
The CDG, U D G , and MEL Methods
for Automatic Compile-time
Parallelization of Logic Programs
for Independent And-parallelism

K . M u t h u k u m a r
M C C a n d T h e Univers i ty of Texas a t Aus t in , C.S. D e p t
Aus t in , T X 78712, USA
m u t h u O c s . u t e x a s . e d u

M . V . H e r m e n e g i l d o
Univers idad Pol i técnica de M a d r i d (U P M)
F a c u l t a d de In formát ica
28660-Boadil la del M o n t e , M a d r i d - Spain
h e r m e @ f i . u p m . e s orhermeOcs.utexas.edu

Abstract
There has been significant interest in parallel execution models for logic pro­
grams which exploit Independent And-Parallelism (IAP). In these models, it
is necessary to determine which goals are independent and therefore eligible
for parallel execution and which goals have to wait for which others during
execution. Although this can be done at run-time, it can imply a very heavy
overhead. In this paper, we present three algorithms for automatic compile-
time parallelization of logic programs using IAP. This is done by converting
a clause into a graph-based computational form and then transforming this
graph into linear expressions based on &-Prolog, a language for IAP. We
also present an algorithm which, given a clause, determines if there is any
loss of parallelism due to linearization, for the case in which only uncondi-
tional parallelism is desired. Finally, the performance of these annotation
algorithms is discussed for some benchmark programs.

1 Introduction

Parallel execution (Or- and And-parallelism [4]) is starting to prove itself
as an effective way of achieving improved performance in logic program-
ming systems. In particular, there has been significant interest (e.g. see [6],
[16], [4], [3], [10], [12], [19], etc.) in parallel execution models for logic pro­
grams which exploit "independent and-parallelism," where, only goals which

mailto:herme@fi.upm.es

don't share any variables at run-time2 are run in parallel. These models thus
have the very desirable characteristics of offering performance improvements
through the use of And-parallelism, while at the same time preserving the
conventional "don't know" semantics of logic programs and the computa-
tional complexity expected by the programmer, as shown in [9].3 However,
in these models it is necessary to determine which goals are independent
and therefore eligible for parallel execution. Although this can be done at
run-time [12, 4], it can imply a significant overhead. In this paper we are
interested in performing as much of the work as possible at compile-time.
Chang [3] proposed an approach which generated a single graph for a clause
from a worst case analysis thus being somewhat limited, given the global
analysis technology used. DeGroot [6] proposed a way of representing a
fixed set of execution graphs in an expression generated at compile-time,
choosing among them at run-time through some checks. An important issue
in such a framework is the type of parallelizing expressions allowed, because
it determines the ñexibility available to the compiler and the complexity
of the run-time system. In the context of the RAP-WAM model[10] more
flexible graph expressions (which can represent arbitrary execution graphs
and conditions - including often needed conjunctive checks) were proposed
in the form of a "language", &-Prolog [15], which subsumes full Prolog. In
&-Prolog, graph expressions are built using if-then-else, synchronization and
dependence-checking primitives. &-Prolog will be used in this paper for the
sake of concreteness and because of the convenience of its Prolog-compatible
syntax which makes it possible to describe the parallelization techniques as
a series of rewritings of the original Prolog program. However, the paral­
lelization techniques that will be proposed are applicable to any model using
annotation-based parallelization, such as, for example Kale's [16].

In general, the task of parallelizing a given program through compile-time
analysis can be conceptually viewed as comprising two steps:

1. a local or global analysis of the program in order to gather as much
information as possible regarding the terms to which program variables
will be bound and

2. given that information, a rewriting of the program into another one
which contains expressions which will cause the parallel execution of
some goals, perhaps under certain run-time conditions.

The main topic of this paper is the second point above, and, in particular,
the generation of &-Prolog parallel expressions. It is assumed throughout
the paper that any binding information which might have been gathered
through global analysis [2,5, 13] is available and will be used to improve the
expressions generated.

