
Determination of Variable Dependence
Information Through Abstract
Interpretation

K. Muthukumar
M. Hermenegi ldo
MCC and The University of Texas at Austin
muthu@cs.utexas.edu, hermeOcs.utexas.edu

Abstract

Traditional schemes for abstract interpretation-based global analysis of logic
programs generally focus on obtaining procedure argument mode and type
information. Variable sharing information is often given only the attention
needed to preserve the correctness of the analysis. However, such sharing
information can be very useful. In particular, it can be used for predicting
run-time goal independence, which can eliminate costly run-time checks in
and-parallel execution. In this paper, a new algorithm for doing abstract
interpretation in logic programs is described which infers the dependencies
of the terms bound to program variables with increased precisión and at all
points in the execution of the program, rather than just at a procedure level.
Algorithms are presented for computing abstract entry and success substitu-
tions which extensively keep track of variable aliasing and term dependence
information. The algorithms are illustrated with examples.

1 Introduction

The technique of abstract interpretation for flow analysis of programs in
imperative languages was first presented in a sound mathematical setting
by Cousot and Cousot [3] in their landmark paper. Later, it was shown by
Bruynooghe [1], Jones and Sondergaard [12], and Mellish [14] that this tech
nique can be extended to flow analysis of programs in logic programming
languages. Numerous specific algorithms for such global analysis in logic pro
grams have been presented ([6], [13], [16], [17], [18], ...). Some have actually
been implemented as part of experimental compilers and shown to genérate
useful results with reasonable overhead, as reported in [18]. Conventional
schemes, mostly geared towards optimizing the sequential execution of logic
programs, generally focus on computing information about the arguments
of predicates used in the program such as (1) the mode of an argument, i.e.,
whether a particular argument of a predicate is instantiated on input or
on output or both and (2) the type of an argument, i.e., the set of terms
that an argument is bound to when the predicate is called or when it suc-
ceeds. Variable sharing (or "aliasing"), i.e., the fact that unification can
bind variables to other variables or to terms which in turn share variables,
is generally mentioned in these methods as a problem to be dealt with in

mailto:muthu@cs.utexas.edu

order to preserve the correctness of the approach, rather than considering it,
as we will herein, an important output of the analysis. Therefore, aliasing
is treated, if at all, in a very conservative way, as, for example, in [4]. A
method, based on keeping track of pairs of variables which can be poten-
tially dependent, is informally proposed in [1] in the context of an example.
However, the representation of variable dependency used is relatively weak
and the corresponding abstract unification algorithms are not described.

In fact, variable sharing information can often be of the utmost im-
portance for a compiler. For example, such information can be used for
compile-time optimization of backtracking [2] and optimization of unifica
tion. Knowledge of variable sharing information also makes it possible to
predict run-time goal independence, which is particularly relevant for a com
piler which targets execution on a system which supports Independent And-
Parallelism (IAP):1 in IAP subgoals in the body of a clause are executed in
parallel provided they are independent, i.e., their run-time instantiations do
not share any variables. As shown in [8, 9], this condition can be ensured
by run-time checks on the groundness and independence of certain program
variables.2 However, these checks can be expensive, increasing overhead and
reducing the amount of speed-up achievable through parallelism. Thus, it is
well worth the effort to eliminate as many checks as possible by gathering
highly accurate information at compile-time regarding the groundness and
independence of the terms to which programs variables will be bound at
run-time. In addition, this information is also used to guide the selection of
goals to be executed in parallel. One special characteristic of this applica-
tion is that it is specially useful to have such information for all points in
the program, rather than globally for each procedure.3

The inference of variable sharing and groundness information is the main
subject of this paper. Starting with an approach for representing abstract
substitutions (in the form of sharing information) suggested to us by Jacobs
and Langen [10] we present new abstract unification algorithms which com
pute abstract entry substitutions and abstract success substitutions while
extensively keeping track of variable aliasing and term dependence informa
tion. These algorithms can be used in isolation (if only variable sharing
information is to be the output of the analysis) or in combination with con-
ventional abstract domains as a method for accurately keeping track of vari
able aliasing. The algorithms are illustrated with examples. We assume that
the reader is familiar with logic programming (and Prolog to some extent)

1The reader is referred to [9] in these proceedings for a formal definition of IAP and
related references.

2 Program variables are variables that are in the text of the given program.
3Due to the similarities in the way the search tree is explored by a program executed in

IAP and by a program using sequential execution, as shown in [9], conventional abstract in-
terpretation techniques can be applied (with only minor modifications) to programs which
are to be evaluated in IAP (Debray presents in [5] an analysis framework for other types of
parallelism where the properties of IAP regarding the similarity with sequential execution
don't hold). In [18] we reported some results obtained from an abstract interpreter and
annotator for IAP (the MA3 system) constructed more or less along the lines of conven
tional systems, except for the techniques used to improve its efficiency. This interpreter
is most apt at generating groundness information and it was shown in [18] to be reason-
ably effective at generating annotations with a reduced number of run-time checks. The
approach presented in this paper is targeted at improving those results through better
tracking of terms which are independent but not ground.

and the basic concepts of abstract interpretation of logic programs. How
ever, the following section provides a brief overview of the process in order to
introduce the notation and place in context the algorithms to be presented
later. The rest of the paper is organized as follows: section 3 introduces the
concept of abstract substitution used throughout the paper. Sections 4 and
5 deal with abstract unification and are the core of the paper. Section 4 de
scribes how the abstract entry substitution for a clause is computed from the
abstract cali substitution. An example illustrating this algorithm is given in
section 4.2. Section 5 describes how the abstract success substitution for a
clause is computed from the abstract exit substitution. Section 7 illustrates
our complete algorithm for abstract interpretation with a familiar example.
Finally, section 8 summarizes our conclusions.

