
A Simulation Study of Or- and
Independent And-parallelism

K i s h Shen§
C o m p u t e r Labora to ry
Cambr idge University, UK
ksh@cl.cam.ac.uk

M a n u e l V . H e r m e n e g i l d o
Facul tad de Informát ica
Univers idad Pol i técnica de Madr id , Spain
herme@fi.upm.es / herme@cs.utexas.edu

Abstract

Although studies of a number of parallel implementations of logic programming languages
are now available, the results are difficult to interpret due to the multiplicity of factors involved,
the effect of each of which is difficult to sepárate. In this paper we present the results of a high-
level simulation study of or- and independent and-parallelism with a wide selection of Prolog
programs that aims to facilítate this separation. We hope this study will be instrumental in
better understanding and comparing results from actual implementations, as shown by an ex
ample in the paper. In addition, the paper examines some of the issues and tradeoffs associated
with the combination of and- and or-parallelism and proposes reasonable solutions based on the
simulation data.

K e y w o r d s : Parallelism, Logic Programming, Performance Analysis, Or-parallelism, Indepen
dent And-parallelism, Simulation, Compile-time Parallelization.

1 Introduction

Recent interest in implicit parallel execution of logic programs has lead to the development of
many execution models, with research concentrating on two promising approaches (or-parallelism
and and-parallelism) or some combination thereof. Results associated with various implemen
tations have been published (for example, [2, 1, 20, 11, 14, 16]). However, these results are
generally difficult to interpret: Firstly, these studies have understandably concentrated on pro
grams that are reasonably suited to the type of parallelism being exploited. However, it also
seems important to have a broader view of the nature and availability of the parallelism across
a more representative set of programs. Secondly, in the results themselves the effects of at least
two factors are combined: the inherent amount of parallelism in the benchmarks used with
respect to the idealised model of parallelism under consideration, and the (lower level) impact
of the implementation itself. Ideally these two factors should be separated. Most performance
studies have concentrated on the low level factors. Comparatively little effort has been devoted
to the equally important higher level factors, the subject of this paper. We present a high-level

^Address from Oct. 1991: Depar tment of Compute r Science, University of Bristol, Bristol, U.K.

1

mailto:ksh@cl.cam.ac.uk
mailto:herme@fi.upm.es
mailto:herme@cs.utexas.edu

simulation study of the amount and characteristics of the or- and (independent) and-parallelism
in a wide selection of Prolog programs, from simple benchmarks to medium-sized applications.
The simulation approach provides a measure of the ideal or inherent amount of parallelism
which is largely independent of implementation effects. Furthermore, a simulation study is more
flexible than studies associated with real implementations as a simulation is not constrained by
the available hardware (e.g. the number of processors in a parallel system), and unlike a real
implementation, results are not perturbed by making measurements on it.

A high-level model of or-parallelism is relatively simple to define, as the ideal or inherent
amount of or-parallelism can be defined as running all alternatives in parallel.1 For independent
and-parallelism, however, the situation is more complex. There are two basic issues: what is
understood by "goal independence", and how and when such independence is detected and the
corresponding goals scheduled for parallel execution. Naíve approaches to solving each of these
problems are inefficient or even intractable in practice [7]. Moreover, there is an even more open
issue as to how or-parallelism and and-parallelism are to be combined. Our choices regarding
these issues are the subject of the first sections of the paper, after a brief overview of related
work. We then describe the simulation tools. A brief description of the experiments performed
and results obtained is followed by a discussion of these results. A reasonable familiarity with
Prolog, logic programming, and and- and or-parallelism is assumed throughout the paper.

2 Related Work

Other high-level studies of parallel Prolog known to us include [4, 19, 13]. These are all stud
ies of or-parallelism only. Very little high-level information is available for independent and-
parallelism, and even less for independent and-parallelism combined with or-parallelism. The
closest to a high-level study of both types of parallelism is the work by Fagin [8]. However, on
balance, his study is relatively low level and quite specific to his P P P model. This is especially
so because or-parallelism is quite severely limited under and-parallelism in his scheme. Further
more, we feel that it is important to examine a greater number of more realistic programs than
was in his study.

3 Model of parallelism simulated

As stated in the introduction, it is assumed that the reader is reasonably familiar with the
general issues in parallelism and Prolog, so only brief descriptions of the parallelism simulated
will be given here.

First, we employ interchangeably the terms worker and agent (as used in Gigalips project
[23] and the &-Prolog [11] project, respectively) to refer to the entities that perform the compu-
tation, or work. Parallelism is achieved by allowing several workers/agents to simultaneously
explore the search-tree of a program. Each worker explores the search-tree in much the same way
as a sequential Prolog engine: depth-first, left-to-right. Generally, each worker will be assigned
to a different part of the search-tree, and thus the search-tree can be thought of as being divided
into "chunks" of sub-tree, with each sub-tree being executed sequentially.2 Each such sub-tree
is referred to k. When a worker finishes exploring its sub-tree, it may then start on an
unexplored part of the sub-tree. This process is referred to as task switching.

As a worker works on a task, opportunities for parallelism are generated - i.e. other workers
can come and "steal" part of the sub-tree by splitting it. If not, the work would (eventually) be

For full Prolog, those alternatives which will eventually be pruned should not be executed at all in the ideal
case.