It is worth noting that while arbitrary graphs can be implemented in
&-Prolog with the use of wai t primitives [14], it is of practical interest for

2Or are "non-strictly independent," see [9].
3Another way of achieving this is by running only determínate goals in and-parallel fash-

ion [1]. This very interesting approach is complementary to Independent And-parallelism,
providing an efñcient method for running dependent goals which are determínate in
parallel.

efficiency reasons to restrict the expressions generated to linear expressions,
i.e. parenthesized expressions with no wai t built-ins, such as the &-Prolog
examples presented in [15]. This restriction (basically corresponding to a
conditional "fork and join" paradigm) was first proposed by DeGroot [6] and
the type of And-parallelism thus generated is called "restricted." Guidelines
for constructing correct annotations at compile-time were first proposed in
[10]. Other theoretical results which are of direct importance in this pro-
cess are presented in [9]. DeGroot [7] proposed a technique for generating
graph expressions using a very simple heuristic, although the expressions
generated tend to be rather large, with a significant number of checks, and
with no provisión for conjunctions of checks. Jacobs and Langen [11] de­
scribe a framework for compiling logic programs to an extensión of DeGroot 's
graph expressions equivalent to that introduced in [10]. They propose two
rules (SPLIT and IF rules) for transforming a dependency graph (such as
those used in [12, 4, 3]) into graph expressions. Their paper sets interesting
groundwork by describing such rules, but no algorithm or set of heuristics
is given that would suggest how and when to use such rules in a paralleliza-
tion process and it therefore doesn't represent a complete algorithm for our
purposes.

In this paper we we propose a) three complete algorithms for compiling
(rewriting) Prolog clauses into &-Prolog clauses containing parallel execu-
tion expressions, and b) an algorithm which determines if a given Prolog
clause can be compiled into an &-Prolog parallel expression without loss of
parallelism for the case in which only unconditional parallelism is desired.
Essentially, the algorithms in the first point above involve heuristics which
seek to maximize the amount of parallelism while, at the same time, mini-
mizing the overhead associated with such parallelism. The rest of the paper
proceeds as follows (proofs are omitted for the sake of brevity and they can
be found in [15]): in section 2 we first deal with the important problem
of characterizing in which cases a clause can be compiled into linear &¿-
Prolog parallel expressions without loss of parallelism, for the case in which
only unconditional parallelism is desired.4 Section 3 then presents the three
heuristic-based algorithms for compilation of logic programs into &-Prolog
parallel expressions. Section 4 presents some results from the implementa-
tion of these algorithms. Finally, section 5 presents our conclusions.

2 Loss of parallelism in the conversión to linear
expressions

In this section, we present an algorithm to determine if a given Prolog clause
can be compiled into an &-Prolog parallel expression which achieves Max-
imal Efficient Independent And-Parallelism, MEIAP[9]. Basically, MEIAP
stipulates that while trying to execute as many goals in parallel as possible
it is ensured that

• Dependent goals never execute concurrently,

4See [15] for an algorithm which deals with the case in which run-time tests are present.

• Dependent goals never execute out of order, i.e. they execute in a
left-to-right order and

• "Intelligent failure" (termination of sibling independent goals) is en-
forced.

These conditions allow the execution of goals in parallel while guaranteeing
important correctness and complexity ("no-speedown") properties, as shown
in [9]. Note tha t , in order to achieve MEIAP, a goal should be initiated as
soon as all dependent goals to its left have finished executing.

In the next section, we introduce Conditional Dependency Graphs(CDG)
and describe their underlying execution model. Similar dependency graphs
have been used in various forms by other researchers in the área [12, 11, 4, 3].

2.1 Conditional Dependency Graphs

A CDG is a directed acyclic graph where the vértices are subgoals and each
edge is labeled by a condition. The CDG associated with a clause C has
a vértex for each subgoal in the body of C and an edge from subgoal A
to subgoal B (denoted by the tupie (A,B)) if A is to the "left" of B. The
condition labeling edge (A,B) is the one that needs to be satisfied so that
subgoals A and B are independent of each other so that they can be executed
in parallel.5 As shown therein, given two goals a sufficient condition for their
independence6 can be formed as a conjunction of the following tests:

• ground(X) for each program variable X that occurs in both A and B

• indep(X.Y) for every pair of variables X and Y such that X occurs in
A but not in B and Y occurs in B but not in A.

As an example, consider the clause h(X,Y) : - a(X) , b(Y) , c(X,Y). The
CDG for the body of this clause is shown in figure 3(a).

In the CDG execution model, the following two step cycles are performed
repeatedly until all subgoals have been initiated. A cycle should start as soon
as a subgoal finishes.

• Edge Removal: Remove every edge whose origin has finished execut­
ing. If a condition labeling an edge holds, remove that edge.

• Subgoal I n i t i a t i o n : Initiate all subgoals with no incoming edges.

It is clear that this model achieves MEIAP. Essentially, this is also the un­
derlying model for And-Parallelism described in [12]. In general, though
this model achieves MEIAP, the overhead associated with checking each and
every edge and vértex in every cycle may be unacceptable and can hinder
speed-up. Instead, we propose to compile the CDG into &-Prolog parallel
expressions at compile-time.

