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Abstract : We propose a computational 
methodology -"B-LOG"-, which offers the potential for an 
effective implementation of Logic Programming in a parallel 
computer. We also propose a weighting scheme to guide the 
search process through the graph and we apply the concepts 
of parallel "branch and bound" algorithms in order to 
perform a "best-first" search using an information theoretic 
bound. The concept of "session" is used to speed up the 
search process in a succession of similar queries. Within a 
session, we strongly modify the bounds in a local database, 
while bounds kept in a global database are weakly modified 
to provide a better initial condition for other sessions. We 
also propose an implementation scheme based on a database 
machine using "semantic paging", and the "B-LOG 
processor" based on a scoreboard driven controller. 

1 Introduction 

Logic programming is a major new facet of fifth 
generation computing [151. Simultaneously, parallelism is 
widely proposed as a means to reach the performance goals 
imposed on fifth generation machines, which are not 
attainable with conventional sequential processors. However, 
parallel computation of logic programs has been shown to be 
difficult. Herein, we propose a computational methodology 
-"B-LOG"- based on the concepts of Logic Programming 
[10] offering the potential for a more effective 

implementation in a parallel computer than that of Prolog. 
We also propose an architecture to implement this 
methodology, which we call a "B-LOG machine". 

The basic ideas are simple: the execution of a Logic 
Program can be modeled as a search process through an 
AND/OR tree [4] or through an OR-tree. In our approach 
weights are added to each branch of the OR-tree. In this 
way the notions of branch-and-bound algorithms can be used 
to perform a "best-first" search rather than the simple 
depth-first search present in Prolog [13]. Obviously one of 
the main problems which have to be solved when selecting 
such an approach is that of which particular bound to use. 
We propose one which is related to the information content 
of the decision, and may be modified by previous searches in 
an adaptive control strategy. 

From the point of view of implementation, another 
interesting feature is proposed: the retrieval of data from a 
semantic paging disk memory [5]. The realization of the B-
LOG processor itself is, on the other hand, proposed using an 
associative controller similar to the CDC 6600 scoreboard. 
These implementation techniques are sketched here to 
provide an effective definition of the search strategy. 

The layout of the paper is as follows: the next 

section describes the database and search tree, using Prolog 
as a starting point and section 3 introduces tlv branch and 
bound approach. In section 4 the weighting rtcbex- is 
described and section 5 presents the sean !: ind weight 
update strategies in the B-LOG macht:,;;. Section 6 describes 
a possible implementation in a pkralW computer/database 
machine. Section 7 discusses \Nl)-pir:Jlel extensions to the 
model and, finally, section 8 g:.'::-: o y conclusions. 

2 A Model for the Data Ba:^ and Search 
Tree 

In order to present our inodfl of the search tree and 
database, let us consider the problem of finding all solutions 
to a query using conventional Prolog in the classic example 
given by Conery and Kibler in [4]. A PJO'OJ, listing for this 
example is given in figure 1. It sLous rui>"? f;ic:.-- (the 
database) and the series of searches generated by ;: ceit-fTM 
query. 

RULES 

gf(X,Z) ~f(X,Y),f(Y,Z) 

gf(X,Z) - f(X,Y),m(Y,Z) 

DuUflmc 

f(curt,elain) f(som,tarry) 
f(dan,pat) f(larry,den). 
f(patjohn). rOarry.doug) 

OUWTIM 

m(elainjohn) 
m(manan,elain) 
m(peg,den) 
m(Deg.doug) 

? - gf(sam,G) -> gf(X,Z): - f(X,Y),f(Y,Z) (X/sam,Z/GI 

? - f(sem,Y),f(Y,6) -> flsam.larry) (Y/larry) 

? - fdarry.G) -> fOarry.den) (G/den) 

Figure 1: A Prolog Example 

The fact that curt is the father of elain may be expressed as 
f ( c u r t , e l a i n ) . 

(constants are lower case, variables are capitalized in Prolog). 
Thus, there are ten facts in the example. A rule stating that 
X is grandfather of Z if X is father of Y and Y is father of Z 
may be coded as 

g f ( X . Z ) : - f ( X . Y ) . f ( Y , Z ) . 

Thus, there are also two rules in this example. 



We can apply queries to this system of facts and 
rules. The query (or "goal"), "Who is a grandchild of sam?" 
is stated as 

? : -gf (sam.G) . 
Prolog will try to answer this query by searching through the 
database. The steps followed in this search are also shown in 
figure 1. 