2 Abstract Interpretation of Logic Programs

As mentioned previously, abstract interpretation is a useful technique for
performing a global analysis of a program in order to compute, at compile-
time, characteristics of the terms to which the variables in that program will
be bound at run-time for a given class of queries. In principie, such an analy
sis could be done by an interpretation of the program which computed the set
of all possible substitutions (in a form parallel to the collecting semantics) at
each step. However, these sets of substitutions can in general be infinite and
thus such an approach can lead to non-terminating computations. Abstract
interpretation offers an alternative in which the program is interpreted using
abstract substitutions instead of actual substitutions. An abstract substitu
tion is a finite representation of a, possibly infinite, set of actual substitutions
in the concrete domain. The set of all possible terms that a variable can be
bound to in abstract substitutions represents an "abstract domain" which is
usually a complete lattice or cpo of finite height (such finiteness required, in
principie, for termination of fixpoint computation), whose ordering relation
is herein represented by "C." Abstract substitutions and sets of concrete
substitutions are related via a pair of functions referred to as the abstraction
(a) and concretization (7) functions. In addition, each primitive operation
u of the language (unification being a notable example) is abstracted to an
operation u' over the abstract domain. Soundness of the analysis requires
that each concrete operation u be related to its corresponding abstract oper
ation u' as follows: for every x in the concrete computational domain, u(x)
is "contained in" ^y(u'(a(x))).

The input to the abstract interpreter is a set of clauses (the program) and
a set of "query forms." In its minimal form (least burden on the programmer)
such query forms can be simply the ñames of the predicates which can appear
in user queries (i.e., the program's "entry points"). In order to increase the
precisión of the analysis, query forms can also include a description of the
set of abstract (or concrete) substitutions allowable for each entry point.
The goal of the abstract interpreter is then to compute in abstract form
the set of substitutions which can occur at all points of all the clauses that
would be used while answering all possible queries which are concretizations
of the given query forms. It is convenient to give different ñames to abstract
substitutions depending on the point in a clause to which they correspond.

PWry h l P1
exit

(a)
P m e n t r y h

m
P m ' exit W Pi n ,vn+i

Figure 1: Illustration of the abstract interpretation process

Consider, for example, the clause h :- pi,...,pn. Let A¿ and A¿+i be the
abstract substitutions to the left and right of the subgoal pi, 1 < i < n in
this clause.

Definition 1 A¿ and A¿+i are, respectively, the abstract cali substitution
and the abstract success substitution for the subgoal pi. For this same clause,
Ai is the abstract entry substitution (also represented as /3entry) and Ara+i
is the abstract exit substitution (also represented as /3exu).

Control of the interpretation process can itself proceed in several ways,
a particularly useful and efficient one being to essentially follow a top-down
strategy starting from the query forms. Several frameworks for doing ab
stract interpretation in logic programs follow along these lines. One such
framework is described in detail in [1]. In a similar way to the concrete top-
down execution, the abstract interpretation process can then be represented
as an abstract AND-OR tree, in which AND-nodes and OR-nodes altérnate.
A clause head h is an AND-node whose children are the literals in its body
Pi,... ,pn (figure l(b)). Similarly, if one of these literals p can be unified
with clauses whose heads are h\,..., hm, p is an OR-node whose children
are the AND-nodes h\,..., hm (figure l(a)). During construction of the tree,
computation of the abstract substitutions at each point is done as follows:

• Computing success substitution from cali substitution: Given a cali
substitution \cau for a subgoal p, let h\,..., hm be the heads of clauses
which unify with p (see figure l(a)). Compute the entry substitutions
fi^entryi-• • ifim

entry for these clauses (this amounts to performing "input
abstract unification" and the steps required are abstract domain-dependent).
Compute their exit substitutions f31exit,..., f3mexit as explained below. Com
pute the success substitutions \lsuccess,..., \msuccess corresponding to each
of these clauses (this amounts to performing "output abstract unification,"
again abstract domain-dependent). The success substitution \SUccess is then
the least upper bound (LUB) of Al success, • • •, AmSítccess. Of course the LUB
computation is dependent on the abstract domain and the definition of the
C relation.

• Computing exit substitution from entry substitution: Given a clause
h :- pi,... ,pn and an entry substitution Ai (= /3entry), Ai is the cali substi
tution for p\. Its success substitution A2 is computed as above. Similarly,
A3, . . . , Ara+i are computed. Finally, Ara+i is obtained, which is the exit sub
stitution for this clause. See figure l(b).

Given this basic framework, it is clear that a particular analysis strategy
needs to: (a) define an abstract domain and substitution framework, and
the C relation, (b) describe how to compute the entry substitution for a
clause C given a subgoal p (which unifies with the head of C) and its cali
substitution, and (c) describe how to compute the success substitution for
a subgoal p given its cali substitution and the exit substitution for a clause
C whose head unifies with p. Such information represents the "core" of a
particular analysis strategy. Sections 3, 4 and 5 respectively address the
corresponding definitions and algorithms for the approach presented in this
paper.

In addition to the three points above, there is, however, one more is-
sue that needs to be addressed. The overall abstract interpretation scheme
described works in a relatively straightforward way if the program has no
recursion. Consider, on the other hand, a recursive predicate p. If there
are two OR-nodes for p in the abstract AND-OR tree such that they are
identical (i.e., they have the same atoms), one is an ancestor of the other,
and the cali substitutions are the same for both, then the abstract AND-OR
tree is infinite and an abstract interpreter using the simple control strategy
described above will not terminate. In order to ensure termination, some
sort of fixpoint computation is required. In order to support such fixpoint
computation, memo tables [7] are used in [6, 18] and stream predicates are
used in [17]. We have developed an efiicient fixpoint algorithm for which,
due to space limitations, it is not possible to give a precise description herein.
However, this algorithm is described in detail in [15]. The basic idea behind
the algorithm is as follows:

• First, the clauses which unify with p are selected. This is done using
a combination of abstract and concrete unification.4

• Compute an approximate valué of \SUccess using the non-recursive clauses
for p and record this valué in a memo table. Note that this allows faster
convergence than starting with 0 (_L). Also, the memo table is used
in a novel way in that it contains information about the particular
goal called and its location within the program so that information is
gathered for all points in all clauses, rather than on a per-procedure
basis.

• Construct the subtree for p, using the approximate valué of ASítccess

from the memo table, if necessary. Note that this computation will not
enter into an infinite loop since approximate valúes of projected success
substitutions from the memo table are used for recursive predicates.

• Update the valué of \SUccess using p's subtree. This valué is "more
accurate" than the previous one. Update p's subtree to reflect this
change and compute the new valué of \SUccess again. Repeat this step
until the valué of ASítccess doesn't change, i.e., it has reached fixpoint.