Note that if a clause has N subgoals in its body, there will be at most
N(N- l) /2 (= 1 + 2 + . . . +(N-1)) edges in its CDG. Some of the possible edges

5 The correctness of these conditions has been shown in [9].
6This includes non-strict independence [9] which uses identical conditions, although

additional global analysis is required.

may not be in the CDG because the subgoals connected by these edges have
been shown to be independent by virtue of the groundness and independence
information obtained from a prior global analysis of the program.

An edge (A,B) may have the label f a l s e . In this case, compile-time
analysis has shown that subgoal B is dependent on A and henee it can be
initiated only after A's completion. In our representation, we do not label
such edges at all i.e. unlabeled edges in our representation of CDG actually
stand for edges with the label f a l s e . If all the edges of a CDG are unlabeled,
then we cali it an Unconditional Dependency Graph (UDG).

2.2 Necessary and Sufficient conditions for converting a
UDG into a linear expression without loss of parallelism

In this section, we give necessary and sufficient conditions for UDGs so that
they can be compiled into linear expressions (which use the & operator for
parallelism) without loss of parallelism.7 Later, we use these conditions
to design algorithms to compile CDGs and UDGs into &-Prolog parallel
expressions without loss of parallelism (Sections 3.1 and 3.2). Without loss
of generality we consider only those UDGs whose set of edges is closed under
transitivity i.e. if the UDG has edges (A,B) and (B,C), then it also has an
edge(A,C) .

In the following paragraph, we describe informally a recursive algorithm
which checks if a UDG can be compiled into a linear expression without loss
of parallelism. The basic idea behind the algorithm is as follows: consider
subgoals in this UDG which can be executed in parallel. These correspond
to vértices in the UDG which have in-degree = 0. Let these belong to a set
P (step 1). Find out how the remaining vértices in the UDG (the set Q)
are related to vértices in P (step 2). We investígate whether they can be
executed in parallel with, or they should sequentially follow, a given subgoal
in P. We find that they have to satisfy certain conditions (Lemmas 1 and 3).
If not, the given UDG cannot be compiled into a linear expression without
loss of parallelism. If they do satisfy these conditions, then some edges from
the UDG are removed, Q is partitioned into subsets and it is recursively
checked if the induced sub-UDGs satisfy these conditions (step 7). If tha t
is the case, then the given UDG can be compiled into a linear expression
without loss of parallelism.

Let the UDG = (V, E) where V is the set of vértices and E is the set of
edges.

1. Let the vértices that have in-degree = 0 in the current graph belong
to the set P = { p i , . . . ,pm}.

2. Consider the set Q = V — P. For each g¿ £ Q, form the nonempty
set £{qi) = {Pj\{Pj e P) A ((pj,qi) e E)}. Let S = {£ (? i)|ft £ Q } =
{ S i , . . . ,Sn}.

3. L e m m a 1 The given UDG can be compiled into a linear expression
without loss of parallelism, only if, for each SÍ,SJ in S, either

7Throughout this paper, we consider loss of parallelism that is caused only by spurious
dependencies i.e two subgoals are sequentially executed even though they are independent.

• Si n Sj = 0, or

• one must be a subset of the other.

4. Now, we are going to (partially) compile the given UDG into a linear
expression which would consist of the vértices in V, a parallel operator
"&" and a sequential operator "," i-e. (A & B & C) means that
A,B,C can be run in parallel, (A,B) means that A and B are executed
sequentially in that order.

For R e S , define T(R) = {q^Pj e P{pj e R O- (p,-,?,-) G E)}
i.e. T(R) is the set of all vértices in Q tha t must wait only for all
vértices in R to finish executing before their execution can be initiated.
Basically, the subexpression for each S¿ £ S and J(Si), should satisfy
the following conditions:

• There should be & operators between all the elements of 5¿ so
that they can be run in parallel.

• The subexpressions involving elements of J(S¿) should sequen­
tially follow the subexpressions involving elements of S¿ and T(Sj)
for each Sj C S¿

Also, the following lemma holds for UDGs which are closed under
transitivity.

L e m m a 2 For each non-intersecting pair of sets SÍ,SJ in S, there are
no edges between a vértex in J(Si) and a vértex in T(Sj).

Henee, the vértices in 5¿ can be executed in parallel with the vértices
in Sj.