Execution is as follows: the first search for a match 
to gf(sam,C) produces two matches to the rules. In Prolog, 
the top rule is chosen, instantiating X to sam and Z to G (Z 
and G "share"). The next goal will be f(sam.Y) which is 
resolved as f(sam,larry) instantiating Y to larry. The 
subsequent search for f(larry.G) produces f(larry,den) 
instantiating G to den. In this way we conclude that den is a 
grandchild of sam. 

on the left of the two rules produces the two graphs 
(sam) — f—> (Y) —f—> (G) 

and 
(sam) —f—> (Y) —m—> (G) 

which are shown on the top halves of the nodes below the 
root node. 

Consider the left node just produced. The complex 
graph 

(sam) — f—> (Y) — f—> (G) 

is decomposed into simpler graphs 
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Figure 3 : The Search Tree 

Figure 2: The Data Base 

The database can be graphically shown as in figure 
2. The facts, shown on the bottom, represent persons 
(marian) as nodes and relationships (mother of) as arcs in a 
network model. Rules in the top of the figure are shown as 
equivalences of graphs, in a consistent notation. The graph 
to the left of the :- can be replaced by the graph to the right 
of :- as indicated by the Horn clauses of the Prolog listing. 

An OR-tree that gives all solutions to the query 
g f ( sam.G) . 

is shown in figure 3. As we have seen Prolog using depth-
first search would generate the chain from the root to the 
leftmost leaf. In our representation of the search for all 
solutions, the query is shown as the root, and each resolution 
step, that is, each search for that graph in the database and 
rules, is shown by an arc below that node. A search is thus 
conducted by a graph query. A match is found wherever this 
graph can be embedded as a subgraph in the data base or in 
the left side of a rule. The top half of each node is one 
match to the goal shown on the bottom of the node above 
that node. Thus, matching the subgraph 

(sam)—gf—>(G) 

(sam)—f—>(Y) 

and 
(Y)—f—>(G) 

and the first simpler graph is chosen (depth-first search). We 
write that graph in the bottom half of the node to indicate 
that it is the next graph to be searched for. The match to 
this search produces one result, which is 

( s a m ) — f — > ( l a r r y ) 
shown in the top half of the node below the previous node. 
We now decide which graph to search next. Traversing from 
this new leaf towards the root, we collect all unused graphs, 
finding 

(Y)— f—>(G) 
in the middle node. We make this our next search 
comparand. We find the two results 

( l a r r y ) — f — > ( d e n ) 

and 

( l a r r y ) — f — > ( d o u g ) 

Transversing from the node 
( l arry )—f—>(den) 

rootward, we see no unsatisfied unknowns to be matched in 
graphs, so this is a solution. Similarly, the node 

( l a r r y ) — f — > ( d o u g ) 



is a solution. Following the right node below the root 
produces the same search for 

(sam)—f—>(Y) 
giving the same answer 

( s a m ) — f — > ( l a r r y ) 
as obtained earlier, but the search for 

( la r ry)—m—>(G) 

produces no matches. Since there are no matches, this 
portion of the search is unsuccessful. 

3 Sequential and Parallel Search: a Branch 
and Bound Approach 

The tree in figure 3 is clearly an OR tree. Each 
"fan-out" below a node is an alternative solution to the 
query stated at the bottom of the node. There are no "fan-
out" arcs representing an AND condition as in the 
formulation given by [4] of the Prolog search tree: in our 
simplified model we consider AND-trees now only in a 
sequential way, in very much the same way Prolog does. We 
will still discuss some AND-parallel extensions to the model 
after presenting the OH. implementation. 

Each chain from a leaf to the root is either a 
solution to the query at the root or an unsuccessful search (a 
"failure"). Each arc in a chain represents a decision made 
towards the solution of the query or unsuccessful search. 
This tree is basically a branching graph that represents the 
enumeration of all solutions in a branch-and-bound 
algorithm. 

