
Some Paradigms for Visualizing Parallel
Execution of Logic Programs
M. Carro
L. Gómez
M. Hermenegildo
{mcarro, lgomez, herme}@fi.upm.es
Facultad de Informática
Universidad Politécnica de Madrid (UPM)
Boadilla del Monte, Madrid 28660—Spain

Abstract

This paper addresses the design of visual paradigms for observing the parallel execution of logic
programs. First, an intuitive method is proposed for arriving at the design of a paradigm and
its implementation as a tool for a given model of parallelism. This method is based on step-
wise reñnement starting from the deñnition of basic notions such as events and observables and
some precedence relationships among events which hold for the given model of parallelism. The
method is then applied to several types of parallel execution models for logic programs (Or-
parallelism, Determinate Dependent And parallelism, Restricted And-parallelism) for which vi-
sualization paradigms are designed. Finally, VisAndOr, a tool which implements all of these
paradigms is presented, together with a discussion of its usefulness through examples.

1 Introduction

Writing programs for parallel hardware has traditionally been considered a difñcult task both
because of the intrinsic dimculty of having to coordinate several execution threads and because of
the need for considering the particular characteristics of the target machine which may also arise.
On the other hand, languages which are essentially declarative, and logic languages in particular,
offer great opportunities for transparently exploiting parallelism. Their well understood semantics
makes them more amenable to automatic parallelization than traditional imperative languages,
thus freeing the programmer from the error-prone task of data dependency analysis. One re-
maining problem, however, is that much of the complexity is transferred to the compiler or the
program evaluation system, whose implementation then becomes quite a challenge. Furthermore,
in practice, although programmers are certainly freed from worrying about low level issues, their
view may be so separated from the real execution that it may be difñcult for them to realize how
their program is behaving. It is our belief, and the thesis of this paper, that a clear and intuitive
graphical presentation of the actual parallel execution structure at a suitable level of abstraction
can greatly help both the implementor of logic programming systems and the user of such systems
to achieve better results in their tasks.

In this paper we will present an approach to the study of the run-time behavior of parallel logic
systems based on devising visualization paradigms which represent the execution of such systems.
The gap between the general characteristics of program execution in the parallel system under
study and the ñnal visualization paradigm used to represent it will be filled using a methodology
based on stepwise reñnement, which is sketched in Section 2. In Section 3 different visualization
paradigms will be devised in a natural fashion for a number of models of parallelism in logic
programs, based on the structure of the dependencies that hold for the execution represented. In
Section 4 VisAndOr, a tool implementing such paradigms, will be presented. Its features and use-

http://upm.es

fulness will be illustrated through examples. Section 5 presents some details of the implementation
of VisAndOr and Section 6 compares VisAndOr with other visualizations tools. Section 7 presents
additional uses beyond visualization of the approach presented. Finally, Section 8 presents our
conclusions and suggestions for future work.

2 Basic Notions and Methodology

In order to derive homogeneous visualization paradigms starting from the basic properties of
different execution models we propose the aforementioned use of a methodology loosely based on
stepwise reñnement.

We briefly introduce three basic notions for this purpose (since these concepts are quite prim-
itive, we will rely somewhat on the reader's intuition to avoid verbosity): An observable is any
generic characteristic of the system under study whose variation we want to track. An event is
a uniquely distinguishable instantiation of an observable in an execution. A trace is a collec-
tion of events which corresponds to a particular execution. Observables abstract out details of
concrete operations, and allow concentrating on characteristics predeñned as interesting for study.
Events usually include their type, which ñames the corresponding observable, and some additional
information, which distinguishes a particular event from other events of the same type. Such in-
formation may include for example time stamps, goal and agent2 identiñers, etc. In general it is
required that no two identical events can ever appear in the same execution. Also, we assume that
we are pursuing a static visualization of the whole execution (a dynamic visualization can be seen
as an incremental construction of a static one).

Once an execution model is chosen the ñrst step is to decide at what abstraction level the
model is to be visualized. This is done by deñning the observables and the information which
will be encoded in the events. Also, a notion of dependency among events is deñned. A graph
structure results from this dependency relation which is then used as the basis for developing the
visualization paradigm. Finally, common characteristics of the possible graph structures generated
should be identiñed and unifying principies found in order to devise a visualization paradigm. Such
a paradigm should be as simple, flexible, accurate, and intuitive as possible, reflect the structure
of the graph, and hopefully be homogeneous across execution models and types of parallelism. Of
course, the ñnal result can certainly only be satisfactory if the resulting visualizations prove to
be useful enough in practice for program development or system debugging, and this may require
several iterations through the paradigm design cycle.

Finally, some models can be seen as a combination of several individual models. A visualization
paradigm can often be derived in such cases by combining the corresponding individual visual­
ization paradigms in a way that mimics the combined execution model. Sometimes this is not
possible (properties of independence do not hold, or the graphical representation is not intuitive or
elegant). In these cases the problem has to be tackled from scratch as a whole, and perhaps even
different observables will have to be deñned in order to arrive at a satisfactory representation.

