L,P) 

RT(L,P) C FF(L,P) 

Sufflcient condition 

3\' €ATS(B,Da): 

3A' eAFF(B,Da) : 

xL a ' 

Table 3. Abstract Executability 

the assertions are optional. In general, we do not wish to limit the programming 
language or the language of assertions unnecessarily in order to make the validity 
of the assertions statically decidable (and, consequently, the proposed framework 
needs to deal throughout with approximations). 

Additional discussions and more details about the foundations and imple-
mentation issues of our approach can be found in [5,27,40,38]. 

2.2 Abstract Executability and Program Transformation 

In our program development framework, abstract interpretation also plays a fun­
damental role in the áreas of program transformation and program optimization. 
Optimizations are performed by means of the concept of abstract executabil­
ity [23,43]. This allows reducing at compile-time certain program fragments to 
the valúes true, false, or error, or to a simpler program fragment, by application 
of the information obtained via abstract interpretation. This allows optimizing 
and transforming the program (and also detecting errors at compile-time in the 
case of error). 

For simplicity, we will limit herein the discussion to reducing a procedure cali 
or program fragment L (for example, a "literal" in the case of logic program­
ming) to either true or false. Each run-time invocation of the procedure cali L 
will have a local environment which stores the particular valúes of each variable 
in L for that invocation. We will use 9 to denote this environment (composed of 
assignments of valúes to variables, Le., substitutions) and the restriction (pro-
jection) of the environment 9 to the variables of a procedure cali L is denoted 

0\L-

We now introduce some deñnitions. Given a procedure cali L without side-
effects in a program P we deñne the trivial success set of L in P as TS(L, P) = 
{9\L : L9 succeeds exactly once in P with empty answer substitution (e)}. Sim-
ilarly, given a procedure cali L from a program P we deñne the finite failure set 
of L in P as FF(L, P) = {9\L : L9 fails ñnitely in P}. 

Finally, given a procedure cali L from a program P we deñne the run-time 
substitution set of L in P, denoted RT(L, P), as the set of all possible substitu­
tions (run-time environments) in the execution state just prior to executing the 
procedure cali L in any possible execution of program P. 

Table 3 shows the conditions under which a procedure cali L is abstractly 
executable to either true or false. In spite of the simplicity of the concepts, these 



deñnitions are not directly applicable in practice since RT(L, P), TS(L, P), and 
FF(L,P) are generally not known at compile t ime. However, it is usual to use 
a collecting semantics as concrete semantics for abstract interpretation so tha t 
analysis computes for each procedure cali L in the program an abstract substi-
tut ion A¿ which is a safe approximation of RT(L, P) , i.e. VL <G P . RT(L, P) C 
7 ( A L ) . 

Also, under certain conditions we can compute either automatically or by 
hand sets of abstract valúes ATS(L, Da) and App(L, Da) where L s tands for the 
base jorra of L, i.e., where all the arguments of L contain distinct free variables. 
Intuitively they contain abstract valúes in domain Da which guarantee tha t 
the execution of L trivially succeeds (resp. ñnitely fails). For soundness it is 
required tha t VA G ATS(L, Da) 7(A) C TS(L, P) and VA G AFF(L, Da) 7(A) C 
FF(L,P). 

Even though the simple optimizations illustrated above may seem of narrow 
applicability, in fact for many builtin procedures such as those tha t check basic 
types or which inspect the structure of data, even these simple optimizations are 
indeed very relevant. Two non-trivial examples of this are their application to 
simplifying independence tests in program parallelization [44] (Section 3.3) and 
the optimization of delay conditions in logic programs with dynamic procedure 
cali scheduling order [41]. 

These and other more powerful abstract executability rules are embedded in 
the multivariant abstract interpreter in our program development framework. 
The resulting system performs essentially all high- and low-level program opti­
mizations and tranformations during program development and in compilation. 
In fact, the combination of the concept of abstract executability and multi­
variant abstract interpretation has been shown to be a very powerful program 
transformation and optimization tool, capable of performing essentially all the 
transformations traditionally done via partial evaluation [44,46,13, 30]. Also, the 
class of optimizations which can be performed can be made to cover traditional 
lower-level optimizations as well, provided the lower-level code to be optimized 
is "reflected" at the source level or if the asbtract interpretation is performed 
directly at the object level. 

3 Program Development in The Ciao System 

In this section we illustrate our program development environment by present-
ing what is arguably the ñrst and most complete implementation of these ideas: 
CiaoPP [38,26], the preprocessor of the Ciao program development system [2].4 

4 In fact, the implementation of the preprocessor is generic in that it can be easily 
customized to different programming systems and dialects and in that it is designed 
to allow the integration of additional analyses in a simple way. As a particularly 
interesting example, the preprocessor has been adapted for use with the CHIP 
GLP(FD) system. This has resulted in CHIPRE, a preprocessor for CHIP which 
has been shown to detect non-trivial programming errors in CHIP programs. More 



As mentioned before, Ciao is free software distributed under GNU (L)GPL li-
censes, multi-paradigm programming system. At the heart of Ciao is an efñcient 
logic programming-based kernel language. It then supports, selectively for each 
module, extensions and restrictions such as, for example, puré logic program­
ming, functions, full ISO-Prolog, constraints, objects, concurrency, or higher-
order. Ciao is specifically designed to a) be highly extensible and b) support 
modular program analysis, debugging, and optimization. The latter tasks are 
performed in an integrated fashion by CiaoPP. 

In the following, we present an overview of CiaoPP at work. Our aim is to 
present not the techniques used by CiaoPP, but instead the main functionalities 
of the system in a tutorial way, by means of examples. However, again we do 
provide references where the interested reader can ñnd the details on the actual 
techniques used. Section 3.1 presents CiaoPP at work performing program anal­
ysis, while Section 3.2 does the same for program debugging and validation, and 
Section 3.3 for program transformation and optimization. 

