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Abstract 
There has been significant interest in parallel execution models for logic pro­
grams which exploit Independent And-Parallelism (IAP). In these models, it 
is necessary to determine which goals are independent and therefore eligible 
for parallel execution and which goals have to wait for which others during 
execution. Although this can be done at run-time, it can imply a very heavy 
overhead. In this paper, we present three algorithms for automatic compile-
time parallelization of logic programs using IAP. This is done by converting 
a clause into a graph-based computational form and then transforming this 
graph into linear expressions based on &-Prolog, a language for IAP. We 
also present an algorithm which, given a clause, determines if there is any 
loss of parallelism due to linearization, for the case in which only uncondi-
tional parallelism is desired. Finally, the performance of these annotation 
algorithms is discussed for some benchmark programs. 

1 Introduction 

Parallel execution (Or- and And-parallelism [4]) is starting to prove itself 
as an effective way of achieving improved performance in logic program-
ming systems. In particular, there has been significant interest (e.g. see [6], 
[16], [4], [3], [10], [12], [19], etc.) in parallel execution models for logic pro­
grams which exploit "independent and-parallelism," where, only goals which 
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don't share any variables at run-time2 are run in parallel. These models thus 
have the very desirable characteristics of offering performance improvements 
through the use of And-parallelism, while at the same time preserving the 
conventional "don't know" semantics of logic programs and the computa-
tional complexity expected by the programmer, as shown in [9].3 However, 
in these models it is necessary to determine which goals are independent 
and therefore eligible for parallel execution. Although this can be done at 
run-time [12, 4], it can imply a significant overhead. In this paper we are 
interested in performing as much of the work as possible at compile-time. 
Chang [3] proposed an approach which generated a single graph for a clause 
from a worst case analysis thus being somewhat limited, given the global 
analysis technology used. DeGroot [6] proposed a way of representing a 
fixed set of execution graphs in an expression generated at compile-time, 
choosing among them at run-time through some checks. An important issue 
in such a framework is the type of parallelizing expressions allowed, because 
it determines the ñexibility available to the compiler and the complexity 
of the run-time system. In the context of the RAP-WAM model[10] more 
flexible graph expressions (which can represent arbitrary execution graphs 
and conditions - including often needed conjunctive checks) were proposed 
in the form of a "language", &-Prolog [15], which subsumes full Prolog. In 
&-Prolog, graph expressions are built using if-then-else, synchronization and 
dependence-checking primitives. &-Prolog will be used in this paper for the 
sake of concreteness and because of the convenience of its Prolog-compatible 
syntax which makes it possible to describe the parallelization techniques as 
a series of rewritings of the original Prolog program. However, the paral­
lelization techniques that will be proposed are applicable to any model using 
annotation-based parallelization, such as, for example Kale's [16]. 

In general, the task of parallelizing a given program through compile-time 
analysis can be conceptually viewed as comprising two steps: 

1. a local or global analysis of the program in order to gather as much 
information as possible regarding the terms to which program variables 
will be bound and 

2. given that information, a rewriting of the program into another one 
which contains expressions which will cause the parallel execution of 
some goals, perhaps under certain run-time conditions. 

The main topic of this paper is the second point above, and, in particular, 
the generation of &-Prolog parallel expressions. It is assumed throughout 
the paper that any binding information which might have been gathered 
through global analysis [2,5, 13] is available and will be used to improve the 
expressions generated. 

It is worth noting that while arbitrary graphs can be implemented in 
&-Prolog with the use of wai t primitives [14], it is of practical interest for 

2Or are "non-strictly independent," see [9]. 
3Another way of achieving this is by running only determínate goals in and-parallel fash-

ion [1]. This very interesting approach is complementary to Independent And-parallelism, 
providing an efñcient method for running dependent goals which are determínate in 
parallel. 



