
Rela t ing Goal Scheduling, Precedence , and
M e m o r y M a n a g e m e n t in AND-paral le l
Execut ion of Logic P r o g r a m s

M. V. Hermeneg i ldo
Microelectronics and Computer Technology Corporation (MCC)
3500 West Balcones Center Dr.
Austin, TX 78759

Abstrac t : The interactions among three important issues involved in the
implementation of logic programs in parallel (goal scheduling, precedence, and
memory management) are discussed. A simplified, parallel memory management
model and an efficient, load-balancing goal scheduling strategy are presented. It
is shown how, for systems which support "don't know" non-determinism, special
care has to be taken during goal scheduling if the space recovery characteristics
of sequential systems are to be preserved. A solution based on selecting only
"newer" goals for execution is described, and an algorithm is proposed for
efficiently maintaining and determining precedence relationships and variable
ages across parallel goals. It is argued that the proposed schemes and algorithms
make it possible to extend the storage performance of sequential systems to
parallel execution without the considerable overhead previously associated with
it. The results are applicable to a wide class of parallel and coroutining systems,
and they represent an efficient alternative to "all heap" or "spaghetti stack"
allocation models.

K e y w o r d s : LOGIC PROGRAMMING. PARALLEL PROCESSING, AND-PARALLELISM,
SCHEDULING, MEMORY MANAGEMENT, COROUTINING, PROLOG.

1 In t roduc t ion

The most promising strategy for increasing the execution speed of logic
programs (14] presently appears to be the combination of advanced compiler
technology with parallel execution. Several models have been proposed for the
implementation of logic programs in parallel [7, 5, 16. 6, 15, 9, 2. i. ...).
However, some issues which have already been the target of extensive
optimizations in sequential systems and which very dramatically affect the

efficiency of a practical implementation are often devoted secondary attention
in some models. One of these issues is memory management. In this paper, the
relationship between goal scheduling and memory management in AND-Parallel
"don't know" non-deterministic systems will be addressed. Clearly, the desirable
characteristics to strive for are: minimization of idle processor time, storage
optimization, garbage collection minimization, and load balancing, among
others. Basic scheduling and memory management strategies will be presented,
and it will be shown how the techniques used in sequential systems for storage
economy and avoidance of garbage collection through the recovery of space
during backtracking can be efficiently extended to parallel, multiple-stack
systems.

Organization of the paper is as follows: section 2 reviews the relationship
between goal precedence and storage management in sequential systems using a
simplified memory management model. In section 3 this model is extended to
support parallel execution and a distributed goal scheduling strategy is
described. Section 4 then discusses the interactions between memory
management and goal scheduling. Two basic problems which result from these
interactions are discussed. A solution for these problems based on selecting only
"newer" goals for execution is described and an algorithm is proposed for
efficiently maintaining and determining precedence relationships and variable
ages among parallel goals. Section 5 finally offers some conclusions.

2 Precedence and Memory Managemen t in
Sequential Systems

Sequential logic programming systems obtain much of their performance from
doing their own stack-based memory management. Figure 1 shows a very
simplified memory management model for a typical stack-based Prolog
implementation. Although a realistic model, such a.s the Warren Abstract
Machine (WAM) [20], includes several stacks (for "environments", "choice
points", local and global data, "trailed" variables, etc.), the storage model will
be reduced for the purposes of this discussion to a single stack. Each invocation
of a goal allocates its local and global storage from the top of this stack. Depth-
first execution of the set of rules listed in figure 1 leaves in this single stack the
"trace" shown in figure 1-A. Note that Choice Point (CP) markers are left at
points where alternatives are available which can be returned to during
backtracking (in figure I it is assumed that b is the only predicate with
"alternatives" at -un time).

During forward execution this single stack simply grows with each goal
invocation until i final success or a failure occurs, or until memory space is
exhausted. In this last case, garbage collection is necessary in order to continue.
However, memory space can be recovered during backtracking. For example, if e
fails (within b), the next alternative, b„, will have to be considered, and all
storage involved in the computation of b can be discarded. This is done in all
practical implementations by trimming the now invalid top portions of all

f:-

bl:
b2:
b3.

c.
d:-
e :-

a,
- i
-J

g

b,c

e.
m.

h.

d

bl

ife
fails

CP

© ©

J
"b"2"

a
T "

CP

©
Figure 1: A Simplified Memory Management Model

stacks, as shown in figure 1-B. Certain bindings are normally undone while
"unwinding" a portion of the "Trai l" (a special stack which, for simplicity, is
not shown in the model described herein). Forward execution can then proceed
with b reusing the storage previously consumed by b , as shown in figure 1-C.
Despite its simplicity, this model illustrates the two main characteristics of space
recovery on backtracking in sequential systems:

• Complete Retrieval: all space used in the computation of the previous
alternative is recovered.