4To the best of our knowledge, other abstract interpreters use only abstract (rather
than also concrete) unification to "weed" out candidate clauses. This obviously decreases
the precisión of the information computed by them.

3 Abstraction Framework

As mentioned before, in the concrete interpretation the collecting semantics
for a top down execution of logic programs is usually given in terms of the
sets of substitutions associated with each program point. The traditional
approach to abstracting such sets of substitutions is to define an abstract
domain and then to describe a method for constructing an abstract substi-
tution corresponding to a set of substitutions. For example, the abstract
domain used in [1] consists of three elements: ground, f ree and any. These
elements respectively correspond to the set of all ground terms, the set of all
unbound (free) variables, and the set of all terms. An abstract substitution
is then defined as a mapping from program variables (of a clause) to elements
of the abstract domain. For example, if X and Y are the program variables
in a clause, then an abstract substitution at a point in that clause could be
{X/ground, Y/free}. This abstract substitution actually represents the set
of all substitutions in which X is bound to a ground term and Y is bound
to a free variable.

The approach used for defining abstract substitutions herein is somewhat
different. Although we may also be interested in knowing characteristics of
the the sets of terms that program variables are bound to at run-time (e.g.
type information), our main objective herein is the determination of informa-
tion regarding the sharing of variables among the sets of terms to which pro
gram variables are bound. Le., let X and Y be program variables in a clause.
We will use an abstract substitution in our abstract interpreter which can
tell us whether the sets of terms that X and Y are bound to contain/share
any variables. In fact, we see the two classes of information (sharing/type) as
complementary: we propose using a combined abstract substitution where
a conventional abstract domain is used for gathering term-type information
and the techniques described in this paper are used for keeping track of
variable dependence.5 Furthermore, the knowledge of variable dependence
information will increase the precisión of the whole analysis. For simplicity,
however, in this paper we will describe only the part of the abstract substi
tution responsible for variable dependency information, which, in any case,
is sufficient by itself for applications such as automatic generation of IAP.

Before formally describing the representation for abstract substitutions,
we review some basic definitions about substitutions. A substitution for the
variables of a clause is a mapping from the set of program variables in that
clause (Pvar) to terms that can be formed from the universe of all variables
(Uvar), and the constants and functors in the given program and query.
The domain of a substitution 6 is written as dom(O). We consider only
idempotent substitutions. The instantiation of a term í under a substitution
6 is denoted as tO and var(tO) denotes the set of variables in tO.

Let 6 be a given substitution for a clause C. As defined in [9, 8], a program
variable X, which is in C, is ground under this substitution if varíXO) = 0.
Program variables X and Y, which are in C, are independent if var(X6) n
var(Y6) = 0. We say that variable V occurs in program variable X under
the substitution 6 if V G var(X0).

6Such a system, which combines the techniques presented in this paper with an ab
stract domain which includes limited-depth concrete terms, as in the MA3 system [18], is
proposed in [15].

Below, we formally define the abstract substitution A{9) which corre-
sponds to a concrete substitution 0, to be a set of sets of program variables
in that clause following [10] .6 Later, we extend it to sets of substitutions. In-
formally, a set S of program variables appears in A{9) iff there is a variable V
which occurs in each member of S under 6. For the example clause mentioned
previously, the valué of an abstract substitution may be {{X}, {X, Y}}. This
abstract substitution corresponds to a set of substitutions in which X and
Y are bound to terms tx and ty such that (1) at least one variable occurs
in both tx and ty (represented by the element {X, Y}) and (2) at least
one variable occurs only in tx (represented by the element {X}). Thus, a
program variable is ground if it does not appear in any set in A(0), and two
program variables are independent if they do not appear together in any set
in A{6).

Definition 2 Subst is the set of all substitutions which map variables in
Pvar to terms constructed from variables in Uvar and constarás and functors
in the given program and query.

Definition 3 Asubst is the set of all abstract substitutions for a clause, i.e.,
Asubst = p{p{Pvar)) where p(S) denotes the powerset of S.

Definition 4 The function Occ takes two arguments, 0 (a substitution) and
U (a variable in Uvarj and produces the set of all program variables X e
Pvar such that U occurs in var(XO), i.e.

Occ{6, U) = {X\X e dom{6) A U G var{X6)}

Definition 5 (Abstraction of a substitution)

A : Subst —>• Asubst

A{6) = {Occ{6, U)\U e Uvar}

Example: Let 9 = {W/a,X/f(A1,A2),Y/g(A2),Z/A3}. Occ(9,Ai) =
{X}, Occ{6,A2) = {X,Y}, Occ{6, AA = {Z} and Occ{6,U) = 0 for all
other U G Uvar. henee, A(9) = {0, {X}, {X, Y}, {Z}}.

The abstraction function A is extended to sets of substitutions as follows:
6As mentioned before, the representation that we use for abstract substitutions is es-

sentially the same as suggested to us by Jacobs and Langen [10], from whom defs 2-7 are
taken. However, our approach, developed independently, compared to the description in
[11] (which we have just received at the time of preparing this final versión of our paper)
appears quite different: we use a combination fixpoint / top-down strategy which computes
only the information that pertains to the particular set of queries to be considered, rather
than for all queries. This is, in our opinión, both more useful and efficient. We compute
information at all points in the program, rather than per-procedure. Also, our abstract
unification is quite different and we believe that our unification algorithms compute the
sharing information with considerably higher accuracy. Furthermore, we provide in [15] a
concrete algorithm for performing the fixpoint computation. Also, because our approach
is more along the lines of traditional analysis for logic programs it can be combined with
them as suggested in this section. See [15] for a more detailed comparison.