3.1 Static Analysis and Program Assertions 

The fundamental functionality behind CiaoPP is static global program analysis, 
based on abstract interpretation. For this task CiaoPP uses the PLAI abstract 
interpreter [37,4], including extensions for, e.g., incrementality [28,42], modu-
larity [3,45,6], analysis of constraints [15], and analysis of concurrency [34]. 

The system includes several abstract analysis domains developed by several 
groups in the LP and CLP communities and can infer information on variable-
level properties such as moded types, deñniteness, freeness, independence, and 
grounding dependencies: essentially, precise data structure shape and pointer 
sharing. It can also infer bounds on data structure sizes, as well as procedure-
level properties such as determinacy, termination, non-failure, and bounds on 
resource consumption (time or space cost). CiaoPP implements several tech­
niques for dealing with "difficult" language features (such as side-effects, meta-
programming, higher-order, etc.) and as a result can for example deal safely with 
arbitrary ISO-Prolog programs [3]. A uniñed language of assertions [3,39] is used 
to express the results of analysis, to provide input to the analyzer, and, as we 
will see later, to provide program speciñcations for debugging and validation, as 
well as the results of the comparisons performed against the speciñcations. 

Modular Static Analysis Basics: As mentioned before, CiaoPP takes ad­
vantage of modular program structure to perform more precise and efficient, in-
cremental analysis. Consider the program in Figure 1, deñning a module which 
exports the qsort predícate and imports predicates geq and l t from module 
compare. During the analysis of this program, CiaoPP will take advantage of 
the fact that the only predícate that can be called from outside is the exported 
predícate qsort. This allows CiaoPP to infer more precise information than if it 

information on the CHIPRE system and an example of a debugging session with it 
can be found in [38] 



had to consider tha t all predicates may be called in any possible way (as would 
be t rue had this been a simple "user" ñle instead of a module). Also, assume 
tha t the compare module has already been analyzed. This allows CiaoPP to 
be more efficient and/or precise, since it will use the information obtained for 
geq and l t during analysis of compare instead of either (re-)analyzing compare 
or assuming topmost substitutions for them. Assuming tha t geq and l t have 
a similar binding behavior as the s tandard comparison predicates, a mode and 
independence analysis ("sharing+freeness" [36]) of the module using CiaoPP 
yields the following results:5 

: - t rue pred qsort(A,B) 
: mshare([[A] , [A,B] , [B]]) 

=> mshare([[A,B]]) . 
: - t rue pred parti t ion(A,B,C,D) 

: ( var(C), var(D), mshare( [[A] , [A,B] , [B] , [C] , [D]] ) ) 
=> ( ground(A), ground(C), ground(D), mshare([[B]]) ) . 

: - t rue pred append(A,B,C) 
: ( ground(A) , mshare ( [ [B] , [B, C] , [C] ] ) ) 

=> ( ground(A) , mshare ([ [B, C] ] ) ) . 

These assertions express, for example, tha t the third and fourth arguments of 
p a r t i t i o n have "output mode": when p a r t i t i o n is called (:) they are free 
unaliased variables and they are ground on success (=>). Also, append is used 
in a mode in which the ñrst argument is input (i.e., ground on cali). Also, upon 
success the arguments of qsort will share all variables (if any). 

Assertions and Properties: The above output is given in the form of CiaoPP 
assertions. These assertions are a means of specifying properties which are (or 
should be) t rue of a given predicate, predicate argument, and/or program point. 
If an assertion has been proved to be t rue it has a preñx t rue -like the ones 
above. Assertions can also be used to provide information to the analyzer in 
order to increase its precisión or to describe predicates which have not been 
coded yet during program development. These assertions have a t r u s t preñx [3]. 
For example, if we commented out the use_module/2 declaration in Figure 1, 
we could describe the mode of the (now missing) geq and l t predicates to the 
analyzer for example as follows: 

: - t r u s t pred geq(X,Y) => ( ground(X), ground(Y) ) . 
: - t r u s t pred lt(X,Y) => ( ground(X), ground(Y) ) . 

The same approach can be used if the predicates are writ ten in, e.g., an external 
language. Finally, assertions with a check preñx are the ones used to specify the 
intended semantics of the program, which can then be used in debugging and/or 

6 In the "sharing+freeness" domain var denotes variables that do not point yet to any 
data struture, mshare denotes pointer sharing patterns between variables. Derived 
properties ground and indep denote respectively variables which point to data struc-
tures which contain no pointers, and pairs of variables which point to data structures 
which do not share any pointers. 



: - module(qsort, [qsort /2] , [ a s s e r t i o n s ] ) . 
: - use_module(compare,[geq/2,lt/2] ) . 

qsort ([X | L] ,R) : -
pa r t i t ion(L ,X,Ll ,L2) , 
qsort(L2,R2), q s o r t ( L l , R l ) , 
append(Rl,[X|R2],R). 

qsort ( [ ] , [ ] ) . 

p a r t i t i o n ( [ ] ,_B, [ ] , [ ] ) . 
pa r t i t ion ( [E |R] ,C, [ElLeftl] ,Right) : -

l t ( E , C ) , pa r t i t i on (R ,C ,Le f t l ,R igh t ) . 
pa r t i t ion ( [E |R] ,C,Left, [ElRightl]) : -

geq(E,C), partition(R,C,Left,Rightl). 

append([] ,Ys,Ys) . 
append([X|Xs] ,Ys, [X |Zs] ) : - append(Xs,Ys,Zs) . 

Fig. 1. A modular qsort program. 

validation, as we will see in Section 3.2. Interestingly, this very general concept of 
assertions is also particularly useful for generating documentation automatically 
(see [24] for a description of their use by the Ciao auto-documenter). 