Some aspects of the problems involved in the 
parallel implementation of logic programming are evident 
upon inspection of this tree. Obviously, for NP-complete 
problems, no matter how much parallelism we use, because 
the number of processors is in reality fixed by limitations of 
hardware, each processor still has a sub-problem that is NP-
complete. In addition, the scheduling problem makes it 
impossible to always use the total number of processors 
available in a useful manner. Thus, parallelism by itself 
would seem not to render a solution to the problem of 
building effective logic programming machines. However, a 
solution for the general purpose parallel inference machine 
has to exist: the existence and rather satisfactory operation 
of the human brain gives us hope in this sense, and some 
studies of the average complexity of search algorithms show 
that in practice many problems that are NP-complete are 
much better behaved in the average case (to the point of 
sometimes being linear). This has been shown for depth-first 
search algorithms with a suitable bound [14]. 

Also, depth-first search, though useful in single 
processor implementations, does not lend itself easily to 
parallel processing. Breadth-first search would seem to get a 
great number of processors working on different independent 
problems, but it tends to work near the root of the tree, 
doing extra work before a solution is found. 

An approach based on a branch-and-bound 
algorithm seems more appropriate using best-first search 
guided by a bound. Strictly speaking, a bound is a number 
that is monotonic on each arc in any chain from root to leaf 
(say it is monotonically increasing) and is a measure of the 
goodness of the result so that the solution is sought with the 
minimum value of this bound. Once a solution is found, its 
bound can be used to cut off any searches on other chains if 

their bound is greater than the one found. If a solution can 
be found quickly, its bound can be used to save a lot of effort 
in growing chains that cannot produce a better bound. 

Parallel searching is possible in a branch-and-bound 
problem and a number of schemes have been proposed [II]. 
From the point of view of implementation, suppose there are 
n processors in a M1MD computer. As the tree is developed, 
referring to the final form of the tree, at any time there is an 
imaginary line or "wave front" cutting across the tree such 
that all arcs rootward from this front are found and all arcs 
leafward from it are to be found. Assume a number m > = n 
of nodes are on this wave front, and corresponding to each 

such node is a chain from it to the root of the tree. Each 
such chain has a bound computed in some way from the 
weights of the arcs in the chain. Each processor P. i —l..n 

works on the n chains with the lowest bounds. A sorting 
network like Batcher's ill could be used to sort the bounds, 
assigning the n lowest bounds to the n processors and 
communicating the associated chains to them to work on. A 
sorting network is costly, and communication costs restrict 
this approach, but a reasonable approximation is effectively 
possible. Such a design is considered in section 6. 

4 The Weighting Scheme 

Considering the advantages of best-first searching 
over depth-first or breadth-first searching, we have concluded 
that a best-first search strategy is an attractive possibility 
for use in a logic programming parallel computer. Of course, 
the main question is: what is the bound that we can use for 
this case? 

The solution to this problem is not easy and we 
presently have to settle for a compromise approach. We will 
present a bound whith which we could feel comfortable about 
in a theoretical way, but would have difficulty implementing 
in hardware, and another that we can implement, but have 
little theoretical basis for. We present the first bound and 
the theory behind it, to define our computational 
methodology (B-LOG) and to provide some basis in order to 
justify the second heuristic bound that we will use in the B-
LOG machine. 

Consider a tree that is constructed after obtaining 
all complete solutions to all queries put to a database and set 
of rules, assuming that each solution is equally likely, and 
each decision is statistically independent of the others. The 
root of this tree is the primeval query (?) and its descendants 
are the roots of trees, like the tree in figure 3, that represent 
the complete solutions to each such query. We attempt to 
use as bounds in the branch and bound algorithm values 
assigned to each chain from the root to the node being 
considered, which have been computed from the 
(unnormalized) probabilities of the arcs in the chain. 

Let p(k) be the (unnormalized) probability that arc 
k is in a successful solution in the following sense: 

1. If an arc appears twice in a tree (as the arc from 
(sam)-f- ->(Y) to ( sam) - f -> ( l a r ry ) in figure 3), 
they have the same (unnormalized) probability. 
This is required if these probabilities are to be 
stored in a database that is common to all 
queries. 



2. The probability of each chain representing a 
successful solution must be equal to l / ( the 
number of successful solutions). 

3. The probability of each chain representing an 
unsuccessful search must be 0, for the bound to 
be meaningful. 

Note that with this definition once a node is arrived 
at, the probabilities of the arcs coming out of the node are 
independent of the path used to arrive at that node. This 
process has thus a Markovian flavor but the unnormalization 
of the probabilities prevents us from drawing any further 
conclusions in this sense. 