5. L e m m a 3 Each SÍ,SJ such that 5¿ c Sj, should satisfy the following
condition:

\/uv((u ^ v A u e 7 (SÍ) Ave T(Sj)) =>• (u, v) e E)

Else, the given UDG cannot be compiled into a linear expression with-
out loss of parallelism.

6. In step 4, we saw how, in the linear expression,

• vértices in P are related to each other (they can execute in par­
allel)

• vértices in J(S¿) are related to vértices in S¿ (vértices in J(S¿)
have to sequentially follow vértices only in 5¿ and not in P — Si)

Now, we have to investígate the relationship among vértices in each
J(Si). For this we do the following: If J(Si) contains only one element,
then the subexpression for it is simply that element itself. Else, go to
step 1 with the UDG formed by vértices in J(Si)

funetion udg_compilable_WLOP(V,E) : boolean
/* WLOP = Without Loss Of Parallelism */
begin
compute P,Q and S (steps 1 and 2); /* S = {Si,... ,Sn} */
If the condition in lemma 1 is not satisfied then return false;
If the condition in lemma 3 is not satisfied then return false;
Answer := true;
i := 1;
Repeat

VI := 7{Si);
El := edges between vértices in VI;
Answer := Answer AND udg_compilable_WLOP(Vl,E1) ;
i : = i + 1;

until (Answer = false) OR (í > n)
return Answer;

end.

Figure 1: Algorithm for checking U D G parallelism

D

(a)

D

(c)

Figure 2: Example UDGs

2.3 Algorithm for checking UDG parallelism

Figure 1 contains a formal description of the algorithm in pseudo-pascal
form. It returns the answer true if the given UDG can be compiled into a
linear expression without loss of parallelism and the answer false otherwise.
The correetness of this algorithm follows from the above lemmas.

2.4 Examples to illustrate UDG algorithm

This section illustrates the above algorithm with the aid of three examples.
The first is a UDG that can be compiled into a linear expression without
loss of parallelism; the second and third UDGs do not have this property.

• The UDG for the first example is shown in figure 2(a).
Steps 1 and 2: Initially, V = {A,B,C,D} and P = {A}. Henee, Q =
V -P = {B,C,D}. £(B) = £{C) = £{D) = {A}. Henee S = {{A}}.
Steps 8 through 7: Since S is a singleton set, conditions in lemmas 1, 2 and

3 are trivially satisfied. J ({A}) = {B,C, D}. Henee, the linear expression
should be A, s u b - e x p r e s s i o n f o r B, C and D. So we remove A from the
vértex set and the edges (A,B), (A,C) and (A,D) from the edge set. The
UDG has now three vértices B, C and D and two edges (B,D) and (C,D).
We set V = {B, C, D} and go to step 1.
Steps 1 and 2: P = {B,C}. Henee, Q = {£>}. £{D) = {B,C}. Henee,
S = {{B,C}}.
Steps 8 through 7: S = {{B,C}}. Again, since S is a singleton set, condi-
tions in lemmas 1, 2 and 3 are trivially satisfied. 7({B,C}) = {D}. So, the
linear expression for this subgraph is (B & C) , D. and the linear expression
for the given UDG is A, (B & C) , D.

• The UDG for the second example is in figure 2(b).
Steps 1 and 2: V = {A, B, C, D, E} and P = {A, C, D}. Henee, Q = {B, E}.
£ {B) = {A, C}. £ (E) = {C, D}. Henee S = {{A, C}, {C, D}}.
Step 3: S has two elements, {A, C}, {C, D} which do not satisfy the condition
in lemma 1. Henee, this UDG cannot be compiled into a linear expression
without loss of parallelism.

• The UDG for the third example is in figure 2(c).
Steps 1 and 2: V = {A,B,C,D} and P = {A,C}. Henee, Q = {B,D}.
£{B) = {A}. £{D) = {A,C}. Henee, S = {{A},{A,C}}.
Steps 8 through 6: S satisfies the condition in lemma 1. J ({A}) = {B, D}
and 7({A,C}) = {D}. Since {A} C {A,C}, we check for the condition in
lemma 3. B £ T({A}) and D £ ?({A,C}), but {B,D) is not an edge in
the given graph. So this condition is violated. Henee, this UDG cannot be
compiled into a linear expression without loss of parallelism.

3 Algorithms for compiling Prolog clauses into
&-Prolog parallel expressions

In this section, we describe three algorithms for compilation of Prolog clauses
into &-Prolog parallel expressions. These clauses are assumed to be free of
disjunctions.

For simplicity, the descriptions of these algorithms do not consider whe­
ther a given subgoal is a prolog builtin or whether it has any side-effect. A
practical implementation of these algorithms would, of course, have to deal
with these issues. However, they would essentially follow the steps described
in these algorithms.