Assertions refer to certain program points. The t rue pred assertions above 
specify in a combined way properties of both the entry (i.e., upon calling) and 
exit (i.e., upon success) points of all calis to the predicate. It is also possible to 
express properties which hold at points between clause literals. The following is 
a fragment of the output produced by CiaoPP for the program in Figure 1 when 
information is requested at this level: 

qsort ([X | L] ,R) : -
t rue((ground(X),ground(L) ,var(R) ,var(Ll) ,var(L2) ,var(R2) , . . . 
pa r t i t ion(L ,X,Ll ,L2) , 
t rue((ground(X),ground(L),ground(Ll) ,ground(L2),var(R),var(R2), . . . 
qsort(L2,R2), . . . 

In CiaoPP properties are just predicates, which may be builtin or user de-
ñned. For example, the property var used in the above examples is the standard 
builtin predicate to check for a free variable. The same applies to ground and 
mshare. The properties used by an analysis in its output (such as var, ground, 
and msliare for the previous mode analysis) are said to be native for that par­
ticular analysis. The system requires that properties be marked as such with 
a prop declaration which must be visible to the module in which the property 
is used. In addition, properties which are to be used in run-time checking (see 
later) should be deñned by a (logic) program or system builtin, and also visible. 
Properties declared and/or deñned in a module can be exported as any other 
predicate. For example: 

: - prop l i s t / l . 



l i s t ( [ ] ) . 
l i s t ( [_|L]) : - l i s t ( L ) . 

defines the property "list". A list is an instance of a very useful class of user-
defined properties called regular types [48,14,21,20,47], which herein are simply 
a syntactically restricted class of logic programs. We can mark this fact by stat-
ing " : - regtype l i s t / 1 . " instead of " : - prop l i s t / 1 . " (this can be done 
automatically). The definition above can be included in a user program or, al-
ternatively, it can be imported from a system library, e.g.: 
: - u s e _ m o d u l e ( l i b r a r y ( l i s t s ) , [ l i s t / 1 ] ) . 

Type Analysis: CiaoPP can infer (parametric) types for programs both at the 
predicate level and at the literal level [21, 20,47]. The output for Figure 1 at the 
predicate level, assuming that we have imported the l i s t s library, is: 

: - t rue pred qsort(A,B) 
: ( term(A), term(B) ) 

=> ( l i s t ( A ) , l i s t (B ) ) . 
: - t rue pred parti t ion(A,B,C,D) 

: ( term(A), term(B), term(C), term(D) ) 
=> ( l i s t ( A ) , term(B) , l i s t ( C ) , l i s t (D) ) . 

: - t rue pred append(A,B,C) 
: ( l i s t ( A ) , l i s t l ( B , t e r m ) , term(C) ) 

=> ( l i s t ( A ) , l i s t l ( B , t e r m ) , l i s t l ( C , t e r m ) ) . 

where term is any term and prop l i s t l is defined in l i b r a r y ( l i s t s ) as: 

: - regtype l i s t l ( L , T ) # "@var{L} i s a l i s t of a t l e a s t one @var{T}'s." 
l i s t l ( [ X | R ] ,T) : - T ( X ) , l i s t (R ,T) . 
: - regtype l i s t ( L , T ) # "@var{L} i s a l i s t of Qvar-TO's." 
l i s t ( [] ,_T). 
l i s t ( [ X | L ] ,T) : - T ( X ) , l i s t ( L ) . 

We can use entry assertions [3] to specify a restricted class of calis to the module 
entry points as acceptable: 

: - entry qsort(A,B) : ( l i s t ( A , num), var(B)) . 

This informs the analyzer that in all external calis to qsort , the first argument 
will be a list of numbers and the second a free variable. Note the use of builtin 
properties (i.e., defined in modules which are loaded by default, such as var, num, 
l i s t , etc.). Note also that properties natively understood by different analysis 
domains can be combined in the same assertion. This assertion will aid goal-
dependent analyses obtain more aecurate information. For example, it allows 
the type analysis to obtain the following, more precise information: 

: - t rue pred qsort(A,B) 
: ( l i s t (A,num), term(B) ) 

=> ( l i s t (A,num), l ist(B,num) ) . 
: - t rue pred parti t ion(A,B,C,D) 

: ( l i s t (A,num), num(B), term(C), term(D) ) 
=> ( l i s t (A,num), num(B), l i s t (C,num), list(D,num) ) . 



: - t rue pred append(A,B,C) 
: ( l i s t (A,num), l i s t l (B ,num) , term(C) ) 

=> ( l i s t (A,num), l i s t l (B ,num) , l is t l (C,num) ) . 

Non-failure and Determinacy Analysis: CiaoPP includes a non-failure 
analysis, based on [17], which can detect procedures and goals that can be guar-
anteed not to fail, Le., to produce at least one solution or not termínate. It also 
can detect predicates that are "covered", Le., such that for any input (included 
in the calling type of the predícate), there is at least one clause whose "test" 
(head uniñcation and body builtins) succeeds. CiaoPP also includes a determi­
nacy analysis which can detect predicates which produce at most one solution, or 
predicates whose clause tests are disjoint, even if they are not fully deterministic 
(because they cali other predicates which are nondeterministic). For example, 
the result of these analyses for Figure 1 includes the following assertion: 

: - t rue pred qsort(A,B) 
: ( l i s t (A,num), var(B) ) => ( l i s t (A,num), list(B,num) ) 
+ ( n o t _ f a i l s , covered, i s_de t , mut_exclusive ) . 

(The + ñeld in pred assertions can contain a conjunction of global properties of 
the computation of the predícate.) 