Definition 6 (Abstraction of a set of substitutions)

a : p(Subst) —>• Asubst

a(0) = U A{6)
ees

Essentially, a constructs the unión of the sharing information found in all
substitutions in G. Note that, in a sense, the temí abstract substitution may
be a misnomer for such a data structure. The reason for such an objection
would be that this data structure only abstracts a set of substitutions but
it does not (explicitly) tell us about the set of terms a program variable
is bound to in a set of substitutions (which the conventional abstract sub
stitutions do, as discussed above). Nevertheless, we use the temí abstract
substitution for the data structure introduced above, since it does abstract
the information contained in a set of substitutions. The corresponding con-
cretization function is:

Definition 7 (Concretization)

7 : Asubst —>• p(Subst)

j(SS) = {9\9 e Subst A A(9) c SS}

If a clause has N program variables, there can be at most 2 different
abstract substitutions for it. A partial order can be defined on these abstract
substitutions. Ai C A2 iff 7(Ai) C 7^2) . It can be easily shown that Ai C A2
iff Ai C A2 and consequently that the least upper bound of two abstract
substitutions is equal to their unión and the greatest lower bound is equal to
their intersection. We can make the following observations from the above
definitions:

• The lattice of abstract substitutions for a clause is finite and henee has
a finite depth. This will be used to prove that the fixpoint computation
always terminates.

• For a given clause, the top element in the lattice is the powerset of all
the program variables in that clause.

• The bottom element in the lattice for all clauses is 0. The meaning
of this abstract substitution can be explained as follows: suppose a
clause has a subgoal sg which cannot be satisfied under its abstract
cali substitution A, i.e., sg fails. The abstract success substitution for
sg would then be 0.

• The abstract substitution which makes all program variables in a clause
ground is {0}.

• 0 is an element of every non-empty abstract substitution A. This is a
consequence of the fact that every concrete substitution 6 has a finite
range. Henee, 0 G A{6). From the definition of 7(A) it is clear that
0GA.

Since the abstract interpreter maiiipulates only abstract substitutions
and since these abstract substitutions do not have complete information
about the actual terms each program variable is bound to, this introduces
approximations in our computations of abstract substitutions. We require
that these be safe approximations.

Definition 8 (safe approximation) Suppose that the concrete set of sub
stitutions that occurs at a point in a clause is G and the abstract interpreter
computes the abstract substitution at this point as X. X is a safe approxima
tion to the actual abstract substitution at this point if, whenever variables X
and Y are dependent according to at least one substitution in Q, there is a
set S £ X such that X £ S and Y £ S, i.e., the abstract substitution should
capture all the sharing information. Similarly, if a variable X is ground
according to X, it should be ground according to all substitutions in G.

Thus a computed abstract substitution which is a safe approximation to the
actual one is allowed to be conservatively imprecise: it can indicate that
two variables are dependent when actually they are independent according
to the concrete set of substitutions. Similarly, a variable can be nonground
according to such an abstract substitution even if it is ground according to
the concrete set of substitutions. Therefore, the sharing information in such
an abstract substitution is characterized as potential sharing. All the ab
stract substitutions that are mentioned in subsequent sections of this paper
are conservative abstract substitutions, i.e., they are safe approximations to
the actual abstract substitutions.

3.1 Other definitions

In this section, we present some definitions and results that are used in
sections 4 and 5.

Definition 9 Given a set of program variables S and a subgoalpred(ui,...,
un), pos(pred(ui,..., un), S) gives the set of all argument positions of this
subgoal in which at least one element of S occurs, i.e.,

pos(pred(ui,..., un), S) = {i\S n var(ui) / 0}

Given a subgoal pred(ui,..., un) and an abstract substitution A, the func-
tion V(pred(u\,..., un), X) computes the dependencies among the argument
positions of this subgoal due to A. This is expressed as a subset of the pow-
erset of { 1 , . . . ,n} (similar to representing an abstract substitution as a set
of sets of program variables).

Definition 10

V(pred(ui,..., un), X) = {pos(pred(ui,... ,un), S)\S £ A}

So, V converts the dependencies among program variables in A to dependen
cies among the argument positions of the predicate pred/n.

Definition 11 (Closure under unión) For a set of sets SS, the closure
SS* of SS is the smallest superset of SS that satisfies: Si £ SS* A S2 £
SS* ^ Si U S2 £SS*.

Proposition 1 Let a and ¡i be tvjo concrete substitutions. Let A be an
abstract substitution such that A(a) C A. Then A(\ a o ¡j, \domia\) C A*;

where | a o ¡j, \domia\ indicates the restriction of a o ¡j, to the domain of a.

Proof: We note that

Occ(\ a o ¡i \dom{a),X) = (J Occ(a,Y), if X G dom(fi)
X&ar(Yfj,)

(J Occ(a, Y) U Occ(a, X), if X £ dam(fi)
X&ar(Yfj,)

Since A(a) = {Occ(a, U) \U G Uvar}, we have A(\ a o ¡j, \dom^) C (A(a))* C
A*.n

Corollary 1 Leí Aca« 6e the abstract cali substitution and ASítccess be the
abstract success substitution for a subgoal sg. Then \SUccess ^ Kaii-

Proof: Let 0cau and 0success be the cali and success substitutions for this
subgoal. Then there exists a substitution ¡JL (this is the substitution obtained
by "solving" the subgoal sg) such that 0success = \ Ocaü ° H \dom(ecall)-

 A l s o

A(9caii) = Xcaii and A{6success) = \SUccess- Therefore,
Xsuccess = A{\ 6call O ¡l \dom(Qcall)) C A*a¿¿. •

Corollary 2 Leí \caii be the abstract cali substitution and ASítccess be the ab
stract success substitution for a subgoal sg. ThenV(sg, ASítccess) C (V(sg, \caii))*-

Proof:From corollary 1 we get ASítccess = {S | 3 ^ G AcaH(S' = U¿-S¿)}-
We observe that pos(sg, (J¿ S"») = U¿í,os('s5) 5'¿)- Therefore, "P(s#, ASítccess) =
{pos(s5, S) \ S e Xsuccess} = {pos(sg, U¿ S¿) | 3 ^ G AcaH} = {{JiPos(sg, Si) \
3S, G AcaH} C {^05(55, S) | S G AcaH}* = (V(sg, XcaU))* •

Corollary 3 Let the subgoal sg fwí/i a projected abstract cali substitution
\) be unified with the head of a clause C. The abstract entry substitution for
C, Pentry SütisfieS the COndÜWn /3entry ^ A*.

Proof: Similar to the proofs of Corollaries 1 and 2. •

4 Computing Abstract Entry Substitution

In this section, we describe an algorithm to compute the (abstract) entry
substitution for a clause C given a subgoal sg which unirles with the head
hd of this clause and sg's (abstract) cali substitution.

