
Program Development
Using Abstract Interpretation

(and The Ciao System Preprocessor)

Manuel V. Hermenegildo1 '2 , Germán Puebla 1 ,
Francisco Bueno1 , and Pedro López-García1

1 Department of Computer Science, Technical University of Madrid (UPM)
{herme,german,bueno,pedro}@fi.upm.es

WWW home page: h t tp : / /www.c l ip .d ia . f i .upm.es /
2 Departments of Computer Science and Electrical and Computer Engineering,

University of New México

Abstract. The technique of Abstract Interpretation has allowed the de­
velopment of very sophisticated global program analyses which are at the
same time provably correct and practical. We present in a tutorial fashion
a novel program development framework which uses abstract interpre­
tation as a fundamental tool. The framework uses modular, incremental
abstract interpretation to obtain information about the program. This
information is used to validate programs, to detect bugs with respect
to partial specifications written using assertions (in the program itself
and/or in system librarles), to genérate and simplify run-time tests, and
to perform high-level program transformations such as múltiple abstract
specialization, parallelization, and resource usage control, all in a prov­
ably correct way. In the case of validation and debugging, the assertions
can refer to a variety of program points such as procedure entry, proce-
dure exit, points within procedures, or global computations. The system
can reason with much richer information than, for example, traditional
types. This includes data structure shape (including pointer sharing),
bounds on data structure sizes, and other operational variable instantia-
tion properties, as well as procedure-level properties such as determinacy,
termination, non-failure, and bounds on resource consumption (time or
space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm pro­
gramming system, which implements the described functionality, will be
used to illustrate the fundamental ideas.

K e y w o r d s : Program Development, Global Analysis, Abstract Interpre­
tat ion, Debugging, Veriñcation, Partial Evaluation, Program Transfor-
mation, Optimization, Parallelization, Resource Control, Programming
Environments, Multi-Paradigm Programming, (Constraint) Logic Pro­
gramming.

http://www.clip.dia.fi.upm.es/

1 Introduct ion

The technique of Abstract Interpretation [12] has allowed the development of
sophisticated program analyses which are at the same time provably correct and
practical. The semantic approximations produced by such analyses have been
traditionally applied to high- and low-level optimizations during program com-
pilation, including program transformation. More recently, novel and promising
applications of semantic approximations have been proposed in the more general
context of program development, such as verification and debugging.

We present a novel programming framework which uses extensively abstract
interpretation as a fundamental tool in the program development process. The
framework uses modular, incremental abstract interpretation to obtain informa-
tion about the program, which is then used to validate programs, to detect bugs
with respect to partial speciñcations written using assertions (in the program
itself and/or in system librarles), to genérate run-time tests for properties which
cannot be checked completely at compile-time and simplify them, and to per-
form high-level program transformations such as múltiple abstract specialization,
parallelization, and resource usage control, all in a provably correct way.

After introducing some of the basic concepts underlying the approach, the
framework is described in a tutorial fashion through the presentation of its im-
plementation in CiaoPP, the preprocessor of the Ciao program development sys­
tem [2]. Ciao is a multi-paradigm programming system, allowing programming
in logic, constraint, and functional styles (as well as a particular form of object-
oriented programming). At the heart of Ciao is an efficient logic programming-
based kernel language. This allows the use of the very large body of approxima-
tion domains, inference techniques, and tools for abstract interpretation-based
semantic analysis which have been developed to a powerful and mature level
in this área (see, e.g., [37, 8, 21, 3, 22, 26] and their references). These techniques
and systems can approximate at compile-time, always safely, and with a signif-
icant degree of precisión, a wide range of properties which is much richer than,
for example, traditional types. This includes data structure shape (including
pointer sharing), independence, storage reuse, bounds on data structure sizes,
and other operational variable instantiation properties, as well as procedure-level
properties such as determinacy, termination, non-failure, and bounds on resource
consumption (time or space cost).

In the rest of the paper we ñrst discuss briefly the speciñc role of abstract
interpretation in different parts of our program development framework (Sec-
tion 2) and then illustrate in a tutorial fashion aspects of how the actual process
of program development is aided in an implementation of this framework, by
showing examples of CiaoPP at work (Section 3).

Space constraints prevent us from providing a complete set of references
to related work on the many topics touched upon in the paper. Thus, we only
provide the references most directly related to the papers where all the techniques
used in CiaoPP are discussed in detail, which are often our own work. We ask the

reader to kindly forgive this. The publications referenced do themselves contain
much more comprehensive references to the related work.

2 The Role of Abstract Interpretation

We start by recalling some basic concepts from abstract interpretation. We con-
sider the important class of semantics referred to as fixpoint semantics. In this
setting, a (monotonic) semantic operator (which we refer to as Sp) is associated
with each program P. This Sp function operates on a semantic domain which is
generally assumed to be a complete lattice or, more generally, a chain complete
partial order. The meaning of the program (which we refer to as |P]]) is deñned
as the least ñxpoint of the Sp operator, Le., [[P] = lfp(S'p). A well-known result
is that if Sp is continuous, the least ñxpoint is the limit of an iterative process
involving at most ui applications of Sp and starting from the bottom element of
the lattice.

In the abstract interpretation technique, the program P is interpreted over
a non-standard domain called the abstract domain Da which is simpler than
the concrete domain D. The abstract domain Da is usually constructed with
the objective of computing safe approximations of the semantics of programs,
and the semantics w.r.t. this abstract domain, Le., the abstract semantics of
the program, is computed (or approximated) by replacing the operators in the
program by their abstract counterparts. The abstract domain Da also has a
lattice structure. The concrete and abstract domains are related via a pair of
monotonic mappings: abstraction a : D t-^ Da, and concretization 7 : Da 1—> D,
which relate the two domains by a Galois insertion (or a Galois connection) [12].

One of the fundamental results of abstract interpretation is that an abstract
semantic operator Sp for a program P can be deñned which is correct w.r.t. Sp
in the sense that 7(lfp(Sp)) is an approximation of [[P]], and, if certain conditions
hold (e.g., ascending chains are ñnite in the Da lattice), then the computation
of lfp(Sp) terminates in a ñnite number of steps. We will denote lfp(Sp), Le.,
the result of abstract interpretation for a program P, as [[P]]a-

Typically, abstract interpretation guarantees that |P]] a is an cwer-approximation
of the abstract semantics of the program itself, a([[P]]). Thus, we have that
[[-Pla 2 a([I-PJ), which we will denote as |P]] a + . Alternatively, the analysis can
be designed to safely wnder-approximate the actual semantics, and then we have
that [[PJa C a([[PJ), which we denote as [P] a - .

2.1 Abstract Verification and Debugging

Both program veriñeation and debugging compare the actual semantics of the
program, Le., [[PJ, with an intended semantics for the same program, which we
will denote by I . This intended semantics embodies the user's requirements,
Le., it is an expression of the user's expectations. In Table 1 we deñne classical
veriñeation problems in a set-theoretic formulation as simple relations between
[[P] and 1.

Property

P is partially correct w.r.t. P
P is complete w.r.t. P
P is incorrect w.r.t. X
P is incomplete w.r.t. X

Deñnition

llPi c X
P c [P]
[P] g p

P 2 [P]

Table 1. Set theoretic formulation of verification problems

Using the exact actual or intended semantics for automatic veriñcation and
debugging is in general not realistic, since the exact semantics can be typically
only partially known, infinite, too expensive to compute, etc. On the other hand
the abstract interpretation technique allows computing safe approximations of
the program semantics. The key idea in our approach [5,27,40] is to use the
abstract approximation |[P]|a directly in program verification and debugging
tasks.

A number of approaches have already been proposed which make use to
some extent of abstract interpretation in verification and/or debugging tasks.
Abstractions were used in the context of algorithmic debugging in [31]. Abstract
interpretation for debugging of imperative programs has been studied by Bour-
doncle [1], by Comini et al. for the particular case of algorithmic debugging
of logic programs [10] (making use of partial specifications) and [9], and very
recently by P. Cousot [11].