Of course, each sub-tree may be only one resolution long, and so it does not ma t t e r if it is sequential or not
in this case.

done by the worker itself. Conceptually, the search-tree can be thought of as being annotated
with sources of parallelism, which genérate available nodes , i.e. points where parallelism is
possible. Available nodes may be of two types: available or-nodes , and available and-nodes .
Available or-nodes allow goals (or-goals) to be run in or-parallel, and available and-nodes allow
sibling-goals within a clause (and-goals) to be run in and-parallel with each other.

As stated in the introduction, it is difficult to model independent and-parallelism without
making assumptions about the detection and selection for scheduling of the available and-goals.
For our study we selected the restricted and-parallelism (RAP) rule, first proposed by DeGroot
[6] and refined (backward semantics) by one of us [10]. Parallelism is specified by generalised
"Conditional Graph Expressions" (CGEs) where conditional tests are used to determine whether
the goals are to be executed in parallel or not. The choice of RAP was influenced by the availabil-
ity of an automatic annotator for this type of parallelism [24] and of an actual implementation
(&-Prolog) with which to contrast the results of the simulations.

3.1 Avoiding recomputat ion

With independent and-parallelism, the opportunity arises to perform less work than in a sequen-
tial system, as each independent and-task need be performed once only. That is, or-branches
inside a CGE can reuse independent and-tasks generated in "earlier" or-branches. Thus, the
most general way to combine and- and or-tasks is to compute all the or solutions to each and-
task once, and then form all the possible combinations of joining these tasks to produce all
the solutions that are produced in a sequential system. This is essentially what was proposed
for example in systems such as PEPSys [2] and the AO-WAM [9]. However, such a method
for combining independent and-parallelism and or-parallelism is complicated both for an actual
implementation and a simulation.

3.2 Combining the parallelism

In addition to the implementation complexity of reusing and-tasks, the unrestricted combination
of independent and- and or-parallelism adds both to the conceptual and implementation com
plexity. An alternative is to restrict the use of parallelism in some way when they are combined.
This leads to simpler schemes, but, obviously, at the expense of some parallelism. Examples of
such approaches are those of Conery [5], Fagin [8], or Biswas et al. [3]. Many other restriction
schemes are possible.

In this study, the effects of restricted and unrestricted combinations of and- and or-parallelism
were studied using two schemes: in the first scheme, which we called "no or-under-and", or-
parallelism is not allowed within and-parallelism. This prevenís the combinatorial explosión
in the usage of resources, but limits parallelism. In the second scheme, which we called "or-
under-and", or-parallelism is allowed within and-parallelism. When an or-alternative within an
and-goal is completed successfully, it starts executing the and-goals that follow it in the clause
in and-parallel. In effect, the and-parallelism within each or-branch is handled in exactly the
same way as the "point backtracking" method in the RAP-WAM [10].

A further difference between the two schemes mentioned above is that in the "no or-under-
and" scheme there is reusage of independent and-goals. In the "or-under-and" scheme the and-
goals are not reused. Instead such goals are recomputed as in sequential Prolog. It is important
to point out that the issue of recomputation and that of restriction in the way parallelism can
be combined are orthogonal. This allows us to infer conclusions about other models from only
two simulation schemes. These two schemes were chosen to allow us to make inferences about a
wide variety of schemes.

4 The simulator

The simulator is a greatly modified versión of the or-parallel simulator described in [17] so that
it can deal with independent and-parallelism (in the form of RAP) as well as or-parallelism. The
actual model used for the simulator is an idealised versión of the RAP-WAM for independent
and-parallelism, with or-parallelism also being idealised.

In this study, we have been able to simúlate programs that are more than 10 times larger
than the largest examples in [19], so a much wider range of programs has been examined.

4.1 Assumpt ions

Like in the original or-parallel simulator, as few assumptions about the underlying hardware
as possible are made, in order to make the results applicable to as wide a range of models as
possible. The speedups can thus be regarded in some way as the "ideal speedup" attainable with
the program given the annotation. The basic time unit used for the simulation is a resolution,
which is assumed to be the same for all resolutions. This and other assumptions made in the
original simulator are discussed in detail in [17], and due to lack of space will not be repeated
here. Additional assumptions associated with and-parallelism and the combination with or-
parallelism are:

• The CGE tests for groundness and independence were assumed to be compiled into the
underlying abstract machine instructions. Tick's study of the sequential WAM suggests
that about 15 WAM abstract machine instructions are executed per procedure invocation
(see [21, table 3-3]). We assume the basic cost of each CGE test is 1/15 the cost of a
unification, plus extra cost (again at 1/15 of a unification) per level of recursion needed to
traverse the structures being tested. This is then rounded up to the next larger integer to
arrive at a cost in terms of unifications. For the work reported here, the tests exhaustively
traverse the terms.

• At the end of a task, a worker is free to switch task to any available node. If the worker was
an and-task (i.e. picked an available and-node), it first tries to pick any sibling and-node
that is still available to the left of the and-task it just completed. If no such node exists,
it is free to choose any available node.