• Storage availability for next alternative: the storage is easily reused
by the next alternative, since it is recovered from the top of the
stack.

Note that the basic condition which makes space recovery possible is that at
every point in the computation, newer structures are always stacked on top of
older structures. The same ordering of newer over older structures that makes
recovery of storage on backtracking possible is also essential in minimizing the
number of values which need to be saved in the Trail and in the efficient
implementation of last call (tail recursion) optimization [19].

The concept of goal age introduced above creates a relation of precedence
(partial order) among goals. In practice, this relation of precedence is defined by
the particular control strategy being used, i.e., for Prolog "older" means "closer
to the root" and "to the left of" in the depth first, left to right execution tree.
In order to make the discussion independent of any particular control strategy, a
goal invocation a is herein defined as being "older" than another goal invocation
b , represented as a < b , if, for a given control strategy, all alternative
solutions of b are to be tried before a new solution of a is attempted. The
results presented in this paper, although described in terms of AND-parallel
systems which support "don' t-know" nondeterminism, will be applicable to any
execution model for which such a relation of precedence can be defined. Many
parallel and coroutining models fall within this class.

Note that , because it explicitly represents the partial order, the simple storage

management model presented makes it easy to discuss compliance with the
precedence conditions without the additional complexity of a more realistic
scheme including registers, heaps, trails, etc. It has been shown [10] how other
"popular" storage related optimizations (such as the recovery of local storage
upon exit from a procedure, environment trimming, etc.) can be supported in a
parallel system independently of the scheduling strategy being used. Therefore,
these optimizations have also been left out of the storage model presented herein.

3 Towards Para l le l i sm

One approach to memory management in parallel systems is to dynamically
"allocate" a block of memory from a general pool for each of the goals to be
executed in parallel. However, this approach in general relies on the existence of
an underlying (operating system level) memory management system which will
take care of such allocation and the maintenance of free space availability tables.
Therefore, the performance of the parallel logic system will be limited by that of
the underlying memory manager. As described in section 2, sequential systems
obtain much of their performance from doing their own stack-based memory
management. The purpose of the rest of this paper is to show how these
optimizations can be efficiently extended to parallel systems. In the next section
the single stack model will be extended to support AND-Parallel execution on
multiple stacks. The discussion is presented in terms of a shared memory system.
However, it applies just as well to distributed systems.

3.1 A Simplif ied, Mul t ip le -Stack Model

An AND-Parallel logic program can in general be considered to comprise a
series of sequential sections which eventually arrive at points where several
execution paths can be taken simultaneously ("forks"). For the purposes of this
discussion, it will be assumed that the control of this "forking" behavior is
determined by annotations, in particular by Conditional Graph Expressions
(CGEs) in a Goal Independence AND-Parallel model [11]. As an example,
consider the following annotation for the f clause of figure 1 (variable names
have been added to make the annotation meaningful):

f(X,Y,Z) : - a (X,Y) , (IndepCX,Y) | b(X) ftc(Y.Z)), d(X,Y,Z).

The presence of the C G E " (i n d e p (X , Y) I b(X) ft c (Y , Z)) " determines
that during the execution of f, a has to be executed first, and then b and c can
be executed in parallel if X and Y are determined to be independent at run-time.
d will have to wait for all of them to finish prior to its execution.

A possible execution of the parallel AND-"branch" described above in a
simplified multiple-stack model is represented in figure 2-A. Note tha t each
processor manages a physical s tack (the part of common memory

d
a
f

<\

I
e
1

bl
/ c

d
<?
a
f

"S

I
e
i
bl

1

PI 1 c P2 P3 PI P2 P3

©
Figure 2: Parallel, Multiple-Stack Execution

corresponding to it) on which several s tack sect ions can be allocated . In this
case, execution of f starts in P i ' s (physical) stack but, as a succeeds, goals b and
c are executed remotely and in parallel in P2 and PS. All new data and control
structures created by the execution of goals b and c are located within their
respective stacks. When b and c finally succeed, execution of d can continue in
PI, as shown in figure 2-A. The single stack of the sequential model is now
distributed across the stacks corresponding to different processors.

An alternative execution of the clauses in the example above is shown in figure
2-B. In this case, after the success of a, execution of b starts as before in P2 but
now, since Pi is idle (execution of d has to wait for b and c to succeed), it starts
executing c itself, thus leaving P8 free to perform some other task. When both b
and c have succeeded, execution of d continues in Pi. Note that if the several
stack sections involved are combined in the right order into a single stack, this
stack would be equivalent to the stack in figure 1-A.