Our first objective herein is to present the implications of the use of ap­
proximations of both the intended and actual semantics in the verification and
debugging process. As we will see, the possible loss of accuracy due to approxi­
mation prevenís full verification in general. However, and interestingly, it turns
out that in many cases useful verification and debugging conclusions can still be
derived by comparing the approximations of the actual semantics of a program
to the (also possibly approximated) intended semantics.

In our approach we actually compute the abstract approximation [P]]a of
the concrete semantics of the program [[P]] and compare it directly to the (also
approximate) intention (which is given in terms of assertions [39]), following
almost directly the scheme of Table 1. This approach can be very attractive
in programming systems where the compiler already performs such program
analysis in order to use the resulting information to, e.g., optimize the generated
code, since in these cases the compiler will compute \P\a anyway. Alternatively,
\P\a can always be computed on demand.

For now, we assume that the program specification is given as a semantic
valué Ia <G Da. Comparison between actual and intended semantics of the pro­
gram is most easily done in the same domain, since then the operators on the
abstract lattice, that are typically already defined in the analyzer, can be used
to perform this comparison. Thus, it is interesting to study the implications of
comparing Ia and [[PJa, which is an approximation of a([[P]]).

Property

P is partially correct w.r.t. Ta

P is complete w.r.t. Ta

P is incorrect w.r.t. Ta

P is incomplete w.r.t. Ta

Deñnition
a([[Pi)Cla

I . C « ([P])
a ([P])gXa

i.2«(Pl)

Sufflcient condition

PL+CXa
z« c [PL-

[P] a _ g J a , o r
[P] a + n l a = 9A[[Pia^9

i° í [[Pia+

Table 2. Validation problems using approximations

In Table 2 we propose (sufficient) conditions for correctness and completeness
w.r.t. 2a, which can be used when [[P] is approximated. Several instrumental
conclusions can be drawn from these relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as
|P]] a +) , are specially suited for proving partial correctness and incompleteness
with respect to the abstract speciñcation Ia. It will also be sometimes possible
to prove incorrectness in the extreme case in which the semantics inferred for
the program is incompatible with the abstract speciñcation, i.e., when |[P]|a+ n
Ia = 0. We also note that it will only be possible to prove completeness if the
abstraction is precise, i.e., |P]] a = a([[P]]). According to Table 2 only |P]] a - can
be used to this end, and in the case we are discussing [[PJa+ holds. Thus, the
only possibility is that the abstraction is precise.

On the other hand, if analysis under-approximates the actual semantics, i.e.,
in the case denoted [[P]]a-, it will be possible to prove completeness and incor­
rectness. In this case, partial correctness and incompleteness can only be proved
if the analysis is precise.

If analysis information allows us to conclude that the program is incorrect or
incomplete w.r.t. Ia, an (abstract) symptom has been found which ensures that
the program does not satisfy the requirement. Thus, debugging should be initi-
ated to lócate the program construct responsible for the symptom. Since [[PJa+
often contains information associated to program points, it is often possible to
use the this information directly and/or the analysis graph itself to lócate the
earliest program point where the symptom occurrs (see Section 3.2). Also, note
that the whole setting is even more interesting if the Ia itself is considered an
approximation (i.e., we consider X+ and I ~) , as is the case in the assertions
providing upper- and lower-bounds on cost in the examples of Section 3.2.

It is important to point out that the use of safe approximations is what
gives the essential power to the approach. As an example, consider that classical
examples of assertions are type declarations. However, herein we are interested
in supporting a much more powerful setting in which assertions can be of a much
more general nature, stating additionally other properties, some of which cannot
always be determined statically for all programs. These properties may include
properties deñned by means of user programs and extend beyond the predeñned
set which may be natively understandable by the available static analyzers. Also,
only a small number of (even zero) assertions may be present in the program, i.e.,

Property

L is abstractly
executable to true in P
L is abstractly
executable to false in P

Deñnition

RT(L,P) CTS(L,P)

RT(L,P) C FF(L,P)

Sufflcient condition

3\' €ATS(B,Da):

3A' eAFF(B,Da) :

xL a '

Table 3. Abstract Executability

the assertions are optional. In general, we do not wish to limit the programming
language or the language of assertions unnecessarily in order to make the validity
of the assertions statically decidable (and, consequently, the proposed framework
needs to deal throughout with approximations).

Additional discussions and more details about the foundations and imple-
mentation issues of our approach can be found in [5,27,40,38].

2.2 Abstract Executability and Program Transformation

In our program development framework, abstract interpretation also plays a fun­
damental role in the áreas of program transformation and program optimization.
Optimizations are performed by means of the concept of abstract executabil­
ity [23,43]. This allows reducing at compile-time certain program fragments to
the valúes true, false, or error, or to a simpler program fragment, by application
of the information obtained via abstract interpretation. This allows optimizing
and transforming the program (and also detecting errors at compile-time in the
case of error).

For simplicity, we will limit herein the discussion to reducing a procedure cali
or program fragment L (for example, a "literal" in the case of logic program­
ming) to either true or false. Each run-time invocation of the procedure cali L
will have a local environment which stores the particular valúes of each variable
in L for that invocation. We will use 9 to denote this environment (composed of
assignments of valúes to variables, Le., substitutions) and the restriction (pro-
jection) of the environment 9 to the variables of a procedure cali L is denoted

0\L-

We now introduce some deñnitions. Given a procedure cali L without side-
effects in a program P we deñne the trivial success set of L in P as TS(L, P) =
{9\L : L9 succeeds exactly once in P with empty answer substitution (e)}. Sim-
ilarly, given a procedure cali L from a program P we deñne the finite failure set
of L in P as FF(L, P) = {9\L : L9 fails ñnitely in P}.

Finally, given a procedure cali L from a program P we deñne the run-time
substitution set of L in P, denoted RT(L, P), as the set of all possible substitu­
tions (run-time environments) in the execution state just prior to executing the
procedure cali L in any possible execution of program P.

Table 3 shows the conditions under which a procedure cali L is abstractly
executable to either true or false. In spite of the simplicity of the concepts, these

deñnitions are not directly applicable in practice since RT(L, P), TS(L, P), and
FF(L,P) are generally not known at compile t ime. However, it is usual to use
a collecting semantics as concrete semantics for abstract interpretation so tha t
analysis computes for each procedure cali L in the program an abstract substi-
tut ion A¿ which is a safe approximation of RT(L, P) , i.e. VL <G P . RT(L, P) C
7 (A L) .

Also, under certain conditions we can compute either automatically or by
hand sets of abstract valúes ATS(L, Da) and App(L, Da) where L s tands for the
base jorra of L, i.e., where all the arguments of L contain distinct free variables.
Intuitively they contain abstract valúes in domain Da which guarantee tha t
the execution of L trivially succeeds (resp. ñnitely fails). For soundness it is
required tha t VA G ATS(L, Da) 7(A) C TS(L, P) and VA G AFF(L, Da) 7(A) C
FF(L,P).

Even though the simple optimizations illustrated above may seem of narrow
applicability, in fact for many builtin procedures such as those tha t check basic
types or which inspect the structure of data, even these simple optimizations are
indeed very relevant. Two non-trivial examples of this are their application to
simplifying independence tests in program parallelization [44] (Section 3.3) and
the optimization of delay conditions in logic programs with dynamic procedure
cali scheduling order [41].

