
Task Granularity Analysis in Logic Programs 

Saumya K. Debray Nai-Wei I 
Department of Computer Science 

The University of Arizona 
Tucson, AZ 85721 

Abstract 

While logic programming languages offer a great deal of 
scope for parallelism, there is usually some overhead as-
sociated with the execution of goals in parallel because 
of the work involved in task creation and scheduling. 
In practice, therefore, the "granularity" of a goal, i.e. 
an estimate of the work available under it, should be 
taken into account when deciding whether or not to ex-
ecute a goal concurrently as a sepárate task. This paper 
describes a method for estimating the granularity of a 
goal at compile time. The runtime overhead associated 
with our approach is usually quite small, and the perfor
mance improvements resulting from the incorporation 
of grainsize control can be quite good. This is shown 
by means of experimental results. 

1 Introduction 

Logic programming languages offer a great deal of scope 
for parallelism. There are two principal flavors of paral
lelism in logic programs: AND-parallelism, where sub-
goals necessary to solve a goal are executed in parallel; 
and OR-parallelism, where different alternative execu
tion branches are explored concurrently. By employing 
both kinds of parallelism, it is possible to extract "max-
imal" parallelism for a program [12]. 

Manuel Hermenegildo 
MCC 

3500 West Balcones Center Drive 
Ausün, TX 78759 

This is interesting in the abstract. However, just be-
cause something can be done in parallel does not nec-
essarily mean, in practice, that it should be done in 
parallel. This is because the parallel execution of a 
task incurs various overheads, e.g. overheads associ
ated with process creation and scheduling, the possible 
migration of tasks to remote processors and the asso
ciated communication overheads, etc. Thus, given the 
clause 

p a r t ( [ E | L ] , M, Ul , [E|U2]) : -
E > M, partCL, M, Ul , U2) . 

the test E > M can be executed in parallel with the re-
cursive cali. However, this test can typically be carried 
out in one or two machine instructions, and if the over
head associated with spawning the test as a sepárate 
task is more than a few instructions, the parallel execu
tion of this goal may not be cost-effective. In general, 
a goal should not be a candidate for parallel execution 
if its granularity, i.e. the "work available" underneath 
it, is less than the work necessary to créate a sepárate 
task for that goal. This makes it desirable to devise a 
method whereby the granularity of a goal may be es-
timated at runtime; in order to be useful, the runtime 
overhead involved in such a method should be small, 
i.e. as much work should be done at compile time as 
possible. 

This paper describes a method for statically estimat
ing the granularity of predicates in a logic program. 
Most of the work in our approach is done at compile 
time. However, the work done by a cali to a recur-
sive predicate typically depends on the size of its input, 
and henee cannot be estimated in any reasonable way 
at compile time—for such goals, some runtime work is 
necessary to determine the cost of any particular cali 
to a recursive predicate. However, the cost incurred in 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


such runtime computations is generally quite small. 

Since compilers are allowed only to perform opti-
mizations that can be guaranteed to not affect a pro-
gram's runtime behavior adversely, and because inter-
esting program properties are generally undecidable, 
compile-time analyses are usually expected to satisfy 
correctness criteria that state that information inferred 
during the analysis of a program is a sound, possibly 
conservative, estimate of the program's runtime behav
ior. Curiously, correctness criteria are not immediately 
obvious in the context of granularity analysis, since a 
mistake in granularity analysis can result in loss of per
formance but appears unlikely to change the semantics 
of the program. Despite this, it is desirable to be able 
to state what kind of invariant (with respect to run
time behavior) is satisñed by a granularity analysis al-
gorithm, in order to allow us to reason formally about 
the behavior of programs that utilize the information 
inferred by it. Not surprisingly, the problem of deter-
mining precisely how much work will be done by a cali 
is statically undecidable. This means that compile-time 
granularity analysis will be a conservative estimate of 
the amount of work performed at runtime. As such, it 
can give either a lower bound or an upper bound on the 
amount of runtime computation. 

The analysis considered in this paper gives granular
ity estimates that are an upper bound on the amount 
of work that may be done at runtime. There are a 
number of reasons for this. An important philosophi-
cal reason for this choice is the following: if a lower-
bound analysis is conservative, it determines there is 
less work available than there is in practice, resulting 
in a loss of parallelism; this is conceptually akin to par-
allelizing sequential language programs, where actions 
are performed sequentially unless speciñed otherwise. If 
an upper-bound analysis is conservative, however, tasks 
are executed concurrently even though there may not be 
enough work available to justify this; this corresponds, 
conceptually, to "sequentializing" a parallel language, 
where actions are performed in parallel unless speciñed 
otherwise. Because the language models we have in 
mind resemble the latter rather than the former, upper-
bound analyses appear to be more appropriate for our 
purposes. There are also important practical advan-
tages to choosing upper-bound analyses, since it is dif-
ñcult to give nontrivial lower bounds in most cases (very 
often, for example, the case where head uniñcation fails 
leads to a lower bound estimate of 0, which is not very 
useful), and also because many important simpliñca-

tions can be performed if we are required to guarantee 
only an upper bound. This results in signiñcant simpli-
ñcations to our algorithms, with concomitant improve-
ments in both compile-time and runtime overhead; in 
particular, unlike a lower-bound analysis, termination 
issues do not have to be considered separately. 

It is assumed that the reader is acquainted with the 
fundamentáis of logic programming. The remainder of 
this paper is organized as follows: Section 2 gives an 
overview of the approach for granularity analysis. Sec
tion 3 illustrates the method for the inference of argu-
ment size relations. Section 4 presents the scheme for 
cost estimation of goals. Section 5 describes a mech-
anism for obtaining (approximate) solutions for differ-
ence equations. Section 6 argües the soundness of our 
granularity analysis algorithm. Section 7 shows some 
experiment results of using the information from gran
ularity analysis in granularity control. Section 8 de
scribes some related works, and Section 9 gives some 
conclusions. 