efficiency reasons to restrict the expressions generated to linear expressions, 
i.e. parenthesized expressions with no wai t built-ins, such as the &-Prolog 
examples presented in [15]. This restriction (basically corresponding to a 
conditional "fork and join" paradigm) was first proposed by DeGroot [6] and 
the type of And-parallelism thus generated is called "restricted." Guidelines 
for constructing correct annotations at compile-time were first proposed in 
[10]. Other theoretical results which are of direct importance in this pro-
cess are presented in [9]. DeGroot [7] proposed a technique for generating 
graph expressions using a very simple heuristic, although the expressions 
generated tend to be rather large, with a significant number of checks, and 
with no provisión for conjunctions of checks. Jacobs and Langen [11] de­
scribe a framework for compiling logic programs to an extensión of DeGroot 's 
graph expressions equivalent to that introduced in [10]. They propose two 
rules (SPLIT and IF rules) for transforming a dependency graph (such as 
those used in [12, 4, 3]) into graph expressions. Their paper sets interesting 
groundwork by describing such rules, but no algorithm or set of heuristics 
is given that would suggest how and when to use such rules in a paralleliza-
tion process and it therefore doesn't represent a complete algorithm for our 
purposes. 

In this paper we we propose a) three complete algorithms for compiling 
(rewriting) Prolog clauses into &-Prolog clauses containing parallel execu-
tion expressions, and b) an algorithm which determines if a given Prolog 
clause can be compiled into an &-Prolog parallel expression without loss of 
parallelism for the case in which only unconditional parallelism is desired. 
Essentially, the algorithms in the first point above involve heuristics which 
seek to maximize the amount of parallelism while, at the same time, mini-
mizing the overhead associated with such parallelism. The rest of the paper 
proceeds as follows (proofs are omitted for the sake of brevity and they can 
be found in [15]): in section 2 we first deal with the important problem 
of characterizing in which cases a clause can be compiled into linear &¿-
Prolog parallel expressions without loss of parallelism, for the case in which 
only unconditional parallelism is desired.4 Section 3 then presents the three 
heuristic-based algorithms for compilation of logic programs into &-Prolog 
parallel expressions. Section 4 presents some results from the implementa-
tion of these algorithms. Finally, section 5 presents our conclusions. 

2 Loss of parallelism in the conversión to linear 
expressions 

In this section, we present an algorithm to determine if a given Prolog clause 
can be compiled into an &-Prolog parallel expression which achieves Max-
imal Efficient Independent And-Parallelism, MEIAP[9]. Basically, MEIAP 
stipulates that while trying to execute as many goals in parallel as possible 
it is ensured that 

• Dependent goals never execute concurrently, 

4See [15] for an algorithm which deals with the case in which run-time tests are present. 



• Dependent goals never execute out of order, i.e. they execute in a 
left-to-right order and 

• "Intelligent failure" (termination of sibling independent goals) is en-
forced. 

These conditions allow the execution of goals in parallel while guaranteeing 
important correctness and complexity ("no-speedown") properties, as shown 
in [9]. Note tha t , in order to achieve MEIAP, a goal should be initiated as 
soon as all dependent goals to its left have finished executing. 

In the next section, we introduce Conditional Dependency Graphs(CDG) 
and describe their underlying execution model. Similar dependency graphs 
have been used in various forms by other researchers in the área [12, 11, 4, 3]. 

2.1 Conditional Dependency Graphs 

A CDG is a directed acyclic graph where the vértices are subgoals and each 
edge is labeled by a condition. The CDG associated with a clause C has 
a vértex for each subgoal in the body of C and an edge from subgoal A 
to subgoal B (denoted by the tupie (A,B)) if A is to the "left" of B. The 
condition labeling edge (A,B) is the one that needs to be satisfied so that 
subgoals A and B are independent of each other so that they can be executed 
in parallel.5 As shown therein, given two goals a sufficient condition for their 
independence6 can be formed as a conjunction of the following tests: 

• ground(X) for each program variable X that occurs in both A and B 

• indep(X.Y) for every pair of variables X and Y such that X occurs in 
A but not in B and Y occurs in B but not in A. 

As an example, consider the clause h(X,Y) : - a(X) , b(Y) , c(X,Y). The 
CDG for the body of this clause is shown in figure 3(a). 

In the CDG execution model, the following two step cycles are performed 
repeatedly until all subgoals have been initiated. A cycle should start as soon 
as a subgoal finishes. 

• Edge Removal: Remove every edge whose origin has finished execut­
ing. If a condition labeling an edge holds, remove that edge. 