3 Visualization Paradigms

Our objective is to apply the methodology sketched in the preceding section and develop paradigms
for the visualization of parallel models for execution of logic programs. We will focus on the
visualization of Restricted And-parallelism (RAP) [DeG84, Her86], Or-parallelism [AK90b, Lus88,
CSW88, CA88] and Determínate Dependent And-parallelism (DDAP) [BHW88]. We are also
interested in visualizing combinations of these models.

2Throughout the paper we use the term "agent" (or worker) to refer to the process, normally mapped on an
agent, that is working on a task.

Observable
START_EXECUTION

END_EXECUTION

START_GOAL

FINISH.GOAL

SUSPEND

RESTART

FORK

JOIN

Comment
Start of the whole execution
End of the whole execution
The task (corresponding to a goal) starts
The task (corresponding to a goal) ends
A task is suspended
A task is restarted
Execution splits in two branches
Different branches join

Table 1: Common observables for parallel execution of logic programs

• ;(ql)

\ Start q

(q2) \ (q3)

ASta r tp2

Start pl Y IStart p3
^L Susp. p2 í

i R e s t . p2
JFimshpl () ÍFinishp3

-^Finish p2^

Finishq(l) Finishq(2) Finishq(3)

Start p3

Finish p3

Finishq(l) Finish q(2) Finish q(3)

- Start q

^Fork q

— Startpí

- Suspendp2

- Restartp2
- Finish p3

Figure 1: Dependency graphs for Or-parallelism and visualization

3.1 Common Design Concepts

Examples of common observables, aimed at studying the systems of interest under the viewpoint of
tasks rather than processes, are shown in Table 1. Given that our main interest is the visualization
of parallel execution, the set of observables has been chosen to abstract away detail in the sequential
parts. As additional characteristics to be visualized for particular execution models are identiñed,
new observables will be deñned. For brevity the presentation will be somewhat simpliñed w.r.t.
what is really present in the implementation described in Section 4 in terms of the number of
events and the information contení of the events.

With respect to the information contained in the events, since time is an important issue
in parallel execution, all events carry a time stamp corresponding to the time when the event
occurred. This induces a natural precedence relation among events. Other types of (causal)
dependencies are also present. For example, a goal can only start after its parent forks it. The
conceptual graph for each execution is naturally constructed using both the time precedence and
the other dependencies among events.

The visualization paradigms aim at effectively displaying the structure of the graph, as well
as some information associated with each event. Temporal precedence will be assigned to spatial
precedence in the vertical axis, so that the later an event is generated, the farther from the top it
will be placed3. Despite time being the main source of precedence, it is not the only coordínate
basis that we will use, as will be shown in Section 3.6. The information attached to the events
will be depicted in a number of ways: for example, a different color can be assigned to each agent
(or a label attached to the proper place in a monochrome display—e.g this paper).

3.2 Or—parallelism

Or-parallel execution corresponds to the parallel execution of different alternatives of a given
predicate. It is exploited, for example, in Muse [Kar92, AK90a], Aurora [Lus88, Car90] and the
Delphi system [CA88]. Since each alternative belongs conceptually to a different "universe", there
are (in principie) no dependencies among alternatives. However, dependencies do arise in real
systems due to the particular way in which common parts of alternatives are shared. Consider for
example the following program which has three alternatives for predicate p:

q:- p . P i : - . . .
p 2 : - . . .
p 3 : - . . .

A possible dependency graph is the one depicted in Figure 1 left: different alternatives are
represented by different universes. Note that p2 is suspended at some point and then restarted. In
fact, this suspensión is probably caused by pi, in the sense that p2 is waiting for some built-in to
be executed in pi. In this ñrst design we have chosen to abstract these other types of dependencies
away. Many practical models share computation up to the branch point (or copy what was done
before at that point). This situation is depicted in Figure 1, center, where a FORK has been
introduced, which explicitly shows the point where execution branches. One common important
feature of the dependency graphs of Or-parallel executions is that branches do not join. In terms
of dependencies among observables, FORKs do not need to be balanced by JOlNs. The resulting
graph is thus a tree.4

A visualization paradigm is shown in Figure 1, right. The nodes of the graph have been
replaced by segment starts and endings, marked with arrows in the figure.5 Edges of the graph are
represented by vertical and horizontal segments. As mentioned before actual time is represented
by the vertical axis. The point where the FORK happens is marked with a horizontal thin line,
whereas parallel tasks are represented as vertical lines. Each vertical thick segment represents
an agent working, whereas a vertical dotted line represents a task on which no agent is working.
Information associated to the events not explicitly shown in the graph is added as labels (and,
if on a color display, as colors). In this case, these labels are intended to mean the clause being
resolved in the branch and the agent working on it. These basic ideas will be retained throughout
the paper.

Real parallelism achieved can be seen simply by looking at the number of vertical thick lines
present at each vertical coordínate—which represents a point in time in the execution—whereas the
potential parallelism can be deduced from the total amount of vertical lines. Potential parallelism
not being exploited can also be detected. Task suspensión is represented by (dashed) interruptions
in the vertical thick lines.

