
Abstraction Carrying Code and Resource-Awareness

Manuel V. Hermenegildo1,3 Elvira Albert2

ABSTRACT
Proof-Carrying Code (PCC) is a general approach to mo­
bile code safety in which the code supplier augments the
program with a certifícate (or proof). The intended benefit
is that the program consumer can locally validate the cer­
tifícate w.r.t. the "untrusted" program by means of a cer­
tifícate checker—a process which should be much simpler,
eíñcient, and automatic than generating the original proof.
Abstraction Carrying Code (ACC) is an enabling technol-
ogy for PCC in which an abstract model of the program
plays the role of certifícate. The generation of the certifí­
cate, Le., the abstraction, is automatically carried out by an
abstract interpretation-based analysis engine, which is para-
metric w.r.t. different abstract domains. While the analyzer
on the producer side typically has to compute a semantic
fixpoint in a complex, iterative process, on the receiver it is
only necessary to check that the certifícate is indeed a fix­
point of the abstract semantics equations representing the
program. This is done in a single pass in a much more ef-
ficient process. ACC addresses the fundamental issues in
PCC and opens the door to the applicability of the large
body of frameworks and domains based on abstract inter-
pretation as enabling technology for PCC. We present an
overview of ACC and we describe in a tutorial fashion an
application to the problem of resource-aware security in mo­
bile code. Essentially the information computed by a cost
analyzer is used to genérate cost certificates which attest a
safe and efficient use of a mobile code. A receiving side can
then reject code which brings cost certificates (which it can-
not validate or) which have too large cost requirements in
terms of computing resources (in time and/or space) and ac-
cept mobile code which meets the established requirements.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-

Pedro López-García1 Germán Puebla1

gramming Languages—Program analysis; D.2.4 [Software
Engineering]: Software/Program Verification—Assertion
checkers, Validation; D.2.5 [Software Engineering]: Test-
ing and Debugging—Debugging aids, Diagnostics, Symbolic
execution; F.2.0 [Analysis of Algorithms and Prob­
lem Complexity]: General; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed program­
ming; D.3.2 [Programming Languages]: Language Clas-
sifications—Constraint and logic languages, Multiparadigm
languages.

General Terms
Reliability, Security, Languages, Theory, Verification.

Keywords
Program verification, mobile code certification, resource aware-
ness, program debugging, cost analysis, granularity control,
distributed programming, abstract interpretation, program­
ming languages.

1. INTRODUCTION
In traditional distributed execution receivers are assumed

to be either dedicated and/or to trust and simply accept
(or take, in the case of work-stealing schedulers) available
tasks. Typically, tasks are run at the receiving end under
some administrative domain that is previously agreed on
by producer and consumer of the task. However, many re-
cently proposed applications (such as peer-to-peer systems,
the GRID, and other similar overlay computing systems)
represent more open settings where the administrative do­
main of the receiver can be completely different from that
of the producer. Also, in these applications the receiver is
typically being used for other purposes (e.g., as a general-
purpose workstation) in addition to being a party to the
distributed computation.

In such an environment, interesting security- and resource-
related issues arise. In particular, in order to accept some
code and a particular task to be performed, the receiver must
clearly have some assurance of the correctness and charac-
teristics of the code received and also of the kind of load the
particular task is going to pose. A receiver should be free to
reject code that does not adhere to a particular safety policy
involving both more traditional safety issues (such as, e.g.,
that it will not write on specific áreas of the disk) and re-
source-related issues (such as, e.g., that it will not compute
for more than a given amount of time, or that it will not take

1 School of Computer Science 2 DSIP 3 Depts. of CS and ECE
T. U. of Madrid (UPM) Complutense U. of Madrid u. of New México

Madrid, Spain Madrid, Spain Albuquerque, NM, USA

{herme,german,pedro.lopez}@f¡. upm.es elvira@sip.ucm.es herme@unm.edu

http://upm.es
mailto:elvira@sip.ucm.es
mailto:herme@unm.edu

up an amount of memory or other resources above a certain
threshold). Regarding the latter, although it is obviously
possible to interrupt a task after a certain time or if it starts
taking too much memory, this will be wasteful of resources
and require recovery measures. It is clearly more desirable
to be able to detect these situations a priori. In other words,
the need appears to develop security techniques for verify-
ing that the execution of a program (possibly) supplied by
an untrusted source meets certain properties according to
a predefined safety policy, which will typically include re-
source-related requirements.

1.1 Proof Carrying Code
Proof-Carrying Code (PCC) [22] is an enabling technol-

ogy for mobile code safety which proposes to associate safety
information in the form of a certifícate to programs. The cer­
tifícate (or proof) is created at compile time, and packaged
along with the untrusted code. The consumer who receives
or downloads the code+certificate package can then run a
checker which by a straightforward inspection of the code
and the certifícate, can verify the validity of the certifícate
and thus compliance with the safety policy. The key benefit
of this "certificate-based" approach to mobile code safety is
that the consumer's task is reduced from the level of proving
to the level of checking. Indeed the (proof) checker performs
a task that should be much simpler, efñcient, and automatic
than generating the original certifícate. This is important
since the implementation on the receiving end is part of
the safety-critical infrastructure and it should be minimized.
Also, the receiving host could be a small, embedded system
that lacks the computing resources required to run large and
complex programs. Finally, such checking will be performed
by every consumer, while the certification generation is done
only once by the supplier.

Thus, the practical uptake of PCC greatly depends on the
existence of a variety of enabling technologies which allow:

1. defining expressive safety policies covering a wide range
of properties,

2. solving the problem of how to automatically genérate
the certificates (Le., automatically proving the pro­
grams correct), and

3. replacing a costly verification process by an efñcient
checking procedure on the consumer side.

The main approaches applied up to now are based on the-
orem proving and type analysis. For instance, in PCC the
certifícate is originally a proof in first-order logic of certain
verification conditions and the checking process involves en-
suring that the certifícate is indeed a valid first-order proof.
AProlog is used in [3] to define a representation of lemmas
and definitions which helps keep the proofs small. A recent
proposal [4] uses temporal logic to specify the security poli­
cies. In Typed Assembly Languages [19], the certifícate is a
type annotation of the assembly language program and the
checking process involves a form of type checking.

1.2 Abstraction Carrying Code
In [1, 2] we have proposed Abstraction-Carrying Code

(ACC). This novel approach follows the certificate-based
scheme but uses abstract interpretation [9] (rather than proofs
or type analysis) as enabling technology to handle the three
previously listed practical (and difficult) challenges of PCC.