• Subgoal I n i t i a t i o n : Initiate all subgoals with no incoming edges. 

It is clear that this model achieves MEIAP. Essentially, this is also the un­
derlying model for And-Parallelism described in [12]. In general, though 
this model achieves MEIAP, the overhead associated with checking each and 
every edge and vértex in every cycle may be unacceptable and can hinder 
speed-up. Instead, we propose to compile the CDG into &-Prolog parallel 
expressions at compile-time. 

Note that if a clause has N subgoals in its body, there will be at most 
N(N- l ) /2 (= 1 + 2 + . . . +(N-1)) edges in its CDG. Some of the possible edges 

5 The correctness of these conditions has been shown in [9]. 
6This includes non-strict independence [9] which uses identical conditions, although 

additional global analysis is required. 



may not be in the CDG because the subgoals connected by these edges have 
been shown to be independent by virtue of the groundness and independence 
information obtained from a prior global analysis of the program. 

An edge (A,B) may have the label f a l s e . In this case, compile-time 
analysis has shown that subgoal B is dependent on A and henee it can be 
initiated only after A's completion. In our representation, we do not label 
such edges at all i.e. unlabeled edges in our representation of CDG actually 
stand for edges with the label f a l s e . If all the edges of a CDG are unlabeled, 
then we cali it an Unconditional Dependency Graph (UDG). 

2.2 Necessary and Sufficient conditions for converting a 
UDG into a linear expression without loss of parallelism 

In this section, we give necessary and sufficient conditions for UDGs so that 
they can be compiled into linear expressions (which use the & operator for 
parallelism) without loss of parallelism.7 Later, we use these conditions 
to design algorithms to compile CDGs and UDGs into &-Prolog parallel 
expressions without loss of parallelism (Sections 3.1 and 3.2). Without loss 
of generality we consider only those UDGs whose set of edges is closed under 
transitivity i.e. if the UDG has edges (A,B) and (B,C), then it also has an 
edge(A,C) . 

In the following paragraph, we describe informally a recursive algorithm 
which checks if a UDG can be compiled into a linear expression without loss 
of parallelism. The basic idea behind the algorithm is as follows: consider 
subgoals in this UDG which can be executed in parallel. These correspond 
to vértices in the UDG which have in-degree = 0. Let these belong to a set 
P (step 1). Find out how the remaining vértices in the UDG (the set Q) 
are related to vértices in P (step 2). We investígate whether they can be 
executed in parallel with, or they should sequentially follow, a given subgoal 
in P. We find that they have to satisfy certain conditions (Lemmas 1 and 3). 
If not, the given UDG cannot be compiled into a linear expression without 
loss of parallelism. If they do satisfy these conditions, then some edges from 
the UDG are removed, Q is partitioned into subsets and it is recursively 
checked if the induced sub-UDGs satisfy these conditions (step 7). If tha t 
is the case, then the given UDG can be compiled into a linear expression 
without loss of parallelism. 

Let the UDG = (V, E) where V is the set of vértices and E is the set of 
edges. 

1. Let the vértices that have in-degree = 0 in the current graph belong 
to the set P = { p i , . . . ,pm}. 

2. Consider the set Q = V — P. For each g¿ £ Q, form the nonempty 
set £{qi) = {Pj\{Pj e P) A ((pj,qi) e E)}. Let S = {£ (? i)|ft £ Q } = 
{ S i , . . . ,Sn}. 

3. L e m m a 1 The given UDG can be compiled into a linear expression 
without loss of parallelism, only if, for each SÍ,SJ in S, either 

7Throughout this paper, we consider loss of parallelism that is caused only by spurious 
dependencies i.e two subgoals are sequentially executed even though they are independent. 



• Si n Sj = 0, or 

• one must be a subset of the other. 

4. Now, we are going to (partially) compile the given UDG into a linear 
expression which would consist of the vértices in V, a parallel operator 
"&" and a sequential operator "," i-e. (A & B & C) means that 
A,B,C can be run in parallel, (A,B) means that A and B are executed 
sequentially in that order. 