3.3 Restricted And—parallelism

Restricted And-parallelism (RAP), as implemented for example by &-Prolog [HG90, HG91], refers
to the execution of independent goals in the body of a clause using a fork and join paradigm.6 In
this case data dependencies among the goals before and after the parallel execution and the goals
executed in parallel can exist. Consider the program below, where the "&" operator, in place of
the comma operator, stands for And-parallel execution:

3 This orientation was chosen instead of, for example, left—to—right orientation for similarity with the usual
drawings of the resolution trees.

4Although all—solutions predicates can be depicted using this paradigm, the resulting representation is not
natural. A visualization closer to what the user perceives for these predicates needs structures similar to that of
Restricted And—parallelism.

5 These arrows have been added for clariflcation, and are not part of the visualization paradigm, as we conceive
it.

6Non—restricted Independent And—parallelism allows execution structures which cannot be described by FORK—
JOIN events. Such structures are generated, for example, by Conery's or Lin and Kumar's models [Con83, LK88]
and by &—Prolog when wait is used.

Startr JStarts iStartq

Finish s /F in ish q

-* btartp

y Forkp

1

r

Start r

/
s

2

Finish r

/

2 Join p

Figure 2: Dependency graph for Restricted And-parallelism and its visualization

- Start master

yFork

- Start p

- Finish p

5 q

1 Join

Finish master

-Startp

Finish p

Start q

*- Finish q

*— Finish master

Figure 3: Determinate Dependent And-parallelism and two possible graphical representations

p : - a, q s , b .

A (simpliñed) dependency graph for this program is depicted in Figure 2, left. In the RAP model
there is a JOIN corresponding to each FORK (failures are not seen at this level of abstraction),
and FORKS are followed by START_GOALs of the tasks originated. In turn, JOlNs are preceded
by FINISH-GOALS. In the case of nested FORKs, the corresponding JOlNs must appear in reverse
order to that of the FORKs. The START_GOAL and FINISH.GOAL events (note that ñnish can also
be caused by ultimate goal failure) must appear balanced by pairs. Under these conditions, the
RAP execution can be depicted by a directed acyclic planar graph, where And-parallel executions
appear nested.

A possible visualization paradigm for RAP is shown in Figure 2, right. JOIN and FORK events
are depicted as horizontal thin lines. The rest of the information is common with the paradigm
for Or-parallelism.

3.4 Determinate Dependent And-parallelism
Determinate Dependent And-parallelism (DDAP) performs parallel execution when goals are de-
tected to be determinate at run-time. There is a special agent, called the master, which is in
charge of performing non-deterministic work. When deterministic work becomes available a num-
ber of other agents, the slaves, perform it in parallel. Two new observables are deñned in order
to notify the start and ñnish of a slave: START_SLAVE and FINISH_SLAVE.

The dependencies are different from those found in RAP: only one global fork is done, split-
ting from the master, regardless of whether there is And-parallel work available or not. In the
determínate phase of the execution the master works with the slaves performing determínate re-
ductions, and in the nondeterminate phase the master (alone) does nondeterminate reductions.
START_GOAL/FINISH_GOAL events, issued by the slaves, reflect the state of each slave. A depen-
dency graph corresponding to a possible execution is given in Figure 3, left.

Quite a number of visualization paradigms can be chosen for DDAP. A possible one is that
illustrated in Figure 3, middle, in which slaves fork from the master and wait (dashed lines) for
determínate work to be available. As soon as a slave starts working on a task, it becomes a solid
thick line. When the task is ñnished, the slave becomes idle again. This has the advantage of
showing every agent even if no work is being performed by it. This process-oriented representation
is very similar to the traditional agent occupation charts, but it is . An alternative, task-oriented
representation, which appears to be more useful in practice, is to depict the master as a thick
vertical line and make slaves appear to split from it when determínate reductions are performed.
Apart from producing a less crowded picture an additional reason for this choice will become
clear in Section 3.5 since it is related to the visualization of the combination of DDAP with
Or-parallelism.

3.5 Combinations of the Previous Types of Parallelism

Combinations of the previous schemes are possible. We will mention two of them. Or-parallelism
can be combined with DDAP as in Andorra-I [SCWY91], where Or-parallelism is not allowed un-
der DDAP. Several master-slave teams are formed which independently work on different branches.
The resulting graph is merely a tree of DDAP graphs, each of its branches being a sepárate uni-
verse. A similar scheme to that of Section 3.2 can be used for the Or-parallel part. Since various
masters exist, the JOIN and FORK events must include information about their identity.

If visualization were performed by combining the fork approach for Or-parallelism (Figure 1,
middle) and the global fork approach (Figure 3, middle) a tree of processor occupation charts
would be obtained. But this visualization scheme is weak if slaves are allowed to migrate from
a team to another team, because all slaves would, in principie, belong to every team. A good
compromise would be to show only the slaves which are effectively working in a team—and this
is what Figure 3, right, shows. Thus, we propose a combination of Figure 3, right and Figure 1,
middle.