Abstract interpretation is now a well established technique
which has allowed the development of very sophisticated
global static program analyses that are at the same time
automatic, provably correct, and practical. The basic idea
of abstract interpretation is to infer information on pro­
grams by interpreting ("running") them using abstract val­
úes rather than concrete ones, and obtaining safe over- or
under-approximations of the behavior of the program. This
technique allows inferring much richer information than, for
example, traditional types [8]. And, while it is typically
more limited than theorem proving, it is amenable to full
automation and as a result it has been incorporated in prac­
tical compilers. In some cases such compilers use abstract
interpretation to perform a large number of tasks includ-
ing verification, debugging, partial evaluation, and low-level
optimization (see, e.g., [16]). Examples of properties that
are routinely inferred with a comparatively high degree of
precisión using abstract interpretation include data struc-
ture shape (with pointer sharing), bounds on data structure
sizes and other operational variable instantiation properties,
as well as procedure-level properties such as determinacy,
termination, non-failure, and bounds on resource consump-
tion (time or space cost).

Our proposal, ACC, opens the door to the applicability of
the frameworks and domains used for inferring these prop­
erties as enabling technology for PCC. The fundamental
idea of ACC is to use an abstraction (or abstract model)
of the program computed by standard static analyzers as
a certifícate. The safety policy is specified by using an ex­
pressive assertion language defined over abstract domains.
The certifícate implies the compliance with that safety pol­
icy. The validity of the abstraction on the consumer side
is checked in a single-pass by a very efficient and special-
ized abstract-interpreter. While the analyzer on the pro-
ducer side typically has to compute a semantic fixpoint in
a complex, iterative process, on the receiving side it is only
necessary to check that the certifícate received is indeed a
fixpoint of the abstract semantic equations representing the
program, which is a much more efficient process, and to
check again the implication. Also, because the checker is a
simpler program, the code base that must be trusted is re­
duced. The approach thus addresses the fundamental PCC
issues of defining expressive safety policies (through the as­
sertion language and the abstract domain), automatically
generating the certificates (through abstract interpretation,
by computing the fixpoint), and replacing a costly verifica­
tion process by an efficient checking procedure on the con­
sumer side (through the checking of the fixpoint).

1.3 ACC for Resource-related Properties
Because of its parametric nature, ACC is a very flexi­

ble framework. Our objective in this paper is to describe
in a tutorial fashion an application of ACC to the prob­
lem of resource-aware security in mobile code. This will be
done by enhancing such mobile code with safety certificates
which guarantee that the execution of the (in principie un­
trusted) code received from another node in the network is
safe but also, as mentioned above, efficient, according to
a predefined safety policy which includes properties related
to resource consumption. Information computed by a cost
analysis will be used to genérate cost certificates which are
packaged along with the untrusted code. The receiving side
can then reject code which brings cost certificates (which it

cannot validate or) which have too large cost requirements in
terms of computing resources (in time and/or space) and ac-
cept mobile code which meets the established requirements.

1.4 Demonstration Platform: Ciao/CiaoPP
It is important to note that ACC is a general approach

that applies directly to all programming paradigms, includ-
ing logic, constraint, functional, and imperative program­
ming, as long as a static analyzer/checker is available. Note
that the fundamental components of the approach (fixpoint
semantics and abstract interpretation) have both been widely
applied also in all these paradigms. However, for concrete-
ness we will work with an incarnation of it in the context
of (Constraint) Logic Programming, (C)LP, because this
paradigm offers a good number of advantages, an important
one being the maturity and sophistication of the analysis
tools available for it. The advanced state of program anal­
ysis technology and the expressiveness of existing abstract
analysis domains used in the analysis of these paradigms has
become very useful for defining, manipulating, and inferring
a wide range of properties.

Also for concreteness, we build on the algorithms of (and
report on an implementation on) CiaoPP [16], the abstract
interpretation-based preprocessor of the Ciao system. Ciao is
a modern multi-paradigm programming language and envi-
ronment which in fact allows coding programs combining
the styles of logic, constraint, functional, and a particular
versión of object-oriented programming. One of the advan­
tages of this system in our context is that we have avail­
able a number of practical analysis tools within it. Indeed,
CiaoPP uses modular, incremental abstract interpretation as
a fundamental tool to obtain information about programs,
including, as mentioned before, independence, determinacy,
non-failure, termination, bounds on data structure sizes,
computational cost, etc. In CiaoPP, the semantic approx-
imations thus produced are applied to performing high- and
low-level optimizations during program compilation, includ­
ing transformations such as múltiple abstract specialization,
parallelization, and resource usage control, all in a provably
correct way. In addition, and most importantly for our pur-
poses, such semantic approximations are applied in the gen­
eral context of program development to perform program
static debugging, verification and, as we discuss in this pa-
per, to perform ACC.

1.5 Outline
The rest of the paper proceeds as follows. In Section 2,

we recall the abstract interpretation-based approach to pro­
gram verification. In Section 3 we present an overview of the
Abstraction Carrying Code framework. Section 4 recalls the
basic techniques used for inferring resource-related proper­
ties in our approach, including upper and lower bounds on
computational cost and data sizes. In Section 5 we then
illustrate through an example the application of our frame­
work which uses safety certificates with resource consump-
tion assurances. Finally, Section 6 presents some conclu-
sions.

2. ABSTRACT INTERPRETATION-BASED
VERIFICATION

In this section, we briefly describe the abstract interpretation-
based approach to program verification [6, 25] which consti-

tutes the basis for the certification process carried out in
ACC. This is also the method implemented in CiaoPP.

2.1 Program Verification
We consider the important class of semantics referred to

as fixpoint semantics. In this setting, a (monotonic) seman­
tic operator (which we refer to as Sp) is associated with each
program P. This Sp function operates on a semantic do-
main which is generally assumed to be a complete lattice or,
more generally, a chain complete partial order. The mean-
ing of the program (which we refer to as JPJ) is defined as
the least fixpoint of the Sp operator, Le., [[PJ = lfp(Sp).
A well-known result is that if Sp is continuous, the least
fixpoint is the limit of an iterative process involving at most
oj applications of Sp and starting from the bottom element
of the lattice.

Both program verification and debugging compare the ac­
tual semantics oí the program, Le., |P]], with an intended
semantics for the same program, which we denote by X. This
intended semantics embodies the user's requirements, Le., it
is an expression of the user's expectations. The classical ver­
ification problem of proving that P is partially correct w.r.t.
X can be formulated as follows:

P is partially correct w.r.t. X if [[P] C X

However, using the exact either actual or intended seman­
tics for automatic verification and debugging is in general
not realistic, since the exact semantics can be only partially
known, infinite, too expensive to compute, etc. An alter-
native approach is to work with approximations of the se­
mantics. This is interesting, among other reasons, because
the technique of abstract interpretation can provide safe ap­
proximations of the program semantics.