For all the three algorithms, we start with the given clause and construct
the CDG for it. This CDG is then simplified using (a) the results of an ab-
stract interpreter, or (b) user provided input or output mode information for
non-builtin predicates, or (c) input or output mode information for builtin
predicates.
• The CDG algorithm: this algorithm is closely related to the algorithm
presented in the previous section. It seeks to maximize the amount of par­
allelism available in a clause, without being concerned about the size of the
resultant &-Prolog expression. In achieving this objective, it may switch the
positions of independent goals i.e. if A and B are two independent subgoals

and if A occurred to the left of B in the Prolog clause, in the compiled &;-
Prolog clause, A may be to the right of B in a sub-expression. Also, this
algorithm uses IF-THEN-ELSE constructs in addition to CGEs [15] in the
resultant &-Prolog clauses.
• The UDG algorithm: this algorithm is essentially the same as the CDG
algorithm, except that only unconditional parallelism is exploited, i.e., only
goals which can be determined to be independent at compile-time are run in
parallel. The motivation for this algorithm is that groundness and indepen-
dence checks are very expensive and contribute a significant overhead to the
achieved and-parallelism. Thus, no run-time groundness or independence
checks are generated.
• The MEL algorithm: this algorithm creates only CGEs in its expressions
to achieve parallelism. In addition, it preserves the left-to-right order of
subgoals in its expressions. Within these constraints, it seeks to maximize
the number of goals to be run in parallel within a CGE. The results from
the implementation of this algorithm were reported in [18].

3.1 C D G A l g o r i t h m

In this algorithm, we transform the simplified CDG into an &-Prolog par­
allel clause, by using, during intermedíate stages, hybrid expressions which
consist of CDGs and &-Prolog parallel expressions.

We start with G := the CDG for the given clause C and the boolean
formula B := true. We seek to find an &-Prolog expression D corresponding
to the graph G.

1. Let the vértices that have in-degree = 0 in G belong to the set P =

{Pl,---,Pm}-

2. Consider the atomic conditions (7^ false) on the edges going out of
vértices in P. Let these belong to the set Q.

• If Q = 0, then let G' be the CDG obtained by removing from G
those vértices which are in P and the edges coming out of such
vértices.
If G' is an empty graph at this point, then D := (p i & . . . &p m) .
If G' is a UDG at this point, use the algorithm in section 3.2 to
convert G to a linear expression D.
Else, D := (pi& . . . &¿pm),D', where D' is the &-Prolog parallel
expression corresponding to G := G' and B := true.

• If Q 7̂ 0, then take the conjuncts of the boolean combinations
of the conditions in Q, simplify them and put them into a set R.
Remove from R those combinations which are identically equal
to false.

3. Let R= { r i , . . .,rn}. Then, D := S(r i —>• D i ; . . . ; rn —>• Dn) where, D¿
is the &-Prolog parallel expression corresponding to G¿ := U(G,ri,P)
and Bi := B A r,- and the function S is defined in step 6.

4. The update function U: Given a CDG G, a conjunct of atomic con­
ditions C and a set of vértices P, G' = U(G,C,P) is computed as
follows:

• Initially, G' :=G.

• If C = true, go to next step. Else, for each conjunct c in C, G' is
changed as follows:

If c = ground(X), then if an edge has the label ground(X)A
otherjconjuncts or indep{X, Y) A otherjconjuncts or indep{W,X)
A otherjconjuncts, its label is changed to otherjconjuncts.
If c = indep(X, Y), then consider the edges coming out of ver-
tices in P. For each such edge which has the label indep(X, Y) A
otherjconjuncts or indep(Y, X) A otherjconjuncts, its label is
changed to otherjconjuncts.

If c = ^ground(X), then if an edge coming out of a vértex in P
has the label ground(X) A otherjconjuncts, its label is changed
to false.

If c = ~^indep{X, Y), then if an edge coming out of a vértex in
P has the label indep(X, Y) A otherjconjuncts or indep(Y, X) A
otherjconjuncts or ground(X) A otherjconjuncts, its label is
changed to false.

• Remove each edge whose label is true and remove the label from
each edge whose label is false.