As in the sequential model, this simplified multiple-stack model only reflects
the relative precedence of objects in the different stacks, but it will be
instrumental in showing in a simple way the factors which affect this precedence.
The main such factor in a parallel environment is the goal scheduling strategy.
In the next section a general distributed goal scheduling strategy will be
presented. The following sections will first describe the problems posed by
shnply combining the general memory management and goal scheduling
strategies presented in parallel backtracking systems and then propose a unified
scheduling and stack-based memory management scheme capable of avoiding
such problems.

At this point it is assumed that there is only one process per processor: goals are distributed
around the system as units of work (rather than processes) to these single processes. This approach
has been shown to significantly reduce overhead in a parallel system jlO]. The one process per
processor assumption will be revisited in section 4.3.

3.2 A Goal Schedul ing S tra tegy

A possible goal scheduling strategy is to have the processor which encounters
goals which can be executed in parallel look for idle processors, assign one of
these goals to each of the idle processors, and continue executing one of the
remaining ones itself. The problem with this scheme is that in it all the
"scheduling duties" (looking for idle processors, sending goals, etc.) are
performed by a single processor which already has work to do, and thus the time
involved in performing them adds up as sequential overhead. It is in general a
better idea to put this burden in the hands of otherwise idle processors. The
following is a distributed "load balancing" scheduling strategy in which idle
processors pick up (i.e. "steal") goals from busy processors [10]:

• Each processor owns a Goal Stack, which is initially empty.

• All processors are initially idle. The user query is placed in the Goal
Stack belonging to one of the processors. Execution starts in this
processor and with this goal.

• When a processor arrives at a point where several goals are available
for parallel execution those goals are pushed on to this processor's
Goal Stack2.

• Goals can be picked up from any Goal Stack for execution by the
owner of the stack or by any idle processor. Idle processors pick up
goals from other processors by looking into other processors' Goal
Stacks until a non-empty Goal Stack is found. The topmost goal is
then picked up from that Goal Stack and execution starts on it.

• When the execution of a goal finishes, the result (success or failure) is
reported to the processor from which the goal was picked up (the
"parent" processor).

The first processor thus starts working on the first goal and as it pushes goals
on to its Goal Stack they may be picked up by other processors. These goals
may in turn generate other parallel goals to be picked up by other processors
and thus work spreads itself naturally as it becomes available. Note tha t this
algorithm is valid even if there is only one processor present (or not faulty) in
the system: since this processor can also pick up goals from its own Goal Stack,
all goals scheduled for parallel execution will eventually get executed by this
single processor. Note that if the "left bias" of sequential systems is to be
preserved, goals actually have to be pushed on to the Goal Stack in reverse
order (with respect to their sequence in the clause) [10],

Other similar distributed load balancing schemes have been proposed by Keller
et al. [13], IJurton and Sleep [3], and others. The main problem with "polling"

"Of course, a processor will in general keep one of the parallel goals for local execution thus saving
a push-pop sequence in the Goal Stack.

schemes is tha t when the number of processors is large, moving from one Goal
Stack (or "work queue") to another in order to find available work can be very
inefficient. A global scheduling mechanism, capable of efficiently giving idle
processors pointers to available work is desirable, but care must be taken to
prevent this mechanism from becoming a serial bottleneck in the system. This is
often the case if a single, global system work queue is used. An alternative
hardware mechanism for "global" scheduling support is presented below.

3.3 A More Efficient Goal Schedul ing Strategy

Consider the addition of a new architectural element to a parallel system: a
"scheduling network". This element is connected to all processors, and it acts as
a global scheduling mechanism. Its operation can be summarized as follows:

• Each processor continuously feeds a va lue into the network which
represents its load.

• At any point in time any processor can ask the network for the Id. of
the processor feeding in the highest value, and this Id. will be
provided by the network with little delay.

Such a scheduling network can be implemented by anything from a wired-or
bus (which would provide one maximum value) to a tree structure (such as a
sorting network [l], which would provide the N maximum values), with different
delays and cost depending on its complexity . In particular, the delay and cost
can be kept sublinear (logarithmic, at worst) with respect to the number of
nodes (processors) involved. The same scheduling algorithm of the previous
section can make use of such a network by simply modifying the way in which
idle processors look for work:

• The number of goals in each processor's Goal Stack is continuously

fed to the scheduling network .