For R e S , define T(R) = {q^Pj e P{pj e R O- (p,-,?,-) G E)} 
i.e. T(R) is the set of all vértices in Q tha t must wait only for all 
vértices in R to finish executing before their execution can be initiated. 
Basically, the subexpression for each S¿ £ S and J(Si), should satisfy 
the following conditions: 

• There should be & operators between all the elements of 5¿ so 
that they can be run in parallel. 

• The subexpressions involving elements of J(S¿) should sequen­
tially follow the subexpressions involving elements of S¿ and T(Sj) 
for each Sj C S¿ 

Also, the following lemma holds for UDGs which are closed under 
transitivity. 

L e m m a 2 For each non-intersecting pair of sets SÍ,SJ in S, there are 
no edges between a vértex in J(Si) and a vértex in T(Sj). 

Henee, the vértices in 5¿ can be executed in parallel with the vértices 
in Sj. 

5. L e m m a 3 Each SÍ,SJ such that 5¿ c Sj, should satisfy the following 
condition: 

\/uv((u ^ v A u e 7 (SÍ) Ave T(Sj)) =>• (u, v) e E) 

Else, the given UDG cannot be compiled into a linear expression with-
out loss of parallelism. 

6. In step 4, we saw how, in the linear expression, 

• vértices in P are related to each other (they can execute in par­
allel) 

• vértices in J(S¿) are related to vértices in S¿ (vértices in J(S¿) 
have to sequentially follow vértices only in 5¿ and not in P — Si) 

Now, we have to investígate the relationship among vértices in each 
J(Si). For this we do the following: If J(Si) contains only one element, 
then the subexpression for it is simply that element itself. Else, go to 
step 1 with the UDG formed by vértices in J(Si) 



funetion udg_compilable_WLOP(V,E) : boolean 
/* WLOP = Without Loss Of Parallelism */ 
begin 
compute P,Q and S (steps 1 and 2); /* S = {Si,... ,Sn} */ 
If the condition in lemma 1 is not satisfied then return false; 
If the condition in lemma 3 is not satisfied then return false; 
Answer := true; 
i := 1; 
Repeat 

VI := 7{Si); 
El := edges between vértices in VI; 
Answer := Answer AND udg_compilable_WLOP(Vl,E1) ; 
i : = i + 1; 

until (Answer = false) OR (í > n) 
return Answer; 

end. 

Figure 1: Algorithm for checking U D G parallelism 

D 

(a) 

D 

(c) 

Figure 2: Example UDGs 

2.3 Algorithm for checking UDG parallelism 

Figure 1 contains a formal description of the algorithm in pseudo-pascal 
form. It returns the answer true if the given UDG can be compiled into a 
linear expression without loss of parallelism and the answer false otherwise. 
The correetness of this algorithm follows from the above lemmas. 

2.4 Examples to illustrate UDG algorithm 

This section illustrates the above algorithm with the aid of three examples. 
The first is a UDG that can be compiled into a linear expression without 
loss of parallelism; the second and third UDGs do not have this property. 

• The UDG for the first example is shown in figure 2(a). 
Steps 1 and 2: Initially, V = {A,B,C,D} and P = {A}. Henee, Q = 
V -P = {B,C,D}. £(B) = £{C) = £{D) = {A}. Henee S = {{A}}. 
Steps 8 through 7: Since S is a singleton set, conditions in lemmas 1, 2 and 



3 are trivially satisfied. J ({A}) = {B,C, D}. Henee, the linear expression 
should be A, s u b - e x p r e s s i o n f o r B, C and D. So we remove A from the 
vértex set and the edges (A,B), (A,C) and (A,D) from the edge set. The 
UDG has now three vértices B, C and D and two edges (B,D) and (C,D). 
We set V = {B, C, D} and go to step 1. 
Steps 1 and 2: P = {B,C}. Henee, Q = {£>}. £{D) = {B,C}. Henee, 
S = {{B,C}}. 
Steps 8 through 7: S = {{B,C}}. Again, since S is a singleton set, condi-
tions in lemmas 1, 2 and 3 are trivially satisfied. 7({B,C}) = {D}. So, the 
linear expression for this subgraph is (B & C) , D. and the linear expression 
for the given UDG is A, (B & C) , D. 