4.2 Generat ion of results

Prolog programs were first run through a CGE annotator program, generating Prolog code
which was annotated with CGEs (&-Prolog). The annotator used for this simulation was the
"niel" annotator introduced in [24] and described in [15]. This was done only with the more
complex programs, since the simpler programs could be easily annotated by hand. Then a
checker program was used to check the validity of the CGEs. 3 The annotated program was then
converted to the format used by the simulator and simulated.

5 Summary and discussion of results

5.1 Programs s imulated

Two broad categories of programs were simulated. The first category includes simple benchmark-
type programs. Most of these were used to benchmark sequential systems, and were not specifi-
cally designed for exhibiting parallelism. These programs are useful as they are relatively simple

This step was quite instrumental in flagging a number of bugs in early implementations of the "niel" annotator.

and can thus be easily analyzed. The second category includes existing applications, running rel-
atively simple input to get the execution time to a level suitable for simulation. These programs
are more representative of realistic programs.

For some of the programs simulations were performed for different sets of input data in
order to observe the sensitivity of the simulation results to the size and nature of the input.
In other cases a few similar programs solving the same problem but using different algorithms
were studied. In the latter case we distinguish programs in the tables by slight variations of the
program ñame. In the former, by providing a different label in brackets.

Detailed descriptions of the programs will not be given here. Most are relatively self-
explanatory. See [18, chapter4] for more details. The examples from qsort(20) to hanoi can
be considered as the benchmark-type programs. Of the application-type programs, the com-
piler(cpS) example is based on the Prolog compiler by Van Roy [22]; boyer_nsi(2) is the "boyer"
theorem proving program which exploits non-strict independence as defined in [12], tp is based
on a propositional theorem prover by Ross Overbeek. The two orsim examples are a versión
of the simulator used for the original or-parallel study, modified for exploiting independent
and-parallelism. The two sim examples are the program used for this simulation study.

5.2 The tables of results

Each program was simulated using the two ways of combining and- and or-parallelism, and with
and-parallelism only (with no reusage of goals) and or-parallelism only. For each of these, the
program was simulated for a range of workers, generally from one worker up to the máximum
number of workers the program could take advantage of with that form of parallelism. The
simulation was first done assuming no overhead. The simulation was then also done assuming
4 units of overhead at the start and finish of a task (giving a total of 8 units of overhead per
task). Also, various tests to examine various other aspects of the parallelism and annotations
were performed. Some of these results are summarised in the tables in figures 1, 2 and 3. The
first table records the "static" data obtained from the static part of the simulator, and the other
two record the "dynamic" data. The meaning of the columns is as follows:

ñame Ñame of program simulated.

X res . Total number of resolutions (successes and failures) in program when executed by Prolog,
i.e. assuming no reuse of computation or CGE test overhead.

sol. Number of solutions given by the program.

p C G E The number of run-time invocations of CGEs whose test succeeded. This includes the
unconditional CGEs.

s C G E The number of run-time invocations of sequential CGEs, i.e. those CGEs whose test
failed.

u C G E The number of run-time invocations of unconditional CGEs.

X cost The cost, in number of resolutions, of the CGE tests. The number in brackets is the
percentage cost with respect to X res.

X reused The size, in number of resolutions, of the reused resolutions. The number in brackets
is the percentage size with respect to X res.

m a x . perf. "Máximum performance" in terms of the máximum speedup, and the minimum
number of workers at which this is achieved (the "demand"), for the particular form of
parallelism being studied. The format is: <speedup> x@<number of agents>

The number given assumes that all available or-nodes in the search tree are allowed to
run in or-parallel, and also assumes that there is no overhead. It is also with respect to

the sequential execution with no CGE annotations (i.e. "actual speedups"). ~ is used to
indícate a valué that has been estimated by interpolation between two actually simulated
valúes.

half perf. The number of workers that are needed to achieve approximately half the numeric
valué of máximum speedup for the particular form of parallelism. The same format as
"max. perf." is used.

ratio This is -§• X 100 where /? is the time for executing the program with 0 overhead and
th

t\ the time for 8 units of overhead (per task). Both time measurements are made with
the number of workers in "half perf."4 This is a measure of sensitivity of the program to
overhead. The closer the ratio is to 100%, the less sensitive it is. "half perf." number
of workers were used as it was considered to be a representative figure for the program.
However, if the program has insignificant amounts of parallelism, such that "half perf."
occurs at 1 worker, measuring the overhead at 1 worker would give a ratio very cióse to
100%. For these programs, the "ratio" figure is computed using the speedups at "max.
perf." number of workers. Such data are marked by a "*".