2.2 Abstract Interpretation
In abstract interpretation [10] the program P is inter-

preted over a non-standard domain called the abstract do-
main (Da) which is simpler than the selected concrete do­
main (D). The abstract domain Da is usually constructed
with the objective of computing precise, yet always safe ap­
proximations of the semantics of programs, and the seman­
tics w.r.t. this abstract domain, Le., the abstract semantics
oí the program, is computed (or approximated) by replac-
ing the operators in the program by their abstract counter-
parts. An abstract valué is a finite representation of a, pos-
sibly infinite, set of actual valúes (or states or even complete
executions) in the concrete domain. The set of all possible
abstract semantic valúes which Da represents is usually also
a complete lattice or cpo which is ascending chain finite. As
in the previous section we assume for tutorial purposes com­
plete lattices over sets, both for the concrete domain (2 , C)
(we consider sets oí valúes or states) and the abstract do­
main (Da, C). Abstract valúes and sets of concrete valúes
are related via a pair of monotonic mappings (a, 7): abstrac­
tion a : 2 —> Da, and concretization 7 : Da —> 2 , such
that \/x G 2D : 7(0(1)) D x and \/y G Da : a(j(y)) = y. In
general C is induced by C and a. Similarly, the operations
of least upper bound (U) and greatest lower bound (n) mimic
those of 2D in a precise sense.

One of the fundamental results of abstract interpretation
is that an abstract semantic operator Sp for a program P
can be defined which is correct w.r.t. Sp in the sense that

Program

:- check
:- entry

la

Builtins/
Libs

ítatic
_̂ _ Analysis.

verification
warning
(and possible
run-time error)

Assertion
Normalizer
& Lib Itf. _ Comparator

Incl. VC gen

PREPROCESSOR

Figure 1: Program Veriñcation Framework (CiaoPP)

7(lfp(Sp)) is an approximation of [[PJ, and, if certain con-
ditions hold (e.g., ascending chains are finite in the Da lat-
tice), then the computation of lfp(Sp) terminates in a finite
number of steps. We will denote lfp(Sp), i.e., the result of
abstract interpretation for a program P, as |P]] .

Typically, abstract interpretation guarantees that \P\a is
an oner-approximation of the abstract semantics of the pro­
gram itself, a([[PJ). Thus, we have that [[P^a D a([[PJ),
which we will denote as |P]] +. Alternatively, the analysis
can be designed to safely trader-approximate the actual se­
mantics, and then we have that [[-P]]̂ C a([[PJ), which we
denote as |P]] - •

2.3 Al-based Program Verification
The key idea of our verification (and static debugging)

framework, as implemented in CiaoPP, is to use the abstract
approximation [[-P]]̂ computed by the analysis engines di-
rectly in verification and debugging tasks. The possible loss
of aecuracy due to approximation prevenís full verification
in general. However, and interestingly, it turns out that
in many cases useful verification and debugging conclusions
can still be derived by comparing the approximations of the
actual semantics of a program to the (also possibly approx-
imated) intended semantics.

Herein, we assume that the program specification is given
as a semantic valué Ia G Da. Comparison between actual
and intended semantics of the program is most easily done
in the same domain, since then the operators on the abstract
lattice, that are typically already defined in the analyzer, can
be used to perform this comparison. Thus, for comparison
we need in principie a([[PJ) and we proceed as follows:

P is partially corred w.r.t. Ta if a([[PJ) C Ta

However, using abstract interpretation, we can usually only
compute |P]] , which is an approximation of a([[PJ). Thus,
we are interested in studying the implications of compar­
ing Ta and | P J a . Analyses which over-approximate the
actual semantics (i.e., those denoted above as |P]] +), are
specially suited for proving partial correetness and incom-
pleteness with respect to the abstract specification Ta. In
particular, a sufficient condition for demonstrating that P
is partially correct is as follows:

P is partially correct w.r.t. Ta if [[P]]a+ C Ta

Program verification and detection of errors are performed
in CiaoPP at compile-time by using the above sufficient con­
dition, i.e., the abstract approximation \P\a of the actual
semantics of the program |P]] is computed via abstract inter-
pretation-based static analysis and then this information is
compared against (also approximate) partial specifications
Ta, written in terms of ("check") assertions [24]. This
framework is partially depicted in Figure 1, see also [6, 25,
15, 23] for a fuller description. The assertions used are lin-
guistic constructions which allow expressing properties of
programs, as we will see later. Each part of Ta (each asser­
tion, or even certain parts of an assertion) can be the subject
of comparison against |P]] a . The result of the comparison
can be that the (part of the) assertion is met and then it
is validated ("checked"). If all assertions are checked the
program is verified. Alternatively, it may possible to show
during the comparison that the condition above is false, in
which case an error in the program has been detected (a
"false" assertion). Finally, due to the approximating na-
ture of abstract interpretation it may also be the case that
an assertion cannot be proved or disproved, in which case
a more precise or specific analysis domain must be used or
the analysis guided via "trust" assertions. In any case the
static checking is provably safe in the sense that all errors
flagged are definite violations of the specifications and if a
part of the specification is validated then it is indeed valid
for all possible executions.

Note that this approach is very attractive in programming
systems, like CiaoPP, where the compiler already performs
such program analysis in order to use the resulting informa­
tion to, e.g., optimize the generated code. Le., in these cases
the compiler will compute \P\a anyway.

As it appears in Figure 1, in principie the analyzer is
domain-independent, which allows plugging in different ab­
stract Domains provided suitable interfacing functions are
defined. From the user point of view, it is sufficient to specify
the particular abstract domain desired during the generation
of the safety assertions. Different domains give analyzers
which provide different types of information and degrees of
aecuracy. The core of each generic abstract interpretation-
based engine is an algorithm for efficient fixed-point compu­
tation [20, 21, 7, 17, 26].

3. THE ACC FRAMEWORK
The idea of Abstraction Carrying Code (ACC) [1, 2] is a

PRODUCER CONSUMER

Figure 2: The Abstraction-Carrying Code Scheme

natural extensión of our approach to abstract interpretation-
based program verification. Figure 2 presents an overview
of ACC. The certification process carried out by the code
producer is depicted to the left of the figure while the check-
ing process performed by the code consumer appears to the
right. In particular, ACC has the following fundamental el-
ements which can handle the challenges of PCC mentioned
in Sect. 1.