Size, Cost, and Termination Analysis: CiaoPP can also infer lower and 
upper bounds on the sizes of terms and the computational cost of predicates [18, 
19]. The cost bounds are expressed as functions on the sizes of the input argu­
ments and yield the number of resolution steps. Various measures are used for 
the "size" of an input, such as list-length, term-size, term-depth, integer-valué, 
etc. Note that obtaining a non-inñnite upper bound on cost also implies proving 
termination of the predícate. 

As an example, the following assertion is part of the output of the upper 
bounds analysis: 

: - t rue pred append(A,B,C) 
: ( l i s t (A,num), l i s t l (B ,num) , var(C) ) 

=> ( l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) , 
size_ub(A,length(A)), s ize_ub(B,length(B)) , 
size_ub(C,length(B)+length(A)) ) 

+ steps_ub(length(A)+l) . 

Note that in this example the size measure used is list length. The assertion 
size_ub(C,length(B)+length(A) means that an (upper) bound on the size of the 
third argument of append/3 is the sum of the sizes of the ñrst and second 
arguments. The inferred upper bound on computational steps is the length of 
the ñrst argument of append/3. 

The following is the output of the lower-bounds analysis: 

: - t rue pred append(A,B,C) 
: ( l i s t (A,num), l i s t l (B ,num) , var(C) ) 

=> ( l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) , 
s ize_lb(A, length(A)) , s ize_lb(B, length(B)) , 
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size_lb(C,length(B)+length(A)) ) 
+ ( n o t _ f a i l s , covered, s teps_lb(length(A)+l) ) . 

The lower-bounds analysis uses information from the non-failure analysis, with-
out which a trivial lower bound of 0 would be derived. 

Decidability, Approximations, and Safety: As a ñnal note on the analyses, 
it should be pointed out that since most of the properties being inferred are 
in general undecidable at compile-time, the inference technique used, abstract 
interpretation, is necessarily approximate, i.e., possibly imprecise. On the other 
hand, such approximations are also always guaranteed to be safe, in the sense 
that (modulo bugs, of course) they are never incorrect. 

3.2 Program Debugging and Assertion Validation 

CiaoPP is also capable of combined static and dynamic validation, and debug­
ging using the ideas outlined so far. To this end, it implements the framework 
described in [27,38] which involves several of the tools which comprise CiaoPP. 
Figure 2 depicts the overall architecture. Hexagons represent the different tools 
involved and arrows indicate the communication paths among them. 

Program veriñcation and detection of errors is ñrst performed at compile-time 
by using the sufficient conditions shown in Table 2, i.e., by inferring properties 
of the program via abstract interpretation-based static analysis and comparing 
this information against (partial) speciñcations Ia written in terms of assertions. 

Both the static and the dynamic checking are provably safe in the sense that 
all errors flagged are deñnite violations of the speciñcations. 



:- module(qsort, [qsort/2] , [assertions]). 

:- entry qsort(A,B) : (list(A, num), var(B)). 

qsort ([X | L] ,R) : -
pa r t i t ion(L ,L l ,X ,L2) , 
qsort(L2,R2), q s o r t ( L l , R l ) , 
append(R2, [x|Rl] ,R) . 

qsort ( [ ] , [ ] ) . 

p a r t i t i o n ( [ ] ,_B, [ ] , [ ] ) . 
p a r t i t i o n ( [ e | R ] ,C, [ElLeftl] ,Right) : -

E < C, !, pa r t i t i on (R ,C ,Le f t l ,R igh t ) . 
pa r t i t ion ( [E |R] ,C,Left, [ElRightl]) : -

E >= C, partition(R,C,Left,Rightl). 

append([] ,X,X). 
append([H|X] ,Y, [H|Z]) : - append(X,Y,Z) . 

Fig. 3. A tentative qsort program. 

Static Debugging: The idea of using analysis information for debugging comes 
naturally after observing analysis outputs for erroneous programs. Consider the 
program in Figure 3. The result of regular type analysis for this program includes 
the following code: 

: - t rue pred qsort(A,B) 
: ( term(A), term(B) ) 

=> ( l i s t ( A , t l l 3 ) , l i s t (B ,~x) ) . 

:- regtype tll3/l. 

tll3(A) :- arithexpression(A). 

tll3([]). 

t l l 3 ( [A |B] ) : - a r i thexpress ion(A) , l i s t ( B , t l l 3 ) . 
t l l 3 ( e ) . 

where arithexpression is a library property which describes arithmetic expres-
sions and l i s t ( B , "x) means "a list of x's." A new ñame ( t l l3) is given to one 
of the inferred types, and its deñnition included, because no deñnition of this 
type was found visible to the module. In any case, the information inferred does 
not seem compatible with a correct deñnition of qsort, which clearly points to 
a bug in the program. 

Static Checking of System Assertions: In addition to manual inspection of 
the analyzer output, CiaoPP includes a number of automated facilities to help 
in the debugging task. For example, CiaoPP can ñnd incompatibilities between 
the ways in which library predicates are called and their intended mode of use, 
expressed in the form of assertions in the librarles themselves. Also, the prepro-



cessor can detect inconsistencies in the program and check the assertions present 
in other modules used by the program. 