Combining RAP with Or-parallelism is somewhat more tricky. AND_FORKS need to be distin-
guished from OR_FORKS. Allowing And-parallelism under Or-parallelism is not (conceptually) a
problem, since each Or branch represents a sepárate universe in which And-parallelism evolves
independently. The converse situation is more complicated: allowing Or-parallelism inside And-
parallelism means that múltiple Or branches belonging to different And-parallel goals have to be
joined. This leads, in general, to a lattice structure which is not easy to visualize in an intuitive
manner. However this lattice structure can be transformed to a tree by taking a "recomputation"
view of execution, as presented in [GH92].

3.6 Events vs. Time

In the previous sections we have often assumed the vertical axis to represent time. This is useful
for many purposes. However, we have also found it very useful to enumérate sequentially the
events, respecting their precedence in time, and use this number as the vertical coordínate. This
gives a different, interesting view, which is very helpful in the cases in which the structure of the
execution is more important than its duration, because in this view fragments of the execution
which have high activity in a short time are given more relevance that long periods of sequential
execution.

4 From the Paradigm to the Tool: Examples
In this section we present VisAndOr, a tool which implements (an extensión of) the visualization
paradigms of the preceding sections.

4.1 VisAndOr General Features

VisAndOr shows statically the whole parallel execution of a logic program in a single window.
Most of the paradigms presented are supported simultaneously through a uniform interface. The
VisAndOr general layout is the same for all the visualization paradigms. VisAndOr also incor-
porates a good number of additional features beyond the simple paradigms proposed which are
of much help in practice. VisAndOr reads event ñles which have previously been dumped by the
system under study.7 Figure 9, left, shows a window dump of the current versión of VisAndOr
and can be used for reference throughout this section.8

The topmost área of VisAndOr holds the menus, the messages and the dialog boxes. A small
window at the right always shows the whole execution. The bottommost área shows the type of
parallelism being depicted and the ñame of the current trace ñle. The central part of VisAndOr
shows the (selected part of the) execution. Time or events can be chosen as vertical measurement
units. When a trace is loaded VisAndOr scales the execution to exactly ñt the central part of the
screen. In the case of complex executions, condensation is thus automatically performed by the
screen resolution limitations — in fact, this is what happens, for example, in the small window at
the top right córner. The scaling mentioned above can be disabled so that the time scale active
before loading the trace remains active. This can be used to compare different executions.

Time or events can be measured accurately with the help of the mouse, simply by clicking
and dragging to select a rectangle. The instant corresponding to the uppermost and bottommost
edges of the rectangle, as well as the difference between them (measured in actual time or number
of events), is shown over the menus. This rectangle, which also appears in the small window, can
optionally be zoomed out to perform detailed analysis of the execution (Figure 5). When such a
zoom is actually performed, slide bars appear surrounding the central window. Then, navigation
through the picture can be accomplished using the slide bars or, alternatively, dragging the rect­
angle in the small window. The central window immediately responds, showing the corresponding
part of the execution at the current zoom level.

VisAndOr can place icons at interesting points in the execution to give additional information
about events (Figure 5): for example, success or failure of a branch in an Or-parallel execution. In
a color display each agent is depicted in a different color. This helps to appreciate how scheduling
has been performed: when scheduling favors locality in the search tree, the trace tends to have
unevenly distributed colors; this is usually a better scheduling policy. Colors uniformly spread all
around the execution mean the opposite situation. As suggested before (Section 3.1), to perform
a more detailed analysis, stack set and agent identiñers can be attached to each sequential task,
so that it is possible to follow their history throughout the execution9. As an additional help to
perform scheduling analysis, a single agent's life-line can be highlighted.

The window can be dumped in PostScript format within VisAndOr either to a ñle or to a
printer. VisAndOr can also genérate idraw-compliant PostScript for the pictures being drawn.

VisAndOr is currently interfaced with the Or-parallel systems Aurora and Muse, with the In-
dependent And-parallel system &-Prolog and with the Determínate Dependent And+Or-parallel
system Andorra-I. All these systems can genérate traces which VisAndOr is able to understand.

7In general the events are generated at a low level, so that the programs to be traced do not need to be rewritten
in any way. However, the design of VisAndOr poses no restrictions on how the traces are to be generated—i.e. they
could be also generated using for example a meta—interpreter or a simulator.

8 The horizontal thick line in the middle can be ignored since its meaning is totally local to the topic addressed
in that picture.

9Allowing the sepárate study of stack sets versus agents is mandatory in execution models where they are not
intimately related.

Figure 4: A simple
Muse trace

Figure 5: Aurora trace and zoom

Í

Figure 6: A simple Muse trace Figure 7: Aurora trace

4.2 VisAndOr by Example

Figure 6 shows a simple Muse trace. Time is being used as measurement unit. Branches suspensión
and resuming are shown as dotted vertical lines interrupting thick vertical lines, as stated in the
paradigm design. There are also delays in the starting of some branches, which can be attributed
(since no more information is available) to scheduling duties or perhaps to the need of waiting
for built-ins in branches at the left. Another possibility is that no resources (processors) are
available at this moment. This is not the case, quite obviously, but in more complicated executions
realizing this is difficult. Assigning a different color to each processor greatly helps detecting such
phenomena.