Since in our model the arcs represent statistically 
independent decisions, the probability of a chain is the 
product of the (unnormalized) probabilities of the arcs in it. 
We are lead to define the bound of a chain as the product of 
the (unnormalized) probabilities of the arcs in it. While this 
would be a useful bound, it would require multiplications of 
fractions. However, using logarithms, we could add rather 
than multiply. Converting to logarithms, the bound of each 
successful solution would still be equal to that of any other 
successful solution. 

In order to use the more efficient logarithm 
implementation, we define the weight W(k) of an arc k to be 
the negative of the logarithm (base 2) of the (unnormalized) 
probability of the arc in the sense given above and we define 
the bound B(n) of any chain n = (i,j,k,...) to be the sum of 
weights of the arcs in the chain W(i)4-W(j)-fW(k)+.... As a 
chain is built from the root, the bound is monotonically 
increasing, since the logarithm of a fraction is negative and 
we add the negative of these negative components, and all 
successful solutions have the same bound. Thus, it properly 
satisfies the requirements of the branch and bound algorithm. 
Incidentally, the weight of an arc resembles the information 
or "surprise" associated with making a decision, as quantized 
in Information Theory, whether by coincidence or from some 
very fundamental reason. In the solution process, the branch 
and bound approach tries to minimize this "surprise", 
seeking the most "obvious" solution. 

However, do such probabilities exist? If N is the 
number of both complete solutions and unsuccessful 
solutions, and M arcs are used in them, we have N equations 
in M unknowns to solve, which are linear equations 
formulated in terms of the weights of the arcs. Since 
M > > N we expect to have such bounds. Generally, there 
may be many solutions, and any one will satisfy our branch-
and-bound requirement. However, pathological cases exist 
where no solution is possible. For instance, if an unsuccessful 

query has only arc A, then the weight of A must be infinity, 
but if A is an arc in a successful solution, it may not have a 
weight of infinity. In such a case, there are no weights. 
When weights exist, we do have a properly formulated 
branch and bound algorithm. 

Of course, in a practical case, we do not want to 
wait until all solutions to all queries have been found, and 
then try to solve a large number of linear equations in a 
larger number of unknowns to get the weights. This notions, 
however, will serve as a guideline in constructing the 
heuristic rules that we will actually use in a B-LOG machine. 

As an illustration of the above described scheme, 
consider the example in figure 3, as if that query were the 
only one ever presented to the database. One valid set of 
weights which can be verified by inspection is the following: 
The arcs above (sam)—f—>(Y)—f—>(G) and both instances 
of (sam)—f—>(larry) have probability 1, those above (larry)~ 
f—>(den) and (larry)—f—>(doug) have probability 1/2 and 
that above (sam)—f—>(Y)~m—>(G) has probability 0. The 
probability that a chain from root to leaf is a solution is the 
product of the probabilities of each arc in the chain. Both 
solutions have probabilities 1/2 and the unsuccessful solution 
has probability 0. The weights of arcs with probabilities 0 
would be infinity, of those with probability 1/2 would be 1, 
and of those with probabilities 1 would be 0. 

We define a B-LOG machine as a MIMD computer 
that approximates a "best-first" search strategy on a logic 
program, using weights in order to guide the search. These 
weights will be updated with each query so that they will 
eventually converge to be proportional to those described by 
the theoretical model above as all queries are presented to 
the database, as long as the contents of the database (except 
for the actual weights) are not modified. We call it "best-
first" in quotes because it will be only "an approximation to 
true best-first searching. 

5 Search and Updating Strategies 

The database (see figure 2) will be stored as a linked 
list da ta structure, with blocks representing each Horn clause 
(rule or fact), and pointers to blocks representing other rules 
or facts in the database that can resolve the rule. During a 
session, we aim to set the bounds of all successful queries to 
the same constant, which we arbitrarily set to a number 
N. The weights of the arcs in the search tree correspond to 
weights on pointers in the database. Each pointer will have 
an "unknown" weight, initialized to N + l (which will be 
larger than a known solution that has a bound N). Some of 
the arcs may have weights set by earlier queries, which we 
will call "known" if they are set because of a successful 

search, or "infinity" if set by an unsuccessful search. If the 
longest chain in a search tree is A arcs, we code "infinity" as 
A*N. If a failed search occurs and it does not already have 
an arc with infinite weight in the chain, we will set any one 
of the unknown weights to infinity. The choice of which 
weight to set to "infinity" is similar to the backtracking 
problem in Prolog; we think it should be the unknown 
nearest the leaf in the chain. If a solution to the query is 
found, we will reset all unknown or infinite weights as 
follows: if the known weights add up to a number greater 
than N, set them to 0, else if there are k unknown or infinite 
weights, set them equally so that the sum of weights is N 
i.e. if the known weights add up to M, set them to (N-M)/k 

Consider this example: 
- B , C , D . 