For example, turning on compile-time error checking and selecting type and 
mode analysis for our tentative qsort program in Figure 3 we obtain the follow-
ing messages: 

WARNING: L i t e r a l par t i t ion(L,Ll ,X,L2) at q s o r t / 2 / l / l does not succeed! 
ERROR: Predícate E>=C at p a r t i t i o n / 4 / 3 / 1 i s not ca l led as expected: 

Called: num>=var 
Expected: ar i thexpression>=ari thexpression 

where qsort /2/1/1 stands for the ñrst literal in the ñrst clause of qsort and 
part i t ion /4 /3 /1 stands for the ñrst literal in the third clause of partit ion.6 

The ñrst message warns that all calis to part i t ion will fail, something nor-
mally not intended (e.g., in our case). The second message indicates a wrong 
cali to a builtin predicate, which is an obvious error. This error has been de-
tected by comparing the mode information obtained by global analysis, which 
at the corresponding program point indicates that E is a free variable, with the 
assertion: 

: - check c a l i s A<B (ar i thexpress ion(A), a r i thexpress ion(B)) . 

which is present in the default builtins module, and which implies that the 
two arguments to </2 should be ground. The message signáis a compile-time, or 
abstract, incorrectness symptom [5], indicating that the program does not satisfy 
the speciñcation given (that of the builtin predicates, in this case). Checking the 
indicated cali to part i t ion and inspecting its arguments we detect that in the 
deñnition of qsort, part i t ion is called with the second and third arguments in 
reversed order - the correct cali is partition(L,X,Ll,L2). 

After correcting this bug, we proceed to perform another round of compile-
time checking, which produces the following message: 

WARNING: Clause ' p a r t i t i o n / 4 / 2 ' i s incompatible with i t s c a l i type 
Head: p a r t i t i o n ( [e IR] ,C, [ElLeftl] ,Right) 
Cali Type: pa r t i t ion( l i s t (num) ,num,var ,va r ) 

This time the error is in the second clause of partit ion. Checking this clause 
we see that in the ñrst argument of the head there is an e which should be E 
instead. Compile-time checking of the program with this bug corrected does not 
produce any further warning or error messages. 

Static Checking of User Assertions: Though, as seen above, it is often 
possible to detect error without adding assertions to user programs, if the pro­
gram is not correct, the more assertions are present in the program the more 
likely it is for errors to be automatically detected. Thus, for those parts of the 
program which are potentially buggy or for parts whose correctness is crucial, 
the programmer may decide to invest more time in writing assertions than for 

6 In the actual system line numbers and automated location of errors in source files 
are provided. 



other parts of the program which are more stable. In order to be more conñdent 
about our program, we add to it the following check assertions:7 

:- calis qsort(A,B) : list(A, num). 

:- success qsort(A,B) => (ground(B), sorted_num_list(B)) 

:- calis partition(A,B,C,D) : (ground(A), ground(B)). 

:- success partition(A,B,C,D) => (list(C, num),ground(D)) 

:- calis append(A,B,C) : (list(A,num),list(B,num)). 

:- comp partition/4 + not_fails. 

: - comp p a r t i t i o n / 4 + i s_de t . 
: - comp parti t ion(A,B,C,D) + te rminates . 

: - prop sor ted_num_l is t / l . 
sorted_num_list( [] ) . 
sor ted_num_lis t ( [X]) : - number(X). 
sorted_num_list( [X,Y|Z] ) : -

number(X), number(Y), X=<Y, sorted_num_list( [Y|Z]). 

where we also use a new property, sorted.jn.um_list, deñned in the module itself. 
These assertions provide a partial speciñcation of the program. They can be seen 
as integrity constraints: if their properties do not hold, the program is incorrect. 
Calis assertions specify properties of all calis to a predicate, while success 
assertions specify properties of exit points for all calis to a predicate. Properties 
of successes can be restricted to apply only to calis satisfying certain properties 
upon entry by adding a ":" ñeld to success assertions. Finally, Comp assertions 
specify global properties of the execution of a predicate. These include complex 
properties such as determinacy or termination and are in general not amenable 
to run-time checking. They can also be restricted to a subset of the calis using 
":". More details on the assertion language can be found in [39]. 

CiaoPP can perform compile-time checking of the assertions above, by com-
paring them with the assertions inferred by analysis (see Table 2 and [5,40] for 
details), producing: 

: - checked c a l i s qsort(A,B) : l i s t (A,num). */, Al 
: - check success qsort(A,B) => sorted_num_list(B) . */, A2 
: - checked c a l i s parti t ion(A,B,C,D) : (ground(A) ,ground(B)) . '/, A3 
: - checked success parti t ion(A,B,C,D) => ( l i s t (C,num) ,ground(D) ).*/, A4 
: - f a l se c a l i s append(A,B,C) : ( l i s t (A,num), l ist(B,num) ) . '/, A5 
: - checked comp p a r t i t i o n / 4 + n o t _ f a i l s . */, A6 
: - checked comp p a r t i t i o n / 4 + i s_de t . */, A7 
: - checked comp p a r t i t i o n / 4 + te rminates . */, A8 

Assertion A5 has been detected to be false. This indicates a violation of the 
speciñcation given, which is also flagged by CiaoPP as follows: 

ERROR: ( lns 22-23) f a l se c a l i s a s se r t ion : 
: - c a l i s append(A,B,C) : l is t (A,num), l is t (B,num) 

Called a p p e n d ( l i s t ( ~ x ) , [ ~ x | l i s t ( ~ x ) ] , v a r ) 

7 The check prefix is assumed when no prefix is given, as in the example shown. 

7. Al 
7. A2 
•/. A3 
y. A4 
y. AS 

y. A6 
y. A7 
y. AS 



The error is now in the cali append(R2, [x |R l ] ,R) in qsort (x instead of X). 
Assertions Al, A3, A4, A6, A7, and A8 have been detected to hold, but it was 
not possible to prove statically assertion A2, which has remained with check 
status. Note tha t though the predicate p a r t i t i o n may fail in general, in the 
context of the current program it can be proved not t o fail. Note also tha t A2 
has been simpliñed, and this is because the mode analysis has determined tha t 
on success the second argument of qsort is ground, and thus this does not 
have to be checked at run-time. On the other hand the analyses used in our 
session (types, modes, non-failure, determinism, and upper-bound cost analysis) 
do not provide enough information to prove tha t the output of qsort is a sortea 
list of numbers, since this is not a native property of the analyses being used. 
While this property could be captured by including a more reñned domain (such 
as constrained types), it is interesting to see what happens with the analyses 
selected for the example.8 