• The UDG for the second example is in figure 2(b). 
Steps 1 and 2: V = {A, B, C, D, E} and P = {A, C, D}. Henee, Q = {B, E}. 
£ {B) = {A, C}. £ (E) = {C, D}. Henee S = {{A, C}, {C, D}}. 
Step 3: S has two elements, {A, C}, {C, D} which do not satisfy the condition 
in lemma 1. Henee, this UDG cannot be compiled into a linear expression 
without loss of parallelism. 

• The UDG for the third example is in figure 2(c). 
Steps 1 and 2: V = {A,B,C,D} and P = {A,C}. Henee, Q = {B,D}. 
£{B) = {A}. £{D) = {A,C}. Henee, S = {{A},{A,C}}. 
Steps 8 through 6: S satisfies the condition in lemma 1. J ({A}) = {B, D} 
and 7({A,C}) = {D}. Since {A} C {A,C}, we check for the condition in 
lemma 3. B £ T({A}) and D £ ?({A,C}), but {B,D) is not an edge in 
the given graph. So this condition is violated. Henee, this UDG cannot be 
compiled into a linear expression without loss of parallelism. 

3 Algorithms for compiling Prolog clauses into 
&-Prolog parallel expressions 

In this section, we describe three algorithms for compilation of Prolog clauses 
into &-Prolog parallel expressions. These clauses are assumed to be free of 
disjunctions. 

For simplicity, the descriptions of these algorithms do not consider whe­
ther a given subgoal is a prolog builtin or whether it has any side-effect. A 
practical implementation of these algorithms would, of course, have to deal 
with these issues. However, they would essentially follow the steps described 
in these algorithms. 

For all the three algorithms, we start with the given clause and construct 
the CDG for it. This CDG is then simplified using (a) the results of an ab-
stract interpreter, or (b) user provided input or output mode information for 
non-builtin predicates, or (c) input or output mode information for builtin 
predicates. 
• The CDG algorithm: this algorithm is closely related to the algorithm 
presented in the previous section. It seeks to maximize the amount of par­
allelism available in a clause, without being concerned about the size of the 
resultant &-Prolog expression. In achieving this objective, it may switch the 
positions of independent goals i.e. if A and B are two independent subgoals 



and if A occurred to the left of B in the Prolog clause, in the compiled &;-
Prolog clause, A may be to the right of B in a sub-expression. Also, this 
algorithm uses IF-THEN-ELSE constructs in addition to CGEs [15] in the 
resultant &-Prolog clauses. 
• The UDG algorithm: this algorithm is essentially the same as the CDG 
algorithm, except that only unconditional parallelism is exploited, i.e., only 
goals which can be determined to be independent at compile-time are run in 
parallel. The motivation for this algorithm is that groundness and indepen-
dence checks are very expensive and contribute a significant overhead to the 
achieved and-parallelism. Thus, no run-time groundness or independence 
checks are generated. 
• The MEL algorithm: this algorithm creates only CGEs in its expressions 
to achieve parallelism. In addition, it preserves the left-to-right order of 
subgoals in its expressions. Within these constraints, it seeks to maximize 
the number of goals to be run in parallel within a CGE. The results from 
the implementation of this algorithm were reported in [18]. 

3.1 C D G A l g o r i t h m 

In this algorithm, we transform the simplified CDG into an &-Prolog par­
allel clause, by using, during intermedíate stages, hybrid expressions which 
consist of CDGs and &-Prolog parallel expressions. 

We start with G := the CDG for the given clause C and the boolean 
formula B := true. We seek to find an &-Prolog expression D corresponding 
to the graph G. 

1. Let the vértices that have in-degree = 0 in G belong to the set P = 

{Pl,---,Pm}-

2. Consider the atomic conditions (7^ false) on the edges going out of 
vértices in P. Let these belong to the set Q. 

• If Q = 0, then let G' be the CDG obtained by removing from G 
those vértices which are in P and the edges coming out of such 
vértices. 
If G' is an empty graph at this point, then D := ( p i & . . . &p m ) . 
If G' is a UDG at this point, use the algorithm in section 3.2 to 
convert G to a linear expression D. 
Else, D := (pi& . . . &¿pm),D', where D' is the &-Prolog parallel 
expression corresponding to G := G' and B := true. 