- E . 
- F . 
- G. 

- H. 

The set of Horn clauses shown above would have 
the data structure in figure 4. Note that each clause is 
represented by a block, and that just below each named 
pointer is a weight. It may be recognized that these blocks 



are much like inverted files kept for each rule. The updating 
process for this data structure will be similar to the updating 
process for inverted flies. This substantial increase in 
databa.sc size and update complexity is needed so that 
weights can lie maintained for each arc, in order to use 
" best-fust" searching. 

Consider evaluating a query in a single processor 
using the B-LOG methodology See figure 4 for an instance 
of the weights. We will consider the parallel approach in the 
next section. When a query "?:-A" appears, it will match the 
first clause (provided unification succeeds). The next search 
could be for 13 (with two possible matches) or C or D (with 
one match each). Examining the bounds of each chain 
obtained so far (which are just the weights of each of the 
four pointers), B-LOG will choose the chain with the least 
bound (which is the pointer with the least weight). The 
second pointer to B has the lowest weight (3). Then the Bs 
will be chosen for the first fan-out below the node 
representing A in the search tree, and the right side of the 
Horn clause of the second B would be searched. The bounds 
associated with the chain to F (the sum of the weights of the 
second B and of F) would be compared with the bounds 
(which are the weights) of the first B, of C and of D. The 
first B is chosen because its weight is lowest and a new chain 
is grown from the root node to the first B. Note that the 
next search from the first B is similar to a breadth-first 
search. 

Figure 4: A Linked List Structure 

A different set of weights would cause a different 
order of search. Suppose the weight of the first B pointer is 
the Horn clause for A (middle of figure 4 were 1 rather than 
0. Then the Bs would be chosen for the first branch of the 
search tree, as before. But the Horn clause B:-E would be 
expanded next, before the second B would be chosen, because 
the sum of weights for this chain (2) would be lowest. This 
appears to be a depth-first search, as in PROLOG. In 
general, the "best" chain would be expanded first, rather 
than depth-first or breadth-first. 

We reflect on the probabilities and the weights 
related to them. It, is tempting to normalize the probabilities 
of arcs out of a node. For instance, we might, make all the 
probabilities of arcs away from node A sum up to 1. This 
"best-first" methodology, however, compares bounds which 
are weights of arcs out of node A with those out of nodes B, 
C and so on. The weights are thus defined in terms of the 
probabilities of an arc in any solution to the query, that is. 
they are globally ra.ther than locally defined. Also note that 
the weights are stored with the pointers, rather than at the 
beginning of each block. This speeds up the search process 
because we can decide whether we wish to retrieve another 
block by examining these weights, before we access the block 
from the slow secondary storage. 

As long as no infinite weights are reset to known 

weights and the sum of known weights does not exceed N, 
this heuristic yields one possible solution to the branch and 
bound algorithm (the weights will be proportional to those of 
the algorithmic approach). When these anomalies appear, it 
appears too hard to completely correct the entire data base, 
and we may not be able to do so anyhow. Still, we must 
remember that all we are doing is trying to keep a loi of 
processors busy doing useful things when we use this 
"bound". We must keep in mind that the algorithm is only 
a guide to this end, and small deviations from the theoretical 
model will reduce efficiency, but the correct solution(s) will 
still be found. 

This heuristic employs some adaptive control 
strategy. If a successful query is found, the next search will 
try this path early and if an unsuccessful search is detected, 
its path will be avoided until all the others have been 
attempted. Especially where a user tries a second and third 
query that is similar to the first one with some minor 
changes, later searches should become more efficient. 

In order to make the above described convergence 
possible we have to provide a strategy for maintaining and 
updating the weights in the B-LOG machine. One important 
issue at this point is to determine the scope and extent of 
these changes. To do so, we will introduce the concept of 
session. A session is defined as succession of queries during 
which no permanent updating of weights is done in the global 
database in secondary storage. During a session, weight 
updates are kept in a separate buffer or in local copies of the 
subset of the graph being used in primary memory. 