These and other more powerful abstract executability rules are embedded in
the multivariant abstract interpreter in our program development framework.
The resulting system performs essentially all high- and low-level program opti­
mizations and tranformations during program development and in compilation.
In fact, the combination of the concept of abstract executability and multi­
variant abstract interpretation has been shown to be a very powerful program
transformation and optimization tool, capable of performing essentially all the
transformations traditionally done via partial evaluation [44,46,13, 30]. Also, the
class of optimizations which can be performed can be made to cover traditional
lower-level optimizations as well, provided the lower-level code to be optimized
is "reflected" at the source level or if the asbtract interpretation is performed
directly at the object level.

3 Program Development in The Ciao System

In this section we illustrate our program development environment by present-
ing what is arguably the ñrst and most complete implementation of these ideas:
CiaoPP [38,26], the preprocessor of the Ciao program development system [2].4

4 In fact, the implementation of the preprocessor is generic in that it can be easily
customized to different programming systems and dialects and in that it is designed
to allow the integration of additional analyses in a simple way. As a particularly
interesting example, the preprocessor has been adapted for use with the CHIP
GLP(FD) system. This has resulted in CHIPRE, a preprocessor for CHIP which
has been shown to detect non-trivial programming errors in CHIP programs. More

As mentioned before, Ciao is free software distributed under GNU (L)GPL li-
censes, multi-paradigm programming system. At the heart of Ciao is an efñcient
logic programming-based kernel language. It then supports, selectively for each
module, extensions and restrictions such as, for example, puré logic program­
ming, functions, full ISO-Prolog, constraints, objects, concurrency, or higher-
order. Ciao is specifically designed to a) be highly extensible and b) support
modular program analysis, debugging, and optimization. The latter tasks are
performed in an integrated fashion by CiaoPP.

In the following, we present an overview of CiaoPP at work. Our aim is to
present not the techniques used by CiaoPP, but instead the main functionalities
of the system in a tutorial way, by means of examples. However, again we do
provide references where the interested reader can ñnd the details on the actual
techniques used. Section 3.1 presents CiaoPP at work performing program anal­
ysis, while Section 3.2 does the same for program debugging and validation, and
Section 3.3 for program transformation and optimization.

3.1 Static Analysis and Program Assertions

The fundamental functionality behind CiaoPP is static global program analysis,
based on abstract interpretation. For this task CiaoPP uses the PLAI abstract
interpreter [37,4], including extensions for, e.g., incrementality [28,42], modu-
larity [3,45,6], analysis of constraints [15], and analysis of concurrency [34].

The system includes several abstract analysis domains developed by several
groups in the LP and CLP communities and can infer information on variable-
level properties such as moded types, deñniteness, freeness, independence, and
grounding dependencies: essentially, precise data structure shape and pointer
sharing. It can also infer bounds on data structure sizes, as well as procedure-
level properties such as determinacy, termination, non-failure, and bounds on
resource consumption (time or space cost). CiaoPP implements several tech­
niques for dealing with "difficult" language features (such as side-effects, meta-
programming, higher-order, etc.) and as a result can for example deal safely with
arbitrary ISO-Prolog programs [3]. A uniñed language of assertions [3,39] is used
to express the results of analysis, to provide input to the analyzer, and, as we
will see later, to provide program speciñcations for debugging and validation, as
well as the results of the comparisons performed against the speciñcations.

Modular Static Analysis Basics: As mentioned before, CiaoPP takes ad­
vantage of modular program structure to perform more precise and efficient, in-
cremental analysis. Consider the program in Figure 1, deñning a module which
exports the qsort predícate and imports predicates geq and l t from module
compare. During the analysis of this program, CiaoPP will take advantage of
the fact that the only predícate that can be called from outside is the exported
predícate qsort. This allows CiaoPP to infer more precise information than if it

information on the CHIPRE system and an example of a debugging session with it
can be found in [38]

had to consider tha t all predicates may be called in any possible way (as would
be t rue had this been a simple "user" ñle instead of a module). Also, assume
tha t the compare module has already been analyzed. This allows CiaoPP to
be more efficient and/or precise, since it will use the information obtained for
geq and l t during analysis of compare instead of either (re-)analyzing compare
or assuming topmost substitutions for them. Assuming tha t geq and l t have
a similar binding behavior as the s tandard comparison predicates, a mode and
independence analysis ("sharing+freeness" [36]) of the module using CiaoPP
yields the following results:5

: - t rue pred qsort(A,B)
: mshare([[A] , [A,B] , [B]])

=> mshare([[A,B]]) .
: - t rue pred parti t ion(A,B,C,D)

: (var(C), var(D), mshare([[A] , [A,B] , [B] , [C] , [D]]))
=> (ground(A), ground(C), ground(D), mshare([[B]])) .

: - t rue pred append(A,B,C)
: (ground(A) , mshare ([[B] , [B, C] , [C]]))

=> (ground(A) , mshare ([[B, C]])) .

These assertions express, for example, tha t the third and fourth arguments of
p a r t i t i o n have "output mode": when p a r t i t i o n is called (:) they are free
unaliased variables and they are ground on success (=>). Also, append is used
in a mode in which the ñrst argument is input (i.e., ground on cali). Also, upon
success the arguments of qsort will share all variables (if any).

Assertions and Properties: The above output is given in the form of CiaoPP
assertions. These assertions are a means of specifying properties which are (or
should be) t rue of a given predicate, predicate argument, and/or program point.
If an assertion has been proved to be t rue it has a preñx t rue -like the ones
above. Assertions can also be used to provide information to the analyzer in
order to increase its precisión or to describe predicates which have not been
coded yet during program development. These assertions have a t r u s t preñx [3].
For example, if we commented out the use_module/2 declaration in Figure 1,
we could describe the mode of the (now missing) geq and l t predicates to the
analyzer for example as follows:

: - t r u s t pred geq(X,Y) => (ground(X), ground(Y)) .
: - t r u s t pred lt(X,Y) => (ground(X), ground(Y)) .

The same approach can be used if the predicates are writ ten in, e.g., an external
language. Finally, assertions with a check preñx are the ones used to specify the
intended semantics of the program, which can then be used in debugging and/or

6 In the "sharing+freeness" domain var denotes variables that do not point yet to any
data struture, mshare denotes pointer sharing patterns between variables. Derived
properties ground and indep denote respectively variables which point to data struc-
tures which contain no pointers, and pairs of variables which point to data structures
which do not share any pointers.

: - module(qsort, [qsort /2] , [a s s e r t i o n s]) .
: - use_module(compare,[geq/2,lt/2]) .

qsort ([X | L] ,R) : -
pa r t i t ion(L ,X,Ll ,L2) ,
qsort(L2,R2), q s o r t (L l , R l) ,
append(Rl,[X|R2],R).

qsort ([] , []) .

p a r t i t i o n ([] ,_B, [] , []) .
pa r t i t ion ([E |R] ,C, [ElLeftl] ,Right) : -

l t (E , C) , pa r t i t i on (R ,C ,Le f t l ,R igh t) .
pa r t i t ion ([E |R] ,C,Left, [ElRightl]) : -

geq(E,C), partition(R,C,Left,Rightl).

append([] ,Ys,Ys) .
append([X|Xs] ,Ys, [X |Zs]) : - append(Xs,Ys,Zs) .

Fig. 1. A modular qsort program.

validation, as we will see in Section 3.2. Interestingly, this very general concept of
assertions is also particularly useful for generating documentation automatically
(see [24] for a description of their use by the Ciao auto-documenter).

Assertions refer to certain program points. The t rue pred assertions above
specify in a combined way properties of both the entry (i.e., upon calling) and
exit (i.e., upon success) points of all calis to the predicate. It is also possible to
express properties which hold at points between clause literals. The following is
a fragment of the output produced by CiaoPP for the program in Figure 1 when
information is requested at this level:

qsort ([X | L] ,R) : -
t rue((ground(X),ground(L) ,var(R) ,var(Ll) ,var(L2) ,var(R2) , . . .
pa r t i t ion(L ,X,Ll ,L2) ,
t rue((ground(X),ground(L),ground(Ll) ,ground(L2),var(R),var(R2), . . .
qsort(L2,R2), . . .