• A n idle p roces so r t h u s receives f rom t h e s chedu l ing n e t w o r k t h e Id. of

t h e p r o c e s s o r w i t h t h e h i g h e s t n u m b e r of goals in i ts p r i v a t e Goal

Stack. I t t h e n p i cks u p a goal f rom t h a t Goal Stack and s t a r t s

w o r k i n g on i t .

T h e p o t e n t i a l s c h e d u l i n g b o t t l e n e c k is n o w t h e (so r t ing) n e t w o r k itself, b u t its

Note that, specially in a shared memory system, this function can be emulated using a globally
accessed value in common memory. However, it is argued that the availability of a hardware
mechanism such as that proposed can significantly reduce scheduling overhead.

4
If multiple processes per processor are implemented, then the number of processes being run

should also be used. These two numbers (available goals and processes currently being run on the
processor) can be combined to provide a total load number which is fed to the network. The
scheduling scheme would then ensure that idle processors always picked up work from the most
heavily loaded processors.

action is limited to a very simple operation whose delay can be kept minimal.
Since more than one processor could at tempt to pick up a given goal
simultaneously, Goal Stacks obviously have to be locked during this operation.
In order to prevent many processors from fighting for access to the Goal Stack
with the maximum number of goals, a simple optimization can be introduced:
while the Goal Stack of a processor is locked, the value fed to the scheduling
network will be zero. Thus, this processor will not receive requests from others
until it is free again.

4 Rela t ing Memory M a n a g e m e n t and Scheduling

The multiple-stack memory management scheme introduced in section 3 can be
combined with the above described scheduling algorithms as shown in figure 3,
where both the single stack of section 3 and the Goal Stack introduced above are
being represented. The contents of the stacks represent a possible execution of
the same example used in figure 1. Note how in figure 3-B goals b and c (which
are available for parallel execution) are pushed on to the Goal Stack of the
processor which encounters them (Pi) . From there they are picked up by free
processors (figure 3-C) which work on them until they completely succeed. If
these processors in turn generated new goals for execution in parallel, those goals
would be pushed on to their Goal Slacks and picked up from there by other free
processors or by themselves. In principle, after execution of a given goal is
completed, a new one can be picked up and execution can proceed stacking all
new data structures above the old ones (figure 3-D,E,F, assuming the
annotation "d : - (t r u e I g & h) " for the d clause in figure I). Special
stack frames called "Markers" [10] (represented by a double horizontal line in
figures 2 and 3) can be used for separating different s tack sect ions , each one of
them containing all structures related to the execution of a given "picked up"
goal.

The goal scheduling and memory management schemes described thus far can
be used directly in "committed choice" systems. These include all stack-based
implementations of functional languages and of logic languages which make use
of "don't care" non-determinism, such as Concurrent Prolog [17], Parlog [8],
and GIIC [18]. Execution in these models will proceed as in figure 3, allocating
all structures corresponding to the execution of new goals on top of those
corresponding to previous ones. The stack in this case simply becomes a "Heap".
In the event of memory exhaustion, a (distributed) garbage collection algorithm
is used in order to retrieve unused space [12]. Backtracking systems, on the other
hand, can in principle recover storage during backtracking. This is not possible,
however, unless goal scheduling and memory management are tied together, as
shown in the next section.

See section 4.1 for a more detailed discussion on this subject.

©

©

©

©

©

©

(0) (0)

PI: working GS-1 P2:idle
(no goal)

GS-2 P3:idle
(no goal)

a

.-f.__. b
c

(2)

up goa. al up go; >al

(0) b(etc) (0)

(0) b(etc) (0)

PI: working GS-1 P2:idlc
(no goal)

d
a

f
•

g
h

,(2),
V
• ^

GS-2 P3:idle
(no goal)

(0) b(etc) (0)

(0)

GS-3

PI: working GS-1 P2: picking GS-2 P3: picking GS-3

(0)

PI: working GS-1 P2: working GS-2 P3: working GS-
(wait_on_siblings) ~*" success —*• success

(0)

GS-3

PI: working GS-1 P2:picking GS-2 P3:picking GS-3
up goal

PI: working GS-1 P2: working GS-2 P3: working GS-3
(wait_on_siblings)

Figure 3: Goal Slack Based Goal Scheduling

4.1 M e m o r y M a n a g e m e n t P r o b l e m s Assoc ia ted w i t h Dis tr ibuted
B a c k t r a c k i n g

If the memory efficiency of sequential systems is to be retained in a parallel
implementation, equivalent conditions to those met sequentially (i.e. that at
every point in the computation, newer structures always be stacked on top of
older structures) are to be applied to the multiple stacks involved in the parallel
execution. In particular, the following two conditions are to be met [9]:

1. The same precedence as in the sequential model should be maintained
within each stack section during the execution of each particular
goal.