Dynamic Debugging with Run-time Checks: Assuming tha t we stay with 
the analyses selected previously, the following step in the development process is 
to compile the program obtained above with the "genérate run-time checks" 
option. CiaoPP will then introduce run-time tests in the program for those 
c a l i s and succe s s assertions which have not been proved ñor disproved during 
compile-time checking. In our case, the program with run-time checks will cali 
the deñnition of sorted_num_list at the appropriate times. In the current im-
plementation of CiaoPP we obtain the following code for predicate qsort (the 
code for p a r t i t i o n and append remain the same as there is no other assertion 
left to check): 

qsort(A,B) : -
new_qsort(A,B), 
pos t c ( [ qsort(C,D) : t rue => sorted(D) ] , qsor t (A,B)) . 

new_qsort( [XIL] , R) : -
par t i t ion(L,X,Ll ,L2) , 
qsort(L2,R2), q s o r t ( L l , R l ) , 
append (R2, [X|Rl] ,R) . 

new_qsort ( [ ] , [ ] ) . 

where pos te is the library predicate in charge of checking postconditions of 
predicates. If we now run the program with run-time checks in order to sort, say, 
the list [ 1 , 2 ] , the Ciao system generates the following error message: 

8 Not that while property sorted_num_list cannot be proved with only (over approx-
imations) of mode and regular type information, it may be possible to prove that 
it does not hold (an example of how properties which are not natively understood 
by the analysis can also be useful for detecting bugs at compile-time): while the 
regular type analysis cannot capture perfectly the property sorted_num_list, it can 
still approximate it (by analyzing the deñnition) as l i s t ( B , num). If type analysis 
for the program were to genérate a type for B not compatible with l i s t ( B , num), 
then a definite error symptom would be detected. 



: - module (reverse , [nrev/2] , [asser t ions] ) . 
: - use_module ( l ib ra ry( , asse r t ions /na t ive_props ' ) ) . 
: - entry nrev(A,B) : (ground(A), l i s t ( A , term), var (B)) . 

nrev( [ ] , [ ] ) . 
nrev([H|L] ,R) : -

nrev(L,Rl) , 
append(Rl,[H],R). 

Fig. 4. The naive reverse program. 

?- q s o r t ( [ l , 2 ] ,L) . 
ERROR: for Goal qsor t ( [1,2] , [2,1] ) 
Precondit ion: t rue holds , but 
Postcondit ion: sor ted_num_lis t ([2,1]) does not . 

L = [2,1] ? 

Clearly, there is a problem with qsort , since [2 ,1] is not the result of ordering 
[1 ,2 ] in ascending order. This is a (now, run-time, or concrete) incorrectness 
symptom, which can be used as the start ing point of diagnosis. The result of 
such diagnosis should indicate tha t the cali to append (where Rl and R2 have 
been swapped) is the cause of the error and tha t the right deñnition of predicate 
qsort is the one in Figure 1. 

Performance Debugging and Validation: Another very interesting feature 
of CiaoPP is the possibility of stating assertions about the efficiency of the 
program which the system will t ry to verify or falsify. This is done by stating 
lower and /or upper bounds on the computational cost of predicates (given in 
number of execution steps). Consider for example the naive reverse program in 
Figure 4. Assume also tha t the predicate append is deñned as in Figure 1. 

Suppose tha t the programmer thinks tha t the cost of nrev is given by a linear 
function on the size (list-length) of its ñrst argument, maybe because he has not 
taken into account the cost of the append cali). Since append is linear, it causes 
nrev t o be quadratic. We will show tha t CiaoPP can be used to inform the 
programmer about this false idea about the cost of nrev. For example, suppose 
tha t the programmer adds the following "check" assertion: 

: - check comp nrev(A,B) + s t e p s _ u b ( l e n g t h ( A ) + l ) . 

Wi th compile-time error checking turned on, and mode, type, non-failure and 
lower-bound cost analysis selected, we get the following error message: 

ERROR: f a l s e comp a s s e r t i o n : 
: - comp nrev(A,B) : t rue => s t e p s _ u b ( l e n g t h ( A ) + l ) 

because in the computation the f o l l o w i n g h o l d s : 
s t e p s _ l b ( 0 . 5 * e x p ( l e n g t h ( A ) , 2 ) + 1 . 5 * l e n g t h ( A ) + 1 ) 



This message states that nrev will take at least 0.5 (length(A))2+1.5 length(A)-\-
1 resolution steps (which is the cost analysis output), while the assertion requires 
that it take at most length(A) + 1 resolution steps. The cost function in the user-
provided assertion is compared with the lower-bound cost assertion inferred by 
analysis. This allows detecting the inconsistency and proving that the program 
does not satisfy the efficiency requirements imposed. Upper-bound cost asser-
tions can also be proved to hold, i.e., can be checked, by using upper-bound cost 
analysis rather than lower-bound cost analysis. In such case, if the upper-bound 
computed by analysis is lower or equal than the upper-bound stated by the user 
in the assertion. The converse holds for lower-bound cost assertions. 

3.3 Source Program Optimization 

We now turn our attention to the program optimizations that are available in 
CiaoPP. These include abstract specialization, parallelization (including granu-
larity control), múltiple program specialization, and integration of abstract inter-
pretation and partial evaluation. All of them are performed as source to source 
transformations of the program. In most of them static analysis is instrumental, 
or, at least, beneñcial. 