The first element, which is common to both producer and
consumers, is the Safety Policy. We rely on an expressive
class of safety policies based on "abstract"—i.e. symbolic—
properties over different abstract domains. Thus, our frame-
work is parametric w.r.t. the abstract domain(s) of interest,
which gives us generality and expressiveness. As in the case
of simple verification, an expressive assertion language is
used to define the safety policy. Given an initial program
P, we first define its Safety Policy by means of a set of as-
sertions AS in the context of an abstract domain Da. The
domain is appropriately chosen among a repertoire of Do­
mains available in the system. The assertions are obtained
from the assertions for system predicates and those provided
by the user.

Once the safety policy is specified, the next element at
the producer's side is a fixpoint-based static Analyzer which
automatically and efficiently infers an abstract model (or
simply abstraction) of the mobile code, |P]] , in terms of
the abstract domain Da. This abstraction can then be used
to prove that the code is safe w.r.t. the given policy. Thus,
our certification method is based on the following key idea:

An abstraction of the program computed by ab­
stract interpretation-based analyzers can play the
role of certifícate for attesting program safety.

The process of returning this abstraction of P's execution,
| P] a , in terms of the abstract domain Da is well under-
stood for several general types of analyses for Prolog and
its (constraint or multi-paradigm) extensions [13, 5, 21, 18,
7, 14]. In particular, our implementation is based on PLAI
[21, 20], a generic engine which has the description domain
and functions on this domain as parameters.

The verification condition generator, VCGen in the figure,
generates, from the initial safety policy and the abstraction,
a Verification Condition (VC) which can be proved only if

the execution of the code does not viólate the safety policy.
The checking process performed by the consumer is illus-

trated on the right hand side of Fig. 2. Initially, the supplier
sends the program P together with the certifícate to the con­
sumer. To retain the safety guarantees, the consumer can
provide a new set of assertions which specify the Safety Pol­
icy required by this particular consumer. It should be noted
that ACC is very flexible in that it allows different imple-
mentations of the way the safety policy is provided. Clearly,
the same assertions AS used by the producer can be sent to
the consumer. But, more interestingly, the consumer can
decide to impose a weaker safety condition which can still
be proved with the submitted abstraction. Also, the im-
posed safety condition can be stronger and it may not be
proved if it is not implied by the current abstraction (which
means that the code would be rejected). From the provided
assertions, the consumer must genérate again a trustworthy
VC and use the incoming certifícate to efficiently check that
the VC holds. The re-generation of the VC (and its corre-
sponding validation) is identical to the process done in the
producer.

Regarding the definition of the Checker, although global
analysis is efficient enough to be now used routinely as a
practical tool, it is still unacceptable to run the whole Analyzer
to validate the certifícate since it involves considerable cost.
One of the main reasons is that the analysis algorithm is
an iterative process which often computes answers (repeat-
edly) for the same cali due to possible updates introduced by
further computations. At each iteration, the algorithm has
to manipúlate rather complex data structures—which in-
volve performing updates, lookups, etc.—until the fixpoint
is reached. The whole validation process is centered around
the following observation: the checking algorithm can be de-
fined as a very simplified "one-pass" analyzer. The compu-
tation of the Analyzer can be understood as:

tt-^la = Analyzer = lfp(analysis_step)

Le., a process which repeatedly performs a traversal of the
analysis graph (denoted by analysis _step) until the com­
puted information does not change, i.e., it reaches a fixpoint.
The idea is that the simple, non-iterative analysisstep pro­
cess can play the role of abstract interpretation-based checker

(or simply analysis checker). In other words,

Checker = analysis _step

Intuitively, since the certification process already provides
the fixpoint result as certifícate, an additional analysis pass
over it cannot change the result. Thus, as long as the
analysis results are a valid fixpoint one single execution of
analysisstep validates the certifícate.

Another efñciency issue that the ACC model addresses
is which particular subset oí 1-Pfl̂ is sufñcient for verifica-
tion purposes. It turns out, not surprisingly, that there is
a tradeoff between the amount of information sent and the
cost of the checking phase. However, we have also shown
that only a very small portion of | P] (the "guesses" in the
recursive diques) is sufñcient to ensure that the checker does
not need to itérate. In any case, the analysis checker for efñ-
ciently validating the certifícate can be designed in a simple
way which does not require the use of many of the complex
data structures which are needed in the implementation of
a practical analyzer. More details are presented in [2].

4. INFERRING RESOURCE BOUNDS
As mentioned before, abstract interpretation-based pro-

gram analysis techniques allow inferring much richer infor­
mation than, for example, traditional types. This informa­
tion will allow specifying safety policies involving not only
traditional safety issues (e.g., that the code will not write
on specific áreas of the disk) but also resource-related is­
sues (e.g., that it will not compute for more than a given
amount of time, or that it will not take up an amount of
memory or other resources above a certain threshold) and,
thus, achieving further expressiveness.

In our approach, such cost bounds (upper or lower) are ex-
pressed as functions on the sizes of the input arguments and
yield bounds on the number of execution steps required by
the computation. Various metrics are used for the "size" of
an input, such as list-length, term-size, term-depth, integer-
value, etc. Types, modes, and size measures are first auto-
matically inferred by the analyzers and then used in the size
and cost analysis.

We illustrate through a simple example the fundamental
intuition behind our lower bound cost estimation technique.
Consider the naive reverse program in Figure 3. The entry
assertion states information on the entry points to the pro­
gram module. It states that outside calis to nrev must be
performed with a totally instantiated list (Le., a ground list
of terms) in the first argument and a free variable in the
second one (the output), Le., it will indeed be used as a
function. Assume also that the cost unit is the number of
procedure calis. With these assumptions the exact cost func­
tion of procedure append is Costoppen(¡(:r, y) = x + 1, where
x and y are the sizes (lengths) of the first and second input
lists respectively. Note that this cost function does not de-
pend on the size of the second argument of append really.
Also, based on this cost function, the exact cost function of
procedure nrev is Costnre l ,(n) = 0.5 n2 + 1.5 n + 1, where
n is the size (length) of the input list.

In order to obtain a lower-bound approximation of the
previous cost functions, CiaoPP first performs the following
analyses (all using abstract interpretation techniques):

• A mode (and sharing) analysis. This determines which
arguments (or parts of them) are inputs and which are

module(reverse, [n rev /2] ,
[a s se r t ions , func t ions , r eg types ,na t iveprops]) .
entry nrev/2 : { l i s t , ground} * var.

nrev([])
nrev([H|L])

append ([] ,X)
append ([HI X] ,Y)

[] .
~append(nrev(L) , [H]) .