In CiaoPP properties are just predicates, which may be builtin or user de-
ñned. For example, the property var used in the above examples is the standard
builtin predicate to check for a free variable. The same applies to ground and
mshare. The properties used by an analysis in its output (such as var, ground,
and msliare for the previous mode analysis) are said to be native for that par­
ticular analysis. The system requires that properties be marked as such with
a prop declaration which must be visible to the module in which the property
is used. In addition, properties which are to be used in run-time checking (see
later) should be deñned by a (logic) program or system builtin, and also visible.
Properties declared and/or deñned in a module can be exported as any other
predicate. For example:

: - prop l i s t / l .

l i s t ([]) .
l i s t ([_|L]) : - l i s t (L) .

defines the property "list". A list is an instance of a very useful class of user-
defined properties called regular types [48,14,21,20,47], which herein are simply
a syntactically restricted class of logic programs. We can mark this fact by stat-
ing " : - regtype l i s t / 1 . " instead of " : - prop l i s t / 1 . " (this can be done
automatically). The definition above can be included in a user program or, al-
ternatively, it can be imported from a system library, e.g.:
: - u s e _ m o d u l e (l i b r a r y (l i s t s) , [l i s t / 1]) .

Type Analysis: CiaoPP can infer (parametric) types for programs both at the
predicate level and at the literal level [21, 20,47]. The output for Figure 1 at the
predicate level, assuming that we have imported the l i s t s library, is:

: - t rue pred qsort(A,B)
: (term(A), term(B))

=> (l i s t (A) , l i s t (B)) .
: - t rue pred parti t ion(A,B,C,D)

: (term(A), term(B), term(C), term(D))
=> (l i s t (A) , term(B) , l i s t (C) , l i s t (D)) .

: - t rue pred append(A,B,C)
: (l i s t (A) , l i s t l (B , t e r m) , term(C))

=> (l i s t (A) , l i s t l (B , t e r m) , l i s t l (C , t e r m)) .

where term is any term and prop l i s t l is defined in l i b r a r y (l i s t s) as:

: - regtype l i s t l (L , T) # "@var{L} i s a l i s t of a t l e a s t one @var{T}'s."
l i s t l ([X | R] ,T) : - T (X) , l i s t (R ,T) .
: - regtype l i s t (L , T) # "@var{L} i s a l i s t of Qvar-TO's."
l i s t ([] ,_T).
l i s t ([X | L] ,T) : - T (X) , l i s t (L) .

We can use entry assertions [3] to specify a restricted class of calis to the module
entry points as acceptable:

: - entry qsort(A,B) : (l i s t (A , num), var(B)) .

This informs the analyzer that in all external calis to qsort , the first argument
will be a list of numbers and the second a free variable. Note the use of builtin
properties (i.e., defined in modules which are loaded by default, such as var, num,
l i s t , etc.). Note also that properties natively understood by different analysis
domains can be combined in the same assertion. This assertion will aid goal-
dependent analyses obtain more aecurate information. For example, it allows
the type analysis to obtain the following, more precise information:

: - t rue pred qsort(A,B)
: (l i s t (A,num), term(B))

=> (l i s t (A,num), l ist(B,num)) .
: - t rue pred parti t ion(A,B,C,D)

: (l i s t (A,num), num(B), term(C), term(D))
=> (l i s t (A,num), num(B), l i s t (C,num), list(D,num)) .

: - t rue pred append(A,B,C)
: (l i s t (A,num), l i s t l (B ,num) , term(C))

=> (l i s t (A,num), l i s t l (B ,num) , l is t l (C,num)) .

Non-failure and Determinacy Analysis: CiaoPP includes a non-failure
analysis, based on [17], which can detect procedures and goals that can be guar-
anteed not to fail, Le., to produce at least one solution or not termínate. It also
can detect predicates that are "covered", Le., such that for any input (included
in the calling type of the predícate), there is at least one clause whose "test"
(head uniñcation and body builtins) succeeds. CiaoPP also includes a determi­
nacy analysis which can detect predicates which produce at most one solution, or
predicates whose clause tests are disjoint, even if they are not fully deterministic
(because they cali other predicates which are nondeterministic). For example,
the result of these analyses for Figure 1 includes the following assertion:

: - t rue pred qsort(A,B)
: (l i s t (A,num), var(B)) => (l i s t (A,num), list(B,num))
+ (n o t _ f a i l s , covered, i s_de t , mut_exclusive) .

(The + ñeld in pred assertions can contain a conjunction of global properties of
the computation of the predícate.)

Size, Cost, and Termination Analysis: CiaoPP can also infer lower and
upper bounds on the sizes of terms and the computational cost of predicates [18,
19]. The cost bounds are expressed as functions on the sizes of the input argu­
ments and yield the number of resolution steps. Various measures are used for
the "size" of an input, such as list-length, term-size, term-depth, integer-valué,
etc. Note that obtaining a non-inñnite upper bound on cost also implies proving
termination of the predícate.

As an example, the following assertion is part of the output of the upper
bounds analysis:

: - t rue pred append(A,B,C)
: (l i s t (A,num), l i s t l (B ,num) , var(C))

=> (l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) ,
size_ub(A,length(A)), s ize_ub(B,length(B)) ,
size_ub(C,length(B)+length(A)))

+ steps_ub(length(A)+l) .

Note that in this example the size measure used is list length. The assertion
size_ub(C,length(B)+length(A) means that an (upper) bound on the size of the
third argument of append/3 is the sum of the sizes of the ñrst and second
arguments. The inferred upper bound on computational steps is the length of
the ñrst argument of append/3.

The following is the output of the lower-bounds analysis:

: - t rue pred append(A,B,C)
: (l i s t (A,num), l i s t l (B ,num) , var(C))

=> (l i s t (A,num), l i s t l (B ,num) , l i s t l (C ,num) ,
s ize_lb(A, length(A)) , s ize_lb(B, length(B)) ,

Program

Builtins/
Libs

syntax
error/
warning • semantic

comp-time
error/warning

/

Interactive
Diagnosis

\ _

_ . Static
Syntax _̂ _ Analysis,

checker

• Assertion
Normalizer

. & Lib Itf.

RT tests
Annotator

\ PREPROCESSOR

system
run-time
error

Program
+

RT tests

Fig. 2. Architecture of the Preprocessor

size_lb(C,length(B)+length(A)))
+ (n o t _ f a i l s , covered, s teps_lb(length(A)+l)) .

The lower-bounds analysis uses information from the non-failure analysis, with-
out which a trivial lower bound of 0 would be derived.

Decidability, Approximations, and Safety: As a ñnal note on the analyses,
it should be pointed out that since most of the properties being inferred are
in general undecidable at compile-time, the inference technique used, abstract
interpretation, is necessarily approximate, i.e., possibly imprecise. On the other
hand, such approximations are also always guaranteed to be safe, in the sense
that (modulo bugs, of course) they are never incorrect.

3.2 Program Debugging and Assertion Validation

CiaoPP is also capable of combined static and dynamic validation, and debug­
ging using the ideas outlined so far. To this end, it implements the framework
described in [27,38] which involves several of the tools which comprise CiaoPP.
Figure 2 depicts the overall architecture. Hexagons represent the different tools
involved and arrows indicate the communication paths among them.

Program veriñcation and detection of errors is ñrst performed at compile-time
by using the sufficient conditions shown in Table 2, i.e., by inferring properties
of the program via abstract interpretation-based static analysis and comparing
this information against (partial) speciñcations Ia written in terms of assertions.

Both the static and the dynamic checking are provably safe in the sense that
all errors flagged are deñnite violations of the speciñcations.

:- module(qsort, [qsort/2] , [assertions]).