• If Q 7̂  0, then take the conjuncts of the boolean combinations 
of the conditions in Q, simplify them and put them into a set R. 
Remove from R those combinations which are identically equal 
to false. 

3. Let R= { r i , . . .,rn}. Then, D := S(r i —>• D i ; . . . ; rn —>• Dn) where, D¿ 
is the &-Prolog parallel expression corresponding to G¿ := U(G,ri,P) 
and Bi := B A r,- and the function S is defined in step 6. 

4. The update function U: Given a CDG G, a conjunct of atomic con­
ditions C and a set of vértices P, G' = U(G,C,P) is computed as 
follows: 



• Initially, G' :=G. 

• If C = true, go to next step. Else, for each conjunct c in C, G' is 
changed as follows: 

If c = ground(X), then if an edge has the label ground(X)A 
otherjconjuncts or indep{X, Y) A otherjconjuncts or indep{W,X) 
A otherjconjuncts, its label is changed to otherjconjuncts. 
If c = indep(X, Y), then consider the edges coming out of ver-
tices in P. For each such edge which has the label indep(X, Y) A 
otherjconjuncts or indep(Y, X) A otherjconjuncts, its label is 
changed to otherjconjuncts. 

If c = ^ground(X), then if an edge coming out of a vértex in P 
has the label ground(X) A otherjconjuncts, its label is changed 
to false. 

If c = ~^indep{X, Y), then if an edge coming out of a vértex in 
P has the label indep(X, Y) A otherjconjuncts or indep(Y, X) A 
otherjconjuncts or ground(X) A otherjconjuncts, its label is 
changed to false. 

• Remove each edge whose label is true and remove the label from 
each edge whose label is false. 

5. The simplification function S: S(r i —> D\\...; rn —> Dn) is defined as 
follows, where R = {r\,..., rn}: 

• If R = { r . - j , . . . ,rÍM} U {rh,.. .,rJN}, where 

r¿j. = cond A s¿¿. 1 < & < M, rJjfc = -^cond A sJjfc 1 < & < ./V 

then 
5( r i -> £> i ; . . . ; rn -> £>n) := (cond -> D I ; D2) 

where 
i ' l :— ¿ \síi * 1SÍ1 ; . . . ; s¿M • "ÍM) 

D2 := 5 (Sjj —> - D j j ; . . . ; SjN —> -DJJV j 

• If the conditions in R cannot be decomposed in the manner de-
scribed above, they are all atomic, and so S(E) := E. 

3.1.1 E x a m p l e to i l lustrate C D G a lgor i thm 

Consider the clause h(X, Y) : - a(X) , b(Y) , c (X, Y). The CDG G for the 
body of this clause is shown in figure 3(a). Here gX and iXY are abbreviations 
for ground(X) and indep(X.Y) respectively. Initially B := true. The goal 
is to find the &-Prolog parallel expression D for this body. 

• Steps 1 and 2: P = {a(X)} and Q = {gX,iXY}. 

• Steps 3 and 4: R = {gX, ~^gX A iXY, ~^gX A -*iXY}. All the elements 
of R are logically consistent with B = true. 
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Figure 3: CDGs for the example 

• Step 5: R is not empty and so 

D = S(gX -> D^^gXAiXY) D2;(^gXA^iXY)^D3) 

where, Di,D2 and D3 are respectively the &-Prolog parallel expres-
sions for (U{G,gX,{a(X)}),gX), (U(G,^gX A iXY,{a(X)}),^gX A 
iXY) and (U(G,^gX A^iXY,{a(X)}),^gX A^iXY). The updated 
CDGs corresponding to these conditions are in figures 3 (b), (c) and 
(d) respectively. This simplifies to D = (gX —> Di; (iXY —> D<¿\ D3)). 

Further execution of this algorithm leads us to 

( gX -> ( gY -> a(X) & b(Y) & c(X,Y) 
; a(X) & (b (Y) , c (X,Y) ) ) 

iXY -> ( gY -> ( a ( X ) , c(X,Y)) & b(Y) 
; (a(X) & b ( Y ) ) , c(X,Y)) 

a (X) , ( gY -> (b(Y) & c(X,Y)) 
; (b (Y) , c (X,Y)) ) 

) . 