X.
[H | append(X,Y)] .

Figure 3: The naive reverse program.

outputs for each constructor operation, procedure and
procedure cali, as well as the dependencies between
any variables (pointers) in the data structures passed
via these arguments.

• A type analysis. This infers the types for all program
variables. Note that type declarations are not compul-
sory in the language, so the relevant type definitions
may also have to be inferred.

• A determinacy analysis. It requires the results of type
and mode analysis, and which detects which proce-
dures and procedure calis are deterministic.

• A non-failure analysis. This also requires the results
of type and mode analysis, and can detect procedures
and goals that can be guaranteed not to fail, Le., to
produce at least one solution or not terminate. The
need for a non-failure analysis, stems from an interest-
ing problem with estimating lower bounds: in general
it is necessary to account for the possibility of failure
of a cali to the procedure (because of, e.g., an inad-
missible argument) leading to a trivial lower bound of
0.

• Inference of size metrics for relevant arguments. It is
based on the type information.

The results of these analyses ([[-P]]̂ for these domains), as
produced by CiaoPP in the form of assertions are shown in
Figure 4. It is beyond the scope of this paper to fully explain
all the (generally abstract interpretation-based) techniques
involved in inferring this information (see, e.g., [16, 11, 12]
and their references). However, we will sketch in the fol­
lowing how, once all this information is obtained, the work
done by (recursive) clauses is determined.

To this end, it is first necessary to be able to estimate the
size of input arguments in the procedure calis in the body of
the procedure, relative to the sizes of the input arguments
to the procedure, using the inferred metrics. The size of an
output argument in a procedure cali depends, in general,
on the size of the input arguments in that cali. For this
reason, for each output argument we use an expression which
yields its size as a function of the input data sizes. For this,
we use an abstraction of procedure definitions called a data
dependency graph, built using all the abstract information
inferred previously. The following steps are then performed:

• The data dependency graphs are used to determine the
relative sizes of variable bindings at different program
points.

:- true pred nrev(A,B) : (list(A), var(B))

=> (list(A), list(B))

+ (not_fails, covered, is_det, mut_exclusive).

:- true pred nrev(A,B) : (ground(A), var(B), mshare([[B]]))
=> (ground(A), ground(B)).

:- true pred append(A,B,C) : (list(A.term), t84(B), var(C))
=> (list(A.term), t84(B), listl(C,term)

+ (not_fails, covered, is_det, mut_exclusive).

:- true pred append(A,B,C) : (ground(A), ground(B), var(C), mshare([[C]]))

=> (ground(A), ground(B), ground(C)).

: - regtype t 8 4 / l . t84 := [_].

Figure 4: CiaoPP compiler output (types, modes, determinacy, non-failure).

• The size information is used to set up difference equa-
tions representing the computational cost of proce-
dures.

• Abstractions (lower and upper bounds) of the Solu­
tions of these difference equations are then obtained
which provide the lower/upper-bound procedure cost
and data size functions.

Let us see in more detail the steps performed in order to
infer the cost function for the nrev example above. During
size and cost analysis, the cali graph of the program is tra-
versed in reverse topological order. Thus, we first, consider
the procedure append. Let Size:¡pp<md(:r, y) denote the size of
the output argument (the third) as a function of the size of
the two first (input) arguments x and y. With the previous
analysis information we determine the directionality of all
the data manipulation operations and that the size measure
to use is list length. We also determine the size relationship
which says that the size of the first input list to the recursive
cali is the size of the first input list of the procedure head
minus one. Also, the size of the second input list to the
recursive cali equals the size of the second input list of the
procedure head. With this, the following difference equation
can be set up for append:

Size:¡pp<md(0, y) = y (boundary condition from base case),

Size^ppond(a;, y) = 1 + Size^ppond(a; - 1, y).

The solution obtained for this difference equation is:

Size|ppond(a;, y) = x + y

Let Costp(n) denote a lower bound on the cost (number of
resolution steps) of a cali to procedure p with an input of size
n. Given all the assumptions above, and the size relations
obtained, the following difference equation can be set up for
the cost of append:

Costi;pp<md(0, y) = 1 (boundary condition from base case),

Cost^pp<md(a:, y) = 1 + Cost^pp<md(a: - 1, y).

A solution for this difference equation is (as expected):

Now, continuing the traversal of the cali graph of the pro­
gram in reverse topological order, we consider the procedure
nrev. As before, let Sizenrov(ra) denote the size of the out­
put argument (the second) as a function of the size of its
first (input) argument n. Once we have again determined
that the size measure to use is list length, and the size re­
lationship which says that the size of the input list to the
recursive cali is the size of the input list of the procedure
head minus one, the following difference equation can be set
up for nrev/2:

Sizenrov(0) = 0 (boundary condition from base case),

Size^rov(n) = Size^ppond(Size^rov(n - 1), 1).

which, using the previously inferred size function for
append in a normalization algorithm, can be rewritten as:

Sizenrov(0) = 0 (boundary condition from base case),

SizeíLvW : Sizenrov(n - 1) + 1.

Cost appsnd (x, y) = X -\- 1

A solution for this difference equation is:

Sizenrov(ra) = n

Now, given the size relations obtained, the following differ­
ence equation can be set up for the cost of nrev/2:

Costj¡rov(0) = 1 (boundary condition from base case),

C o s t a r a) = 1 + C o s t a r a - 1) +
Cost^ppond(Sizenrov(n - 1), 1).

which, using the inferred size function for nrev can be rewrit­
ten as:

Cost5;rov(0) = 1 (boundary condition from base case),

C°stí;r<!V(n) = 1 + Costí;r<!V(n - 1) + Cost^pp<md(n - 1, 1).

and, finally, using the inferred cost function for append, the
difference equation can be rewritten as:

Costj¡rov(0) = 1 (boundary condition from base case),

Cost¿rov(n) = 1 + n + CostJ;rov(n - 1).

true pred nrev(A,B) (list(A), var(B))

(list(A), list(B),

size_lb(A,length(A)), size_lb(B,length(A)),
size_ub(A,length(A)), size_ub(B,length(A))

(not_fails, covered, is_det, mut_exclusive,
steps_lb(0.5*exp(length(A),2)+l.5*length(A)+l),
steps_ub(0.5*exp(length(A) ,2)+l .5*length(A)+D) .

true pred nrev(A,B)

true pred append(A,B,C)

: (ground(A).

=> (ground(A).

true pred append(A,B,C)

var (B) , mshare ([[B]]))

ground(B)).