If the program variables in hd belong to a set Shd, then a conservative
entry substitution for this clause would be p{Shd). But this is too pessimistic
an estimate, since it says that every program variable in hd is potentially de-
pendent on every other program variable. To get a more accurate estimate,
we determine which program variables in Shd are ground and try to reduce
the sharing information in the entry substitution. An algorithm for perform-
ing this task is given in section 4.1. Section 4.2 illustrates this algorithm with
an example. This algorithm can be summarized as follows:

• Perform abstract unifícation: Do a term by term unification for sg
and hd and determine the potential sharing information between the
program variables in sg and hd. This is done in steps 1 through 3.

• Propágate groundness information: A program variable in Shd is ground
if it is unified with a ground term in sg. This term could be ground
either because the program variables in it are ground in sg's cali sub-
stitution, because it does not contain any program variables, because
some of its program variables are ground due to unification with terms
in hd, or because of a combination of the above. This is done in steps
4 through 6.

• Apply independence information in sg's cali substitution: Take the re-
maining program variables (which are potenüally nonground) in Shd-
Form dependencies among them based on the results of abstract unifi
cation and groundness analysis. Eliminate some of these dependencies
based on the information in sg's cali substitution. This is done in steps
7 through 10.

4.1 Algori thm

Let the set of program variables which occur in sg be Ssg = {X\, X2, • • •, Xm}.
Let sg = pred(si,S2, • •-, sn) and the head hd (which is unifiable with
sg) = pred(ti,Í2, • • • ,tn). Let the set of the program variables in hd be
Shd = {̂ i> Y2,... ,YP} and the set of program variables which do not oc
cur in hd but occur in the body of the clause of hd be {Yp+\,..., Yq}. We
assume7 that Ssg n { l i , . . . ,Yq} = 0. Let \caii be the cali substitution of
the subgoal sg. Below we describe the algorithm for computing the entry
substitution Pentry for the clause C = hd :- body.

1. Projection: Compute A by projecting \cau on to the set Ssg, i.e.,

A <— {s 1 s = (s n ssg), s e \caii}

A contains all the potential sharing information among program vari
ables in sg.

2. Normalize unification equations: i.e., for each pair of terms s¿,í¿, 1 <
i <n, normalize the equation s¿ = í¿ so that it is replaced by a set of
equations Si containing Z = Termz, Z G Ssg U Shd- Form the set U as
follows:

U <- {(Z, Setz) I Setz = var(Termz), Z G (J Si}

3. Grouping: For each Z such that (Z, Setlz), • • • (Z, Setkz) are elements
oíU, replace these elements with (Z, {Setlz, • • • Setkz})- The presence
of this element in IÁ means that, due to the unification of sg and hd,
the program variable Z is bound to k different terms, respectively
containing the sets of program variables Setlz, • • •, Setkz-

7This assumption is valid due to renaming of variables in clauses.

file:///caii}

4. Initialize the set of ground program variables: Let G denote the set of
program variables in sg and hd that are ground. Initialize G as follows:
for all (Z, SSz) G U such that

• 0 G SS^ (i.e., Z is bound to a ground term due to the current
unification), or

• Z belongs to the set Ssg and is ground according to A,

add Z to G. We also maintain a queue L of ground program variables,
whose groundness has not been propagated to other program variables.
Initially L contains the same elements as G in some order.

5. Groundness propagation: Repeat

(a) Dequeue Z from L;

(b) Let Gl <- {W | W £ G, (Z, SS) eU,S G SS,W G S}. Update
G <— GuGl . Also, enqueue the elements in Gl to the queue L and
remove (Z, SS) from ZY (this step ensures that the "groundness"
of Z is transmitted to all the program variables that occur in the
terms that Z is bound to);

(c) For all W, S, SS such that (W, SS) G U, S G SS and Z G S,
remove Z from S. If S becomes an empty set and if W is not in
the set G, enqueue W in the queue L and add it to the set G (this
step ensures that occurrences of Z are removed from the RHS of
the unification equations);

Until the queue L is empty.

6. Update A: A <— {S | S G A, S n G = 0}. This is an update of the
cali substitution A to reflect the fact that some variables in Ssg have
become ground due to unification of sg with hd.

7. Potential dependency graph formation: Build an undirected graph GST
which will reflect potential sharing between instantiations of program
variables. Let GST = (V, E), where V = (Ssg U Shd) — G and an edge
between two vértices indicates a potential sharing between program
variables represented by the two vértices. E = El U E2 U E3 where
El, E2, and E3 are computed as follows:

• El <- {(XÍ,XJ) | Xi G S,Xj G S,S G \,i / j} (In this step, we
carry over the sharing information between program variables in
A to the graph GST)-

• E2 <- {(W, Z) | (W, SS) e W , S e ^ , z ^ }
£ 3 <- {(Zi, Z,-) | (W, SS) eU,Zi e SI, Z,- G S2, SI G SS, S2 G
SS, Zi t̂ z j i
(In this step, we carry over the sharing information due to unifi
cation to the graph GST)-

8. Graph partitioning: Let Shd — G be partitioned into mutually disjoint
sets HP\,..., HPr such that 1¿ and 1} belong to the same partition if
and only if there is a path between them in the graph GST-

9. Form a ñrst approximation to Pentry-

P^\J p(HPi)
í=i

It is clear that the entry substitution pentry for the clause C is a subset
of ¡3.

10. Prune P down to form Pentry- P m&y contain some sharing information
among the arguments of the subgoal predicate that is not compatible
with A. In this step, we remove such "spurious" sharing information
from p. Consider V(sg, A). This gives the sharing information among
the arguments of sg due to the abstract substitution A. By unifying sg
with the head hd of the clause C, the new sharing among the arguments
of this subgoal can only be a subset of (V(sg, A))*. This is proved in
Corollary 3 (section 3). We take advantage of this fact in "pruning"
down p. phd <- {S | S e P,pos(hd,S) G (T{sg,X))*}. The entry
substitution for the clause C is Pentry = (Phd) U {{^+i}> • • • > {^}}-

Proposition 2 Let \caii be the abstract cali substitution for the subgoal sg
and let Pentry be the abstract entry substitution for a clause C whose head
hd unifies with sg. In the concrete interpretation, let flentry be the set of
entry substitutions for clause C computed from sg 's set of cali substitutions
liKaii)- Then, üentry C -j(Pentry)-

Basically, this proposition says that Pentry, the computed entry substi
tution for the clause C, is a safe approximation to its actual abstract entry
substitution. A proof sketch can be found in [15].