2 An Overview of t he Approach 

Granularity analysis for a set of nonrecursive proce-
dures is relatively straightforward. Recursion is some-
what more problematic: the amount of work done by a 
recursive cali depends on the depth of recursion, which 
in turn depends on the input. Reasonable estimates for 
the granularity of recursive predicates can thus be made 
only with some knowledge of the input. Our technique 
for dealing with this problem is to do as much of the 
analysis at compile time as possible, but postpone the 
actual computation of granularity until runtime. A fun
damental criterion in our approach is that the runtime 
overhead incurred in this computation should be small. 
Given a recursive predicate p, therefore, we compute an 
expression Qp(n) that satisñes the following criteria: 

1. Qp(n) is relatively easy to evalúate; and 

2. Costp(n) < Qp(n) for all n, where Costp(n) de
notes the cost of computing p for an input of size 
n. 

The idea is that <¡>p(n) is determined at compile time; 
it is evaluated at runtime, when the size of the input is 
known, and yields an estimate of the granularity of the 



predícate. For example, given a predícate deñned by 

p ( [ ] ) . 
p ( [H|L] ) : - q(H), p ( L ) . 

assume tha t the literals q(H) and p(L) in the body 

of the second clause can be shown to be indepen-

dent, so tha t these literals are candidates for concur

rent execution.2 Suppose the expression $ 9 ( n ) giving 

the cost of q on an input of size n is 3n2 , and suppose 

the cost of creating a concurrent task is 48 units of 

computation. Then, the code generated for the second 

clause might be of the form 

n := size(H); 

if 3n2 < 48 t h e n execute q and p sequentially 

as a single task 

else execute q and p concurrently as sepárate tasks 

Of course, this could be simpliñed further at compile 

t ime, so tha t the code actually executed at runtime 

might be of the form 

if size(E) < 4 t h e n execute q and p sequentially 

as a single task 

else execute q and p concurrently as sepárate tasks 

The expressions Qp(n) are obtained by setting up dif-

ference equations for predicates and obtaining (upper 

bound) solutions to them. In order to set up difference 

equations, however, it is necessary to track argument 

sizes. Consider, for example, the predicate n r e v / 2 , de

ñned as: 

n r e v ( [ ] , [] ) . 
nrev([H|L] , R) : -

nrev(L, Rl ) ,append(Rl , [H] , R) . 

In order to determine the work done in the second 

clause, it is necessary to estimate the work done by 

the cali to append. To do this, it is necessary to be 

able to estimate the size of the binding of the variable 

Rl, relative to tha t of the input list, at the return from 

1 In practice, we might prefer to not ha ve to traverse the entire 
input at runtime to determine its size. This problem, which can 
be handled by maintaining some additional information, is some-
what orthogonal to the topic of this paper, and is not pursued 
further here. 

2This can be done in most practical cases automatically at 
compile-time using global analysis techniques. See [5, 7] for de-
tails and other references. 

the recursive cali to nrev. For this, we use an abstrac-

tion of clauses called a da ta dependency graph. Our 

approach to granularity analysis thus consists of the 

following steps: 

1. Use da ta dependency graphs to determine the rela

tive sizes of variable bindings at different program 

points; 

2. use the size information to set up difference equa

tions representing the computational cost of pred

icates; 

3. compute upper bounds to the solutions of these dif

ference equations to obtain estimates of task gran-

ularities. 

These steps are discussed in greater depth in the fol

lowing sections. 

3 Argument Size Relations of 
Predicates 

The cost of a recursive goal depends on the size of input, 

which determines the depth of recursion. Therefore, t o 

determine the cost of a recursive subgoal in the body of 

clause, it is necessary to infer the relative sizes between 

the arguments in the subgoal and those in the head. 

This section describes a da ta dependency-based method 

for statically estimating the argument size relations of 

predicates. 

To facilítate the discussion, we introduce the follow

ing terminology: a body literal in a clause is called a 

recursive literal if it is part of a cycle in the cali graph 

for the program tha t contains the head of tha t clause. A 

clause is called nonrecursive if no body literal is recur

sive, and is called simple recursive if it contains recur

sive literals and all the recursive literals have the same 

predicate symbol as the head; otherwise, it is called 

mutually recursive. A clause is a recursive clause if it is 

either simple recursive or mutually recursive. 

Various measures can be used to determine the "size" 

of an input, e.g., term-size, term-depth, list-length, 

integer-value, etc. The measure(s) appropriate in a 

given situation can generally be determined by exam-

ining the operations used in the program. Let | • |TO : 

Tí —> J\í± be a function tha t maps ground terms to their 



sizes under a speciñc measure m, where Tí is the Her-

brand universe, i.e. the set of ground terms of the lan-

guage, and J\í± the set of natural numbers augmented 

with a special symbol ± , denoting "undefined". Ex-

amples of such functions are "l is tJength", which maps 

ground lists to their lengths and all other ground terms 

to ± ; "term_size", which maps every ground term to 

the number of constants and function symbols appear-

ing in it; "term_depth", which maps every ground term 

to the depth of its tree representation; and so on. Thus, 

| [a ,b] | l i s t _ l e n g t h = 2, but | / ( a ) | l i s t _ l e n g t h = ±. Then the 

size properties of general terms can be described us-

ing two functions based on | • |. Given a set of terms 

S, a substi tution 9 is said t o be S-grounding if 9(t) is 

a ground term for every term t in S. The function 

sizem(t) defines the size of a term t under the measure 

m: 

sizem(t) 

n if \9(t) \m = n for every 

{í}-grounding substitution 9 

_L otherwise. 

The function diffm(ti,t2) gives the size difference be-

tween two terms t\ and t2 under the measure m: 

diffm(t1,t2) = < 

d if | 0 ( í 2 ) | m - | 0 ( * l ) | m = d 
for every {í i , t2 }-grounding 

substitution 9 

_L otherwise. 

a predecessor of the node n2, and n2 a successor of n\. 

The literal in the head is t reated specially in the graph: 

It is divided into two nodes, the start node, consist-

ing of the set of bound, or "input" argument positions, 

which has no predecessor; and the end node, consisting 

of the set of free, or "output" argument positions, which 

has no successor. The da ta dependency graphs are in-

duced by the control strategy of the system, and may be 

inferred via dataflow analysis [2, 5]. The inpu t /ou tpu t 

character of argument positions can be likewise inferred 

[5, 16] or provided by the users. Hereafter we assume 

tha t the da ta dependency graph is given. In the exam-

ples tha t follow, the "mode" of an n-ary literal, i.e. an 

indication of which of its argument positions are used 

as input arguments and which are used as output argu-

ments, is indicated by adding a superscript tha t is an 

n-tuple over { i , o}: an i in the fc-th. position of such a 

tupie indicates tha t the fc-th. argument of the literal is 

used as an input argument, while an o indicates tha t it 

is used as an output argument. 

E x a m p l e 3.1 Consider the following predicate, called 

with its first argument the input argument: 

n r e v ^ C t ] , [ ] ) . 

n r e v < i , o ) ( [ H | L ] , R) : -3 V ^ ( [ H | L ] , R) : -

nrev<i,o> ( L , Rl) , append*1 '1 '0) (R l , [H] , R). 

Thus, 

Let headi and bodyf denote the ith argument position in 

the head and in the j t h literal of the body respectively. 