5. The simplification function S: S(r i —> D\\...; rn —> Dn) is defined as
follows, where R = {r\,..., rn}:

• If R = { r . - j , . . . ,rÍM} U {rh,.. .,rJN}, where

r¿j. = cond A s¿¿. 1 < & < M, rJjfc = -^cond A sJjfc 1 < & < ./V

then
5(r i -> £> i ; . . . ; rn -> £>n) := (cond -> D I ; D2)

where
i ' l :— ¿ \síi * 1SÍ1 ; . . . ; s¿M • "ÍM)

D2 := 5 (Sjj —> - D j j ; . . . ; SjN —> -DJJV j

• If the conditions in R cannot be decomposed in the manner de-
scribed above, they are all atomic, and so S(E) := E.

3.1.1 E x a m p l e to i l lustrate C D G a lgor i thm

Consider the clause h(X, Y) : - a(X) , b(Y) , c (X, Y). The CDG G for the
body of this clause is shown in figure 3(a). Here gX and iXY are abbreviations
for ground(X) and indep(X.Y) respectively. Initially B := true. The goal
is to find the &-Prolog parallel expression D for this body.

• Steps 1 and 2: P = {a(X)} and Q = {gX,iXY}.

• Steps 3 and 4: R = {gX, ~^gX A iXY, ~^gX A -*iXY}. All the elements
of R are logically consistent with B = true.

c(X,Y)

gX/ \ g Y

a (X) -
iXY

(a)

b(Y)

c(X,Y)

a(X)

Y

b(Y)

(b)

c(X,Y)

a(X)

\gY

b(Y)

(c)

c(X,Y)

a(X)-

Y

b(Y)

(d)

Figure 3: CDGs for the example

• Step 5: R is not empty and so

D = S(gX -> D^^gXAiXY) D2;(^gXA^iXY)^D3)

where, Di,D2 and D3 are respectively the &-Prolog parallel expres-
sions for (U{G,gX,{a(X)}),gX), (U(G,^gX A iXY,{a(X)}),^gX A
iXY) and (U(G,^gX A^iXY,{a(X)}),^gX A^iXY). The updated
CDGs corresponding to these conditions are in figures 3 (b), (c) and
(d) respectively. This simplifies to D = (gX —> Di; (iXY —> D<¿\ D3)).

Further execution of this algorithm leads us to

(gX -> (gY -> a(X) & b(Y) & c(X,Y)
; a(X) & (b (Y) , c (X,Y)))

iXY -> (gY -> (a (X) , c(X,Y)) & b(Y)
; (a(X) & b (Y)) , c(X,Y))

a (X) , (gY -> (b(Y) & c(X,Y))
; (b (Y) , c (X,Y)))

) .

3 . 2 U D G A l g o r i t h m

We start with the given clause C and construct the simplified CDG for it.
This CDG is then converted to a UDG by converting the labels of all its
edges to f a l s e .

The rest of the algorithm is essentially similar to the one in Section 2.2.
Let the UDG = (V,E) where V is the set of vértices and E is the set of edges.
A brief description of the algorithm is as follows (the variables used here are
the same as the ones used in Section 2.2):

1. Construct the sets P,Q,S = {Si,... ,Sn} and 7(Si),i = 1 , . . . ,n.

2. Recursively compute the &-Prolog expressions for the subgraphs in-
duced by J(Si).

3. The linear expression for the given UDG is then built by introducing
& operators between all elements of S¿ (so that they can be run in
parallel) and by placing the subexpressions for J(S¿) after the subex-
pressions for 5¿ and for each T(Sj) such that Sj C 5¿.

3 . 3 M E L A l g o r i t h m

Let C = H : — Bi,..., Bn. Define J (5 ¿) , which describes the groundness
and independence information at the point to the immediate left of 5¿, as
follows:

• ground(X) £ I (5 j) iff X is a program variable in the clause C and X
is known to be ground at this point.

• indep(X, Y) £ I{Bi) iff X and Y are program variables in C and they
are known to be independent at this point.

As explained before, I can be computed from a combination of abstract
interpretation, mode information for builtin predicates and user-supplied
mode information for non-builtin predicates.

Start with B := B\,... ,Bn. B is a sequence of Prolog literals in the
body of the clause C.

1. Let B = B\,..., Bq. Find the largest p such that

• there is a program variable X that occurs in Bp and

• the first occurrence of X in C is in Bp i.e. X does not occur in
H or in 5¿, 1 < i < p and

• X occurs in some 5¿ ,p < i < q

If there is no such p, then set p := 0, B\ := nuil and 5 2 := B. Else,
set Bl:= B1,...,BP and 5 2 := Bp+1, ...,Bq.