The user declares the end of the current and the 
beginning of a new session when the next query is not related 
to the previous queries. At the end of the session the global 
database will be updated in a "conservative" way, e.g., no 
infinities will override previous non-infinite weights, while 
other weights will be modified in the direction indicated by 
the results of the session. This less drastic modification will 
provide an improved initial condition at the beginning of the 
new session. Averaging of modifications over different 
sessions is thus achieved, hopefully facilitating convergence 
to the theoretical model. 

Other bounds may be used, and some perhaps may 
show more useful than the one defined for the B-LOG model. 
For example, conditional probabilities (conditional 
information) might be added to the model, since a decision 
should depend on what has been previously decided, but 
maintaining the database in this model is clearly more 
difficult than our approach. We thus feel that this model is 
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both simple and useful enough to justify its application in 
our first approach to an effective parallel implementation of 
logic programming. 

6 T h e Paral le l C o m p u t e r And Da tabase 
Machine 

We now consider the storage of the database and 
rules, and the design of a processor for B-LOG. This parallel 
computer will have one or more database machines, and one 
or more processors, connected by some interconnection 
network. We consider the database machine first, then the 
processor, and finally we comment on the interconnection 
network. 

Although we have worked on a powerful database 
processor (CASSM [5|), we consider that a disk-only based 
processor will be loo slow for the evaluation of the heuristic 
described in the previous section. Still, the database will 
necessarily be large. Even the storage of rules will take a lot 
of space, as pointers to other rules and facts will be stored 
for each rule in a similar way to an inverted file. An 
immediate consequence of this fact is that there is little 
reason to have a separate database for rules a,nd for facts as 
in PRISM [3|. A compromise solution uses data base 
machines to do some of the retrieval of portions of the graph, 
while fast processors do the main processing in the heuristic 
search inside this local subgraph. This is illustrated in figure 
5. 

In that figure we can see how the database (that is, 
the graph) is partitioned into a number of database 
processors (semantic paging disks, described below). There 
are also a number of processors with local memories, which 
contain copies of small subsets of the global graph. These 
processors use these subsets to work on their portions of the 
search tree. When a new node is needed for expansion the 
semantic paging disks will provide the appropriate subset of 
the graph, while the minimum seeking network will select the 
most likely candidate taking into consideration the current 
set of weights. At any given point in time, the search tree is 
distributed over a number of processors, each of them 
working on different parts of it, and the database is 
distributed over a number of semantic paging disks that 
search concurrently for new nodes for expansion. If a 
processor finds its chains to greater bounds than the other 
processors, it can stop its work on the subtree in it and 
transfer another chain with lower bounds into it, as the top 
processor does in figure 5. 

Thus, the basic task of the database machine is to 
store a graph, implemented using pointers, and to extract a, 
subgraph consisting of some selected nodes and all nodes 
within some Hamming distance of the selected nodes. We 
have described a "semantic paging disk" [12] (SPD) that 
works on pointers, and is well suited to this approach. Data 
so extracted is included into the processor memory, as in a 
paging scheme in virtual memory. However, rather than 
organizing data in fixed size pages, data is semantically 
organized in terms of a graph, and a page is a subgraph 
defined by the state of the process at run time. The earlier 
paper describes such a machine. However, since then, cheap 
RAM has made a cache attractive in a disk system, and the 
use of a cache simplifies the design of this machine. We 
summarize this cache oriented SPD below (see figure 6). 

SEARCH TREE DATABASE 

PROCESSORS SEMANTIC PAGING DISKS 

Figure 5: Parallel Computing Environment 

The SPD consists of one or more search processors 
(SP). Each SP has one or more tracks (a moving head disk 
would have all the tracks on a surface in an SP), a read-write 
head and associated drivers and amplifiers, a random access 
memory (a cache) able to hold a track's data, and logic to 
implement the actions described below. The blocks of the 
linked list are stored in variable length records, which have a 
block number that is defined to be the number of blocks 
above it in the track. The contents of a block contain some 
data (possibly ASCII characters) and named and weighted 
pointers (name, pointer to another block, weight) as in figure 
4. The pointers are the block numbers of the blocks pointed 
to. As the cache is loaded from a track, the location in the 

• C h a i n 

cylinder 

v. v •*. ) surface 

Bus 

Figure 6: A Semantic Paging Disk (SPD) 



cache of the beginning of each block is noted and tags for 
marking the blocks are provided in a table. The logic is able 
to 

1. Search the data in a block associatively and mark 
the blocks. 

2. Follow all pointers, or only pointers with specified 
names, from marked blocks to other blocks and 
mark them. 

3. Output, replace, insert and delete words in a 
marked block. 

Using (1), we can find some blocks. Using (2) N times 
successively, we can find all blocks within Hamming distance 
N from the nodes we found. Using (3), we can output or 
update the database. 