The da ta dependency graphs for the clauses are shown 

in Figure 1. D 

d*fflist_length([clL], [ a ,b lLD = 1, 

^*ífterm_depth( f ( a ; g ( X ) ) ; X ) = 2, 

diff term_depth( f ( X ; Y ) ; X ) = -L-

Where the particular measure under consideration is 

clear from the context in the discussion tha t follows, 

we will omit the subscript in the size and diff functions. 

A directed graph G = (N,E), called a data depen

dency graph, is used to represent da ta dependencies be-

tween literals. Here N is a set of nodes and E a set 

of edges. A node in the graph denotes a literal and is 

labelled by the set of argument positions in the literal. 

There is an edge from a node n\ to a node n2 if the 

literal L2 denoted by n2 is dependent on the literal L\ 

denoted by ri\, i.e. if a variable binding generated by 

L\ is used as an input by L2. The node n\ is said t o be 

Two functions are associated with a da ta dependency 

graph G. The function input(G, n) gives the set of in

put argument positions in node n; and the function 

output(G, n) gives the set of output argument positions 

in node n. Let L be a literal corresponding to a node n 

in G, with ¡nput(G, n) = {ti,..., tm}. Let sizet denote 

the size of (the term occurring in) an input argument 

position t. The size of an output argument position in 

a literal depends, in general, on the size of the input 

argument positions in tha t literal: let the ith argument 

position of L be an output argument, then its size is 

denoted by ^l (sizetl,..., sizetm). 

Given a da ta dependency graph G with node set N, 

let s and e denote the s tar t node and the end node of 

G, and B = N — {s, e} the set of nodes for the body 

literals. We distinguish between "intra-literal" argu-



ment size relations, which refer to size relations be-
tween the argument positions of a single literal, and 
"Ínter-literal" argument size relations, which refer to 
relations between argument positions of different lit-
erals. Then D = output(G, e) U Unes ¡nput(G, n) de
notes the set of argument positions for which the inter
literal argument size relations need to be computed; and 
I = UnGB output(G, n) denotes the set of argument po
sitions for which the intra-literal argument size relations 
need to be computed. We ñrst consider argument posi
tions in D. Let i be an argument position in D and in a 
node n, and T¿ the term in i. If size(Ti) is deñned, then 
sizei = size(Ti), the inter-literal argument size relation 
for i. Otherwise, sizei depends on the size of a term Tj 
in an argument position j in one of the predecessors of 
n. Then sizei = sizej + diff (Tj,Ti) is the inter-literal 
argument size relation for i. 

Example 3.2 Consider the clauses from Example 3.1. 
Let head[i] denote the size of the ith argument position 
in the head and bodyj [i] in the j t h literal of the body. 
Using size and diff functions we get the following inter
literal argument size relations: 

body^l] = head[l] + diff ([H|L], L), 
body2[l] = ^{a)ev{bodyi[V\), 
body2[2} = stze([E\), 
¥¿L(head[l]) = ^lend(body2[l],body2[2]). 

Since the depth of recursion for both nrev/2 and 
append/3 depend on the list length of input, using list-
length as measure we have 

bodyi [1] = /ieac¿[l] — 1, 
body2[l] = ^(n}ev{bodyi[V\), 
body2[2] = l, 
¥lUhead[l}) = ^pend(body2[l},body2[2}). 

D 

We next consider argument positions in I, the set of 
output argument positions in the body literals. Let i 
be an argument position in I and in a node n. If the 
literal L denoted by n is nonrecursive, then the intra-
literal argument size relations for i can be obtained by 
(recursively) analyzing the predicate for L separately. 
This does not work for recursive literals: for these, we 
take the set of argument size relations for the various 
argument positions in the clause and normalize them. 
This is done as follows: consider a set of argument size 
relations £ for a clause: let £° denote the intra-literal 
argument size relations in £, £M the inter-literal argu
ment relations in £, and £° C £M the inter-literal ar
gument relations corresponding to the input argument 
positions in the body literals. The idea behind normal-
ization is to propágate information about size relations 
in the body of a clause until we have size relations for 
the head. The process can be deñned as follows: re-
peatedly apply the following transformations to £M un
til there is no change: 

• If e <G £° is an inter-literal argument size relation 
4> = i¡> such that there is at least one occurrence 
of 4> in the the right hand side of some equation in 
£M, then replace each occurrence of </> in the right 
hand sides of equations in £M b y ri¡>. 



• If e <G £° is an intra-literal argument size relation 

4> = i¡> such tha t there is at least one occurrence of 

an instance of </> in the the right hand side of some 

equation in £M, then replace each occurrence of an 

instance of </> in the right hand sides of equations 

in £M by the appropriate instance of i¡i. 

E x a m p l e 3 .3 Consider the following clause from Ex-

ample 3.1: 

n r e v < i , o ) ( [ H | L ] , R) : -

n r e v < i , o ) ( L , R l ) , append^'^CRl , [H] , R). 

Assume tha t while processing the cali graph of the pro

gram in topological order, the output size function for 

append /3 was computed as ^append(x, y) = x + y (see 

the Appendix for details). Thus, before normalization, 

this equation is the only intra-literal argument size rela-

tion available, and £° = {^append(x,y) = x + y}. From 

Example 3.2, £M contains the following equations: 

&oefo/i[l] = /ieac¿[l] — 1, 

body2[l] = ^nJev(bodyi[l]), 

body2[2] = l, 

A(head[l]) = ¥^pend(body2[l},body2[2]). 

Only the ñrst three equations are relations for input ar

gument positions in body literals and need to be prop-

agated. Thus £° contains the following equations: 

&oefo/i[l] = /ieac¿[l] — 1, 

body2[l] = ^(n}ev{bodyi[V\), 

body2[2] = l. 

During normalization, the expression body\ [1] in the 

equation 

body2[l] = ^(n}ev{bodyi[V\) 

is replaced by /ieac¿[l] — 1. The expression 

*iwew(6o^2[l],&ocfo,2[2]) in equation 

¥¿L(head[l]) = ¥^pend(body2[l],body2[2]) 

is ñrst replaced by the expression body2[l]+ body2[2], 

after which the expressions &oefa/2[l] and body2[2] are 

replaced by ^nreV(head[l] — 1) and 1, respectively. Fur-

ther normalization yields no new changes, and the re-

sulting set of equations is: 

&oefa/i[l] = /ieac¿[l] — 1, 

body2[l] = ^{nL{head[l] - 1), 

body2[2] = l, 

¥nL(head[l}) = ¥nL(head[l] - 1) + 1. 