ñame
qsort(20)
qsort(lOO)

seri alise
number s
4Queensl
4Queens2

map l
atlas
deriv

vmatrix(lO)
t a k

hanoi
warplan(wql)
warplan(wq2)
compiler(cp3)

boyer_si(l)
boyer_si(2)

boyer_asi(2)
t P

chatp(cql)
chatp(cq2)
chatp(cq3)

sim(spl)
orsim(spl)
sim(sp2)

orsim(sp2)
annotator

£ res.
307

2490
504
898
824
377

3662
2678
2874
326

21356
2560
2039
3131
13374
2749

28056
30486
10273
1204
1067
1356
9465
9197

35346
34117
14481

sol.
1
1
1

16
2
2

18
4
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

pCGE
20

100
9
0

144
48

505
1

483
110

1186
511

81
74
56
2
5

2436
158
50
52
77

234
21

877
66
15

sCGE
0
0
0
0
0

14
28
0
0
0
0
0

17
56
0

168

2180
0

59
27
25
26
0
0
0
0
0

uCGE
20

100
9
0

144
29

409
1

483
110

1186
0

16
17
16
2
5

2436
158
35
40
65

234
21

877
66
15

£ cost
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)

58 (15.4%)
344 (9.4%)

0 (0%)
0 (0%)
0 (0%)
0 (0%)

1013 (39.6%)
160 (7.85%)
179 (5.72%)
80 (0.598%)
168 (6.11%)

2180 (7.77%)
0 (0%)

59 (0.574%)
55 (4.57%)
42 (3.94%)
50 (3.69%)

0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)

£ reused
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)

42 (11.1%)
152 (4.2%)

1679 (62.7%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)
0 (0%)

Figure 1: Summary of Static data from simulations

5.3 Discussion of the tables

The tables show that many of the programs do exhibit speedups with either or-parallelism
or independent and-parallelism. However, neither are ubiquitous; indeed, a few of the "real"
applications do not have much of either parallelism in it. Both independent and-parallelism
and or-parallelism seem to be present in most programs, though in some cases they can be in
insignificant amounts. Both types of parallelism have obvious áreas of application where their

Note tha t "ratio" was called "over." in [19]. We feel t ha t "ratio" is a more accurate ñame.

ñame

qsort(20)
qsort(lOO)

seri alise
numbers
4Queensl
4Queens2

map l
atlas
deriv

vmatrix(lO)
t a k

hanoi
warplan(wql)
warplan(wq2)
compiler(cp3)

boyer_si(l)
boyer_si(2)

boyer_asi(2)
t P

chatp(cql)
chatp(cq2)
chatp(cq3)

sim(spl)
orsim(spl)
sim(sp2)

orsim(sp2)
annotator

And only
max. perf.
1.56x@3
2.8x@8

1.08x@4
l x @ l

1.27x@5
0.97x@3
1.22x@6
1.00x@2

84.5x@~248
9.06x@18

45.6x@~396
52.3x@427
1.46x@10
1.09x@4
7.48x@15
0.98x@3
0.94x@4

12.77x@~74
1.14x@4
1.01x@3
1.01x@3
1.03x@3
1.21x@4
1.14x@2
1.12x@5

8.32x@~20
10.0x@~16

half perf.
l x @ l

1.7x@2
l x @ l
l x @ l
l x @ l

0.87x@l
0.91x@l

l x @ l
42.3x@60
4.66x@6
22.9x@30
26.1x@53

0.93x@l
0.95x@l
3.84x@4
0.97x@l
0.94x@l
6.54x@8
0.99x@l
0.96x@l
0.96x@l
0.96x@l

l x @ l
l x @ l
l x @ l

4.44x@6
4.88x@6

ratio
85.7%*
98.8%

94.9%*
99.1%
77.8%*
76.1%*
75.0%*
99.7%
50.4%
45.2%
76.9%
61.5%

88.3%*
94.5%*
98.2%

99.7%*
99.6%*
82.5%

97.6%*
94.4%*
92.8%*
94.1%*
94.2%*
99.9%*
97.0%*
99.5%
98.8%

Or only
max. perf.
1.25x@2
1.34x@2
2.0x@6
l x @ l

18.7x@52
7.25x@15
41.1x@59
243x@576

l x @ l
l x @ l

1.13x@2
l x @ l

8.90x@~19
12.8x@~30

2.49x@8
1.18x@5
1.23x@5
1.20x@3
1.17x@5

1.67x@20
1.84x@17
2.18x@27
1.29x@4
1.29x@5
1.47x@4
1.47x@5
1.28x@5

half perf.
l x @ l
l x @ l

1.0x@l
l x @ l

9.1x@10
3.5x@4

20.6x@26
116x@185

l x @ l
l x @ l

1.0x@l
l x @ l

4.71x@5
6.75x@7
1.66x@2

l x @ l
l x @ l
l x @ l
l x @ l
l x @ l
l x @ l

1.49x@2
l x @ l
l x @ l
l x @ l
l x @ l
l x @ l

ratio
65.0%*
59.4%*
63.4%*
99.1%
75.8%
82.9%
78.4%
41.5%
100%
100%

100.0%
100%
72.0%
77.9%
63.3%
76.9%*
72.4%*
75.3%*
96.7%*
72.7%*
72.0%*
84.2%

85.4%*
87.5%*
83.4%*
87.9%*
99.9%

Figure 2: Summary of dynamic data for and- & or- parallelism from simulations

ñame

qsort(20)
qsort(100)

seri alise
numbers
4Queensl
4Queens2

map l
atlas
deriv

vmatrix(lO)
t a k

hanoi
warplan(wql)
warplan(wq2)
compiler(cp3)

boyer_si(l)
boyer_si(2)

boyer_asi(2)
t P

chatp(cql)
chatp(cq2)
chatp(cq3)
sim(spl)

orsim(spl)
sim(sp2)

orsim(sp2)
annotator

Or-under-and
max. perf.