Figure 7 shows the visual representation of a somewhat intricate Aurora execution. Even
without the actual program code, it is straightforward to realize that there are three Or-parallel
branches which dominate the execution. In this ñgure, a dashed rectangle selects a part of the
execution. This part is blown up in Figure 8. Slide bars, which can be used to navigate through
the execution, appear surrounding the execution. Icons mark points where goals are made public
for parallel execution, start and ñnish with success10.

VisAndOr has been successfully interfaced with another tool based on the notion of event:
the Muse Trace Tool (MUST) [SS90]. MUST has been constructed along the lines of the original
WAM-Trace tool [DL87] developed at Argonne National Labs in the context of Aurora. MUST
shows snapshots of Muse executions as well as animations of such executions. The tree shown by
MUST corresponds to the actual path being explored in parallel (thus it shows subgraphs of the
whole graph represented by VisAndOr), and contains information about the state of each worker.

1 0In fact, only success icons appear in Muse and Aurora traces, since the events are issued by the scheduler,
which is unaware of whether a given goal failed or succeeded.

t----t.^-l

?U
- U u

- r ~ l
i ;

*Ui

í i * i

Figure 8: Zoom of Aurora trace

\-j visandor

|| F i l e CPU Zoom Workers Icono 1,1. ..i

j

" i l
• L ; .-,-—

' í.
1 „ . L _ >

'•K í

"i.

V K W Í :

¡ Scal ing P r i n t Quit |

i
J "

-,

' " r : ' i
' . i ;

| fm.8.vt | | OR-Parallelism |

~* , "~|

J>& S i ^) i »)

Q

- Ü L t i *

»

<

»,..,

1
!L

ÍH
í p

Figure 9: ViMust: Must and VisAndOr working together

VisAndOr and MUST can work together through a "standard input-output" based protocol which
allows each one to send messages to the other asynchronously. VisAndOr indicates the point
displayed by MUST with a horizontal line and answers to the messages sent by MUST to move
the line. Conversely, the bar can be moved from VisAndOr with the mouse, and MUST receives
the appropriate message to show a snapshot of the execution as required. Figure 9 is a snapshot
of the resulting tool which has shown to be of great use at SICS. The resulting system has been
given the ñame of ViMust. This is an example of how the use of events as an interface effectively
helps integration of tools and the study of remote systems: Must traces were completely different
from VisAndOr traces, and were translated to the desired format by a simple program.

Figure 10: Restricted And-parallelism: sequential and parallel execution

i

r

%

J¿

'fe

r ^
w

Figure 11: Restricted And-parallelism: nested structure and difierent scheduling policies

In Figure 10 simple traces of a predicate with a three-branched And FORK are shown. The
leftmost picture represents the predicate executed in one agent, but scheduled for parallel execu­
tion. Only one task is active at a t ime: there is only one thick line at each vertical coordínate.
The ñgure in the middle corresponds to the same program, but executed on three agents; the t ime
scale of the leftmost picture has been retained, so tha t the beneñts of parallel execution in terms of
t ime can be easily seen. Each task has a different scheduling t ime, as shown by the different length
of the dotted vertical segments right below the FORK segment. The rightmost ñgure represents an
ideal execution of this program, where scheduling delays have been dropped away to zero1 1 .

[FCH92].
Figure 11 shows a 4x4 matrix multiplication, in one agent (leftmost picture) and four agents

(middle and rightmost pictures). The recursive clauses with And-parallelism of the actual & -
Prolog code look like this:

m a t r i x m a t r i x ([V e c t o r 1 | M a t r i x l] , M a t r i x 2 , [V e c t o r 3 | M a t r i x 3]) : -
m a t r i x v e c t o r (M a t r i x 2 , V e c t o r 1 , Vec tor3) &
m a t r i x m a t r i x (M a t r i x l , M a t r i x 2 , M a t r i x 3) .

m a t r i x v e c t o r ([V e c t o r 1 | M a t r i x l] , V e c t o r 2 , [S c a l a r | V e c t o r 3]) : -
v e c t o r v e c t o r (V e c t o r 1 , V e c t o r 2 , S c a l a r) &
m a t r i x v e c t o r (M a t r i x l , V e c t o r 2 , V e c t o r 3) .

The vector by vector scalar multiplication has been performed sequentially—a sort of granular-
ity control. This example will show how scheduling can be studied with VisAndOr. The leftmost
picture has been executed in only one agent; the structure is clearly visible. The picture in the
middle shows the same program, executed in four agents. Since the m a t r i x _ v e c t o r / 3 goals are

1 1 This trace was automatically obtained using the IDRA tool.

Figure 12: Restricted And-parallelism visualization: granularity control

Figure 13: Quicksort, on 1 and 4 processors

executed in a stack set different than the one they were created in (matrix_vector/3 goals are
created from left to right, as recursive goals are picked up), we can infer that recursion steps are,
in this example, executed by different agents. A better scheduling, in which the agent which is
executing a clause also picks up the recursive goal, is shown in the rightmost picture. This last
execution runs about three times as faster as the sequential one. An utopian execution would
achieve a speedup of four, but there are clearly visible sequential delays, imposed by schedul­
ing and recursion steps, which impede this performance. A programmer debugging and tuning a
scheduler would greatly appreciate this kind of feedback, which shows a high-level intuitive view of
the dynamic nature of scheduling, abstracting the concrete algorithm to concéntrate on its actual
behavior.