2. If a new stack section is to be allocated on a physical stack
containing other sections (as in figure 3-F, for goals b and g) then, if
b is the last goal of the topmost section on the stack and g is the
first goal of the new section, the relationship b < g has to hold
between goals b and g (i.e. g has to be "newer" than b) .

Similar conditions have also been independently proposed by Borgwardt [2].
These two conditions, added to backtracking algorithms such as those proposed
in [11, 10] ensure that , in the event of failure, backtracking in parallel systems
will also be able to retrieve all stack space used in the computation of the failed
alternative from the top of all stacks, and that execution of the new alternative
will start from the new tops, so that there is free space available above for
execution to continue.

It should be clear that , once a goal has started execution at any given
processor, the first condition above, i.e. tha t newer structures always be stacked
on top of older structures during the execution of that goal within a stack
section, can be met simply by using the same techniques currently applied in
conventional sequential models. Meeting the second condition above is more
involved. The special problems associated with not meeting this condition will be
illustrated in the following paragraphs .

4.1.1 T h e "Garbage Slot" P r o b l e m

Consider the situation in which a processor, having succeeded in the execution
of a given goal, starts looking for another goal to work on. This is the case, for
example, of processor 2 in figure 3-D,E,F: after the success of b , a new goal g is
picked up. In order to illustrate a situation in which problems can arise, suppose
that instead of g, a different goal k (from the execution of another parallel call
somewhere else in the system) had been "picked up" and that b < k does not
hold (i.e. k is not "newer" than b) . In this case, when dealing with a failure at
some point during the subsequent execution of the program it is possible that h
may have to be backtracked before k. If, as a result of such backtracking, b
needs to be deallocated this represents only a minor problem: deallocation of b is
possible, leaving an empty slot of "garbage" in the stack, and execution can
continue (figure 4-A: the "garbage slot" problem). Although this space may be
retrieved later through backtracking (i.e. if k is deallocated before anything else
is stacked above it) this cannot be guaranteed in general. Therefore, complete
retrieval of used space during backtracking is not preserved.

As mentioned before, additional areas in which proper stack ordering is essentia! are the
minimization of "trailing" and simple support for tail recursion optimization. The algorithms
proposed herein also extend these optimizations to parallel implementations, although the discussion
will be limited for simplicity to space recovery issues.

dealloc

P2: working GS-2 P2: working GS-2

free space

redo

bl

P2: idle
(receive redo)

P2: working

Figure 4: The "garbage slot" and "trapped goal" Problems

4.1.2 T h e "Trapped Goal" P r o b l e m

A more serious problem appears also during backtracking if, for the same
situation depicted above, an alternative solution is needed from b (i.e. a redo
message is sent to P2 referring to b) and again k has not yet been deallocated.
In this case part of the stack space occupied by b will be deallocated (down to
the next "choice point" - figure 4-B) and a new alternative will be evaluated, its
structures being stacked above this point. But note how, since there is no a
priori limit on the storage which will be needed in the evaluation of this new
alternative, the space available in the stack below k could be insufficient (figure
4-B, the "trapped goal" problem). If, on the other hand, k were actually
"newer" than b (as is the case of g in figure 3-F), all alternatives of k would
have been tried, and k itself deallocated before b is ever required to backtrack.

4.2 T h e Goal Res tr i c t ion So lut ion

An effective approach towards ensuring that only "newer" goals are stacked
above other goals is to restrict the choice of goals which can be picked up by a
given processor: the scheduling algorithm is modified so that an idle processor
only picks goals which are "newer" than the topmost goal on its stack.

Figure 5 shows the processor state diagram for a parallel backtracking system
with distributed goal scheduling restriction. If after success or failure of a goal
the stack is empty, clearly any goal in the system can be picked up for
execution. This is, of course, always the case after initialization . If, however, the
stack still contains pending structures, the goal restriction approach dictates
entering an alternate idle loop, where, rather than picking up any available goal

7
In addition, if the "garbage slot" problem can be tolerated, any goal in the system can also be

picked up if the underlying structures on the stack contain no alternatives. However, for the rest of
this discussion it will be assumed that the "garbage slot" problem is to be avoided also.

Initialize

'no goal'

'...' from Sched. Nwk.
... from parent proc.
/... to parent proc.

'no (appropriate) goal'

redo

goal

WORKING

exit status
kill received failure succcss/NoAlt ' sucess/Alt

Figure 5: State Diagram for the Goal Restriction Approach

in the system, only an appropriate goal (defined as one which is "newer" than
the last goal on the stack) will be looked for. When such a goal is found, work
can continue on it, in confidence that its data structures can safely be grown on
top of the old ones, since the relation of precedence ensures that the newer
structures will always be deallocated before an underlying goal needs to be
backtracked. Thus, the "garbage slot" and "trapped goal" problems are
avoided.