Where more than one SP is used, they can work 
independently (MIMI) mode) or interdependently (SIMD 
mode). In SIMD mode, all SPs work on the same track on 
their surface (a cylinder), and the tracks in a cylinder are 
presumed ordered in a chain. A global block number is 
defined for each record (block), and can be computed when 
the cache in each SI' is loaded. It is the number of records 
above its record in the current track, plus the number of 
records m all (he tracks above this track. The pointer 
becomes a pair (cylinder number, global pointer). If the 
pointer is to the cylinder that is cached, communication and 
hardware, between the SPs can find which SP a global pointer 
is in, and the SP can mark the record. The associative 
search operation (1) and the pointer transfer (2) can be 
performed simultaneously in all SPs that are connected in 
SIMD mode. If the pointer is to another cylinder, pointer 
transfer is handled by saving the pointer until the other 
cylinder is loaded into the cache. The control of the SPM is 
simplified: all the external processor needs to know is which 

cylinder(s) to search on all SPs, not where the data is on such 
cylinders. Garbage collection between tracks in a cylinder 
can be done in the Si's without interacting with external 
processors. A paper more fully describing this device is in 
preparation. 

The processor in turn will obtain data from the 
SPDs, storing it in its local memory. The design of the 
processor should avoid the "von Neumann bottleneck" even 
in the operation of its controller. In our approach, we 
propose to use an inference driven scheme for the execution 
of the controller: recall that in the CDC 6600 [2], a 
scoreboard is used to keep busy a collection of adders, 
multipliers and the like, and resolves the use of variables 
from one operation that are needed in another operation. 
We should build some specialized units, for example, to 
instantiate variables. When a unit has completed its 
operation, it should consult the scoreboard to determine what 
operation it can do next. The actual design of this units is 
presently one of our main areas of research(a) . The idea is 
to define a local interpreter of the B-LOG language in terms 
of production rules. We then implement each unitary action 
in a hardware unit and use a scoreboard to schedule their 
use. Note that a single processor will thus be multitasked, 
able to develop several chains of the search tree at one time. 
Also, the delays due to disk access can be compensated for by-
developing other chains that are not waiting for the slow 

(a)After this paper was submitted for review Graham 
[9; proposed a similar concept. 

disk. This may also be the correct design approach for an 
effective (pipelined) uniprocessor approach, and this is 
another point we are presently studying further. 

One possible bottleneck that our preliminary 
analysis shows is that a multitasked processor will spend a 
lot of time copying data received from the disk, and data in 
its own memory, as new chains in the search tree are 
sprouted. This is a consequence of the very peculiar character 
of the logic variable, since most structure sharing schemes 
are difficult to implement in parallel [16]. Thus, the processor 
memory should be designed to write multiply, as well as 
singly in the normal sense of a random access memory. 
Using a shift register inside the memory, along side the 
address decoder, the shift register threading through each 
successive word in RAM, multiple writes can be effected. By 
setting several bits in the shift register (using the decoder), 
we can write the contents of all words that have a 1 in the 
shift register. We could then shift the whole bit pattern down 
one location so that we can write the next word of each copy-
in one memory access. Continuing this operation, a block of 
data can be copied many times into memory for example to 
assist in multitasking. 