Figure 12 shows executions of the the well-known fibonacci program in three different situa-
tions. From left to right, in only one agent, on eight agents without granularity control, and in
eight agents with granularity control. This ñgure shows the tremendous impact of (a) parallel
execution, and (b) granularity control. Whereas in the leftmost ñgure there is only one sequen­
tial execution thread, the ñgure in the middle shows various (up to eight) parallel tasks, but the
visualization is somewhat confuse, tending to fractal12.

This sort of executions can be cleaned up by means of granularity analysis, which tries to ñnd
out when parallel execution is not desirable, because scheduling costs would be bigger than the
performance gained. Granularity analysis' target is to ñnd the point where sequential execution is
cheaper. By adding granularity control, so that small tasks are not scheduled for parallel execution,
a remarkable speedup is obtained in Figure 12, right, with respect to the naí've parallel execution.
The structure of the granularity-controlled program is much more clear than the previous one, and
its execution is about twice as fast. This is a very easy example. In more complicated examples,
it is difficult to perceive the impact of granularity parameters, and visualization is of much help
to understand the interrelations of the different parts of the programs and their actual relative

! & > • • :taH"tei-
3sr

Figure 14: Andorra-I trace Figure 15: Time versus events in Andorra-I

weight in the whole execution.
Figure 13 shows two executions of the quicksort program: on one processor, at left, and on four

processors, at right. Apart from the speedup obtained by parallel execution, the fractal layout
is evident in this example. It is interesting to compare the fibonacci and quicksort executions.
Both two have repetitive patterns, but the source is somewhat different. fibonacci executions
show mainly the structure of the algorithm, which is similar to quicksort in that a given problem
is reduced to two simpler problems. But quicksort is completely data-driven, and its trace really
reflects the initial data distribution13.

Figure 14, shows a simple Andorra-I trace. At the top the execution split in two Or-parallel
branches; one of them has, in turn, Determínate Dependent And work and more Or-parallelism
after this work is ñnished. The other branch corresponds to a sequential execution. Or-parallel
tasks' birth is easy to appreciate, as well as waiting times before actual work. As mentioned before,
two-level scheduling in Andorra-I can be visualized with VisAndOr by the colors mechanism and
slaves visualization paradigm. The VisAndOr visualization paradigm can be used to understand
intuitively the impact of checking determinacy conditions at run-time (as Andorra-I does): events
could be associated with the start and end of this checking and signaled, for example, with
icons. Its relative importance (in terms of execution time) versus the parallelism achieved can
be evaluated by simply having a look at the pictures.

Figure 15 shows two views of the same execution. The leftmost one corresponds to the visión in
the time space, whereas the rightmost one corresponds to the same execution in the events space.
Valuable details about the structure of the execution which were previously hidden appear now:
short executions with high parallel activity are now given more relé vanee than before, so allowing
potential scheduling/correetness problems which otherwise would be very difficult to appreciate
to be perceived.

5 Implementation Details and Related Problems

VisAndOr is written in C and runs under the X-Window environment. It has been constructed
using the Xt library and Athena Widgets. They have been found to be useful, but sometimes
the lack of flexibility when deñning graphical objects became a problem. The inner structure is
quite modular. Each feature is accessed through a cali back routine activated by the corresponding
button or menú item. The execution events are internally stored in a virtual space which is mapped
to the real screen when a change of scale or representation units is requested. This can lead to
problems when zooming small regions, due to the lack of virtual memory in some X-Window
servers.

12 The fractal layout is a characteristic of many RAP programs, due to the recursive character of Prolog execution.
Considerations of space do not allow us to show more elaborated examples.

13 Of course, modulo scheduling—we can assume that an unbound number of processors are available.

One problem which was identiñed in previous versions of VisAndOr was that the algorithm to
assign the space for the different branches exhausted the numerical accuracy of the computer. Of
course, this happened in branches that were already indistinguishable in the screen. But errors
could in some cases be carried up to higher levéis, giving a wrong appearance to the whole picture.
A possible solution could have been to give up computing when the branches were too near to be
separated in the screen. This was not a good solution, since, on one hand, we wanted the algorithm
to work in a virtual, unlimited space, unaware of the screen's resolution, and, on the other hand,
this would finally fail if a zoom were requested. A solution based on infinite precisión arithmetic
was discarded as too computationally expensive. Fortunately, a quick algorithm which did not
employ at all floating point arithmetic was devised and implemented, which allow us to study
traces much more complex than it had been possible previously, so assessing the efiectiveness of
the tool in real cases.

The difficulty of adapting the emulators and schedulers to dump traces is not, in general, very
high, although in some systems, accurate measurements of time became a problem. In particular
the &-Prolog implementation on Sun Sparc posed a problem which can also happen in other
architectures. Time has to be consulted when an event is to be recorded. Unlike machines like
the Sequent Balance, in which the time is stored in a memory position, so that consulting it was
very quick, Sun OS needs a system cali to be performed. This system cali could take a sizable
proportion of the total process time, thus seriously impacting time stamps accuracy. This effect
was balanced by taking into account how long each system cali lasted and subtracting it from the
actual time. Time stamps always refer to "wall clock" time, since process time cannot be used to
establish a precedence among events generated by different parallel processes.