4.2 A n Example

We illustrate the above algorithm with the aid of an example.

sg
hd (of clause C)

Acall

pred(X1,f(X2,X4),X3,g(X3),f(X4,h(X4)),X5)
predipiYí), Y2, q(Y3, Y6), Y4, f(r(Y5), Y6), Y6)

{0, {X!}, {X3\, {X6\, {Xl}X2,X7\, {X3,X4}\

Here Ssg = {XUX2,X3,X4,X5} and Shd = {YUY2,Y3,Y4,Y5,Y6}. Let
{Y?,Yg} be the set of variables in the body of the clause C that do not
occur in its head hd. In the following, we illustrate how Pentry, the entry
substitution for the clause C is computed given the above information:

1. Projection: A = {0, {Xx}, {X3}, {XX,X2}, {X3,X4}}

2. Normalize unification equations:

U = {(Xl} {Y!}), (Y2, {X2,X4}), (X3, {Y3, Y6}), (Y4, {X3}), (X4, {Y5}),

(Y6,{X4}),(Y6,{X5})}

3. Grouping: In this step we simplify U by collecting together tupies
which have the same LHS.

U = {(Xi, {{Yí}}), (Y2, {{X2,X4}}), (X3, {{Y3, Y6}}), (Y4, {{X3}}),

(X4,{{Y5}}),(Y6,{{X4},{X5}})}

4. Initially, G = {X§} and the queue L contains only one element, X5.

5. Groundness propagation: The queue L contains X4,YQ,Y^ at various
points during this step. After this step, G = {X4, X§, Y5, YQ} and

U = {(X1, {{Y1}}), (Y2, {{X2}}), (X3, {{F3}}), (Y4, {{X3}})}

6. Update A: \ = {®,{Xl},{X3},{Xl,X2}}

7. potential dependency graph formation: The graph GST = {V, E) where,
V = {Xl,X2,X3, Yu Y2,Y3,Y4} and
E = {(X1,X2),(X1,Y1),(X2,Y2),(X3,Y3),(X3,Y4)}.

8. Graph partitioning. The set Shd — G is partitioned into two sets,
{Yí , r 2 }and{r 3 ,>4} .

9. Taking the unión of the powersets of the above partitions, we get

¡3 = {0, {Y!}, {Y2}, {YltY2}, {Y3}, {Y4}, {Y3,Y4}}

10. Prune (3 down to form f3entry: V(sg,X) = {0, {1}, {1, 2}, {3, 4}} and
posihd^Y!}) = {1}, pos(hd, {Y2}) = {2}, posihd^YuYrf) = {1,2},
pos(hd, {Y3}) = {3}, pos(hd, {Y4}) = {4} and pos(hd, {Y3, Y4}) =
{3,4}. It is clear that {Y2}, {Y3}, {Y4} can be removed from (5. To this
pruned down (5 we add {I7} and {Y%} to get
Pentry = {0, { ü } , {YUY2}, {Y3,Y4}, {Y7}, {YS}}.

5 Computing Abstract Success Substitution

In the previous section, we described an algorithm for computing an approx-
imation to the entry substitution (3entry for a clause C = hd :- body, given
a subgoal sg (which is unifiable with hd) and sg's cali substitution Aca«. In
this section we describe an algorithm to compute the success substitution
Xsuccess for sg, given the exit substitution /3exu for the clause C, Le., the sub
stitution at the "rightmost" point of the clause C. This algorithm makes use
of the abstract unification information computed in the previous algorithm.
Also, the sets of variables Ssg and SM that are used here will be the same
as in section 4.1.

If Pexü = 0, Le., the exit substitution is _L indicating that clause C didn't
succeed, then obviously \SUccess = 0- Otherwise, we execute the algorithm
in the following section. Broadly, the various steps in this algorithm can be
explained as follows:

• First we project the exit substitution on to the set of program variables
in hd (step 1). We then check if any of these program variables is
ground according to the exit substitution but was not ground according
to the entry substitution. These variables became ground during the
execution of the body of clause C. We propágate the groundness of
these variables to the appropriate variables in sg (steps 2 and 3).

• We then compute the potential dependencies among the program vari
ables in sg by forming a dependency graph as before and taking the
unión of the appropriate powersets of program variables in sg (steps 4
through 6).

• Some of these dependencies may be spurious, i.e. (1) they may not
agree with the cali substitution of sg or (2) they may not agree with
the dependencies among the arguments of sg induced by the exit sub
stitution of the clause C. These spurious dependencies are removed
(step 7).

• What we have now is the projection of the success substitution of sg
on its program variables. This is extended to all the program variables
in the clause of sg (step 8).

5.1 Algorithm

1. Projection: Compute /?' by projecting /3exu on to the set Shd (the set
of variables in the head hd), i.e.,

0 ^{S\S=(S'nShd),S' epexü}

f3' is effectively all the information from /3exu that is used in this algo
rithm.

2. Groundness propagation: Start with the valúes of G,U and A at the
end of step 6 of the previous algorithm. Let G'l <— {Z | Z G (SM —
G),\/S(S G /?' => Z G" S)} i.e., G'l contains new ground program
variables in hd that were not ground according to (5. Update G <—
G U G2. Also, enqueue the elements of G2 to the queue L. This queue
is used in the same manner as in the algorithm in section 4.

If L is empty, then go to the next step. Else, execute the groundness
propagation step (step 5) of the previous algorithm.

3. Update A: Execute step 6 of the previous algorithm.

4. Potential dependency graph formation: Execute step 7 of the previous
algorithm. Let EA <- {(Yi,Yj) | Y¿ G S,Yj G S,S G /?'}. EA contains
the new sharing information obtained from /?'. Update £ < - í ? U EA.