Abstract Specialization: Program specialization optimizes programs for known 
valúes (substitutions) of the input. It is often the case that the set of possible 
input valúes is unknown, or this set is infinite. However, a form of specializa­
tion can still be performed in such cases by means of abstract interpretation, 
specialization then being with respect to abstract valúes, rather than concrete 
ones. Such abstract valúes represent a (possibly infinite) set of concrete valúes. 
For example, consider the deñnition of the property sorted_num_list/l, and 
assume that regular type analysis has produced: 

: - t rue pred sorted_num_list(A) : list(A,num) => l is t (A,num). 

Abstract specialization can use this information to optimize the code into: 

sorted_num_list( [] ) . 
sorted_num_list( [_] ) . 

sorted_num_lis t ( [X,Y|Z]) : - X=<Y, sorted_num_list([Y|Z]) . 

which is clearly more efficient because no number tests are executed. The opti­
mization above is based on abstractly executing the number literals to the valué 
true, as discussed in Section 2.2. 

CiaoPP can also apply abstract specialization to the optimization of pro­
grams with dynamic scheduling (e.g., using delay declarations) [41]. The trans­
formations simplify the conditions on the delay declarations and also move de-
layed literals later in the rule body, leading to substantial performance improve-
ment. This is used by CiaoPP, for example, when supporting complex computa-
tion models, such as Andorra-style execution [25]. 



Parallelization: An example of a non-trivial program optimization performed 
using abstract interpretation in CiaoPP is program parallelization [4]. It is also 
performed as a source-to-source transformation, in which the input program is 
annotated with parallel expressions. The parallelization algorithms, or annota-
tors [35], exploit parallelism under certain independence conditions, which allow 
guaranteeing interesting correctness and no-slowdown properties for the paral-
lelized programs [29,16]. This process is complicated by the presence of shared 
variables and pointers among data structures at run-time. 

We consider again the program of Figure 1. A possible parallelization (ob-
tained in this case with the "MEL" annotator) is: 

qsort([X|L] ,R) : -
pa r t i t ion (L ,X,L l ,L2) , 
( indep([[Ll ,L2]]) -> qsort(L2,R2) k qsort(L1.R1) 

; qsort(L2,R2), qsort(L1.R1) ) , 
append(Rl,[X|R2],R). 

which indicates that, provided that Ll and L2 do not have variables in common 
(at execution time), then the recursive calis to qsort can be run in parallel. 
Given the information inferred by the abstract interpreter using, e.g., the mode 
and independence analysis (see Section 3.1), which determines that Ll and L2 are 
ground after part i t ion (and therefore do not share variables), the independence 
test and the conditional can be simpliñed via abstract executability and the 
annotator yields instead: 

qsort ([X | L] ,R) : -
pa r t i t ion (L ,X,L l ,L2) , 
qsort(L2,R2) k q s o r t ( L l , R l ) , 
append(Rl,[X|R2],R). 

which is much more efficient since it has no run-time test. This test simpliñcation 
process is described in detail in [4] where the impact of abstract interpretation 
in the effectiveness of the resulting parallel expressions is also studied. 

The tests in the above example aim at strict independent and-parallelism. 
However, the annotators are parameterized on the notion of independence. Dif-
ferent tests can be used for different independence notions: non-strict indepen­
dence [7], constraint-based independence [16], etc. Moreover, all forms of and-
parallelism in logic programs can be seen as independent and-parallelism, pro­
vided the deñnition of independence is applied at the appropriate granularity 
level.9 

Resource and Granularity Control: Another application of the information 
produced by the CiaoPP analyzers, in this case cost analysis, is to perform 
combined compile-time/run-time resource control. An example of this is task 
granularity control [33] of parallelized code. Such parallel code can be the output 
of the process mentioned above or code parallelized manually. 

9 For example, stream and-parallelism can be seen as independent and-parallelism if 
the independence of "bindings" rather than goals is considered. 



In general, this run-time granularity control process involves computing sizes 
of terms involved in granularity control, evaluating cost functions, and compar-
ing the result with a threshold10 to decide for parallel or sequential execution. 
Optimizations to this general process include cost function simpliñcation and 
improved term size computation, both of which are illustrated in the foUowing 
example. 

Consider again the qsort program in Figure 1. We use CiaoPP to perform 
a transformation for granularity control, using the analysis information of type, 
sharing+freeness, and upper bound cost analysis, and taking as input the par-
allelized code obtained in the previous section. CiaoPP adds a clause: 
"qsort(_l,_2) : - g_qsort(_l ,_2) ." (to preserve the original entry point) 
and produces g_qsort/2, the versión of qsort/2 that performs granularity con­
trol (s_qsort/2 is the sequential versión): 

g_qsort([X|L] ,R) : -
par t i t ion_o3_4(L,X,Ll ,L2,_2,_ l ) , 
( _1>7 -> (_2>7 -> g_qsort(L2,R2) k g_qsort(Ll ,Rl) 

; g_qsort(L2,R2), s_qsor t (Ll ,Rl)) 
; (_2>7 -> s_qsort(L2,R2), g_qsort(Ll ,Rl) 

; s_qsort(L2,R2), s_qso r t (L l ,R l ) ) ) , 
append(Rl,[X|R2],R). 

g .qsor t ( [ ] , [ ] ) . 

Note that if the lengths of the two input lists to the qsort program are 
greater than a threshold (a list length of 7 in this case) then versions which 
continué performing granularity control are executed in parallel. Otherwise, the 
two recursive calis are executed sequentially. The executed versión of each of 
such calis depends on its grain size: if the length of its input list is not greater 
than the threshold then a sequential versión which does not perform granularity 
control is executed. This is based on the detection of a recursive invariant: in 
subsequent recursions this goal will not produce tasks with input sizes greater 
than the threshold, and thus, for all of them, execution should be performed 
sequentially and, obviously, no granularity control is needed. 