6 VisAndOr and other related Visualization Tools

The Transparent Prolog Machine [EB88] is an interpreter which displays a running trace of a
sequential execution of a program, with a pedagogical orientation. No program transformation is
needed, and it has many good details, such as being able to show coarse-grained or fine-grained
views, and having a good treatment of meta-predicates. This, together with a careful graphic
design, makes it a very good tool to understand and study the sequential Prolog execution model.

The ParaGraph tool14 by Aikawa et al. [AKK+92] is aimed at tuning the Parallel Inference
Machine (PIM) [GSN+88]. It is aimed to perform low-level (processor-oriented) and high-level
(goal-oriented) profiling. ParaGraph gathers data during program execution using primitives of
the KL1 [UC91] language. It is not a general purpose tool, but rather a highly machine and
language dependent tool.

The WAMTrace tool [DL87] is a visualization tool for Or parallel full Prolog, originally written
for ANLWAM, and later used for Aurora. This tool shows an animation of the parallel search tree,
with different icons being extensively used to reflect different workers' states and node types. The
main difference with VisAndOris that VisAndOroffers a static and much more schematic view,
conveying the whole execution. A similar viewpoint is offered by MUST. The extensively use
of animated icons provide a dynamic stream information; this approach could be of interest to
represent suspensión in DAP and in Constraint Logic Languages.

Finally, the VISTA tool [Tic92] intends to give effective visual feedback to a programmer tuning
concurrent logics programs. The program's logical procedure-invocation is displayed radially from
the root with explicit condensation (if this is needed). The drawings obtained with VISTA have
the peculiar shape of a snail shell, due to the mapping of the (parallel) search tree into a polar
coordínate system. This system, which represents Deterministic Dependent And-parallelism, is,
in some ways, similar to VisAndOr's forerunner, VisiPal[HN90].

1 4There are two different visualization tools with the same ñame: the one we are currently referring to and the
ParaGraph tool by Heath and Etheridge, described in [HE91], which are very different and must not be confused.

7 Beyond visualization
Visualization is not the only topic in which the event driven scheme is useful. Dumping data
tailored to different needs is a flexible way of interfacing tools with engines, each tool possibly
assigning a different semantics to the same set of events.

The interface between the engine being traced and the tool, dictated by the format of the
events, allows event ñles to be generated remotely or transformed to simúlate special execution
conditions.

As an example, the events currently recorded for VisAndOr can be directly used for purposes
other than visualization. IDRA, a tool already developed in our working group uses as input
the same traces that VisAndOr does, but with a different purpose. IDRA ñnds out the optimal
agent allocation and the corresponding speedup for a given parallel execution and a given number
of agents. A new trace corresponding to that scheduling can be generated, which can in turn be
visualized with VisAndOr. The speedup obtained with this trace, compared with the one obtained
in a real parallel system, is a valuable indication of the quality of the actual scheduling algorithm.

VisAndOr and IDRA are two examples of a more general approach to the design of tools and
interfaces, in which it is decided which part of a system is interesting to study. This part can be
seen as a partial machine, being its behavior modeled with primitives which would correspond to
the observables we have presented as the basis for our visualization paradigm. Giving different
semantics to these events, different abstract machines are generated which give us different views
of the same partial machine.

8 Conclusions and Future Work

We have reported on a tool, VisAndOr, aimed at depicting the parallel execution of logic programs.
The tool's visualization paradigm has been developed following a methodology which starts by
determining at what level we want to visualize the model, what the basic elements are at this level,
and which dependencies hold among them. The tool has been interfaced with a few implemen-
tations of parallel logic processing paradigms, currently &-Prolog, Aurora, Muse and Andorra-I,
and it is being actively used at Bristol, SICS and Madrid. It has been reported its usefulness
as debugging and tuning tool for parallel logic systems. The top-down approach followed in the
design of the visualization paradigm makes the tool homogeneous in the representation and in
the user interface. The interface with the execution platform is formally deñned up to the point
of being comparable to an abstract machine's language, so that different semantics can be used
to highlight different characteristics or to transform the execution skeleton to simúlate different
environments. This is important, because it allows to easily extend and adapt the tool to visual­
ize different paradigms and to easily interface it with other different tools designed under similar
principies. This has been done, and the resulting tools improved their usefulness.

Our future work will follow two different but complementary directions: on one hand, the
implementation of the tool is to be improved with new additional features which do not require
designing new paradigms, in the style of the ParaGraph tool [HE91] (processor utilization, real
parallelism achieved versus potential parallelism present...). On the other hand, new conceptual
representations will be designed to support several other forms of parallelism and their combi-
nations. A 3-D representation for Independent And+Or-parallelism is under study. Dependent
And-parallel execution models need the producer-consumer relation and the suspensión of goals
to be visualized in a clear manner; this is an issue in which much can still be done.