(l i s t (A . t e r m) , t84(B), var(C))
(l i s t (A . t e r m) , t84(B), l i s t l (C , t e r m) ,

s ize_lb(A, length(A)) , s ize_lb(B, length(B)) ,
s ize_lb(C,length(B)+length(A)) ,
s ize_ub(A,length(A)), s ize_ub(B,length(B)) ,
size_ub(C,length(B)+length(A))) .

(n o t _ f a i l s , covered, i s_de t , mut_exclusive,
s teps_lb(length(A)+l) ,
steps_ub(length(A)+l)) .

(ground(A) , ground(B) , var(C), mshare ([[C]]))
(ground(A), ground(B), ground(C)) .

regtype t 8 4 / l . t84 := [_].

F igure 5: CiaoPP compiler output (including sizes and cost).

A solution for this difference equation is (as expected):

CostJ;rov(n) = 0.5 n2 + 1.5 n + 1

In our approach, sometimes the solutions of the difference
equations need to be in fact approximated by a lower bound
(Le., an abstraction which is a safe approximation) when the
exact solution cannot be found. The upper bound cost esti-
mation case is very similar to the lower bound one, although
simpler, since we do not have to account for the possibility
of failure.

For illustration purposes, the concrete output from CiaoPP
obtained after performing this process for the nrev program
is presented in Figure 5. This output includes the assertion
(simplified for brevity):

: - t rue pred nrev(A,B)
: (l i s t (A) , var(B))

=> (l i s t (A) , l i s t (B) ,
s ize_lb(B, length(A))

)
+ (n o t _ f a i l s , i s_de t ,

s teps_lb(0 .5*exp(length(A) ,2)+l .5*length(A)+l)) .

Such a "pred" assertion specifies in a combined way proper-
ties of both: ":" the entry (i.e., upon calling) and "=>" the
exit (i.e., upon success) points of all calis to the procedure,
as well as some global properties of its execution. The as­
sertion above, with a "true" prefix, expresses that the com­
piler has proved that procedure nrev will produce as output
a list of numbers B, whose length is at least (size_lb) equal
to the length of the input list, that the procedure will never
fail (i.e., an output valué will be computed for any possi-
ble input), that it is deterministic (only one solution will be
produced as output for any input), and that a lower bound

on its computational cost (steps_lb) is 0.5 length(A)2 +
1.5 length(A) -\- 1 execution steps (where the cost measure
used in the example is again the number of procedure calis,
but it can be any other arbitrary measure).

This simple example illustrates type inference, non-failure
and determinism analyses, as well as lower-bound argument
size and computational cost inference. As can be observed
in Figure 5, the same cost and size results are actually ob­
tained from the upper bounds analyses (indicating that in
this case the results are exact, rather than approximations).
Note that obtaining a non-infinite upper bound on cost also
implies proving termination of the procedure.

5. ACC AND RESOURCES
In this section, we illustrate in a tutorial fashion through

an example the concepts of abstract verification and ACC,
and, in particular, their application to the problem of resource-
aware security in mobile code. Resource-aware ACC be-
comes interesting for example when developing software to
be deployed by devices with a bounded amount of comput-
ing resources, such as in pervasive computing [27].

The fundamental idea is that the information obtained in
|P]] will allow us to verify safety policies which may involve
resource-related issues, such as that code will not compute
for more than a given amount of time, or that it will not
take up an amount of memory or other resources above a
certain threshold. To this end, a very interesting feature
of CiaoPP is the possibility of stating assertions, including
assertions about the efficiency of the program, which the
system will try to verify or falsify using the resource-related
information in |P]] a . We show that, thanks to this function-
ality, CiaoPP can certify programs with resource consump-
tion assurances and also efficiently check such certificates.

c a l i s nrev(A
s u c c e s s nrev(A
comp n r e v (_
comp n r e v (_
comp nrev(A

B) : l i s t (A) . */. Al
B) : l i s t (A) => num(B). */. A2
_) + (n o t _ f a i l s , i s _ d e t , t e r m i n a t e s) . */, A3
_) + s e f f (f r e e) . */. A4
_) + s t e p s _ u b (o (e x p (l e n g t h (A) , 2))) . */. A5

F i g u r e 6: S o m e a s s e r t i o n s for t h e n r e v / 2 p r o g r a m .

checked

f al se

checked

checked

checked

calis

success

comp

comp

comp

nrev(A

nrev(A

nrev(_

nrev(_

nrev(A

B)
B)

_)

_)
_)

+

+
+

list(A).

list(A) => num(B).

(not_fails, is_det, terminates) .

seff(free).

steps_ub(o(exp(length(A),2))) .

*/. Al

*/. A2

*/. A3

*/. A4

*/. A5

F i g u r e 7: CiaoPP c o m p i l e r o u t p u t (a s s e r t i o n c h e c k i n g) .

Regarding the general problem of verification and s tat ic
debugging, the technique used in CiaoPP is in fact capable
of detect ing many errors wi thout even adding assert ions to
programs, because of the existence of assertions (specifica-
tions) in the system librarles. Buggy programs often viólate
such library assertions and this will be flagged. Neverthe-
less, "check" assertions can be added to a p rogram in order
to s ta te its par t ia l specification Ta. For our example, let
us assume t h a t the assertions shown in Figure 6 (the check
prefix, meaning t h a t such assertions are pa r t of the spec­
ification and must be checked, is assumed when no prefix
is given, as in the example) are given as specification for
the n r e v program. The proper t ies used in these assertions,
such as ground, n o t _ f a i l s , t e r m i n a t e s , costs and types,
are impor ted in t he example from system librarles.

These check assertions can be seen as integrity constraints :
if their propert ies do not hold a t t he corresponding program
points (procedure cali, procedure exit, etc.) , the p rogram is
incorrect. C a l i s assert ions specify propert ies of all calis to a
predicate , while s u c c e s s assert ions specify propert ies of exit
points for all calis to a predicate . Proper t ies of successes can
be restr icted to apply only to calis satisfying certain proper­
ties upon entry by adding a " :" field to s u c c e s s assertions.
Finally, Comp assert ions specify global propert ies of t he ex-
ecution of a predicate . These include complex propert ies
such as de terminacy or te rminat ion and are in general not
amenable to run- t ime checking. They can also be restr icted
to a subset of t he calis using " : " .

Concretely, the first three assert ions in Figure 6 s ta te t h a t
(Al) n r e v should always be called with a list (including all
recursive calis), t h a t (A2) the o u t p u t is a number (obviously
wrong), t h a t (A3) t he procedure will never fail, t h a t it should
be determinist ic , and t h a t it will t e rmina te .