The last equation expresses the desired size relationship 

for the head arguments of the clause. D 

A clause is said to be range-restricted if each variable 

occurring in an output argument position in the head 

also occurs either in an input argument position in the 

head, or in an output argument position in the body 

(the intuition is tha t the binding for such a variable is 

either a term given as an input argument, or a term 

produced as an ouput argument by a body literal). In 

addition, a clause is said to be well-connected if the 

expressions in terms of size or diff functions in each 

inter-literal argument size relation for it are deñned (i.e. 

not ± ) . The idea is tha t if all the inter-literal argument 

size relations are deñned before normalization, then all 

the inter-literal argument size relations are deñned after 

normalization. The approach given above is applicable 

t o range-restricted and well-connected clauses: 

T h e o r e m 3.1 Normalization of argument size rela

tions terminotes for all clauses. • 

P r o o f Given the inter-literal argument size relations 

and intra-literal argument size relations for nonrecur-

sive literals, the number of iterations of the transforma-

tions applied in normalization is bounded by the height 

of the da ta dependency graph. D 

T h e o r e m 3.2 Let G be a data dependency graph for a 

program P in which all the clauses are range-restricted 

and well-connected. If the cali graph of P is processed 

in topological order, then for each clause C in P, the 

following hold after the argument size relations that hold 

in C are normalized: 

1. If C is nonrecursive, then the argument sizes for 

the output argument positions in the head of C are 

obtained as a closed form function of the sizes of 

the input argument positions in the head of C; 

2. if'C is simple recursive, then the argument sizes for 

the output argument positions in the head of C are 

obtained as a difference equation in terms of the 

sizes of the input argument positions in the head of 

C: and 



3. if C is mutually recursive, then the argument sizes 

for the output argument positions in the head of C 

are obtained as a difference equation, which is part 

of a system of difference equations for mutually re

cursive clauses, in terms of the sizes of the bound 

argument positions in the head of C. 

P r o o f By induction on the number of literals in the 

body of C. D 

After normalization, the size of each argument posi-

tion in the literals of a nonrecursive clause is in terms 

of the sizes of the input argument positions in the head. 

For a simple recursive clause, the result of normaliza

tion is a difference equation giving the sizes for output 

argument positions in the head in terms of the sizes of 

the input argument positions in the head. Using the 

nonrecursive clauses as the base cases, we can obtain 

the boundary conditions for these difference equations. 

The mechanism discussed in Section 5 can then be used 

to get (approximate) solutions for the difference equa

tions. These solutions are closed form and in terms of 

the sizes of the input argument positions in the head. 

By adding the new closed form argument size relations 

into the set of intra-literal argument size relations, nor

malization can be applied once again. After this, the 

size of each argument position in the head of clause is 

in terms of the sizes of the input argument positions. 

E x a m p l e 3.4 Consider the clauses from Example 3.1. 

From Example 3.3, after normalization, we have the 

following equations for the second clause: 

&oefo/i[l] = /ieac¿[l] — 1, 

body2[l} = ^(nL(head[l}-l), 

body2[2] = l, 

¥nL(head[l]) = ¥nL(head[l} - 1) + 1. 

(2) 

Solving the difference equation ^nrev(head[l]) = 
(2) 

^nrev(head[l] — 1 )+ 1 with the boundary condition 

*E-L(0) = 0, we get 

Adding this equation into £°, the set of intra-literal 

argument size relations, and applying the normalization 

once again, we get 

6oc¿j/i[l] = /ieac¿[l] — 1, 

body2[l] = head[l] — 1, 

body2[2] = l, 

^nrev(head[l]) = head[í\. 

D 

The situation in mutually recursive clauses is similar 

t o the situation in simple recursive clauses. The only 

difference is tha t we need to solve a system of difference 

equations for mutually recursive clauses instead of a 

single difference equation for a simple recursive clause. 

The mechanism to solve a system of difference equations 

is also discussed in Section 5. 

4 Cost Estimation 

Since it is generally not known, in advance, how many 

of the solutions generated by a predicate will be de-

manded, a conservative upper bound can be obtained 

by assuming tha t all solutions are needed, and tha t all 

clauses are executed. Thus, given a predicate p deñned 

as 

c l i : Headi :- Bodyi. 

c l „ : Head„ :- Body„. 

the cost of predicate p, written Costp , can be expressed 

as 

n 

Costp < ^ C o s t c l ¡ , (1) 

where Cost c i ¡ denotes the cost of the ith clause c l¿ . It is 

straightforward to take indexing into account t o obtain 

a more precise estimate of the cost of a predicate, using 

the máximum of the costs of mutually exclusive groups 

of clauses. In considering the computational cost of a 

clause, the fact tha t we provide an upper bound on 

the actual runtime cost allows us to assume tha t each 

literal in the body of the clause succeeds. The cost 

of a clause can thus be bounded by the cost of head 

uniñcation together with the costs of each of its body 

literals: given a clause e l deñned as 

H : — L i , . . . , LTO. 



its cost Cost c l can be expressed as 

Cost c l < CostH + ^ ( J J S o l s L j ) C o s t L ¡ 

¿ = 1 j-°(i 

(2) 

where CostH is the cost of resolving the head of the 

clause with the literal being solved, and SolsL . is the 

number of solutions literal Lj can genérate. Here we 

use j -< i t o denote the predecessors Lj of the literal L¿ 

in the da ta dependency graph for the clause. Compile-

time estimation of the number of solutions a predicate 

can genérate is a nontrivial problem tha t is beyond the 

scope of this paper; to simplify the discussion tha t fol-

lows, we restrict ourselves to the simple case where each 

literal is determínate, i.e. produces at most one solu-

tion. Techniques for the static inference of determinacy 

are discussed by Mellish [16]. In this case, equation (2) 

simpliñes to 

Cost c l < CostH 

i=í 

CostL¡. (3) 

Note tha t our techniques are directly applicable to 

committed-choice logic programming languages [3, 21, 

24], which are intrinsically determínate: the committed 

choice nature of such languages also permits simplifica-

tions to (1) above. It may be possible to do bet ter than 

this in some cases, e.g. given a clause of the form 

&oefa/i[l] = /ieac¿[l] — 1, 

bodi/2[l] = head[í\ — 1, 

body2[2] = l, 

^n)ev{head[V\) = head[V\. 

Thus the cost equation for the recursive clause is ob-

tained as 

Cos t n r e v (n ) = 

1 + Cos t n r e v (n - 1) + Cost a p p e l l d(n - 1). 

The ñrst clause yields the equation Cost n r e v (0) = 1, 

which serves as the boundary condition. Assume 

tha t the analysis of append/3 has determined tha t 

Cost a p p e l l d(n) = n + 1 (see the Appendix for details 

of how this is done), then we get the cost equations 

CostnreT(0) = 

Costn r e v(n) 
= 1, 
= 1 - n - Costn r e v(n — 1), n > 0. 