One important advantage of this method is that , since the ordering of goals in
the stack corresponds to its backtracking order, any kill or r e d o message
received from the parent necessarily refers to the l a s t goal received. This
obviously means that all allocation and deallocation of structures on all stacks is
always done to and from their tops. It also means that kill and redo messages do
not have to identify the stack section they refer to: the last (topmost) goal
executed in the processor receiving the message is implied.

Of course, some method has to be devised for efficiently determining
precedence relationships among goals without having to traverse the whole

execution tree every time a goal has to be checked. Such a method is proposed in
the following sections.

4.2.1 A Label ing A l g o r i t h m for Process Trees

Precedence relationships are maintained in sequential systems by simply
associating an age with each object which is the physical address of this object in
the stack. This scheme is clearly very efficient:

• The age of each object is implicit in its position (i.e. it doesn't have
to be computed).

• Age comparisons between objects are reduced to address comparisons.

The same algorithm can be used in a multiple-stack model within each slack-
section. In addition, if the relation of precedence is maintained between the
different sections on a single physical stack (as in the goal restriction solution
proposed) then the same algorithm can also be used across stack sections within
the same physical stack. If objects are located in different physical stacks,
however, address comparisons are not meaningful. Ages have to be explicitly
assigned to each section to make it possible to determine age relationships across
different physical stacks.

Figure 6 represents an AND-Process tree for the set of clauses given therein.
Note that each branch of the tree corresponds to sequential computation
performed within a stack section. Branching points represent parallel calls and
correspond to boundaries between sections. An algorithm is needed which always
assigns a "greater" value (according to some comparison criteria) to a node than
to any "older" node. For example, for Prolog semantics, a. node x always has to
be assigned a value greater than that of all nodes which would be visited before
x in a depth-first, left-to-right traversal of the process tree. Note that since this
tree grows dynamically at its leaves, a more sophisticated labeling algorithm
than assigning simple integers to each node has to be implemented (i.e. in figure
6 new branches could be generated in the execution of p or 1). An example of
such a "dynamic" algorithm is also illustrated in figure 6: the age of a node is
kept as a linked list of integers, the order of each element in the list representing
the corresponding level in the tree, and the value of each element specifying the
branches which would have to be taken in order to arrive at that node. Thus,
referring again to figure 6, if fxj is the age of node a, then Ix. 1.2.1] is the age of
node o, and [x. 1.2.2} that of node p . Is is easy to determine that p is "newer"
than o by simply comparing the two lists. The general comparison algorithm to
determine whether a goal b is "newer" than a goal a is then:

e [x.4]

f [x . l . l] [x.1.2] h[x.3.1] k[x.3.2] 1 [x.3.3]

o[x.l.2.1] p[x. 1.2.2]

L. -i

... a, (b & c & d), e.

- (f & g) .

- (o & p).

- (h & k & 1).

- (m & n).

Figure 6: An AND-Process Tree

Is b > a ? Starting with the leftmost elements of both lists:

• If element(a) = element(b), select the next two elements and
recurse.

• If element(a) < element(b) or no more elements in a, answer
Y E S .

• If element(a) > element(b) or no more elements in b , answer
N O .

There are at least two possible implementations for this scheme: the linked list
can be kept implicitly by storing in each Marker the last element of the list and
a pointer back to the Marker of the parent goal. When an age comparison is to
be done, both chains of pointers are traversed until reaching the root, building
the lists which represent the age of each node during the process, and then the

above algorithm is applied to the lists built. Although such an algorithm may
appear excessively costly, note that the length of these lists is only proportional
to the depth of the process tree, generally much smaller than that of the proof
tree.

A more efficient approach (at some storage cost) is to always copy the parent 's
list (with the integer corresponding to the new node appended to it) to the stack
section of the new node (for example, it can be stored in the Heap, with an entry
in the corresponding Marker pointing to it). Then, both lists are always readily
available for comparison. Also, a "lazy" combination of both of the approaches
previously described offers an interesting compromise: a pointer to the parent is
stored when the execution of a new stack section is started, but, if the chain ever
has to be followed, then the explicit list built during this process is preserved in
the stack section (i.e. in the Heap) with a pointer to its head stored in the
Marker. Then, no subsequent age comparison needs to reconstruct this list and,
at the same time, the construction and storage costs arc avoided if an age
comparison is never performed.