In general, the evaluation of the condition to decide which predicate versions 
are executed will require the computation of cost functions and a comparison 
with a cost threshold (measured in units of computation). However, in this ex­
ample a test simpliñcation has been performed, so that the input size is simply 
compared against a size threshold, and thus the cost function for qsort does not 
need to be evaluated.11 Predicate partit ion_o3_4/6: 

partition_o3_4([] ,_B, [] , [] ,0,0) . 
partition_o3_4([E|R],C,[ElLeftl],Right,_1,_2) :-

E<C, partition_o3_4(R,C,Leftl,Right,_3,_2), _1 is _3+l. 
partition_o3_4([E|R],C,Left,[ElRightl],_1,_2) :-

E>=C, partition_o3_4(R,C,Left,Rightl,_l,_3), _2 is _3+l. 

10 This threshold can be determined experimentally for each parallel system, by taking 
the average valué resulting from several runs. 

11 This size threshold will obviously be different if the cost function is. 



is the transformed versión of part i t ion/4, which "on the fly" computes the 
sizes of its third and fourth arguments (the automatically generated variables _1 
and _2 represent these sizes respectively) [32]. 

Múltiple Specialization: Sometimes a procedure has different uses within 
a program, i.e. it is called from different places in the program with different 
(abstract) input valúes. In principie, (abstract) program specialization is then 
allowable only if the optimization is applicable to all uses of the predicate. How-
ever, it is possible that in several different uses the input valúes allow different 
and incompatible optimizations and then none of them can take place. In CiaoPP 
this problem is overeóme by means of "múltiple program specialization" where 
different versions of the predicate are generated for each use. Each versión is 
then optimized for the particular subset of input valúes with which it is to be 
used. The abstract múltiple specialization technique used in CiaoPP [44] has 
the advantage that it can be incorporated with little or no modiñeation of some 
existing abstract interpreters, provided they are multivariant (PLAI and similar 
frameworks have this property). 

This specialization can be used for example to improve automatic paralleliza­
tion in those cases where run-time tests are included in the resulting program. 
In such cases, a good number of run-time tests may be eliminated and invariants 
extracted automatically from loops, resulting generally in lower overheads and 
in several cases in increased speedups. We consider automatic parallelization of 
a program for matrix multiplication using the same analysis and parallelization 
algorithms as the qsort example used before. This program is automatically 
parallelized without tests if we provide the analyzer (by means of an entry 
declaration) with aecurate information on the expected modes of use of the pro­
gram. However, in the interesting case in which the user does not provide such 
declaration, the code generated contains a large number of run-time tests. We 
include below the code for predicate multiply which multiplies a matrix by a 
vector: 

mult ip ly( [ ] , _ , [ ] ) . 
multiply([VO | Rest] ,V1, [Result I Others] ) : -

(ground(Vl), 
indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others] ] ) -> 

vmul(V0,VI,Result) k mult iply(Rest ,VI,Others) 
; vmul(VO,VI,Result), mul t ip ly(Res t ,VI ,Others ) ) . 

Four independence tests and one groundness test have to be executed prior to 
executing in parallel the calis in the body of the recursive clause of multiply. 
However, abstract múltiple specialization generates four versions of the predicate 
multiply which correspond to the different ways this predicate may be called 
(basically, depending on whether the tests succeed or not). Of these four variants, 
the most optimized one is: 

multiply3 ( [ ] , _ , [ ] ) . 
mult iply3([V0|Rest] ,V1,[Resul tIOthers]) : -

( indep([ [Result, Others]]) -> 
vmul(V0,VI,Result) k mult iply3(Rest ,VI,Others) 

; vmul(VO,VI,Result), mul t ip ly3(Rest ,VI ,Others) ) . 



where the groundness test and three out of the four independence tests have 
been eliminated. Note also that the recursive calis to mult iply use the optimized 
versión multiply3. Thus, execution of matrix multiplication with the expected 
mode (the only one which will succeed in Prolog) will be quickly directed to 
the optimized versions of the predicates and itérate on them. This is because 
the specializer has been able to detect this optimization as an invariant of the 
loop. The complete code for this example can be found in [44]. The múltiple 
specialization implemented incorporates a minimization algorithm which keeps 
in the ñnal program as few versions as possible while not losing opportunities 
for optimization. For example, eight versions of predicate vmul (for vector multi­
plication) would be generated if no minimizations were performed. However, as 
múltiple versions do not allow further optimization, only one versión is present 
in the ñnal program. 

Integration of Abstract Interpretation and Partial Evaluation: In the 
context of CiaoPP we have also studied the relationship between abstract múlti­
ple specialization, abstract interpretation, and partial evaluation. Abstract spe­
cialization exploits the information obtained by multivariant abstract interpre­
tation where information about valúes of variables is propagated by simulating 
program execution and performing ñxpoint computations for recursive calis. In 
contrast, traditional partial evaluators (mainly) use unfolding for both propagat-
ing valúes of variables and transforming the program. It is known that abstract 
interpretation is a better technique for propagating success valúes than unfold­
ing. However, the program transformations induced by unfolding may lead to 
important optimizations which are not directly achievable in the existing frame-
works for múltiple specialization based on abstract interpretation. In [46] we 
present a specialization framework which integrates the better information prop-
agation of abstract interpretation with the powerful program transformations 
performed by partial evaluation. 

We are currently investigating the use of abstract domains based on improve-
ments of regular types [47] for their use for partial evaluation. 

More info: For more information, full versions of papers and technical reports, 
and/or to download Ciao and other related systems please access: 
http:/ /www.cl ip.dia.f i .upm.es/ . 

http://www.clip.dia.fi.upm.es/
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