In addit ion, and directly related to our resource-awareness
objective, assume t h a t we know t h a t the consumer will only
accept tasks of polynomial (actually, a t most quadra t ic)
complexity, and only those which are purely computa t ional ,
Le., tasks t h a t have no side effects. This safety policy can be
expressed a t t he producer side for this par t icular p rogram
using the assertions A5 and A4, respectively, of Figure 6.
More concretely, A4 s ta tes t h a t it should be verified t h a t the
computa t ion is puré in the sense t h a t it does not produce
any side effects (such as opening a file, etc .) . A5 s ta tes t h a t
it should be verified t h a t if the predicate is called wi th a list
in the first a rgument and a free variable in t he second one,

then there is an upper bound for t he cost of this predicate
in 0(ra 2) , Le., quadra t ic in n, where n is t he length of t he
first list (represented as l e n g t h (A)) .

We are assuming t h a t the code will be accepted a t the
receiving end, provided all assertions can be checked, Le.,
t h a t the intended semantics expressed in t he assert ions de­
termines the safety condition. Such a policy can be agreed a
priori or exchanged dynamically. S ta t ing t he policy in this
form will allow us to ensure dur ing program development
t h a t we produce a p rogram t h a t adheres to our specifica-
t ions and also to t he known safety policy of the consumer.

Indeed, dur ing compilat ion of t he n r e v program, CiaoPP
will check the assert ions above (representing Ta) by compar-
ing t hem with the assertions inferred by the types, modes,
non-failure, determinism, and upper- and lower-bound cost
analysis (representing [P J a) and given in Figure 5. The
result of compile-t ime checking the intended semantics (as­
sertions in Fig. 6) against this ou tpu t appears in Fig. 7 (refer
also to the ou tpu t of the compara tor in Figure 1). Note t h a t
a number of initial assertions have been marked as checked,
Le., they have been validated. If all assert ions had been
moved to this checked s ta tus , then the program would have
been verified.

However, assert ion A2 has been detected to be false (A2
was obviously pu t in jus t to i l lustrate this) . This indicates a
violation of the specification given (in this case it is t he speci­
fication t h a t is in error) , which is also flagged by CiaoPP dur­
ing compilat ion as a compile-t ime error. It may also happen
t h a t a given assertion cannot be proved or disproved. The
assertion will then remain in check s ta tus , and this will re­
sult in a verification warning ("a larm") .

Let us now assume t h a t t he erroneous assertion A2 is taken
out. Then, after compilat ion all assert ions are moved to the
checked s ta tus , and the program is verified. This means
t h a t all calis to n r e v performed within this p rogram satisfy
the resource-aware safety policy, Le., the safety condition
is met and the code is indeed safe to run, for now on the
producer side.

Following the A C C scheme, (a subset of) t he assertions
in Fig. 5 (Le., the analysis results) is used as the abs t rac t
cost and safety certifícate to be used to check for a safe and
efficient use of procedure n r e v on the receiving side.1 On
the consumer side, a receiver using our me thod will use this

1 A s mentioned before the exact details of how this subset is
selected are provided in [2].

abstract certifícate in order to accept/reject code depending
on whether it adheres or not to some specification.

First of all, the code receiver proceeds to validate the cer­
tifícate. This implies running the checker over the program
assuming the information in Fig. 5 in the relevant points and
checking that it is indeed a fixpoint (and later a solution to
the recurrence equations, for the case of cost analysis). This
process clearly involves less effort that creating the certifí­
cate, since only a single pass over the program is required
(and checking that an expression is a solution is typically
cheaper than obtaining such solution).

If the certifícate is not valid, the code is clearly discarded.
If the certifícate is valid, it is compared against the (local)
specifications. The code will be accepted only if all asser-
tions involved can be turned to "checked".

In our example, if we assume that the specification at the
receiving end contains, e.g., (possibly a subset of) the asser-
tions from Fig. 6 (except A2, of course), then the code would
be accepted. Clearly, in order to guarantee that the cost as-
sertion holds, the certifícate has to contain upper bounds on
computational cost.

In contrast, let us assume that a consumer with very lim-
ited computing resources is assigned to perform a computa-
tion using this code. Then, the following "check" assertion
(instead of A5) could perhaps represent one of the resource-
related requirements at this particular node:

: - check comp nrev(A,_)
: l i s t * var
+ steps_ub(o(length(A))) . */. A5R

Le., this consumer node will not accept an implementation
of nrev with larger complexity than linear.

In this case, given that the certifícate contains the (valid)
information that nrev will take at least 0.5 (length(A))2 +
1.5 length(A) + 1 resolution steps, this will be found incom­
patible with the assertion A5R, which requires the cost to be
in 0(length(A)) resolution steps.

In our implementation in the Ciao system, these tasks
are performed at the receiving end by a simplified versión
of the analysis framework of CiaoPP, that plays the role of
efficient checker of certificates. In the case of the A5R the
CiaoPP checker produces the following "complexity error:"

ERROR: f a l s e comp as se r t i on :
: - comp nrev(A,B) : t rue => steps_ub(o(length(A)))
because in the computation the following holds:
s teps_lb(0.5*exp(length(A),2)+l .5*length(A)+l)

thus flagging that the program does not satisfy the efficiency
requirements imposed. This means of course that the con­
sumer will reject the code.

Note that if we had replaced A5 with A5R during the com-
pilation process at the producer end, this same error would
have appeared during compilation, Le., the compilation pro­
cess would have flagged the "complexity error" at compile
time (and reported this assertion as false in the output).

6. CONCLUSIONS
We have presented in a tutorial way abstraction-carrying

code (ACC) as a novel enabling technology for PCC, which
follows the standard strategy of associating safety certifi­
cates to programs but it is based throughout on the use
of such abstract interpretation techniques. We argüe that

ACC is highly flexible due to the parametricity on the ab­
stract domain inherited from the analysis engines used in
(C)LP. Our approach differs from existing approaches to
PCC in several aspects. In our case, the certifícate is com-
puted automatically on the producer side by an abstract
interpretation-based analyzer and the certifícate takes the
form of a particular subset of the analysis results. The
burden on the consumer side is reduced by using a simple
one-traversal checker, which is a very simplified and effi­
cient abstract interpreter which does not need to compute
a fixpoint. We have illustrated through an application of
ACC for resource-aware security that our approach is inher-
ently parametric and supports a very rich set of domains.
We believe that ACC provides novel means for certifying
security by enhancing mobile code with certificates which
guarantee that the execution of the (in principie untrusted)
code received from another node in the network is safe but
also, as mentioned above, efficient, according to a predefined
safety policy which includes properties related to resource
consumption. We have illustrated the approach using the
CiaoPP system. This system already uses a combination of
abstract interpretation, abstract specialization, and a flexi­
ble assertion language, to perform program debugging, ver-
ification, and optimization with a wide variety of domains,
and has been enhanced to produce certificates as dictated by
the ACC scheme, as an integral part of the static debugging
and verification performed during the program development
process. A simplified versión of the analysis framework of
CiaoPP has also been developed that serves as an efficient
checker of the certificates. The approach is currently be-
ing tested in a number of pervasive applications using an
embedded versión of the Ciao system.