These equations can be solved as discussed below. D 

It should be noted tha t the principal source of im

precisión in our analysis is in the solution of difference 

equations: for nonrecursive predicates our analysis is 

quite precise. For many programs, in fact, an analy

sis of only the nonrecursive predicates yields sufficient 

speed improvements to make the analysis worthwhile. 

H Test —>• Al t i ; Al t 2 . 

its cost can be given as 

CostH + Cos t T e s t + max(CostA i t i ,CostA it2) . The ideas 

presented in this paper extend easily to such cases. 

There number of different metrics tha t can be 

used as the unit of cost in these expressions, e.g. the 

number of resolutions, the number of uniñcations, or 

the number of instructions executed. If the cost metric 

is the number of resolutions, then CostH is 1; if it is the 

number of uniñcations, then CostH is the arity of H. 

Once argument size relations have been determined 

as described earlier, the estimation of the cost of a pred

icate is carried out by setting up equations tha t describe 

the work done by each clause. These difference equa

tions can be solved by the technique described in the 

next section. 

E x a m p l e 4.1 Consider the nrev /2 predicate from Ex-

ample 3.4. We have the following argument size rela

tions for the recursive clause: 

5 Solving Difference Equations 

Both the argument size relations and cost functions for 

recursive predicates are in the form of difference equa

tions. In order to evalúate these functions efficiently, 

it is necessary to transform difference equations into 

closed-form functions [15, 23]. The automatic solu

tion of arbitrary difference equations is a difficult prob

lem, but reasonable results can be achieved if difference 

equations are restricted to some common forms [4, 10]. 

In our case, however, since granularity analysis is ex-

pected to be part of a compiler, there is an additional 

requirement tha t the solution of such equations be effi-

cient. This forces us t o sacriñce precisión in some cases. 

Although automatic algebra systems can solve a wide 

class of difference equations, a table-driven method is 

chosen for the sake of efficiency and flexibility. 

Consider the following notion of "approximation" 

over functions over real numbers: 



D e f i n i t i o n 5.1 Given two functions f\ and ¡2 over the 

reals, fi approximates ¡2, written fi IZ f2, if and only 

if for all n € R , ¡2{n) < fi(n). | 

Given a difference equation r, let Sol(r) be a function 

tha t is a solution to r , if one exists; in general, Sol(r) 

may not be expressible as a simple closed form expres-

sion. Since we are interested only in the computation of 

upper bounds to the solutions of difference equations, 

however, we may be satisñed with approximations to 

Sol(r). To this end, we deñne the notion of a "granu-

larity analysis s t ructure", as follows: 

Def in i t ion 5.2 A granularity analysis structure G is a 

5-tuple (72, S, J7, a ,soln), where 

- 72. is a set of difference equations, called the domain 

of G; 

- S is a set of difference equations, called the approx-

imation set of G; 

- a : 72 —> S is a function, called the approximation 

function, such tha t for every r <G 72, if Sol(r) exists 

then Sol(a(r)) Q Sol(r). 

- T is a set of closed form expressions, called the 

solution set; 

- soln : S — • T is a function, called the solution 

function, such tha t soln(/) = Sol(f) for every / <G 

S. 

Given a granularity analysis structure G = 

(72, <S, J7, a ,soln), its domain 72 is the set of difference 

equations we are interested in solving. Given a class of 

programs tha t we want to perform granularity analy

sis on, the difference equations obtained expressing the 

argument size or cost relationships for any program in 

this class should be in 72. The approximation set S 

provides a "library" of difference equation schemas tha t 

have known (and, hopefully, easily computed) solutions. 

The approximation function a maps each equation r in 

the domain 72 to a known "library schema" s in the ap

proximation set S such tha t the solution to s is an upper 

bound on the solution to r . The solution set T is a set of 

closed form expressions tha t are solutions to equations 

in S, and the solution function soln maps each "library 

schema" s in S to its solution in T. The idea, then, 

is to approximate the solution to a difference equation 

r <G 72 by the closed form expression soln(a(r)) . 

The following example may make the idea clear. Sup-

pose tha t S contains the schema s: 

/(O) = G, 
f(n) = Af(n -k)+B for n > 0; 

and soln(s) returns / ( n ) = (G + B/(A - l))An/k -

B/(A — 1) as the closed form solution. Consider the 

predicate f i b / 2 deñned as 

f i b ( 0 , 0 ) . 

f i b ( l , 1 ) . 

fib(M,N) : - M > 1,M1 i s M - 1,M2 i s M - 2, 

f ib(Ml,Nl),f ib(M2,N2),N i s NI + N2. 

With the number of resolutions as the metric and 

builtin functions having cost 0, the difference equations 

obtained for this predicate are 

Cos t f l b (0) = 1, 

C o s t f l b ( l ) = 1, 

Cos t f l b (n ) = 

C o s t f l b ( n — 1) + C o s t f l b ( n — 2) + 1, n > 1. 

Assuming tha t the function Cost f l b is monotone, these 

equations can be simpliñed to 

Cos t f l b (0) = 1, 

Cos t f l b (n ) < 2Cos t f l b (n - 1) + 1, n > 0. 

When matched against the above schema, this yields 

the solution Cos t f l b (n ) < 2n+1 - 1. 

Mutually recursive predicates result in a system of si-

multaneous difference equations in more than one vari

able. It is possible in principie to reduce a system of 

difference equations in more than one variable to a sin

gle difference equation in one variable [15]. Consider 

the system of difference equations in two variables x 

and y: 

3nxn = yn - yn+1 + 1, 
xn = Vn + Vn+Í ~ 1-

Substituting n + 1 for n, we get two more equations 

3(n + l ) x „ + i = yn+í - yn+2 + 1, 

4 + 1 = Vn+l + Vn+2 ~ I-



Eliminating the variable yn in the ñrst two equations 
and j/„+2 in the last two equations, we get 

2j/„+i =x2
n~ 3nxn + 2, 

2j/„+i = x2
n+1 + 3(n + l )x„ + i . 

Finally, eliminating the variable j/„+i we get 

xn+\ + 3 ( n + 1)^+1 = ^ - 3nx„ + 2, 

a difference equation in only one variable x. 

It is easy to verify that a system of linear difference 
equations can be reduced to linear difference equations 
in one variable; and a system of linear difference equa
tions with constant coefñcients can be reduced to lin
ear difference equations with constant coefficients in one 
variable. Therefore, the mechanism described above is 
applicable to both simple recursive and mutually recur-
sive clauses. 