:- entry qsort(A,B) : (list(A, num), var(B)).

qsort ([X | L] ,R) : -
pa r t i t ion(L ,L l ,X ,L2) ,
qsort(L2,R2), q s o r t (L l , R l) ,
append(R2, [x|Rl] ,R) .

qsort ([] , []) .

p a r t i t i o n ([] ,_B, [] , []) .
p a r t i t i o n ([e | R] ,C, [ElLeftl] ,Right) : -

E < C, !, pa r t i t i on (R ,C ,Le f t l ,R igh t) .
pa r t i t ion ([E |R] ,C,Left, [ElRightl]) : -

E >= C, partition(R,C,Left,Rightl).

append([] ,X,X).
append([H|X] ,Y, [H|Z]) : - append(X,Y,Z) .

Fig. 3. A tentative qsort program.

Static Debugging: The idea of using analysis information for debugging comes
naturally after observing analysis outputs for erroneous programs. Consider the
program in Figure 3. The result of regular type analysis for this program includes
the following code:

: - t rue pred qsort(A,B)
: (term(A), term(B))

=> (l i s t (A , t l l 3) , l i s t (B ,~x)) .

:- regtype tll3/l.

tll3(A) :- arithexpression(A).

tll3([]).

t l l 3 ([A |B]) : - a r i thexpress ion(A) , l i s t (B , t l l 3) .
t l l 3 (e) .

where arithexpression is a library property which describes arithmetic expres-
sions and l i s t (B , "x) means "a list of x's." A new ñame (t l l3) is given to one
of the inferred types, and its deñnition included, because no deñnition of this
type was found visible to the module. In any case, the information inferred does
not seem compatible with a correct deñnition of qsort, which clearly points to
a bug in the program.

Static Checking of System Assertions: In addition to manual inspection of
the analyzer output, CiaoPP includes a number of automated facilities to help
in the debugging task. For example, CiaoPP can ñnd incompatibilities between
the ways in which library predicates are called and their intended mode of use,
expressed in the form of assertions in the librarles themselves. Also, the prepro-

cessor can detect inconsistencies in the program and check the assertions present
in other modules used by the program.

For example, turning on compile-time error checking and selecting type and
mode analysis for our tentative qsort program in Figure 3 we obtain the follow-
ing messages:

WARNING: L i t e r a l par t i t ion(L,Ll ,X,L2) at q s o r t / 2 / l / l does not succeed!
ERROR: Predícate E>=C at p a r t i t i o n / 4 / 3 / 1 i s not ca l led as expected:

Called: num>=var
Expected: ar i thexpression>=ari thexpression

where qsort /2/1/1 stands for the ñrst literal in the ñrst clause of qsort and
part i t ion /4 /3 /1 stands for the ñrst literal in the third clause of partit ion.6

The ñrst message warns that all calis to part i t ion will fail, something nor-
mally not intended (e.g., in our case). The second message indicates a wrong
cali to a builtin predicate, which is an obvious error. This error has been de-
tected by comparing the mode information obtained by global analysis, which
at the corresponding program point indicates that E is a free variable, with the
assertion:

: - check c a l i s A<B (ar i thexpress ion(A), a r i thexpress ion(B)) .

which is present in the default builtins module, and which implies that the
two arguments to </2 should be ground. The message signáis a compile-time, or
abstract, incorrectness symptom [5], indicating that the program does not satisfy
the speciñcation given (that of the builtin predicates, in this case). Checking the
indicated cali to part i t ion and inspecting its arguments we detect that in the
deñnition of qsort, part i t ion is called with the second and third arguments in
reversed order - the correct cali is partition(L,X,Ll,L2).

After correcting this bug, we proceed to perform another round of compile-
time checking, which produces the following message:

WARNING: Clause ' p a r t i t i o n / 4 / 2 ' i s incompatible with i t s c a l i type
Head: p a r t i t i o n ([e IR] ,C, [ElLeftl] ,Right)
Cali Type: pa r t i t ion(l i s t (num) ,num,var ,va r)

This time the error is in the second clause of partit ion. Checking this clause
we see that in the ñrst argument of the head there is an e which should be E
instead. Compile-time checking of the program with this bug corrected does not
produce any further warning or error messages.

Static Checking of User Assertions: Though, as seen above, it is often
possible to detect error without adding assertions to user programs, if the pro­
gram is not correct, the more assertions are present in the program the more
likely it is for errors to be automatically detected. Thus, for those parts of the
program which are potentially buggy or for parts whose correctness is crucial,
the programmer may decide to invest more time in writing assertions than for

6 In the actual system line numbers and automated location of errors in source files
are provided.

other parts of the program which are more stable. In order to be more conñdent
about our program, we add to it the following check assertions:7

:- calis qsort(A,B) : list(A, num).

:- success qsort(A,B) => (ground(B), sorted_num_list(B))

:- calis partition(A,B,C,D) : (ground(A), ground(B)).

:- success partition(A,B,C,D) => (list(C, num),ground(D))

:- calis append(A,B,C) : (list(A,num),list(B,num)).

:- comp partition/4 + not_fails.

: - comp p a r t i t i o n / 4 + i s_de t .
: - comp parti t ion(A,B,C,D) + te rminates .

: - prop sor ted_num_l is t / l .
sorted_num_list([]) .
sor ted_num_lis t ([X]) : - number(X).
sorted_num_list([X,Y|Z]) : -

number(X), number(Y), X=<Y, sorted_num_list([Y|Z]).

where we also use a new property, sorted.jn.um_list, deñned in the module itself.
These assertions provide a partial speciñcation of the program. They can be seen
as integrity constraints: if their properties do not hold, the program is incorrect.
Calis assertions specify properties of all calis to a predicate, while success
assertions specify properties of exit points for all calis to a predicate. Properties
of successes can be restricted to apply only to calis satisfying certain properties
upon entry by adding a ":" ñeld to success assertions. Finally, Comp assertions
specify global properties of the execution of a predicate. These include complex
properties such as determinacy or termination and are in general not amenable
to run-time checking. They can also be restricted to a subset of the calis using
":". More details on the assertion language can be found in [39].

CiaoPP can perform compile-time checking of the assertions above, by com-
paring them with the assertions inferred by analysis (see Table 2 and [5,40] for
details), producing:

: - checked c a l i s qsort(A,B) : l i s t (A,num). */, Al
: - check success qsort(A,B) => sorted_num_list(B) . */, A2
: - checked c a l i s parti t ion(A,B,C,D) : (ground(A) ,ground(B)) . '/, A3
: - checked success parti t ion(A,B,C,D) => (l i s t (C,num) ,ground(D)).*/, A4
: - f a l se c a l i s append(A,B,C) : (l i s t (A,num), l ist(B,num)) . '/, A5
: - checked comp p a r t i t i o n / 4 + n o t _ f a i l s . */, A6
: - checked comp p a r t i t i o n / 4 + i s_de t . */, A7
: - checked comp p a r t i t i o n / 4 + te rminates . */, A8

Assertion A5 has been detected to be false. This indicates a violation of the
speciñcation given, which is also flagged by CiaoPP as follows:

ERROR: (lns 22-23) f a l se c a l i s a s se r t ion :
: - c a l i s append(A,B,C) : l is t (A,num), l is t (B,num)

Called a p p e n d (l i s t (~ x) , [~ x | l i s t (~ x)] , v a r)

7 The check prefix is assumed when no prefix is given, as in the example shown.

7. Al
7. A2
•/. A3
y. A4
y. AS

y. A6
y. A7
y. AS

The error is now in the cali append(R2, [x |R l] ,R) in qsort (x instead of X).
Assertions Al, A3, A4, A6, A7, and A8 have been detected to hold, but it was
not possible to prove statically assertion A2, which has remained with check
status. Note tha t though the predicate p a r t i t i o n may fail in general, in the
context of the current program it can be proved not t o fail. Note also tha t A2
has been simpliñed, and this is because the mode analysis has determined tha t
on success the second argument of qsort is ground, and thus this does not
have to be checked at run-time. On the other hand the analyses used in our
session (types, modes, non-failure, determinism, and upper-bound cost analysis)
do not provide enough information to prove tha t the output of qsort is a sortea
list of numbers, since this is not a native property of the analyses being used.
While this property could be captured by including a more reñned domain (such
as constrained types), it is interesting to see what happens with the analyses
selected for the example.8