5. Graph partitioning: Let Ssg — G be partitioned into mutually disjoint
sets SPi,..., SPS such that X¿ and Xj belong to the same partition if
and only if there is a path between them in the graph GST-

6. Form a ñrst approximation to the projection of XSUccess on sg:

í=i

It is clear that (XSUccess n Ssg) is a subset of A'.

7. Prune \' down to get the projection of XSUccess on sg: X' may contain
some sharing information among the arguments of the subgoal predi-
cate that is not compatible with A and with /?'. In this step, we remove
such "spurious" sharing information from A'.

• Consider V(hd,/3exit)- This gives the sharing information among
the arguments of hd (and henee of sg as well) due to the abstract
exit substitution /3exu for the clause C. It is clear that the sharing
information among the arguments of sg induced by Xsuccess n Ssg

(and henee Xsuccess) has to be the same as well. Therefore, any
element in A' that leads to an argument sharing that is not in
V(hd, f3exit) must be removed.

• Also, as discussed in section 3 (corollaries 1 and 2), the successful
execution of the subgoal sg can only produce a success substitu
tion which is a subset of A*. Therefore, any element of A' that is
not in A* must be removed.

These steps are summarized as foliows:

A' ^ {S | S e (A' n X*),Pos{sg, S) e T{hd,pexit)}

8. Compute XSUCcess from Xcaii and {XsuccessC\Ssg): Partition Xcaii into two
subsets Xlcau and A2ca« as follows. Xlcau contains only those elements
S such that S n Ssg = 0. X2call = Xcatt - AlcaH.

Xsuccess = {S\(S € (A2ca„)*) A ((SnSsg) <E A')} U Xlcall

We state a proposition similar to the previous one. It essentially says
that Xsuccess is a safe approximation to the actual success substitution for
the subgoal Ssg-

Proposition 3 Let Xcaii be the abstract cali substitution for a subgoal sg
which unifies with the head hd of a clause C and let XSUCcess be the abstract
success substitution for this subgoal computed using C and the algorithms in
sections 4 and 5. In the concrete interpretation, let 0,SUccess be the set of
success substitutions corresponding to the set of cali substitutions ^{Xcaii)-
1 lien s 'success ~= ^fy/^-success) •

5.2 Example

We illustrate the above algorithm by a continuation of the previous example.
The subgoal sg, the head hd (of clause C) and the cali substitution Xcau (for
sg) are as before. Let (3exit = {0, {Yi, Y7}, {Y3, Y4}}.

1. Projection: f3> = {0, { l i} , {Y3,Y4}}

2. Groundness propagation: From step 6 of the previous example we get
G = {X4,X5,Y5,Y6}, U = {{X1,{{Y1}}),(Y2,{{X2}}),(X3,{{Y3}}),
{Y4,{{X3}})} and A = {0, {Xi}, {X3}, {XUX2}}. After the exe-
cution of this step, we get G = {X2,X4,X^,Y2,Y^,YQ\ and U =
{(Xl,{{Yl}})} (X3, {{Y3}}), (Y4,{{X3}})}.

3. Update X: X = {$,{Xi},{X3}}

4. Potential dependency graph formation: GST = (V,E), where V =
{XUX3, Yu Y3, Y4} and E = {(Xi, Yí), (X3,Y3), (X3,Y4), (Y3,Y4)}.

5. Graph partitioning: The set Ssg — G has two elements, X\ and X3 and
two partitions {X\} and {X3}.

6. Thus, we get A' = {0, {Xi}, {X3}}

7. Prune X' down to get Xsuccess n Ssg: There are two nonempty set
elements in A', which also belong to the set A. Therefore they are also in
the set A*. Moreover, pos(sg, {X\}) = {1} and pos(sg, {X3}) = {3,4}.
These belong to the set V(hd, (3exít) = {{!}> {3,4}}. Thus, no element
is removed from A'.

8. Compute Xsuccess from Xcaü and {Xsuccess n S): Xlcaü = {0, {X6}}
and \2cou = {{Xi},{X3}, {X3,X4}, {X1,X2,X7}}. From this, we
compute Xsuccess = {0, {Xi}, {X3}, {X6}}.

6 Optimization in the Computation of Success Sub
stitution in Special Cases (Facts)

As mentioned in section 2, the algorithms described in sections 4 and 5 are
used in the computation of the success substitution of a subgoal sg given its
cali substitution and the head hd of a clause which unirles with sg. However,
if it is known that this clause is a "fact" i.e., it doesn't have a body, we
can eliminate some of the steps in computing sg's success substitution from
its cali substitution. Consequently, the optimized algorithm consists of the
following steps:

• Steps 1-7 of the entry substitution algorithm (section 4), followed by

• Steps 5-8 of the success substitution algorithm (section 5).

7 Example

We illustrate the algorithms in this paper (including the fixpoint algorithm)
with a familiar example, the classic quicksort program. The append/3 pred
ícate used here is the standard one where the third argument is the concate-
nation of the lists in the first two arguments.

qsort ([],[]).
qsort([X|W],Y) :- split(X,W,P,Q),

qsort(P,R),
qsort(Q,S),

file:///2cou

Í Í B » qsort(A,B) í 0 }

qsort(_,[],[]) qsort([X|W],Y)

{{P),{Q),{R),{S},{Y}} partition(X,W,P,Q) {{Ri,{s},{Y}} qsort(P,R) {{s},{Y}} qsort(Q,S) {{Y}} append(R,[X|S],Y) {0}
ÍÍPM21) Z ^ 1 ^ - — — (0) »Rii i 0) !HI i 2) ÜY}} (0)

partition(X2,[Y2|Z2],P2,[Y2|Q2])

I
similar sub-tree

{{Pi},{Qi}} X1>Y1 {{Pii,{Qiii partition(Xl,Zl,Pl,Ql) {0}

(0) (0) «PiWQi)} _¡0)

Figure 2: Abstract AND-OR tree for the quicksort program

append(R,[X|S] ,Y) .

s p l i t (_ , [] , [] , []) .
s p l i t (X l , [Y1|Z1], [Y1|P1],Q1) : - XI > Yl , s p l i t (X I , Z 1 , P 1 , Q 1) .
s p l i t (X 2 , [Y 2 | Z 2] ,P2,[Y2|Q2]) : - X2 =< Y2, s p l i t (X 2 , Z 2 , P 2 , Q 2) .