References
[AK90a] K. A. M. Ali and R. Karlsson. Full Prolog and Scheduling Or-parallelism in Muse. International

Journal of Parallel Programming, 1990. Vol. 19, No. 6, pp. 445-475.

[AK90b] K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Performance. In
1990 North American Conference on Logic Programming, pages 757-776. MIT Press, October
1990.

[AKK+92] Seiichi Aikawa, Mayumi Kamiko, Hideyuki Kubo, Fumiko Matsuzawa, and Takashi
Chikayama. Paragraph: A Graphical Tuning Tool for Multiprocessor Systems. In Proceedings
of the Intl. Conf. on Fifth Generation Computer Systems, pages 286-293. Tokio, ICOT, June
1992.

[BHW88] P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog—The Language and Application in
Distributed Simulation. In International Conference on Fifth Generation Computer Systems.
Tokyo, November 1988.

[CA88] William F. Clocksin and H. Alshawi. A Method for Efñciently Executing Horn Clause Programs
Using Múltiple Processors. New Generation Computing, 5 (4): 361-376, 1988.

[Car90] M. Carlsson. Design an Implementation of an OR-Parallel Prolog Engine. PhD thesis, SICS
and the Royal Institute of Technology, S-164 28 Kista, Sweden, March 1990.

[Con83] J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Programs. PhD
thesis, The University of California At Irvine, 1983. Technical Report 204.

[CSW88] J. Chassin, J. Syre, and H. Westphal. Implementation of a Parallel Prolog System on a
Commercial Multiprocessor. In Proceedings of Ecai, pages 278-283, August 1988.

[DeG84] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation
Computer Systems, pages 471-478. Tokyo, November 1984.

[DL87] T. Disz and E. Lusk. A Graphical Tool for Observing the Behavior of Parallel Logic Programs.
In Proceedings of the 1987 Symposium on Logic Programming, pages 46-53. IEEE Computer
Society Press, 1987.

[EB88] M. Eisenstadt and M. Brayshaw. The Transparent Prolog Machine (TPM): An Execution
Model and Graphical Debugger for Logic Programming. Journal of Logic Programming, 5(4),
1988.

[FCH92] M. Fernández, M. Carro, and M. Hermenegildo. IDRA (IDeal Resource Allocation): A Tool for
Computing Ideal Speedups. Technical Report FIM26.3/AI/92, School of Computer Science,
Technical University of Madrid, September 1992. Presented at the ICLP'94 Post Conference
Workshop on Parallel and Data Parallel Execution of Logic Programs.

[GH92] G. Gupta and M. Hermenegildo. Recomputation based Implementation of And-Or Parallel
Prolog. In Proc. of the 1992 International Conference on Fifth Generation Computer Systems,
pages 770-782. Institute for New Generation Computer Technology (ICOT), June 1992.

[GSN+88] A. Goto, M. Sato, N. Nakajima, K. Taki, and A. Matsumoto. Overview of the Parallel Inference
Machine (PIM). In International Conference on Fifth Generation Computer Systems. ICOT,
1988.

[HE91] M. T. Heath and J. A. Etheridge. Visualizing the Performance of Parallel Programs. IEEE
Software, pages 29-39, September 1991.

[Her86] M. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture
Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, Dept. of
Electrical and Computer Engineering (Dept. of Computer Science TR-86-20), University of
Texas at Austin, Austin, Texas 78712, August 1986.

[HG90] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent
And-Parallelism. In 1990 International Conference on Logic Programming, pages 253-268.
MIT Press, June 1990.

[HG91] M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

[HN90] M. Hermenegildo and R. I. Nasr. A Tool for Visualizing Independent And-parallelism in Logic
Programs. Technical Report CLIP1/90.0, T.U. of Madrid (UPM), Facultad Informática UPM,
28660-Boadilla del Monte, Madrid-Spain, 1990. Presented at the NACLP-90 Workshop on
Parallel Logic Programming, Austin, TX.

[Kar92] R. Karlsson. A High Performance OR-Parallel Prolog System. PhD thesis, SICS and the Royal
Institute of Technology, S-164 28 Kista, Sweden, March 1992.

[LK88] Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory
Multiprocessor: A Summary of Results. In Fifth International Conference and Symposium on
Logic Programming, pages 1123-1141. MIT Press, August 1988.

[Lus88] E. Lusk et al. The Aurora Or-Parallel Prolog System. In International Conference on Fifth
Generation Computer Systems. Tokyo, November 1988.

[SCWY91] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-parallelism. In Proceedings of the 3rd. ACM SIG-
PLAN Symposium on Principies and Practice of Parallel Programming PPOPP, pages 83-93.
ACM, April 1991. SIGPLAN Notices vol 26(7), July 1991.

[SS90] J. Sundberg and C. Svensson. MUSE TRACE: A Graphic Tracer for OR-Parallel Prolog.
Technical Report T90003, SICS, 1990.

[Tic92] Evan Tick. Visualizing Parallel Logic Programming with VISTA. In International Conference
on Fifth Generation Computer Systems, pages 934-942. Tokio, ICOT, June 1992.

[UC91] K. Ueda and T. Chikayama. Design of the Kernel Language for the Parallel Inference Machine.
The Computer Journal, December 1991.