Dynamic Debugging with Run-time Checks: Assuming tha t we stay with
the analyses selected previously, the following step in the development process is
to compile the program obtained above with the "genérate run-time checks"
option. CiaoPP will then introduce run-time tests in the program for those
c a l i s and succe s s assertions which have not been proved ñor disproved during
compile-time checking. In our case, the program with run-time checks will cali
the deñnition of sorted_num_list at the appropriate times. In the current im-
plementation of CiaoPP we obtain the following code for predicate qsort (the
code for p a r t i t i o n and append remain the same as there is no other assertion
left to check):

qsort(A,B) : -
new_qsort(A,B),
pos t c ([qsort(C,D) : t rue => sorted(D)] , qsor t (A,B)) .

new_qsort([XIL] , R) : -
par t i t ion(L,X,Ll ,L2) ,
qsort(L2,R2), q s o r t (L l , R l) ,
append (R2, [X|Rl] ,R) .

new_qsort ([] , []) .

where pos te is the library predicate in charge of checking postconditions of
predicates. If we now run the program with run-time checks in order to sort, say,
the list [1 , 2] , the Ciao system generates the following error message:

8 Not that while property sorted_num_list cannot be proved with only (over approx-
imations) of mode and regular type information, it may be possible to prove that
it does not hold (an example of how properties which are not natively understood
by the analysis can also be useful for detecting bugs at compile-time): while the
regular type analysis cannot capture perfectly the property sorted_num_list, it can
still approximate it (by analyzing the deñnition) as l i s t (B , num). If type analysis
for the program were to genérate a type for B not compatible with l i s t (B , num),
then a definite error symptom would be detected.

: - module (reverse , [nrev/2] , [asser t ions]) .
: - use_module (l ib ra ry(, asse r t ions /na t ive_props ')) .
: - entry nrev(A,B) : (ground(A), l i s t (A , term), var (B)) .

nrev([] , []) .
nrev([H|L] ,R) : -

nrev(L,Rl) ,
append(Rl,[H],R).

Fig. 4. The naive reverse program.

?- q s o r t ([l , 2] ,L) .
ERROR: for Goal qsor t ([1,2] , [2,1])
Precondit ion: t rue holds , but
Postcondit ion: sor ted_num_lis t ([2,1]) does not .

L = [2,1] ?

Clearly, there is a problem with qsort , since [2 ,1] is not the result of ordering
[1 ,2] in ascending order. This is a (now, run-time, or concrete) incorrectness
symptom, which can be used as the start ing point of diagnosis. The result of
such diagnosis should indicate tha t the cali to append (where Rl and R2 have
been swapped) is the cause of the error and tha t the right deñnition of predicate
qsort is the one in Figure 1.

Performance Debugging and Validation: Another very interesting feature
of CiaoPP is the possibility of stating assertions about the efficiency of the
program which the system will t ry to verify or falsify. This is done by stating
lower and /or upper bounds on the computational cost of predicates (given in
number of execution steps). Consider for example the naive reverse program in
Figure 4. Assume also tha t the predicate append is deñned as in Figure 1.

Suppose tha t the programmer thinks tha t the cost of nrev is given by a linear
function on the size (list-length) of its ñrst argument, maybe because he has not
taken into account the cost of the append cali). Since append is linear, it causes
nrev t o be quadratic. We will show tha t CiaoPP can be used to inform the
programmer about this false idea about the cost of nrev. For example, suppose
tha t the programmer adds the following "check" assertion:

: - check comp nrev(A,B) + s t e p s _ u b (l e n g t h (A) + l) .

Wi th compile-time error checking turned on, and mode, type, non-failure and
lower-bound cost analysis selected, we get the following error message:

ERROR: f a l s e comp a s s e r t i o n :
: - comp nrev(A,B) : t rue => s t e p s _ u b (l e n g t h (A) + l)

because in the computation the f o l l o w i n g h o l d s :
s t e p s _ l b (0 . 5 * e x p (l e n g t h (A) , 2) + 1 . 5 * l e n g t h (A) + 1)

This message states that nrev will take at least 0.5 (length(A))2+1.5 length(A)-\-
1 resolution steps (which is the cost analysis output), while the assertion requires
that it take at most length(A) + 1 resolution steps. The cost function in the user-
provided assertion is compared with the lower-bound cost assertion inferred by
analysis. This allows detecting the inconsistency and proving that the program
does not satisfy the efficiency requirements imposed. Upper-bound cost asser-
tions can also be proved to hold, i.e., can be checked, by using upper-bound cost
analysis rather than lower-bound cost analysis. In such case, if the upper-bound
computed by analysis is lower or equal than the upper-bound stated by the user
in the assertion. The converse holds for lower-bound cost assertions.

3.3 Source Program Optimization

We now turn our attention to the program optimizations that are available in
CiaoPP. These include abstract specialization, parallelization (including granu-
larity control), múltiple program specialization, and integration of abstract inter-
pretation and partial evaluation. All of them are performed as source to source
transformations of the program. In most of them static analysis is instrumental,
or, at least, beneñcial.

Abstract Specialization: Program specialization optimizes programs for known
valúes (substitutions) of the input. It is often the case that the set of possible
input valúes is unknown, or this set is infinite. However, a form of specializa­
tion can still be performed in such cases by means of abstract interpretation,
specialization then being with respect to abstract valúes, rather than concrete
ones. Such abstract valúes represent a (possibly infinite) set of concrete valúes.
For example, consider the deñnition of the property sorted_num_list/l, and
assume that regular type analysis has produced:

: - t rue pred sorted_num_list(A) : list(A,num) => l is t (A,num).

Abstract specialization can use this information to optimize the code into:

sorted_num_list([]) .
sorted_num_list([_]) .

sorted_num_lis t ([X,Y|Z]) : - X=<Y, sorted_num_list([Y|Z]) .

which is clearly more efficient because no number tests are executed. The opti­
mization above is based on abstractly executing the number literals to the valué
true, as discussed in Section 2.2.

CiaoPP can also apply abstract specialization to the optimization of pro­
grams with dynamic scheduling (e.g., using delay declarations) [41]. The trans­
formations simplify the conditions on the delay declarations and also move de-
layed literals later in the rule body, leading to substantial performance improve-
ment. This is used by CiaoPP, for example, when supporting complex computa-
tion models, such as Andorra-style execution [25].

Parallelization: An example of a non-trivial program optimization performed
using abstract interpretation in CiaoPP is program parallelization [4]. It is also
performed as a source-to-source transformation, in which the input program is
annotated with parallel expressions. The parallelization algorithms, or annota-
tors [35], exploit parallelism under certain independence conditions, which allow
guaranteeing interesting correctness and no-slowdown properties for the paral-
lelized programs [29,16]. This process is complicated by the presence of shared
variables and pointers among data structures at run-time.