3 . 2 U D G A l g o r i t h m 

We start with the given clause C and construct the simplified CDG for it. 
This CDG is then converted to a UDG by converting the labels of all its 
edges to f a l s e . 

The rest of the algorithm is essentially similar to the one in Section 2.2. 
Let the UDG = (V,E) where V is the set of vértices and E is the set of edges. 
A brief description of the algorithm is as follows (the variables used here are 
the same as the ones used in Section 2.2): 

1. Construct the sets P,Q,S = {Si,... ,Sn} and 7(Si),i = 1 , . . . ,n. 

2. Recursively compute the &-Prolog expressions for the subgraphs in-
duced by J(Si). 

3. The linear expression for the given UDG is then built by introducing 
& operators between all elements of S¿ (so that they can be run in 
parallel) and by placing the subexpressions for J(S¿) after the subex-
pressions for 5¿ and for each T(Sj) such that Sj C 5¿. 



3 . 3 M E L A l g o r i t h m 

Let C = H : — Bi,..., Bn. Define J ( 5 ¿ ) , which describes the groundness 
and independence information at the point to the immediate left of 5¿, as 
follows: 

• ground(X) £ I ( 5 j ) iff X is a program variable in the clause C and X 
is known to be ground at this point. 

• indep(X, Y) £ I{Bi) iff X and Y are program variables in C and they 
are known to be independent at this point. 

As explained before, I can be computed from a combination of abstract 
interpretation, mode information for builtin predicates and user-supplied 
mode information for non-builtin predicates. 

Start with B := B\,... ,Bn. B is a sequence of Prolog literals in the 
body of the clause C. 

1. Let B = B\,..., Bq. Find the largest p such that 

• there is a program variable X that occurs in Bp and 

• the first occurrence of X in C is in Bp i.e. X does not occur in 
H or in 5¿, 1 < i < p and 

• X occurs in some 5¿ ,p < i < q 

If there is no such p, then set p := 0, B\ := nuil and 5 2 := B. Else, 
set Bl:= B1,...,BP and 5 2 := Bp+1, ...,Bq. 

2. Let G be the set of variables X such that X occurs in some Bs,Bt,p < 
s < t < q. Let 

/ : = {(X,Y)\X is in BS,Y is in Bt,p < s<t< q,X (¿G,Y £ G} 

i.e. G represents the set of program variables that should be ground 
and / represents the set of pairs of program variables that should be 
independent so that the subgoals 5 p + i , . . . Bq can be run in parallel. 

3. Remove from G all elements X such that ground(X) £ I ( 5 p + i ) and 
from / all elements (X, Y) such that indep(X, Y) £ J ( 5 p + i ) . 

4. Therefore, the &-Prolog parallel expression corresponding to 5 2 is 

D2 := ((( / \ ground(X)) A ( / \ indep(X, Y))) => Bp+1k ... &¿Bq) 
xeG {x,Y)ei 

5. If 5 1 = nuil, then D := D2. Else, D := Dl,D2 where DI is the 
&-Prolog parallel expression corresponding to 5 1 . 

As an example, let C = a(P,Q) : - b(P,Q),c(P,R),d(P),e(Q, R). Here 
R occurs first in the literal c(P,R). So C can be compiled into the fol-
lowing &-Prolog parallel expression: a(P,Q) : - (ground(P) => b(P,Q) & 
c ( P , R ) ) , ( ( i ndep (P ,Q) A i n d e p ( P . R ) ) => d(P) & e (Q ,R) ) . Note tha t , 
the first CGE does not have the condition indep(Q,R) since this condition 
is automatically satisfied by virtue of the fact that i? is a first occurrence in 
the literal c(P,R). 