2.0x@5
3.7x@14
2.2x@9

34.5x@81
45.8x@76
6.9x@25

63.1x@202
243x@552

84.5x@~248
9.06x@18

>54.5x@300
52.3x@427
7.5x@~20

11.7x@~30
16.9x@~60

1.16x@7
1.18x@12

16.54x@~74
1.38x@7

1.75x@18
1.87x@20
2.32x@27
1.50x@5
1.44x@6
1.67x@8

10.7x@~43
12.5x@25

half perf.
l x @ l

1.8x@2
l x @ l

17.3x@21
22.9x@27

3.7x@5
31.6x@42
122x@177
42.3x@60
4.66x@6

>29.5x@40
26.1x@53
3.46x@4
5.53x@6

8.88x@10
0.94x@l
0.93x@l

8.50x@10
0.99x@l
0.96x@l
0.96x@l
1.51x@2

l x @ l
l x @ l
l x @ l

5.13x@6
6.49x@8

ratio
56.7%*

8 3 %

59.1%*
48.6%
48.6%
70.1%
58.9%
37.3%
50.4%
45.2%
78.2%
61.5%
75.9%
71.8%
78.3%

77.9%*
73.4%*
66.3%

93.6%*
70.2%*
69.1%*
85.6%

82.1%*
87.0%*
79.4%*
94.8%
86.4%

No or-under-and
max. perf.

1.8x@3
3.1x@8
1.3x@5

34.5x@81
45.8x@76
1.50x@4

5.15x@26
12.6x@24

84.5x@~248
9.06x@18

46.0x@~396
52.3x@427

1.66x@6
1.98x@~19
7.48x@15
1.14x@3
1.17x@4

12.87x@~74
1.38x@7

1.51x@12
1.58x@ll
1.93x@10
1.37x@4
1.15x@5
1.52x@5

8.59x@18
10.0x@~16

half perf.
l x @ l

1.8x@2
l x @ l

17.3x@21
22.9x@27
0.96x@l
2.46x@3
5.89x@3

42.3x@60
4.66x@6

27.7x@~40
26.1x@53

0.93x@l
0.95x@l
3.84x@4
0.94x@l
0.86x@l
6.56x@8
0.99x@l
0.96x@l
0.96x@l
0.96x@l

l x @ l
l x @ l
l x @ l

4.51x@6
4.88x@6

ratio
68.1%*
88.7%

82.0%*
48.6%
48.6%
71.2%*
91.7%
56.9%
50.4%
45.2%
73.2%
61.5%

83.1%*
89.1%*
98.2%
79.2%*
73.6%*
82.1%

93.6%*
79.5%*
78.0%*
81.6%*
86.0%*
99.1%*
86.4%*
97.9%
98.8%

Figure 3: Summary of dynamic data for combined and/or parallelism from simulations

exploitation results in a significant amount of speedup. Or-parallelism is present in programs
that require substantial searching, such as the warplan programs. Independent and-parallelism

is present in algorithms which are "divide and conquer" in nature - such as compiler(cpS) and
annotator. Not many programs that contain significant amounts of both independent and-
and or-parallelism were found. compiler(cpS) was the only program which approached having
significant amounts of both types of parallelism. Nevertheless, it is interesting to see how the
two types of parallelism interacted.

In all programs studied, the "or-under-and" method of combining and- and or-parallelism
gave better or equal speedups as "no or-under-and". This shows that banning or-parallelism
inside and-parallelism is too drastic a restriction. The gain of reusing goals by "no or-under-and"
is insufficient to compénsate for the loss of parallelism. In fact, of the programs tested, only a
few were able to benefit from reusing goals, with atlas being the only one to gain significantly
(63.5% of all resolutions). This suggests tha t , in general, although there is or-parallelism inside
and-parallelism (otherwise "or-under-and" should be no worse than "no or-under-and"), not
much of it leads to success (as otherwise there should be more reused goals).

It seems that "or-under-and" is quite a good compromise method for combining and- and
or-parallelism - it avoids the complexities of allowing unrestricted or-parallelism under and-
parallelism with full reusage of goals, with hopefully small loss in speed by needing to recompute
the reused goals - note that some of this loss can be regained by the extra amount of parallelism.

In programs that contained both types of parallelism, we observed that in some cases the
speedup of "or-under-and" is greater than the product of the speedups of "and only" and "or
only". This is especially apparent in 4Queensl. To our knowledge, this "supermultiplicative"
effect was first reported by Fagin [8], and is at tr ibuted to the presence of various speedup tech-
niques in a program affecting independent parts of the program. In his case, it was due mainly
to the presence of intelligent backtracking. In our case, the effect is due to or-parallelism and in
dependent and-parallelism only. Furthermore, the extent of independence between the two types
of parallelism can be seen by observing the difference between the speedups obtained from "or-
under-and" and "no or-under-and" - this is because "no or-under-and" restricts or-parallelism
within and-parallelism, thus reducing the amount of available parallelism and speedup, so the
more independent the two forms of parallelism, the less the reduction in speedup of "no or-
under-and", and the closer it is to the "or-under-and" speedup.5 We observe that in programs
with two forms of parallelism, the smaller the difference between the two methods of combining
the parallelism, the more pronounced the supermultiplicative speedups are. This suggests that
the supermultiplicative speedup is indeed due to the forms of parallelism being independent of
each other.