We consider again the program of Figure 1. A possible parallelization (ob-
tained in this case with the "MEL" annotator) is:

qsort([X|L] ,R) : -
pa r t i t ion (L ,X,L l ,L2) ,
(indep([[Ll ,L2]]) -> qsort(L2,R2) k qsort(L1.R1)

; qsort(L2,R2), qsort(L1.R1)) ,
append(Rl,[X|R2],R).

which indicates that, provided that Ll and L2 do not have variables in common
(at execution time), then the recursive calis to qsort can be run in parallel.
Given the information inferred by the abstract interpreter using, e.g., the mode
and independence analysis (see Section 3.1), which determines that Ll and L2 are
ground after part i t ion (and therefore do not share variables), the independence
test and the conditional can be simpliñed via abstract executability and the
annotator yields instead:

qsort ([X | L] ,R) : -
pa r t i t ion (L ,X,L l ,L2) ,
qsort(L2,R2) k q s o r t (L l , R l) ,
append(Rl,[X|R2],R).

which is much more efficient since it has no run-time test. This test simpliñcation
process is described in detail in [4] where the impact of abstract interpretation
in the effectiveness of the resulting parallel expressions is also studied.

The tests in the above example aim at strict independent and-parallelism.
However, the annotators are parameterized on the notion of independence. Dif-
ferent tests can be used for different independence notions: non-strict indepen­
dence [7], constraint-based independence [16], etc. Moreover, all forms of and-
parallelism in logic programs can be seen as independent and-parallelism, pro­
vided the deñnition of independence is applied at the appropriate granularity
level.9

Resource and Granularity Control: Another application of the information
produced by the CiaoPP analyzers, in this case cost analysis, is to perform
combined compile-time/run-time resource control. An example of this is task
granularity control [33] of parallelized code. Such parallel code can be the output
of the process mentioned above or code parallelized manually.

9 For example, stream and-parallelism can be seen as independent and-parallelism if
the independence of "bindings" rather than goals is considered.

In general, this run-time granularity control process involves computing sizes
of terms involved in granularity control, evaluating cost functions, and compar-
ing the result with a threshold10 to decide for parallel or sequential execution.
Optimizations to this general process include cost function simpliñcation and
improved term size computation, both of which are illustrated in the foUowing
example.

Consider again the qsort program in Figure 1. We use CiaoPP to perform
a transformation for granularity control, using the analysis information of type,
sharing+freeness, and upper bound cost analysis, and taking as input the par-
allelized code obtained in the previous section. CiaoPP adds a clause:
"qsort(_l,_2) : - g_qsort(_l ,_2) ." (to preserve the original entry point)
and produces g_qsort/2, the versión of qsort/2 that performs granularity con­
trol (s_qsort/2 is the sequential versión):

g_qsort([X|L] ,R) : -
par t i t ion_o3_4(L,X,Ll ,L2,_2,_ l) ,
(_1>7 -> (_2>7 -> g_qsort(L2,R2) k g_qsort(Ll ,Rl)

; g_qsort(L2,R2), s_qsor t (Ll ,Rl))
; (_2>7 -> s_qsort(L2,R2), g_qsort(Ll ,Rl)

; s_qsort(L2,R2), s_qso r t (L l ,R l))) ,
append(Rl,[X|R2],R).

g .qsor t ([] , []) .

Note that if the lengths of the two input lists to the qsort program are
greater than a threshold (a list length of 7 in this case) then versions which
continué performing granularity control are executed in parallel. Otherwise, the
two recursive calis are executed sequentially. The executed versión of each of
such calis depends on its grain size: if the length of its input list is not greater
than the threshold then a sequential versión which does not perform granularity
control is executed. This is based on the detection of a recursive invariant: in
subsequent recursions this goal will not produce tasks with input sizes greater
than the threshold, and thus, for all of them, execution should be performed
sequentially and, obviously, no granularity control is needed.

In general, the evaluation of the condition to decide which predicate versions
are executed will require the computation of cost functions and a comparison
with a cost threshold (measured in units of computation). However, in this ex­
ample a test simpliñcation has been performed, so that the input size is simply
compared against a size threshold, and thus the cost function for qsort does not
need to be evaluated.11 Predicate partit ion_o3_4/6:

partition_o3_4([] ,_B, [] , [] ,0,0) .
partition_o3_4([E|R],C,[ElLeftl],Right,_1,_2) :-

E<C, partition_o3_4(R,C,Leftl,Right,_3,_2), _1 is _3+l.
partition_o3_4([E|R],C,Left,[ElRightl],_1,_2) :-

E>=C, partition_o3_4(R,C,Left,Rightl,_l,_3), _2 is _3+l.

10 This threshold can be determined experimentally for each parallel system, by taking
the average valué resulting from several runs.

11 This size threshold will obviously be different if the cost function is.

is the transformed versión of part i t ion/4, which "on the fly" computes the
sizes of its third and fourth arguments (the automatically generated variables _1
and _2 represent these sizes respectively) [32].

Múltiple Specialization: Sometimes a procedure has different uses within
a program, i.e. it is called from different places in the program with different
(abstract) input valúes. In principie, (abstract) program specialization is then
allowable only if the optimization is applicable to all uses of the predicate. How-
ever, it is possible that in several different uses the input valúes allow different
and incompatible optimizations and then none of them can take place. In CiaoPP
this problem is overeóme by means of "múltiple program specialization" where
different versions of the predicate are generated for each use. Each versión is
then optimized for the particular subset of input valúes with which it is to be
used. The abstract múltiple specialization technique used in CiaoPP [44] has
the advantage that it can be incorporated with little or no modiñeation of some
existing abstract interpreters, provided they are multivariant (PLAI and similar
frameworks have this property).

This specialization can be used for example to improve automatic paralleliza­
tion in those cases where run-time tests are included in the resulting program.
In such cases, a good number of run-time tests may be eliminated and invariants
extracted automatically from loops, resulting generally in lower overheads and
in several cases in increased speedups. We consider automatic parallelization of
a program for matrix multiplication using the same analysis and parallelization
algorithms as the qsort example used before. This program is automatically
parallelized without tests if we provide the analyzer (by means of an entry
declaration) with aecurate information on the expected modes of use of the pro­
gram. However, in the interesting case in which the user does not provide such
declaration, the code generated contains a large number of run-time tests. We
include below the code for predicate multiply which multiplies a matrix by a
vector:

mult ip ly([] , _ , []) .
multiply([VO | Rest] ,V1, [Result I Others]) : -

(ground(Vl),
indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others]]) ->

vmul(V0,VI,Result) k mult iply(Rest ,VI,Others)
; vmul(VO,VI,Result), mul t ip ly(Res t ,VI ,Others)) .

Four independence tests and one groundness test have to be executed prior to
executing in parallel the calis in the body of the recursive clause of multiply.
However, abstract múltiple specialization generates four versions of the predicate
multiply which correspond to the different ways this predicate may be called
(basically, depending on whether the tests succeed or not). Of these four variants,
the most optimized one is:

multiply3 ([] , _ , []) .
mult iply3([V0|Rest] ,V1,[Resul tIOthers]) : -

(indep([[Result, Others]]) ->
vmul(V0,VI,Result) k mult iply3(Rest ,VI,Others)

; vmul(VO,VI,Result), mul t ip ly3(Rest ,VI ,Others)) .

where the groundness test and three out of the four independence tests have
been eliminated. Note also that the recursive calis to mult iply use the optimized
versión multiply3. Thus, execution of matrix multiplication with the expected
mode (the only one which will succeed in Prolog) will be quickly directed to
the optimized versions of the predicates and itérate on them. This is because
the specializer has been able to detect this optimization as an invariant of the
loop. The complete code for this example can be found in [44]. The múltiple
specialization implemented incorporates a minimization algorithm which keeps
in the ñnal program as few versions as possible while not losing opportunities
for optimization. For example, eight versions of predicate vmul (for vector multi­
plication) would be generated if no minimizations were performed. However, as
múltiple versions do not allow further optimization, only one versión is present
in the ñnal program.