8. REFERENCES
[1] E. Albert, G. Puebla, and M. Hermenegildo. An

Abstract Interpretation-based Approach to Mobile
Code Safety. In Proc. of Compüer Optimization meets
Compiler Verification (COCV'04), April 2004.

[2] E. Albert, G. Puebla, and M. Hermenegildo.
Abstraction-Carrying Code. In llth International
Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR'04), number 3452
in LNAI, pages 380-397. Springer-Verlag, March 2005.

[3] A. Appel and A. Felty. Lightweight Lemmas in
lambda-Prolog. In Proc. of ICLP'99, pages 411-425.
MIT Press, 1999.

[4] A. Bernard and P. Lee. Temporal logic for
proof-carrying code. In Proc. of CADE'02, pages
31-46. Springer LNCS, 2002.

[5] M. Bruynooghe. A Practical Framework for the
Abstract Interpretation of Logic Programs. Journal of
Logic Programming, 10:91-124, 1991.

[6] F. Bueno, P. Deransart, W. Drabent, G. Ferrand,
M. Hermenegildo, J. Maluszynski, and G. Puebla. On
the Role of Semantic Approximations in Validation
and Diagnosis of Constraint Logic Programs. In Proc.
of the 3rd. Int'l Workshop on Automated
Debugging-AADEBUG'97, pages 155-170, Linkoping,
Sweden, May 1997. U. of Linkoping Press.

[7] B. L. Charlier and P. Van Hentenryck. Experimental
Evaluation of a Generic Abstract Interpretation
Algorithm for Prolog. ACM Transactions on
Programming Languages and Systems, 16(1):35-101,
1994.

[8] P. Cousot. Types as Abstract Interpretations. In ACM
Symposium on Principies of Programming Languages,
pages 316-331. ACM Press, January 1997.

[9] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Proc. of POPL'77, pages 238-252, 1977.

[10] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of
Programming Languages, pages 238-252, 1977.

[11] S. Debray, P. López-García, M. Hermenegildo, and
N.-W. Lin. Estimating the Computational Cost of
Logic Programs. In Static Analysis Symposium,
SAS'94, number 864 in LNCS, pages 255-265, Namur,
Belgium, September 1994. Springer-Verlag.

[12] S. Debray, P. López-García, M. Hermenegildo, and
N.-W. Lin. Lower Bound Cost Estimation for Logic
Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge,
MA, October 1997.

[13] S. K. Debray. Static Inference of Modes and Data
Dependencies in Logic Programs. ACM Transactions
on Programming Languages and Systems,
ll(3):418-450, 1989.

[14] J. Gallagher and D. de Waal. Fast and Precise

Regular Approximations of Logic Programs. In Proc.
of ICLP'94, pages 599-613. MIT Press, 1994.

[15] M. Hermenegildo, G. Puebla, and F. Bueno. Using
Global Analysis, Partial Specifications, and an

Extensible Assertion Language for Program
Validation and Debugging. In K. R. Apt, V. Marek,
M. Truszczynski, and D. S. Warren, editors, The Logic
Programming Paradigm: a 25-Year Perspective, pages
161-192. Springer-Verlag, July 1999.

[16] M. Hermenegildo, G. Puebla, F. Bueno, and
P. López-García. Program Development Using
Abstract Interpretation (and The Ciao System
Preprocessor). In lOth International Static Analysis
Symposium (SAS'03), number 2694 in LNCS, pages
127-152. Springer-Verlag, June 2003.

[17] M. Hermenegildo, G. Puebla, K. Marriott, and
P. Stuckey. Incremental Analysis of Constraint Logic
Programs. ACM Transactions on Programming
Languages and Systems, 22(2):187-223, March 2000.

[18] K. Marriott, H. S0ndergaard, and N. Jones.
Denotational Abstract Interpretation of Logic
Programs. ACM Transactions on Programming
Languages and Systems, 16(3):607-648, 1994.

[19] G. Morrisett, D. Walker, K. Crary, and N. Glew. Prom
system F to typed assembly language. ACM
Transactions on Programming Languages and
Systems, 21(3):527-568, 1999.

[20] K. Muthukumar and M. Hermenegildo. Deriving A
Fixpoint Computation Algorithm for Top-down
Abstract Interpretation of Logic Programs. Technical
Report ACT-DC-153-90, Microelectronics and
Computer Technology Corporation (MCC), Austin,
TX 78759, April 1990.

[21] K. Muthukumar and M. Hermenegildo. Compile-time
Derivation of Variable Dependency Using Abstract
Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

[22] G. Necula. Proof-Carrying Code. In Proc. of
POPL'97, pages 106-119. ACM Press, 1997.

[23] G. Puebla, F. Bueno, and M. Hermenegildo. A
Generic Preprocessor for Program Validation and
Debugging. In P. Deransart, M. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization
Tools for Constraint Programming, number 1870 in
LNCS, pages 63-107. Springer-Verlag, September
2000.

[24] G. Puebla, F. Bueno, and M. Hermenegildo. An
Assertion Language for Constraint Logic Programs. In
P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for
Constraint Programming, number 1870 in LNCS,
pages 23-61. Springer-Verlag, September 2000.

[25] G. Puebla, F. Bueno, and M. Hermenegildo. Combined
Static and Dynamic Assertion-Based Debugging of
Constraint Logic Programs. In Logic-based Program
Synthesis and Transformation (LOPSTR'99), number
1817 in LNCS, pages 273-292. Springer-Verlag, 2000.

[26] G. Puebla and M. Hermenegildo. Optimized
Algorithms for the Incremental Analysis of Logic
Programs. In International Static Analysis
Symposium, number 1145 in LNCS, pages 270-284.
Springer-Verlag, September 1996.

[27] M. Weiser. The computer for the twenty-first century.
Scientific American, 3(265):94-104, September 1991.