Let's assume that the query for this program is : - q so r t (A ,B) with the
abstract cali substitution \cau = {{B}}, i.e. A is ground but B is not. The
abstract AND-OR tree for this program and query is shown in figure 2.
The projections of the cali and success substitutions for a predicate are
underlined and are respectively below the cali and success substitutions for
the predicate. Initially, the memo table is empty. The predicate qsort is
recursive and so fixpoint computation is started. The first approximation to
^success for qsort obtained from its nonrecursive clause is 0. This is entered
into the memo table. Further computation leads to the construction of the
whole tree. It can be seen from this tree that the terms bound to P and Q are
ground and the terms bound to R and S are independent when the subgoal
qsort (P,R) , which occurs in the body of the recursive clause for qsort , is
called. Therefore, in an IAP implementation for this program, the subgoals
qsort (P ,R) and qsort (Q,S) can be run in parallel without any groundness
or independen ce checks.

Similar results can be obtained for a quicksort program which uses dif-
ference lists:

qsort(X,Y) : - q s o r t _ d l (X , Y , []) .

q s o r t _ d l ([] ,X,X) .
qsort_dl([P |Q] ,W,Z) : -

s p l i t (P , Q , R , S) ,

partititon(_,[],[],[]) partititon(Xl,[Yl|Zl],[Yl|Pl],Ql)

qsort_dl(R,W,X),
qsor t_dl(S,Y,Z) ,
X = [P I Y] .

The predícate s p l i t / 3 used in this program is the same as the one in the
simple quicksort program. For reasons of space, we do not show the AND-OR
tree for this program, but it is similar to the one shown in figure 2. Note that
whenever qsort_dl is called, its first argument is ground and the second and
the third arguments are independent of each other. Henee, s p l i t is always
called with its first and second arguments bound to ground terms. Figure 2
shows that, in such a case, s p l i t succeeds with its third and fourth argu
ments bound to ground terms. The consequence of this observation is that,
the terms bound to R and S are ground and the terms bound to W, X, Y,
Z are independent of each other, when the subgoal qsort_dl(R,W,X), which
oceurs in the body of the recursive clause for qsort_dl, is called. Therefore,
in an IAP implementation of this program, the subgoals qsort_dl(R,W,X)
and qsort_dl(S,Y,Z) can be executed in parallel without any groundness
or independen ce checks.

8 Conclusión

Motivated by the needs of applications such as compilation for Independent
And-Parallelism, we have presented an abstract interpreter that is specifi-
cally geared towards obtaining variable dependence information (including
independence and groundness of the terms they are bound to) with a high
degree of precisión. We have presented novel algorithms for performing ab
stract unification, i.e. computing entry substitutions for clauses and success
substitutions for subgoals, which extensively keep track of such information.
These are the essential steps in any algorithm for a top-down abstract in
terpreter. The techniques presented in this paper are of direct use in the
compilation of logic programs for execution in systems which support In
dependent And-parallelism, and also in any compilation problem which can
make use of information regarding variable aliasing, term groundness, and
term independence. In addition, as suggested in the paper, these techniques
are meant to be combined with more conventional analyses in order to ul
erease their precisión and guarantee their correetness.

References

[1] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic
Programs. Technical Report CW62, Department of Computer Science,
Katholieke Universiteit Leuven, October 1987.

[2] J.-H. Chang and Alvin M. Despain. Semi-Intelligent Backtracking of
Prolog Based on Static Data Dependency Analysis. In International
Symposiwm on Logic Programming, pages 10-22. IEEE Computer Soci-
ety, July 1985.

[3] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-

tion of Fixpoints. In Fourth ACM Symposium on Principies of Pro-
gramming Languages, pages 238-252, 1977.

[4] S. Debray. Static Inference of Modes and Data Dependencies in Logic
Programs. Technical Report 87-24, Dept. of Computer Science, Univer-
sity of Arizona, August 1987.

[5] S. Debray. Static Analysis of Parallel Logic Programs. In
Fifth Intl Conference and Symposium on Logic Programming, Seat-
tle,Washington, August 1988. MIT Press.

[6] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog
Programs. Journal of Logic Programming, 5(3):207-229, September
1988.

[7] S. W. Dietrich. Extensión Tables: Memo Relations in Logic Program
ming. In Fourth IEEE Symposium on Logic Programming, pages 264-
272, September 1987.

[8] M. Hermenegildo. An Abstract Machine Based Execution Model for
Computer Architecture Design and Efficient Implementation of Logic
Programs in Parallel. PhD thesis, U. of Texas at Austin, August 1986.

[9] M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of In-
dependent And-Parallelism in Logic Programs. In 1989 North American
Conference on Logic Programming, pages 369-390. MIT Press, October
1989.

[10] D. Jacobs and A. Langen, December 1988. Personal communication /
Draft.

[11] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Inde-
pendent And-Parallelism. Technical Report TR-89-03, U. of Southern
California, Computer Science Department, May 1989.

[12] N. Jones and H. Sondergaard. A semantics-based framework for the ab
stract interpretation of prolog. In Abstract Interpretation of Declarative
Languages, chapter 6, pages 124-142. Ellis-Horwood, 1987.

[13] H. Mannila and E. Ukkonen. Flow Analysis of Prolog Programs. In
Fourth IEEE Symposium on Logic Programming, pages 205-214, San
Francisco, California, September 1987. IEEE Computer Society.

[14] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third
International Conference on Logic Programming, number 225 in LNCS,
pages 463-475. Springer-Verlag, July 1986.

[15] K. Muthukumar and M. Hermenegildo. Determination of Variable De-
pendence Information at Compile-Time Through Abstract Interpreta
tion. Technical Report ACA-ST-232-89, Microelectronics and Com
puter Technology Corporation (MCC), Austin, TX 78759, March 1989.

[16] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic
Programs. Theoretical Computer Science, 34:227-240, 1984.

[17] A. Waern. An Implementation Technique for the Abstract Interpreta-
tion of Prolog. In Fifth International Conference and Symposium on
Logic Programming, pages 700-710, Seattle,Washington, August 1988.

[18] R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of
Global Flow Analysis of Logic Programs. In Fifth International Con
ference and Symposium on Logic Programming, pages 684-699. MIT
Press, August 1988.