B e n c h 
fib 
hanoi 
matrix 
qsort 
consist 
deriv 
tak 
boyer 
occur 

# p goals 
176 
126 
146 
200 
792 
174 

1059 
502 
506 

# g - cks 
0 
0 
0 
0 
0 
0 
0 

170 
252 

# g-c suc 
0 
0 
0 
0 
0 
0 
0 
2 

252 

# i - cks 
0 
0 
8 
0 
0 

87 
0 
2 

279 

# i - c suc 
0 
0 
8 
0 
0 

87 
0 
2 

279 

Table 1: Performance of MEL annotator: number of processes and checks 

B e n c h 
fib 
hanoi 
matrix 
qsort 
consist 
deriv 
tak 
boyer 
occur 

# p goals 
176 
126 
146 
200 
800 
222 

1059 
751 
506 

# g - cks 
0 
0 
0 
0 
0 
0 
0 

423 
252 

# g-c suc 
0 
0 
0 
0 
0 
0 
0 
6 

252 

# i - cks 
0 
0 
8 
0 
0 

87 
0 

584 
279 

# i - c suc 
0 
0 
8 
0 
0 

87 
0 

335 
279 

Table 2: Performance of CDG annotator: number of processes and checks 

4 Some Performance Results 

Although an extensive analysis of the performance of the algorithms pre-
sented is a subject for further study, we herein report some preliminary 
results from the implementation of these algorithms. The three annota-
tion algorithms presented have been implemented and incorporated into the 
compiler of the &-Prolog system [8]. A compiler switch determines which 
parallelizer will be used. The results of our implementation of the abstract 
interpretation-based global analysis presented in [13, 18] are conditionally 
made available to the annotators via another compiler switch. Programs are 
analyzed, parallelized, compiled into PWAM code [10, 8] and run on the &;-
Prolog system. The results are summarized in tables 1,2, and 3 which show 
for each benchmark and each parallelization algorithm the number of paral-
lel goals generated at run-time, the total number of groundness checks, the 
number of groundness checks which succeeded, the number of independence 
checks, and the number of independence checks which succeeded. 

Several conclusions can be arrived at from the data in these tables. Bar-
ring deriv and boyer, MEL and CDG seem to achieve the same parallelism 
for all other benchmarks. This is because the latter benchmarks mostly 
have clauses in which only two consecutive atoms in the body present op-
portunities for parallelism. On the other hand, in deriv and boyer, there are 
clauses in which atoms which are not adjacent in the clause can legally be 
parallelized. This type of parallelism can be detected only by graph-based 



B e n c h 
fib 
hanoi 
matrix 
qsort 
consist 
deriv 
tak 
boyer 
occur 

# p goals 
176 
126 
130 
200 
800 

50 
1059 
747 

2 

Table 3: Performance of UDG annotator: number of processes 

analysis, such as done by the CDG and the UDG methods. All in all, CDG 
appears to be better than MEL. The tradeoff between CDG and UDG is less 
clear. UDG loses significant parallelism in ma t r ix , boyer , and d e r i v due to 
the fact that some checks are still needed in the clauses which are the main 
source of parallelism. On the other hand, in both m a t r i x and d e r i v the 
checks always succeed. This suggests that more accurate global analysis will 
perhaps make UDG more attractive, especially considering that the lack of 
run-time tests ensures that no speedown will occur with respect to sequen-
tial execution, a property that does not hold in general for the annotated 
programs generated by CDG. 

An important issue in automatic parallelization, although beyond the 
scope of this paper, is the inference of task granularity information and 
the application of such information to optimizing the annotation process. 
Information regarding the granularity of builtin predicates is used in the 
implementations of the algorithms presented herein. Inferring granularity 
information for user predicates is a rather involved but definitely very inter-
esting topic in itself. Approaches to performing such an analysis have been 
described for example in [17]. These references also provide some results on 
the performance increase which can be obtained due to granularity analysis. 

5 Conclusions 

We have presented three algorithms for compilation of logic programs into 
linear &-Prolog parallel expressions and illustrated them with examples. We 
have also described an algorithm to determine if a UDG can be compiled into 
a linear &-Prolog parallel expression without loss of parallelism. Finally, we 
have reported on preliminary performance results from the implementation 
of the three algorithms. The results are encouraging, showing that automatic 
parallelization of logic programs, although it can probably never do as good 
a job as an experienced user can nevertheless find parallelism in many cases 
and produce speedups. The results give a certain performance edge to the 
CDG algorithm over MEL, due to its ability to rearrange the order of goals 
when they are independent. It is also clear from the simulations that UDG 
is the safest algorithm, in the sense that it ensures no speedown, although 
at the sacrifice of máximum potential parallelism. 
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