5.4 More detai led look at the results

The summary tables are not sufficient to show some of the observations made during the study.
Some of these observations will be presented in this section, observations made in [19] will not
be repeated here.

• For both or-parallelism and independent and-parallelism, and also for the two methods
of combining them, the speedup diverges from the ideal 1-to-l speedup relatively quickly,
especially if overhead is considered (although this effect can of course be "pushed forward"
by increasing the sizes of the programs). We think this is due at least partly to the fact
that in many cases, especially for the larger, more realistic programs, the granularity of
the parallelism is very fine, and occurs in small "bursts". Figure 4 shows such an example.

• The speedups for "or-under-and" show that combining and- and or-parallelism can lead to
significant increase in performance if both types of parallelism are present in the program.

This holds if there is little or no reusage of goals in the "no or-under-and" method. This is indeed the case
as already discussed.

6

O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time from start (time units)

Figure 4: Execution profile for sim(spl), "or-under-and", no overhead

Examples of the speedups with the various types of parallelism are shown in figure 5. This
shows the speedups for 4Queensl and compiler(cpS). With no overheads, it can be seen
that the speedup from "or-under-and" is significantly higher than that obtained by other
means. The graphs show that the speedups with "or-under-and" continué to increase after
the other methods have flattened out; and this is most striking in ^Queensl, where the
or-parallelism does not overlap with the and-parallelism at all. The difference is all the
more remarkable as and-parallelism on its own gives a máximum speedup of about 1.2
only.

Figure 6 shows the execution profiles for 4Queensl under "or-under-and", "and only", and
"or only". This clearly shows that the and-parallelism occurs after the or-parallelism, and
in fact the main effect is to "fold" the or-parallel branches together, thus greatly increasing
the effectiveness of both forms of parallelism.

However, it should be noted that with overheads, the advantage of "or-under-and" de-
creases significantly, and in the case of compiler(cpS), and-parallelism on its own gave
better speedups beyond about 7 workers. The reason for this is that the or-parallelism in
this case, and and-parallelism in the case of ^Queensl, is very fine grained and is strongly
affected by the overheads. In general, though, we can say that combining or- and and-
parallelism does offer us the opportunity to increase speedups of programs significantly by
more effectively utilizing both forms of parallelism.

• Significant amounts of non-strict independent and-parallelism seem to exist in some pro
grams. boyer_nsi(2), exploiting non-strict independent and-parallelism, gave much bet
ter speedups than the boyer_si(2) running the same data with strict independent and-
parallelism. This simulation result was obtained before &-Prolog was operational, and
gave us confidence in the possibility of non-strict independent and-parallelism, confirmed
by actual &-Prolog speedups reported in [12]. tp was also found to contain non-strict in
dependent and-parallelism - what little independent and-parallelism that exists is almost
all non-strict.

• The amount of parallelism obtained can depend greatly on the particular problem being
solved. In some cases, the amount of parallelism depends on the size of the problem
(annotator is probably a good example of this). Some other programs are not very sensitive
to the problem size (e.g. sim - the and/or simulator). However, many programs have more
complex dependencies on the problem being solved.

¡3

0 0

0 10 20 30 40 50 60 70 80 90
Number of workers

Or-Only, 8 overhead/task
Or-Only, 0 overhead
And-Only, 8 overhead/task

O Or-Under-And, 0 overhead
Or-Under-And, 8 overhead/task
And-Only, 0 overhead

O, o

o, a
o
o

t
1)
1)
O,

t/3

1 °

I D

9

fC

A

o

0-
-Á

E—i—-E—i—3

> A ¿> Oi^jbi
j—u—c

E — E E — - E — E E — - "

0 6 8 10 12
Number of workers

14 16

- • - Or-Only, 8 overhead/task
-EE- Or-Only, 0 overhead
-++- And-Only, 8 overhead/task
o And-Only, 0 overhead

No Or-Under-And, 8 overhead/task
No Or-Under-And, 0 overhead
Or-Under-And, 8 overhead/task
Or-Under-And, 0 overhead

Figure 5: Speedups for 4Queensl and compüer (cp3)

For example, for orsim, or-parallelism in the simulated program can be mapped to real
independent and-parallelism in the simulator. Thus, orsim(spl), which is simulating nai've
reverse, a program with no or-parallelism, has very little speedup, whereas orsim(sp2),
which is simulating a small versión of the highly or-parallel atlas program, gave good
speedups. As another example, the amount of computation needed to compile the clauses
in compüer is very heavily dependent on the size of the clause. Parallelism arises from
clauses being compiled in parallel, so the best results are achieved with clauses of equal
sizes, as in compüer(cpS). When the compiler was run on other programs with greater

120
110
100

£ 90
(D

* 80
o
£ 70
'S 60

S 50

or-par only

1—'

1—1

1
h

10 15 20 25 30 35
Time from start (time units)

40 45

120
110
100

£ 90

•ií 80
o
•» 70
'S 60
S 50-

or-under-and

10 15 20 25 30 35
Time from start (time units)

40 45

6
J

^

0 J

1
1

1
1

1
1
1
1

and-only

1
|

1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500 550 600 650

Time from start (time units)

Figure 6: Execution profiles for 4Queensl under various parallel schemes

differences between clause sizes, the speedup was correspondingly lower: for example,
compiling a versión of the atlas benchmark with a small datábase took 105465 resolutions,
nearly 8 times longer than compiler(cpS), but the máximum speedup (for and-parallelism
only) is 2.09X only, versus 7.48X for compiler(cpS).