If the initial difference equation r cannot be simpliñed 
to a form that matches any of the equation schemas in 
S, then the solution to r is returned as Ax.oo, the func-
tion that does an infinite amount of work for any size 
of input (in particular, equations for predicates with 
nonterminating execution branches do not have Solu
tions) . The practical effect of this is that if the system 
is unable to ñnd a solution to the difference equations 
for a procedure p, then calis to p are always executed 
in parallel. This is consistent with our philosophy of 
"sequentializing a parallel language", where tasks are 
executed in parallel unless it can be proven that it is 
better to execute them sequentially. Note that since 
predicates with nonterminating execution branches are 
always executed in parallel, termination properties of 
programs are unaffected by such sequentialization. 

From a compilation point of view, we may want to 
obtain a "threshold input size" for predicates instead of 
the actual solutions to their cost equations. The idea is 
that if the cost of a predicate for an input of size n is 
given by f(n), and the task management overhead on 
the system under consideration is W, then we wish to 
obtain a valué K such that n > K if and only if f(n) > 
W. From this, we can genérate code that conditionally 
executes tasks in parallel depending on the size of the 
input. The constant K can be obtained by associating, 
with each solution / to equations in 1Z a function g 
such that g(W) = K, where W is the task management 
overhead and K the threshold input size. The valué of 
g(x) is deñned as the least y such that f(y) > x: since / 

is known ahead of time, g can also be computed ahead of 
time. Thus, once the task management overhead W has 
been determined for a system, the input threshold for 
each equation known to the difference equation solver 
can be determined statically. 

6 Soundness 

A predicate is called size-monotonic if the sizes of out-
puts are monotonic on the sizes of inputs, and called 
cost-monotonic if the cost of execution is monotonic on 
the sizes of inputs. Here we assume that all the predi-
cates are size-monotonic and cost-monotonic.3 

By deñnition, if size(T) is deñned on T and 
diff(TuT2) is deñned on (Ti,T2), then size(T) = 
size{6{T)) and diff(TuT2) = diff{6(TÍ),6(T2)) for any 
substitution 9. Since the transformations applied dur-
ing normalization replace equals by equals and all the 
predicates are size-monotonic, the soundness of argu-
ment size relations is reduced to the soundness of dif
ference equation solver. Because difference equation 
solver always returns an upper bound on the solution to 
original equations, the soundness of difference equation 
solver and thus argument size relations are achieved. 
By assumption, all the predicates are cost-monotonic, 
the soundness of cost functions follows immediately the 
soundness of argument size relations. 

7 Experimental Results 

We have run a series of experiments in granularity 
control using two existing parallel logic programming 
systems: ROLOG and &-Prolog. ROLOG is a puré 
logic programming system based on Kale's reduce-or 
model[ll, 18]; programs are annotated for parallelism 
by the user. &-Prolog is a parallel Prolog system based 
on strict- and non-strict independence [7] which uses a 
modiñed RAP-WAM abstract machine [6], and where 
annotations for parallelism can be automatic or user-
provided. In the spirit of the "sequentializing parallel 
programs" philosophy pointed out in the introduction, 
in both cases granularity control was added to the paral-
lelized programs and speedup measurements performed 
while running on a Sequent Symmetry multiprocessor. 

3There are interesting classes of programs, e.g. theorem-
provers, that are neither size-monotonic ñor cost-monotonic. The 
techniques described in this paper do not apply to such programs. 



A plot of total execution time against grain size is 
given in Figure 2. We can draw two broad inferences 
from this ñgure. The ñrst is that signiñcant speedups 
can be achieved by proper use of grainsize information. 
The second, based on the fairly wide "trough" in the 
curve of execution time vs. grain size, is that it is not 
essential to be absolutely precise in inferring the best 
grain size for a problem: there is a reasonable amount 
of leeway in how precise this information has to be; 
this suggests that granularity inference can usefully be 
performed automatically by a compiler. 

Tables 1 and 2 show execution times for our bench-
marks compiled with no information of task granular
ity, compared to the case when they are compiled using 
grain size information inferred by our algorithm. It can 
be seen from these tables that the runtime overhead in-
curred by our approach is small, and that granularity 
analysis can thus yield good speedups. It works better 
if the task management overhead is relatively high, as 
in ROLOG, or in systems that involve non-shared mem-
ory architectures. If the task creation and management 
overhead is sufficiently small, it may better not to use 
granularity control at all (this happens in some cases for 
&-Prolog). However, such situations can be determined 
ahead of time, simply by considering the overhead as-
sociated with task creation and management. 

The runtime overhead incurred by our approach 
arises from two factors: the maintenance of size in
formation and the grain size tests. It is observed 
that many predicates can be classiñed as either paral-
lel predicates or sequential predicates at compile time, 
so no grain size control is needed for them, and thus 
no runtime overhead is associated with them. In this 
case, programs gain large speedups, for example, in our 
benchmarks matrix multiplication and polygon inclu
sión. Furthermore, the runtime overhead for predicates 
that need grain size control can be largely reduced by 
unfolding grain size tests loop; that is, grain size test is 
performed at every two or more iterations instead. 

Sometimes the runtime overhead does overpass the 
gains from sequentializing small parallel tasks, for ex
ample, in our benchmark flatten. At this time our com
piler does not take the runtime overhead into account 
in deriving the cost functions and inferring the thresh-
old input size, so we get negative result in benchmark 
flatten. However, we do get positive results in most 
benchmarks and we shall incoporate the consideration 
for runtime overhead into our compiler for more precise 
estimates. 

8 Related Work 

A number of researchers have investigated the auto-
matic analysis of the (time) complexity of programs 
(see, for example, [1, 8, 14, 19, 26, 27]). Our work differs 
from these in two main ways: ñrst, it is not sufficient 
for us to infer asymptotic complexities, because with-
out information about the constants involved it is not 
possible to estimate the amount of computation that 
might be involved in solving a problem; second, since 
our analyses are intended to be performed at compile 
time, it is essential that they be efficient, and because 
of this we occasionally sacriñce some accuracy to obtain 
fast analyses. 

In Metric [27], an automatic program analysis sys-
tem, Wegbreit proposes a very general and flexible 
framework for program performance analysis that can 
compute the best-case, worst-case and expected com
plexities, and incorpórate new measures and difference 
equations solving techniques to increase its precisión. 
However, this system is unable to deal with mutually 
recursive programs. 

There are two main differences between logic pro
grams [13] and functional programs [1, 8, 14, 19, 26] 
with regard to complexity analysis. The nondetermin-
ism in logic programs makes the composition of cost 
functions much harder than that in functional pro
grams, although we can not deal with nondeterministic 
programs either at this point. The possibilities of par-
tial instantiation of output arguments in logic programs 
enable an interesting class of problems to be imple-
mented in a way that can not be realized in functional 
programs. These partially instantiated data structures 
make the inference of argument size relations much diffi-
cult, but it is possible that some of the programs whose 
costs depend only on the top level structural properties 
of data structures can be analyzed using our techniques. 