2. Let G be the set of variables X such that X occurs in some Bs,Bt,p <
s < t < q. Let

/ : = {(X,Y)\X is in BS,Y is in Bt,p < s<t< q,X (¿G,Y £ G}

i.e. G represents the set of program variables that should be ground
and / represents the set of pairs of program variables that should be
independent so that the subgoals 5 p + i , . . . Bq can be run in parallel.

3. Remove from G all elements X such that ground(X) £ I (5 p + i) and
from / all elements (X, Y) such that indep(X, Y) £ J (5 p + i) .

4. Therefore, the &-Prolog parallel expression corresponding to 5 2 is

D2 := (((/ \ ground(X)) A (/ \ indep(X, Y))) => Bp+1k ... &¿Bq)
xeG {x,Y)ei

5. If 5 1 = nuil, then D := D2. Else, D := Dl,D2 where DI is the
&-Prolog parallel expression corresponding to 5 1 .

As an example, let C = a(P,Q) : - b(P,Q),c(P,R),d(P),e(Q, R). Here
R occurs first in the literal c(P,R). So C can be compiled into the fol-
lowing &-Prolog parallel expression: a(P,Q) : - (ground(P) => b(P,Q) &
c (P , R)) , ((i ndep (P ,Q) A i n d e p (P . R)) => d(P) & e (Q ,R)) . Note tha t ,
the first CGE does not have the condition indep(Q,R) since this condition
is automatically satisfied by virtue of the fact that i? is a first occurrence in
the literal c(P,R).

B e n c h
fib
hanoi
matrix
qsort
consist
deriv
tak
boyer
occur

p goals
176
126
146
200
792
174

1059
502
506

g - cks
0
0
0
0
0
0
0

170
252

g-c suc
0
0
0
0
0
0
0
2

252

i - cks
0
0
8
0
0

87
0
2

279

i - c suc
0
0
8
0
0

87
0
2

279

Table 1: Performance of MEL annotator: number of processes and checks

B e n c h
fib
hanoi
matrix
qsort
consist
deriv
tak
boyer
occur

p goals
176
126
146
200
800
222

1059
751
506

g - cks
0
0
0
0
0
0
0

423
252

g-c suc
0
0
0
0
0
0
0
6

252

i - cks
0
0
8
0
0

87
0

584
279

i - c suc
0
0
8
0
0

87
0

335
279

Table 2: Performance of CDG annotator: number of processes and checks

4 Some Performance Results

Although an extensive analysis of the performance of the algorithms pre-
sented is a subject for further study, we herein report some preliminary
results from the implementation of these algorithms. The three annota-
tion algorithms presented have been implemented and incorporated into the
compiler of the &-Prolog system [8]. A compiler switch determines which
parallelizer will be used. The results of our implementation of the abstract
interpretation-based global analysis presented in [13, 18] are conditionally
made available to the annotators via another compiler switch. Programs are
analyzed, parallelized, compiled into PWAM code [10, 8] and run on the &;-
Prolog system. The results are summarized in tables 1,2, and 3 which show
for each benchmark and each parallelization algorithm the number of paral-
lel goals generated at run-time, the total number of groundness checks, the
number of groundness checks which succeeded, the number of independence
checks, and the number of independence checks which succeeded.

Several conclusions can be arrived at from the data in these tables. Bar-
ring deriv and boyer, MEL and CDG seem to achieve the same parallelism
for all other benchmarks. This is because the latter benchmarks mostly
have clauses in which only two consecutive atoms in the body present op-
portunities for parallelism. On the other hand, in deriv and boyer, there are
clauses in which atoms which are not adjacent in the clause can legally be
parallelized. This type of parallelism can be detected only by graph-based

B e n c h
fib
hanoi
matrix
qsort
consist
deriv
tak
boyer
occur

p goals
176
126
130
200
800

50
1059
747

2

Table 3: Performance of UDG annotator: number of processes

analysis, such as done by the CDG and the UDG methods. All in all, CDG
appears to be better than MEL. The tradeoff between CDG and UDG is less
clear. UDG loses significant parallelism in ma t r ix , boyer , and d e r i v due to
the fact that some checks are still needed in the clauses which are the main
source of parallelism. On the other hand, in both m a t r i x and d e r i v the
checks always succeed. This suggests that more accurate global analysis will
perhaps make UDG more attractive, especially considering that the lack of
run-time tests ensures that no speedown will occur with respect to sequen-
tial execution, a property that does not hold in general for the annotated
programs generated by CDG.