It is encouraging that a versión of the simulator itself was easily parallelizable. The simula
tor was originally written as a sequential Prolog application, without any notion of making
it parallelizable. Indeed, the simulator originally contained very little parallelism, and au-
tomatic annotation was not able to extract much parallelism. However, the simulator
that simulated or-parallelism was easily parallelizable by very slight modifications of the
program, resulting in a program with significant amounts of independent and-parallelism.
The and/or versión of the simulator, however, is not so easily parallelizable. We were fa
miliar with the simulator, which allowed us to see where it could be parallelised. Thus, it
seems that some programs, which may initially have little parallelism, can be parallelised
easily. It is still an open question as to how common this is.

The overhead in parallelizing the or-simulator is low - it contains just over 1% more uni-
fications than the original (33775 resolutions for the original or-parallel simulator, versus
34117 for orsim(sp2), simulating the same program), and part of this cost is due to the way
independent and-parallelism has to be expressed in the system we used, and this should
be avoidable.

6 Comparisons with real systems

Here we present the results from comparing the simulator with &-Prolog only, as some com-
parison of data from the simulator with an or-parallel system has already been published in
Szeredi's study of Aurora [20, table 2].

2
3
4
5

boyer_nsi(2)
Ac t .

1.88X
2.71X
3.40X
4.50X

Pre.(O)

1.97X
2.91X
3.76X
4.54X

P r e . (8)

1.94X
2.77X
3.49X
3.94X

o r s i m (s p l)
A c t .

1.09X
1.09X
1.08X
1.08X

Pre.(O)

1.14X
1.14X
1.14X
1.14X

P r e . (8)

1.14X
1.14X
1.14X
1.14X

o r s im(sp2)
A c t .

1.82X
2.60X
3.11X
3.84X

Pre.(O)

1.87X
2.69X
3.38X
3.76X

P r e . (8)

1.87X
2.67X
3.33X
3.72X

Figure 7: Comparison of actual and predicted speedup for a Sequent Balance

3
5
7

boyer_nsi(2)
Ac t .

1.73X
3.19X
3.78X

Pre.(O)

2.91X
4.54X
5.91X

P r e . (8)

2.77X
3.94X
4.88X

o r s i m (s p l)
A c t .

1.03X
1.04X
1.01X

Pre.(O)

1.14X
1.14X
1.14X

P r e . (8)

1.14X
1.14X
1.14X

o r s im(sp2)
A c t .

2.43X
2.60X
3.84X

Pre.(O)

2.69X
3.76X
5.36X

P r e . (8)

2.67X
3.72X
5.16X

Figure 8: Comparison of actual and predicted speedup for a Sequent Symmetry

Figures 7 and 8 show the comparison of results from the simulator with those of &-Prolog
running on a Sequent Balance and a Sequent Symmetry respectively. The benchmarks selected
for comparison have relatively low máximum ideal speedups (between 1.14 and 12.77), as this
would allow divergences from linear speedups to show up clearly with the limited number of
processors used in the comparison. The columns in the table have the following meaning:

Number of agents

A c t . The actual speedup of &-Prolog over the execution time on 1 agent. The fastest of 5
timing runs of the program is used to compute this speedup. The fastest time instead
of the average time is chosen because we are interested in comparing what &-Prolog is
capable of with the ideal speedup.

Pre.(O) Speedup predicted by simulator, assuming 0 units of overhead.

P r e . (8) Speedup predicted by simulator, assuming 8 units of overhead per task (4 each at start
and end of task).

The agreement between the simulator's result and actual speedups on a Balance is excellent.
The speedup for a Symmetry is consistently worse than that for a Balance. We believe that the
main reason for this is that the &-Prolog system was originally developed on a Balance and has
not been specially converted to run on a Symmetry.6

The relatively poor agreement between the results of the Symmetry and the simulator should
be seen in perspective: Using the criterion to classify the benchmarks in the study of Aurora
[20], then all the programs used in the comparison fall in "Group L", the "low speedup" group
of benchmarks. The agreement of Aurora with their Group L benchmarks is similar to the
agreement of &-Prolog on the Symmetry (the actual speed is between 79-91% of the predicted
speed (with overhead) for Aurora, and between 84-91% for &-Prolog). Considering that Aurora
is a more mature and tuned system than &-Prolog, we believe it is reasonable to expect &-Prolog
to be capable of extracting more of the inherent parallelism from programs (i.e. how cióse to

&-Prolog does achieve quite good speedups on the Symmetry for problems that have more inherent parallelism
than those used for this comparison [11].

the "ideal" figures of the simulator) than Aurora. We feel that a major reason for this is that
the scheduler for available work, a major source of overhead for Aurora, can be kept extremely
simple in &-Prolog.