Rabhi and Manson have recently investigated the 
use of complexity functions to control parallelism in 
the parallel evaluation of functional programs [17]. 
They also obtained encouraging experimental results 
for divide-and-conquer algorithms on a parallel graph 
reduction machine. 

The problem of program partitioning has been con-
sidered, in the context of functional programs, by 
Sarkar, who bases his algorithm on information ob
tained via runtime proñling rather than compile-time 
analysis [20]. Hudak considers "serial combinators" 



with reasonable grain sizes [9], but does not discuss the 

compile t ime analysis necessary to estimate the amount 

of work tha t may be done by a cali. 

Kaplan has investigated the automatic inference of 

the complexity of logic programs [13], but under fairly 

restrictive assumptions tha t rule out many interesting 

programs (e.g. Kaplan's techniques do not permit gran-

ularity analysis of quicksort). Van Gelder has investi

gated a different approach to reasoning about the ar-

gument sizes of predicates, but this approach has been 

restricted to simple linear recursive programs [25]. 

Tick has recently given a simple algorithm to esti

mate relative granularities to guide task scheduling de-

cisions for parallel logic programs [22], but his analysis 

is not expressive enough to enable a compiler to gen

érate code of the form "if the input size exceeds this 

threshold then execute these goals in parallel, else do 

them sequentially". 

9 Conclusions 

Parallel logic programming languages offer a great deal 

of scope for parallelism. However, because of the over-

head associated with task creation and management, 

the "work available" underneath a goal should be taken 

into account when deciding whether or not t o execute 

it concurrently as a sepárate task. This paper describes 

how programs may be statically analyzed to estimate 

task granularities. The analysis can handle a large class 

of recursive predicates. The granularity information in-

ferred can usefully be utilized by compilers to improve 

the quality of code generated. The runtime overhead 

associated with our approach is usually quite small. 

References 

[1] B. Bjerner and S. Holmstróm, "A Compositional 

Approach to Time Analysis of First Order Lazy 

Functional Programs," Proc. 1989 ACM Func-

tional Programming Languages and Computer Ar-

chitecture, pp. 157-165. 

[2] J. Chang, A. M. Despain and D. DeGroot, "AND-

Parallelism of Logic Programs Based on A Static 

Da ta Dependency Analysis," in Digest of Papers, 

Compcon 85, IEEE Computer Society, Feb. 1985. 

[3] K. Clark and S. Gregory, "PARLOG: Parallel Pro

gramming in Logic," ACM Transactions on Pro

gramming Languages and Systems 8, 1 (Jan. 1986), 

pp. 1-49. 

[4] J. Cohén and J. Katcoff, "Symbolic Solution of 

Finite-Difference Equations," ACM Transactions 

on Mathematical Software 3, 3 (Sep. 1977), pp. 

261-271. 

[5] S. K. Debray, "Static Inference of Modes and Da ta 

Dependencies in Logic Programs," ACM Transac

tions on Programming Languages and Systems 11, 

3 (July 1989), pp. 419-450. 

[6] M. V. Hermenegildo, An Abstract Machine Based 

Execution Model for Computer Architecture Design 

and Efficient Implementation of Logic Programs in 

Parallel, P h D thesis, The University of Texas at 

Austin, 1986. 

[7] M. Hermenegildo and F . Rossi., "On the Cor-

rectness and Efficiency of Independent And-

Parallelism in Logic Programs," 1989 North Amer

ican Conference on Logic Programming, MIT 

Press, October 1989, pp. 369-389. 

[8] T. Hickey and J. Cohén, "Automating Program 

Analysis," J. ACM 35, 1 (Jan. 1988), pp. 185-220. 

[9] B. Goldberg and P. Hudak, "Serial Combinators: 

Optimal Grains of Parallelism," Proc. Functional 

Programming Languages and Computer Architec

ture, Nancy, France, Aug. 1985. Springer-Verlag 

LNCS vol. 201, pp. 382-399. 

[10] J. Ivie, "Some MACSYMA Programs for Solv-

ing Recurrence Relations," ACM Transactions on 

Mathematical Software 4, 1 (March 1978), pp. 24-

33. 



[11] L. V. Kalé, Parallel Architectures for Problem Solv-

ing, PhD Thesis, SUNY, Stony Brook, 1985. 

[12] L. V. Kalé, "Completeness and Full Parallelism 

of Parallel Logic Programming Schemes," Proc. 

Fourth IEEE Symposium on Logic Programming, 

San Francisco, California, IEEE, 1987, pp. 125-

133. 

[13] S. Kaplan, "Algorithmic Complexity of Logic Pro-

grams," Logic Programming, Proc. Fifth Interna

tional Conference and Symposium, Seattle, Wash

ington, 1988, pp. 780-793. 

[14] D. Le Métayer, "ACE: An Automatic Complexity 

Evaluator," ACM Transactions on Programming 

Languages and Systems 10, 2 (April 1988), pp. 248-

266. 

[15] H. Levy and F . Lessman, Finite Difference Equa-

tions, Sir Isaac P i tman & Sons, London, 1959. 

[16] C. S. Mellish, "Some Global Optimizations for 

a Prolog Compiler," J. Logic Programming 2, 1 

(April 1985), pp. 43-66. 

[17] F . A. Rabhi and G. A. Manson, "Using Complex

ity Functions to Control Parallelism in Functional 

Programs," Research Report CS-90-1, Department 

of Computer Science, University of Sheffield, Eng-

land, Jan. 1990. 

[18] B. Ramkumar and L. V. Kalé, "Compiled Execu-

tion of the Reduce-OR Process Model on Multi-

processors," 1989 North American Conference on 

Logic Programming, MIT Press, October 1989, pp. 

313-331. 

[19] M. Rosendahl, "Automatic Complexity Analysis," 

Proc. ACM Conference on Functional Program

ming Languages and Computer Architecture, 1989, 

pp. 144-156. 

[20] V. Sarkar, Partitioning and Scheduling Parallel 

Programs for Multiprocessors, MIT Press, Cam

bridge, Massachusetts, 1989. 

[21] E. Y. Shapiro, "A Subset of Concurrent Prolog 

and its Interpreter," Technical Report CS83-06, 

Department of Applied Mathematics, Weizmann 

Inst i tute of Science, Israel, Feb. 1983. 

[22] E. Tick, "Compile-Time Granularity Analysis for 

Parallel Logic Programming Languages," Interna

tional Conference on Fifth Generation Computer 

Systems, Tokyo, Japan, November 1988, pp. 994-

1000. 

[23] A. Tucker, Applied Combinatorias, John Wiley & 

Sons, New York, 1985. 