As far as the interconnection network (connecting 
processors together and processors to database machines) is 
concerned, it should support bursty traffic from the database 
machines, and a circuit to determine the minimum value of 
several bounds produced by the processors. Bursty traffic is 
well handled by a network that uses packet switching to find 
paths, and circuit switching to move the data. This scheme 
is used in the CEDAR machine 18], according to Gajski. The 
sorting network suggested in section 2 is probably lightly 
used since a processor will have to perform a lot of work, and 
wait for slow I /O, between times that it uses the sorting 
network; instead, a circuit that determines the minimum, 
and a priority circuit to arbitrate among several waiting 
processors to determine which will process the minimum, 
would be adequate Several circuits have been presented 
which can very efficiently find a minimum, one of which is a 
tree where each node selects the minimum of its descendants 
and passes that to its parent. A priority circuit can be 
implemented in a tree-shaped carry-lookahcad circuit. A 
linear cost non-rectanguiar banyan can implement these 
mechanisms, and this is another of our current subjects of 
research. 

The parallel B-LOG machine will thus appear to 
work in the following way. Each of N processors has the 
capability of supporting M tasks at the same time. Each 
processor keeps track of the weights of the chains it has 
found and is able to send the minimum bound into a 
minimum seeking network. Initially, one processor is given 
the initial query, which it sends to the SPDs to page in part 
of the graph to work on. The other processors use the 
minimum seeking network to wait for some chain to work on. 
As chains become available, they are sent to the awaiting 
processors. The priority network assigns a minimum to just 
one awaiting processor at a time. Thus, initially, the tree is 
searched breadth-first to get all processors working. This is 
done with only one task in each processor. After all 
processors have been given work to do, the minimum seeking 
network keeps track of the lowest bound of the chains not 
yet expanded. Ignoring communication costs, when a task 
completes its extension of a chain, it will acquire a new 
chain, as determined by the minimum seeking network, and 
work on it. However, this would generate excessive traffic 
through the interconnection network. We choose a value D. 
which reflects the communication cost of moving a chain. If 
the minimum over the network is D lower than the minimum 



of the tasks in a processor, the freed task would acquire the 
chain through the network, else it would work on the 
minimum chain given by some task in its own processor. D 
can be modified at run time, based on the measured 
communication overhead. 

7 Exploiting Other Sources of Parallelism 

We have presented our model based on the OR-tree 
representation of the Logic Programming search space 
introduced in section 3. In this sense our model represents an 
intelligent, bound guided implementation of OR-parallelism 
as defined by Conery and Kibler [4]. OR-parallelism is 
specially effective in speeding up non-deterministic programs, 
specially when more than one solution is needed. Search-
parallelism is also implemented very effectively in the 
semantic paging scheme through the use of several SPD's 
working concurrently. 

Another source of parallelism present in logic 
programs is AND-parallelism, that is, the concurrent 
execution of several goals within a clause body. AND-
parallelism can be very effective in speeding up highly 
deterministic programs, specially if only one solution is 
needed. In general our model could also support AND-
parallelism, but some special cases have to be taken into 
account. 

Its inclusion is a relatively simple issue for 
conjunctions of goals which do not share variables and the 
same basic model described in the preceding sections can be 
used in this cases. Unfortunately this case is not as common 
as desired. Calls which share variables can be executed in 
sequence using the same scheme as Prolog. Alternatively a 
join algorithm can be applied. In our implementation a 
highly efficient semi-join algorithm can use the marking 
capabilities of the SPD's. 

Also, at run time, many of the dependencies 
apparent at compile time can disappear because of the 
particular bindings of the variables at the time the call is 
made [6]. A run-time analysis can thus grant the maximum 
level of parallelism but the support needed can result in high 
overhead [7]. An alternative to this approach is to do 
extensive data dependency analysis at compile-time. Similar 
extensions are being considered in our model but are left for 
future implementation. 

8 C o n c l u s i o n s 

We have presented a methodology for parallel 
processing of logic programming, and sketched a parallel 
processor that could implement this methodology. Further 
work is in progress in most areas: definition of the semantics 
of the B-LOG language, design of the data structures and 
processing units needed in its implementation, design of the 
database machine and the interconnection network, and 
evaluation of alternative bound generation and updating 
algorithms. Several schemes for supporting AND-parallelism 
are also being considered. In addition, we are analyzing 
specific applications in the context of this methodology. The 
validity of our present approach, specially in the choice of 
the bound generation and update algorithm, can be verified 
in this way. 

B-LOG offers an alternative to Prolog's sequentially 
oriented depth-first search, without giving up completeness 
by incorporating control annotations. At the same time, it 
tries to overcome the combinatorial explosion of other search 
strategies which are not driven by heuristics. We thus feel 
that it can be the foundation for a resolution-complete and 
effective parallel implementation of logic programming. 
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