An important issue in automatic parallelization, although beyond the
scope of this paper, is the inference of task granularity information and
the application of such information to optimizing the annotation process.
Information regarding the granularity of builtin predicates is used in the
implementations of the algorithms presented herein. Inferring granularity
information for user predicates is a rather involved but definitely very inter-
esting topic in itself. Approaches to performing such an analysis have been
described for example in [17]. These references also provide some results on
the performance increase which can be obtained due to granularity analysis.

5 Conclusions

We have presented three algorithms for compilation of logic programs into
linear &-Prolog parallel expressions and illustrated them with examples. We
have also described an algorithm to determine if a UDG can be compiled into
a linear &-Prolog parallel expression without loss of parallelism. Finally, we
have reported on preliminary performance results from the implementation
of the three algorithms. The results are encouraging, showing that automatic
parallelization of logic programs, although it can probably never do as good
a job as an experienced user can nevertheless find parallelism in many cases
and produce speedups. The results give a certain performance edge to the
CDG algorithm over MEL, due to its ability to rearrange the order of goals
when they are independent. It is also clear from the simulations that UDG
is the safest algorithm, in the sense that it ensures no speedown, although
at the sacrifice of máximum potential parallelism.

References

[1] P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog—The Lan-
guage and Application in Distributed Simulation. In International Con-
ference on Fifth Generation Computer Systems. Tokyo, November 1988.

[2] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic
Programs. Technical Report CW62, Department of Computer Science,
Katholieke Universiteit Leuven, October 1987.

[3] J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logic
Programs Based on Static Data Dependency Analysis. In Compcon
Spring '85, pages 218-225, February 1985.

[4] J. S. Conery. The And/Or Process Model for Parallel Interpretation of
Logic Programs. PhD thesis, The University of California At Irvine,
1983. Technical Report 204.

[5] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog
Programs. Journal of Logic Programming, pages 207-229, September
1988.

[6] D. DeGroot. Restricted AND-Parallelism. In International Conference
on Fifth Generation Computer Systems, pages 471-478. Tokyo, Novem­
ber 1984.

[7] D. DeGroot. A Technique for Compiling Execution Graph Expressions
for Restricted AND-parallelism in Logic Programs. In Proc. of the 1987
Int'l Supercomputing Conf., pages 80-89, Athens, 1987. Springer Verlag.

[8] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Ex-
ploiting Independent And-Parallelism. In 1990 International Confer­
ence on Logic Programming, pages 253-268. MIT Press, June 1990.

[9] M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of In­
dependent And-Parallelism in Logic Programs. In 1989 North American
Conference on Logic Programming, pages 369-390. MIT Press, October
1989.

[10] M. V. Hermenegildo. An Abstract Machine Based Execution Model for
Computer Architecture Design and Efficient Implementation of Logic
Programs in Parallel. PhD thesis, U. of Texas at Austin, August 1986.

[11] D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted
And-Parallelism. In European Symposium on Programming, pages 284-
297, 1988.

[12] Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs
on a Shared Memory Multiprocessor: A Summary of Results. In Fifth
International Conference and Symposium on Logic Programming, pages
1123-1141. University of Washington, MIT Press, August 1988.

[13] K. Muthukumar and M. Hermenegildo. Determination of Variable De-
pendence Information at Compile-Time Through Abstract Interpreta-
tion. In 1989 North American Conference on Logic Programming. MIT
Press, October 1989.

[14] K. Muthukumar and M. Hermenegildo. Efficient Methods for Support-
ing Side Effects in Independent And-parallelism and Their Backtrack-
ing Semantics. Technical Report ACA-ST-031-89, Microelectronics and
Computer Technology Corporation (MCC), Austin, TX 78759, January
1989.

[15] K. Muthukumar and M. Hermenegildo. Methods for Automatic
Compile-time Parallelization of Logic Programs using Indepen-
dent/Restricted And-parallelism. Technical Report ACA-ST-233-
89, Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, March 1989.

[16] B. Ramkumar and L. V. Kale. Compiled Execution of the Reduce-OR
Process Model on Multiprocessors. In 1989 North American Conference
on Logic Programming, pages 313-331. MIT Press, October 1989.

[17] E. Tick. Compile-Time Granularity Analysis of Parallel Logic Program­
ming Languages. In Int. Conf. on FGCS. Tokyo, November 1988.

[18] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of
Global Flow Analysis of Logic Programs. In Fifth International Confer­
ence and Symposium on Logic Programming. MIT Press, August 1988.

[19] W. Winsborough and A. Waern. Transparent and- parallelism in the
presence of shared free variables. In Fifth International Conference and
Symposium on Logic Programming, pages 749-764, 1988.