Integration of Abstract Interpretation and Partial Evaluation: In the
context of CiaoPP we have also studied the relationship between abstract múlti­
ple specialization, abstract interpretation, and partial evaluation. Abstract spe­
cialization exploits the information obtained by multivariant abstract interpre­
tation where information about valúes of variables is propagated by simulating
program execution and performing ñxpoint computations for recursive calis. In
contrast, traditional partial evaluators (mainly) use unfolding for both propagat-
ing valúes of variables and transforming the program. It is known that abstract
interpretation is a better technique for propagating success valúes than unfold­
ing. However, the program transformations induced by unfolding may lead to
important optimizations which are not directly achievable in the existing frame-
works for múltiple specialization based on abstract interpretation. In [46] we
present a specialization framework which integrates the better information prop-
agation of abstract interpretation with the powerful program transformations
performed by partial evaluation.

We are currently investigating the use of abstract domains based on improve-
ments of regular types [47] for their use for partial evaluation.

More info: For more information, full versions of papers and technical reports,
and/or to download Ciao and other related systems please access:
http:/ /www.cl ip.dia.f i .upm.es/ .

http://www.clip.dia.fi.upm.es/

References

1. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro-
gramming Languages Design and Implementation'93, pages 46-55, 1993.

2. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla.
The Ciao Prolog System. Reference Manual. The Ciao System Documenta-
tion Series-TR CLIP3/97.1, School of Computer Science, Technical University of
Madrid (UPM), August 1997. System and on-line versión of the manual available
at h t t p : / / c l i p .d i a . f i . upm.es /So f tware /C iao / .

3. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan­
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

4. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189-238, March
1999.

5. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int'l Workshop on Au-
tomated Debugging-AADEBUG'97, pages 155-170, Linkoping, Sweden, May 1997.
U. of Linkoping Press.

6. F. Bueno, M. García de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for ínter-module Analysis and Optimizing Compilation. In
Logic-based Program Synthesis and Transformation, number 2042 in LNCS, pages
86-102. Springer-Verlag, 2001.

7. D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Information. In 1994 International Static
Analysis Symposium, number 864 in LNCS, pages 297-313, Namur, Belgium,
September 1994. Springer-Verlag.

8. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

9. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of
Logic Programming, 39(l-3):43-93, 1999.

10. M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In 1995
International Logic Programming Symposium, pages 275-287, Portland, Oregon,
December 1995. MIT Press, Cambridge, MA.

11. P. Cousot. Automatic Verification by Abstract Interpretation, Invited Tutorial.
In Fourth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI), number 2575 in LNCS, pages 20-24. Springer, January
2003.

12. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of Programming Languages, pages 238-252,
1977.

13. P. Cousot and R. Cousot. Systematic Design of Program Transformation Frame-
works by Abstract Interpretation. In POPL'02: 29ST ACM SIGPLAN-SIGACT
Symposium on Principies of Programming Languages, pages 178-190, Portland,
Oregon, January 2002. ACM.

http://clip.dia.fi.upm.es/Software/Ciao/

14. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In
F. Pfenning, editor, Types in Logic Programming, pages 157-187. MIT Press, 1992.

15. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Trans. on Programming Languages and Systems, 18(5):564-615, 1996.

16. M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in
CLP Languages. ACM Transactions on Programming Languages and Systems,
22(2):269-339, March 2000.

17. S.K. Debray, P. López-García, and M. Hermenegildo. Non-Failure Analysis for
Logic Programs. In 1997 International Conference on Logic Programming, pages
48-62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

18. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Estimating the
Computational Cost of Logic Programs. In Static Analysis Symposium, SAS'94,
number 864 in LNCS, pages 255-265, Namur, Belgium, September 1994. Springer-
Verlag.

19. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

20. J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite
Tree Autómata for Set-Based Analysis of Logic Programs. In Fourth International
Symposium on Practica! Aspects of Declarative Languages, number 2257 in LNCS,
pages 243-261. Springer-Verlag, January 2002.

21. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the llth International
Conference on Logic Programming, pages 599-613. MIT Press, 1994.

22. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs. ACM
Transactions on Programming Languages and Systems, 18(5):564-615, September
1996.

23. F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance De-
tection and Selective Program Specialization. In Proc. 3rd. Int'l Symposium on
Programming Language Implementation and Logic Programming, number 528 in
LNCS, pages 323-335. Springer-Verlag, August 1991.

24. M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Interna­
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
1345-1361. Springer-Verlag, July 2000.

25. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. García de la Banda,
P. López-García, and G. Puebla. The CIAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism and
Implementation of Logic and Constraint Logic Programming, pages 65-85. Nova
Science, Commack, NY, USA, April 1999.

26. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analy­
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52-66, Cambridge, MA,
November 1999. MIT Press.

27. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De­
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 161-192. Springer-
Verlag, July 1999.

28. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems, 22(2):187-223, March 2000.

29. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efflciency, and Compile-Time Conditions. Journal
of Logic Programming, 22(l):l-45, 1995.

30. M. Leuschel. Program Specialisation and Abstract Interpretation Reconciled. In
Joint International Conference and Symposium on Logic Programming, June 1998.

31. Y. Lichtenstein and E. Y. Shapiro. Abstract algorithmic debugging. In R. A.
Kowalski and K. A. Bowen, editors, Fifth International Conference and Symposium
on Logic Programming, pages 512-531, Seattle, Washington, August 1988. MIT.

32. P. López-García and M. Hermenegildo. Efñcient Term Size Computation for Gran-
ularity Control. In International Conference on Logic Programming, pages 647-661,
Cambridge, MA, June 1995. MIT Press, Cambridge, MA.

33. P. López-García, M. Hermenegildo, and S.K. Debray. A Methodology for Granular-
ity Based Control of Parallelism in Logic Programs. J. of Symbolic Computation,
Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

34. K. Marriott, M. García de la Banda, and M. Hermenegildo. Analyzing Logic
Programs with Dynamic Scheduling. In 20th. Annual ACM Conf. on Principies of
Programming Languages, pages 240-254. ACM, January 1994.

35. K. Muthukumar, F. Bueno, M. García de la Banda, and M. Hermenegildo. Au­
tomatic Compile-time Parallelization of Logic Programs for Restricted, Goal-
level, Independent And-parallelism. Journal of Logic Programming, 38(2):165-218,
February 1999.

36. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna­
tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

37. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

38. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 63-107. Springer-Verlag, September 2000.

39. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23-61. Springer-Verlag, September 2000.

40. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro­
gram Synthesis and Transformation (LOPSTR'99), number 1817 in LNCS, pages
273-292. Springer-Verlag, 2000.

41. G. Puebla, M. García de la Banda, K. Marriott, and P. Stuckey. Optimization of
Logic Programs with Dynamic Scheduling. In 1997 International Conference on
Logic Programming, pages 93-107, Cambridge, MA, June 1997. MIT Press.

42. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal­
ysis of Logic Programs. In International Static Analysis Symposium, number 1145
in LNCS, pages 270-284. Springer-Verlag, September 1996.

43. G. Puebla and M. Hermenegildo. Abstract Specialization and its Application to
Program Parallelization. In J. Gallagher, editor, Logic Program Synthesis and
Transformation, number 1207 in LNCS, pages 169-186. Springer-Verlag, 1997.

44. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Applica­
tion to Program Parallelization. J. of Logic Programming. Special Issue on Synthe-
sis, Transformation and Analysis of Logic Programs, 41(2&3):279-316, November
1999.

45. G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North Holland, March 2000.

46. G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Partial Evalu-
ation in a Generic Abstract Interpretation Framework. In O Danvy, editor, ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM'99), number NS-99-1 in BRISC Series, pages 75-85. University of
Aarhus, Denmark, January 1999.

47. C. Vaucheret and F. Bueno. More precise yet eíñcient type inference for logic
programs. In International Static Analysis Symposium, number 2477 in LNCS,
pages 102-116. Springer-Verlag, September 2002.

48. E. Yardeni and E. Shapiro. A Type System for Logic Programs. Concurrent Prolog:
Collected Papers, pages 211-244, 1987.