[24] K. Ueda, Guarded Horn Clauses, D. Eng. Thesis, 

University of Tokyo, 1986. 

[25] A. Van Gelder, "Deriving Relations Among Argu

ment Sizes in Logic Programs," Unpublished mem

orándum. Department of Computer Science, Stan-

ford University, Stanford, Califonia, 1986. 

[26] P. Wadler, "Strictness Analysis Aids Time Analy

sis," Proc. Fifteenth ACM Symposium on Princi

pies of Programming Languages, 1988, pp. 119-132. 

[27] B. Wegbreit, "Mechanical Program Analysis," 

Communications of the ACM 18, 9 (Sep. 1975), 

pp. 528-539. 

A Appendix: An Example 

This appendix considers in detail the analysis of the 

"naive reverse" program. This example has been cho-

sen because it is simple, yet shows the interaction of 

different recursive predicates. The program is as fol-

lows: 

n r e v ( [ ] , [] ) . 

n r e v ( [ H | L ] , R) : -

n r e v ( L , R l ) , append(Rl , [H], R) . 

a p p e n d ( [ ] , L, L ) . 

a p p e n d ( [ H | L l ] , L2, [H|L3]) : -

a p p e n d ( L l , L2, L3 ) . 

First , consider the predicate append/3 , called with the 

ñrst two arguments as input arguments. Let head[i] and 

bodyj[i] denote the ith argument position in the head 

and in the j t h literal of the body respectively. The inter

literal argument size relations for the recursive clause 

are 

bodyi [1] = /ieac¿[l] — 1, 

bodyi [2] = head[2], 

^(aíPenÁhead[l],head[2]) = 

^(aLnd(bodyi[l],bodyi[2}) + l, 



where the expressions being substitued for during nor-

malization are underlined for clarity. Normalization 

then yields the equations 

*l2rL(0)=0, 

bodyi [1] = /ieac¿[l] 

bodyi [2] = head[2], 
1, 

* (3) 
appen d(head[l], head[2\) = 

* (3) 
" appen< d(head[l] - l,head[2}) + 1. 

In addition, from the ñrst clause of append, we obtain 

the equation ^aJpenci(0, head[2]) = head[2]. Thus, the 

equations expressing the size of the output argument as 

a function of the input argument sizes are seen to be of 

the form 

f(0,y)=y, 
f(n,y) = 1 + f(n-l,y). 

These equations can be solved, e.g. using the techniques 

of Section 5, to obtain 

Vaíendfay) =X + V-

This equation is now used as an intra-literal argument 

size relation for the predicate nrev. 

Next, consider the predicate n r e v / 2 , called with the 

ñrst argument as the input argument and the second 

as an output argument. The inter-literal argument size 

relations obtained initially for the recursive clause are 

6oc¿j/i[l] = /ieac¿[l] — 1, 

body2[l] = ^ev(bodyi[l]), 

body2[2] = l, 
¥¿L(head[l]) = ¥^vend(body2[l],body2[2]), 

* (2) , (n) =l + ^{nr'ev(n-l). (2) 

The solution to this is ^nrev(n) = n, i.e. the size of the 

output of nrev /2 is equal to the size of its input. 

This shows how normalization of argument size re

lations can be used to track argument sizes. The cost 

analysis for these predicates now proceeds as follows: 

ñrst, we consider the clauses deñning append/3. For 

this predicate, it can be seen tha t when the ñrst argu

ment is bound to a list, indexing can be used to select 

between the two clauses directly. This yields the equa

tions 

Cost a p p e l l d(0, y) = 1 (the cost of head uniñcation), 

Cost a p p e l l d(n, í /) = 1 + Cost a p p e l l d(n - l,y). 

These equations can be solved to yield 

Cost a p p e l l d(n, í /) = n+ 1. 

This is then applied to the clauses deñning n r e v / 2 , to

gether with argument size information obtained earlier, 

yielding the inter-literal cost equations 

Cost n r e v (0) = 1, 

Cos t n r e v (n ) = 

1 + Cos t n r e v (n - 1) + Cost a p p e l l d(n - 1,1), 

together with the intra-literal cost equation 

Cost a p p e l l d(n, í / ) = n+ 1. 

Normalization of these equations yields 

together with the (intra-literal) argument size relation 

^ Ax, y) = x + y obtained above. When normal-

ized (again the expressions being subst i tuted for are 

underlined), this yields the equations 

6oc¿j/i[l] = /ieac¿[l] — 1, 

body2[l} = ^(arL(head[l}-l), 

body2[2] = l, 

¥nL(head[l]) = ¥nL(head[l] - 1) + 1. 

Cost n r e v (0) = 1, 

Cos t n r e v (n ) = 1 + C o s t n r e v ( n - 1) + n. 

These equations can then be solved to obtain the cost 

function 

Cos t n r e v (n ) = 0.5n2 + 1.5n + 1. 

From the ñrst clause for n r e v / 2 , we obtain ^nrev(0) = 

0. Thus, the output argument size function for nrev /2 
is given by the equations 



Figure 2: Execution time vs. task granularity 

ROLOG on 4 processors (Symmetry) 
programs 
consistency(500) 
fib(15) 
hanoi(6) 
quick-sort(75) 
LR(l)-set(3) 
double-sum(2048) 
fft(256) 
flatten(536) 
matrix-multi(8) 
merge-sort(128) 
poly-inclusion(30) 
tree-traversal(8) 

T 0 (ms) 
820 
1170 
270 
600 
1264 
2660 
2760 
1161 
575 

2226 
8979 
1890 

T i (ms) 
560 
850 
240 
580 
1241 
2259 
2636 
1387 
250 
1912 
5537 
1832 

speedup 
31.7% 
27.3% 

11.1% 
3.3% 
2.0% 

15.1% 
4.5% 

-19.5% 
56.5% 
14.1% 
38.3% 

3.0% 
To: execution time with no granularity control. 
T i : execution time with granularity control. 

Table 1: Execution times for benchmarks on ROLOG 

&-Prolog on 4 processors (Symmetry) 
programs 
consistency(500) 
fib(15) 
hanoi(6) 
quick-sort(75) 

T 0 (ms) 
139 
277 
69 
111 

Ti (ms) 
139 
196 
80 
93 

speedup 
0% 

29.2% 
-15.9% 
16.2% 

To: execution time with no granularity control. 
T i : execution time with granularity control. 

Table 2: Execution times for benchmarks on &-Prolog 



( {headi} ) ( {headi} ) 

( {body\,body\} ) *( {bodyfjbody^body^} ) 

( {/leae^} ) í {/leae^} ) 

Clause 1 Clause 2 

Figure 1: Data dependency graphs for the clauses of predícate nrev/2. 