7 Conclusión

We have studied the nature of or- and independent and-parallelism in Prolog programs. We find
that not many programs contain both forms of parallelism. Rather, programs tend to exhibit
one form of parallelism or the other. Thus, a system which exploits both forms of parallelism can
be expected to provide speedups for a quite greater range of programs than one which exploits
either form of parallelism on its own. We believe that the "or-under-and" method of combining
the two forms of parallelism is a good solution to the problems of combining the parallelism.
We are actively researching incorporating this method into a real implementation. From our
examples, and extrapolating the results we have for running realistic programs on small example
data to larger data, it seems reasonable to expect 10 to 100 fold speedups for realistic programs
running on realistic data.

However, with both forms of parallelism, there are still some programs that cannot be speeded
up. Notably, programs with dependent and-parallelism only, which is not considered in this
study. We are also examining ways to exploit dependent and-parallelism within the framework
of Prolog.

The simulator has provided us with valuable information on the nature of both independent
and- and or-parallelism, and it has allowed us to better understand the results from actual
implementations such as &-Prolog. For example, it allowed us to sensibly compare the results
obtained from &-Prolog to those from Aurora, running different benchmarks. We expect that
the simulator's results can also be applied to better understand other implementations.

References

[1] H. Alshawi and D. B. Moran. The Delphi Model and Some Preliminary Experiments. In
Proc. Fifth ICLP/SLP, 1988.

[2] U. Barón, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, J.-C. Syre,
and H. Westphal. The Parallel ECRC Prolog System PEPSys: An Overview and Evaluation
Results. In Proc. FGCS'88, 1988.

[3] P. Biswas, S. Su, and D. Yun. A Scalable Abstract Machine Model to Support Limited-OR
Restricted AND parallelism in Logic Programs. In Proc. Fifth ICLP/SLP, 1988.

[9

[10

[11

[12

[13

[14

[15

[16

[i?;

[18

[19

[20

[21

A. Ciepielewski, S. Haridi, and B. Hausman. Initial Evaluation of a Virtual Machine for
Or-Parallel Execution of Logic Programs. In IFIP-TC10 Working Conference on Fifth
Generation Computer Architecture, 1985.

J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs.
PhD thesis, University of California At Irvine, 1983. TR 204.

D. DeGroot. Restricted AND-Parallelism. In Proc. FGCS'84, 1984.

A. Delcher and S. Kasif. Some Results on the Complexity of Exploiting Dependency in
Parallel Logic Programs. J. of Logic Programming, 6(3), 1989.

B. S. Fagin. A Parallel Execution Model for Prolog. PhD thesis, U. of California at Berkeley,
Nov. 1987.

G. Gupta and B. Jayaraman. Combined And-Or Parallelism on Shared Memory Multipro-
cessors. In Proc. NACLP, 1989.

M. V. Hermenegildo. An Abstraed Machine Based Execution Model for Computer Architec-
ture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, U. of
Texas at Austin, August 1986.

M. V. Hermenegildo and K. J. Green. &-Prolog and its Performance: Exploiting Indepen-
dent And-Parallelism. In Proc. Seventh ICLP, 1990.

M. V. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In Proc.
Seventh ICLP, 1990.

L. Hirschman, W. C. Hopkins, and R. C. Smith. Or-Parallel Speed-Up in Natural Language
Processing: A Case Study. In Proc. Fifth ICLP/SLP, 1988.

Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory
Multiprocessor: A Summary of Results. In Proc. Fifth ICLP, 1988.

K. Muthukumar and M. V. Hermenegildo. The CDG, UDG, and MEL methods for Auto
matic Compile-time Parallelization of Logic Programs for Independent And-parallelism. In
Proc. Seventh ICLP, 1990.

B. Ramkumar and L. V. Kalé. Compiled Execution of the Reduce-OR Process Model on
Multiprocessors. In Proc. NACLP, 1989.

K. Shen. An Investigation of the Argonne Model of Or-Parallel Prolog. Master's thesis, U.
of Manchester, 1986. TR UMCS-87-1-1.

K. Shen. Studies of And /Or Parallelism in Prolog. PhD thesis in preparation, 1991.

K. Shen and D. H. D. Warren. A Simulation Study of the Argonne Model for Or-Parallel
Execution of Prolog. In Proc. Fourth SLP, 1987.

P. Szeredi. Performance Analysis of the Aurora Or-Parallel System. In Proc. NACLP, 1989.

E. Tick. Studies In Prolog Architectures. PhD thesis, Stanford University, Stanford, CA
94305, June 1987.

[22] P. Van Roy. A Prolog Compiler for the PLM. Master's thesis, U. of California at Berkeley,
1984. Technical Report UCB/CSD 84/203.

[23] D. H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog - Abstract Design
and Implementation Issues. In Proc. Fourth SLP, 1987.

[24] R. Warren, M. V. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Proc. Fifth ICLP/SLP, 1988.

15