4.2.2 A Binary Label ing Algor i thm for Process Trees

Although the algorithms presented in the previous section are probably
workable, they are still much more expensive than the simple address
comparison of sequential systems. However, a binary encoding of the above
methods can afford very similar age comparison overhead to that found in
sequential systems. One such binary encoding is to represent the integers m the
list explicitly by enumeration, i.e. the "age" of each node in the previous section
is encoded by representing "dots" as zeros and integers as strings of ones, where
the length of each such string is the same as the value of the integer it
represents. For example, referring again to figure 6, if x is the age of node a,
then the age of node k ([x.S.Sj) is represented as the string "x.011101 J", the age
of node p as "xOlOllOlJ", etc. In general, if the current age of a stack section is
S =ar, upon arrival at a parallel call with n goals in it, the string S = S 8/ is
assigned to the first goal and the string S = S / to goal i, i=2 ,n . The leftmost
zero of all codes (corresponding to the "root" goal) can be omitted.

Note that if a decimal point is assumed to the (eft of these binary strings
(i.e. the strings are stored left-justified in a memory word, and the rest of the
word is set to zeros) the numerical value of the string representing a node is
always greater than that of the string representing any "older" node. This
means that age comparisons can be reduced to simple arithmetic comparisons
(i.e. without string traversal) in very much the same way as addresses are
compared in a sequential implementation. Several levels in the process tree can
be encoded within a single 32-bit word. If there are more levels, one bit (for
example, the last one) can be reserved to indicate that the string is continued in
the next memory word. The two first memory words of both ages are compared
first. Subsequent words need only be compared if the preceding words are
identical for both ages and both words being compared have "continuation
bi ts" . Again note that the length of the codes used depends only on the size of

the process tree, generally much smaller than that of the proof tree. In a work-
based (rather than process-based) system [10] no processes are actually created
when there are no idle processors in the system, thus further reducing the length
of the codes. Also note that codes will be "recovered" during backtracking.

4.2.3 Goal Restr ic t ion Schedul ing

A "polling" scheme can be used in conjunction with the above algorithms in
order to support goal restriction scheduling. Idle processors look into other
processors' Goal Stacks for goals which are "newer" than the last goal in their
stack. It is also conceivable again to support this function in hardware through a
scheduling network similar to that proposed in section 3.3. A similar scheduling
algorithm can then also be used: a processor feeds in the "age" of the goal on
top of its local stack to the network, and the network in turn returns the Id. of
the processor having the "oldest" goal in its Goal Stack which is "newer" than
the fed-in age. When there are several "eligible" goals, load is used as an
additional factor.

4.3 E x t e n d i n g the Goal Restr ic t ion Approach: Creat ing Mult ip le
S tacks (Processes) per Processor

Although the goal restriction approach as presented above makes very efficient
use of its stack, it can sometimes leave processors idle despite the availability of
work in the system (non-empty Goal Stacks) if none of such goals is "newer"
than the last goal on this processor's stack. In each such case, for systems with a
limited number of processors (i.e. where processor utilization is of great
importance), a new stack can be created for such a processor and execution can
then continue on this new stack with any goal in the system (of course, the
oldest available goal should be chosen). A processor state diagram for such an
approach is shown in figure 7. An idle processor will first look for appropriate
goals in the system. As long as appropriate goals can be found, they are executed
on the existing stack taking advantage of the inherent memory management
efficiency of the single stack approach. If no appropriate goals can be found, but
there is work available in the system (i.e. non-appropriate goals) then a new
stack is created and work continued on it.

Note that in a real implementation, beyond the single-stack model used herein,
the "creation of a stack" implies generating a complete new set of stacks
containing one of each of the areas used in a conventional implementation (i.e.
for a WAM-based system, a new Stack, Heap, Trail, etc.) and saving the
machine state corresponding to the old stack (i.e. the values of all the registers).
In fact, the operation which has been referred to as "creating a new stack"
corresponds in more conventional terms to the creation of a new process. Thus,
the fact that multiple stacks are supported per processor can be viewed as
having several processes in a given processor (one for each "stack" in use), some
of them "WORKING" and others waiting for a kill or redo message. Such a
multi-stack approach is relatively straightforward to implement in a system with
a large addressing space, and virtual memory support. It offers very good

Initialize

'...' from schcd. nwk.
... from parent proc.
/... to parent proc.

'no appropriate goal' no goal'

WORKING

exit status

/success
(alt.)

(empty) (not empty)

Figure 7: Creating Multiple Stacks per Processor

processor utilization, at the expense of stack (process) creation and switching
overhead. Other stack management algorithms are presented in [10].

5 Conclusions

In the previous sections the interactions among goal scheduling, precedence,
and memory management in parallel logic program implementation have been
discussed. It has been shown how, for AND-parallel systems which support
"don' t know" non-determinism, special care has to be taken during goal
scheduling if the space recovery characteristics of sequential systems are to be
preserved. The goal restriction approach proposed ensures support for such

optimizations in parallel systems for which a partial ordering among goals can
be defined. This includes a large class of parallel and coroutining systems. The
memory management strategy proposed then represents an efficient alternative
to "all heap" or "spaghetti stack" allocation. It is argued that the algorithms
presented for the determination of relative age between parallel goals make the
efficient implementation of such an approach possible. A multiple stack per
processor approach was also proposed for increased processor utilization in
systems with a small number of processors.

References

K. E. Batcher.
Sorting Networks and Their Application.
AFIPS Conf. Proc. 32:307-314, 1968.

P. Borgwardt and D. Rea.
Distributed Semi-intelligent Backtracking for a Stack-based AND-parallel

Prolog.
In Proceedings of the 1986 Symposium on Logic Programming, pages

211-222. IEEE Computer Society, 1986.

F . W. Burton and M. R. Sleep.
Executing Functional Programs on a Virtual Tree of Processors.
In Functional Programming Languages and Computer Architecture,

pages 187-195. October, 1981.

J.-H. Chang, A. M. Despain, and D. DeGroot.
AND-parallelism of Logic Programs Based on Static Data Dependency

Analysis.
In Digest of Papers of COMKXJN Spring '85, pages 218-225. 1985.

A. Ciepilewski and S. Ilaridi.
Control of Activities in the Or-Parallel Token Machine.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 49-58. IEEE Computer Society Press, Silver Spring, MD,
February, 198).

J. S. Conery.
The AND/OR I'rocess Model for Parallel Interpretation of Logic

Programs.
PhD thesis, The University of California at Irvine, 1983.
Technical Report 204.

[7] Doug DeGroot.
Restricted Arid-Parallelism.
Int'l Con}, on Fifth Generation Computer Systems , November. 1081.

[8] S. Gregory.
Design, Application and Implementation of a Parallel Logic

Programming Language.
PhD thesis, Imperial College of Science and Technology, 1985.

[9] M. V. Hermenegildo.
An Abstract Machine for Restricted AND-parallel Execution of Logic

Programs.
In Proceedings of the Third International Conference on Logic

Programming, pages 25-40. Springer-Verlag, 1986.

[10] M. V. Hermenegildo.
An Abstract Machine Based Execution Model for Computer

Architecture Design and Efficient Implementation of Logic
Programs in Parallel.

PhD thesis, Dept. of Electrical and Computer Engineering (Dept. of
Computer Science TR-86-20), University of Texas at Austin, August,
1986.

[11] M. V. Hermenegildo and R. I. Nasr.
Efficient Management of Backtracking in AND-parallelism.
In Proceedings of the Third International Conference on Logic

Programming, pages 40-55. Springer-Verlag, 1986.

[12] A. Houri and E. Shapiro.
A Sequential Abstract Atachine for Flat Concurrent Prolog.
Technical Report CS86-20, Dept. of Computer Science, The Weizmaiin

Institute of Science, Rehovot 76100, Israel, July, 1986.

[13] R. M. Keller, F . C. II. Lin, and J. Tanaka.
Rediflow Multiprocessing.
In Digest of Papers, Spring COMPCON '84, pages 410-117. IEEE

Computer Society, 1984.

[14] R. A. Kowalski.
Predicate Logic as a Programming Language.
Proc. IFIPS H , 1974.

[15] Y.-.I. Lin, V. Kumar, and C. Leung.
An Intelligent Backtracking Algorithm for Parallel Execution of Logic-

Programs.
In Proceedings of the Third International Conference on Logic

Programming, pages 55-69. Springer-Verlag, 1986.

[16] R. A. Overbeek, J. Gabriel, T. Lindholm, and E. L. Lusk.
Prolog on Multiprocessors.
Technical Report, Argonne National Laboratory, Argonne, III. 60439,

1985.

[17] E. Y. Shapiro.
A subset of Concurrent Prolog and its interpreter.
Technical Report TR-003, ICOT, January, 1983.
Tokyo.

[18] K. Ueda.
Guarded Horn Clauses.
Technical Report TR-103, ICOT, 1985.
Tokyo.

[19] D. H. D. Warren.
An improved Prolog implementation which optimises tail recursion.
DAI Research Report M l , University of Edinburgh, 1980.

[20] D. If. D. Warren.
An Abstract Prolog Instruction Set.
Technical Note 309, SRI International, AI Center, Computer Science and

Technology Division, 1983.

