
Automatic Exploitation of Non-Determinate Independent
And-Parallelism in the Basic Andorra Model

M.Olmedilla, F. Bueno, and M. Hermenegildo
{moa, bueno, herme}@fi. upm.es
Facultad de Informática
Universidad Politécnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - SPAIN

Andorra-I is the first implementation of a language based on the Andorra Principie,
which states that determínate goals can (and should) be run before other goals, and even
in a parallel fashion. This principie has materialized in a framework called the Basic
Andorra model, which allows or-parallelism as well as (dependent) and-parallelism for
determínate goals. In this report we show that it is possible to further extend this
model in order to allow general independent and-parallelism for nondeterminate goals,
withont greatly modifying the nnderlying implementation machinery. A simple an
easy way to realize snch an extensión is to make each (nondeterminate) independent
goal determínate, by nsing a special "bagof" constract. We also show that this can
be achieved antomatically by compile-time translation from original Prolog programs.
A transformation that fulfüls this objective and which can be easily antomated is
presented in this report.

Keywords: langnage constrncts, programming environments, formal program de-
velopment methodologies, implementation issnes, evalnation, simulation and bench-
marking.

Corresponding author:
Manuel Hermenegildo
Facultad de Informática
Universidad Politécnica de Madrid
28660-Boadilla del Monte, Madrid
SPAIN

Telephone: +341-336-7435
Email: hermeOf i . upm. es
FAX: +341-352-4819

http://upm.es

Automatic Exploitation of Non-Determinate Independent
And-Parallelism in the Basic Andorra Model2

M.Olmedilla, F. Bueno, and M. Hermenegildo
{moa, bueno, herme}@fi. upm.es
Facultad de Informática
Universidad Politécnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - SPAIN

Andorra-I is the first implementation of a language based on the Andorra Principie,
which states that determinate goals can (and shonld) be run before other goals, and even
in a parallel fashion. This principie has materialized in a framework called the Basic
Andorra model, which allows or-parallelism as well as (dependent) and-parallelism for
determinate goals. In this report we show that it is possible to further extend this
model in order to allow general independent and-parallelism for nondeterminate goals,
withont greatly modifying the underlying implementation machinery. A simple an
easy way to realize such an extensión is to make each (nondeterminate) independent
goal determinate, by using a special "bagof" constract. We also show that this can
be achieved antomatically by compile-time translation from original Prolog programs.
A transformation that fulfüls this objective and which can be easily antomated is
presented in this report.

Keywords: language constructs, programming environments, formal program de-
velopment methodologies, implementation issues, evaluation, simulation and bench-
marking.

1 Introduction

The Andorra proposal in [War88] (now being called the "Andorra Principie") pointed
out that advantage could be taken of the execution of determinate goals ahead of their
standard execution "turn." A goal is determinate if it can be determined that only one
clause in the predicate definition will match with it [SCWY90]. The execution of deter-

http://upm.es

minate goals has the very desirable properties of allowing to maintain a unique brancli
of computation, avoiding tlie complexity wliicli is inlierent to Prolog non-determinism
(i.e. clioice-points). Furthermore, tlie execution of determínate goals can further reduce
the search space of other goals, and even make them become also determínate.

In addition, the Andorra proposal also defined a framework which allowed or-par-
allelism and also the and-parallel execution of determínate goals (determínate, or
deterministic "stream and-parallelism"). This has been known as the Basic An­
dorra model, and is the basis for the Andorra-I language and system implementation
[SCWY91b, SCWY91a], It supports or-parallelism and also dependent and-parallelism
for determínate goals, which gives rise to an implicit coroutining which resembles that
of flat committed-choice languages.

Another and complementary way of achieving parallel execution which has also been
identified [HR89, HR90] is to also run in parallel nondeterminate goals, but provided
(or while) they are independent ("independent and-parallelism" -IAP). The execution
of independent goals in parallel has the very desirable properties of preserving the
program complexity perceived by the programmer [HR89]. One way to also include this
type of parallelism is to further extend the above mentioned framework, giving rise to
new models incorporating all of these types of parallelism, e.g. the Extended Andorra
Model (EAM) [War90, HJ90], IDIOM [GSCYH91], etc. However, this requires the
implementation of complex execution models. In this report we present an alternative
which makes use of the existing implementation of the Basic Andorra model, throughout
a technique for transformation of Prolog programs into programs that can be run in
Andorra-I. This transformation allows the Andorra-I system to exploit either parallel
execution of determínate goals, even if they are dependent, and or-parallelism (as per
the Andorra Principie), as well as parallel execution of independent goals.

The technique is based on the use of determínate builtins to encapsulate independent
goals, so that they would be run in parallel in Andorra-I. Additional considerations
for a Prolog program to run in Andorra-I are also discussed. An algorithm for the
transformation and our implementation of it are presented. This implementation makes
use of compile-time tools that have been developed in the context of the &-Prolog
system [HG90], a language implementation based on the ideas of Independent And-
Parallelism.

In section 2 the background idea of the transformation is presented, then a first
approach and some improvements to it can be found in section 3. The behaviour of the
transformed programs is discussed in section 4. Onr implementation of an automatic
translator based on these ideas is presented in section 5, some examples on the behavionr
of this translator in section 6, and onr conclnsions in final section 7.

2 Making Independent Goals Determínate

In the context of IAP, goals can be run in parallel provided they are independent,
while in the Basic Andorra model goals can be run in parallel provided they are de­
termínate. In order to introduce the possibilities for parallel execution of IAP in the
model of execntion of Andorra-I, a rewriting of independent goals could be done that
made them become determínate. For these purposes the Prolog builtin bagof/3 can be
used. This builtin predicate allows solutions for a predicate to be collected, and can be
made determínate under some circumstanees.

A goal bagof(Term,Goal,Solutions) is trae if Solut ions is the list of all solutions
to Term for the execntion of Goal, for the given instance of this goal. For example, the
goals bagof (X,p(X, Y) , [a]) and bagof (X,p(X,Y) , [b]) are trae for the given program:

p (a , l) .
p (b , 2) .
p (c , 3) .

for which the goal bagof (X,p(X,Y) ,L) is nondeterminate, whereas other goals snch as,
for example, bagof (X,Y"p(X,Y) ,L) (i.e. goals which existentiate the variables which
do not appear in the first argnment) wonld be determínate, with [a ,b ,c] as the solu-
tion for L. Furthermore, the goal bagof ((X,Y) ,p(X,Y) ,L) wonld also be determínate,
with [(a , l) , (b,2) , (c ,3)] as the solntion for L. The latter will be preferred for the
rewriting of independent goals in onr case.

For those goals which are known to be independent, a transformation can be done at
compile-time that encapsnlates each of them in a bagof/3 goal (from now on, referred
to as simply "bagof") in snch a way that it becomes determínate. At execntion-time,
since Andorra-I snpports (full) Prolog [SCWY91b], these goals will be fonnd to be
determínate, and therefore, execnted in parallel. Then all solntions collected for each
of these goals shonld be traversed, which can be done with a member/2 predicate, as
explained in the next section.

There already exist algorithms for detecting independent goals at compile-time in a
given program [MH90]. These take as inpnt a Prolog program and annotate it with the
correct conditions [HR90] for detecting independence among goals at ran-time. The
annotated program is thns rannable in independent and-parallel fashion in a system
like &-Prolog. Therefore, these algorithms can be seen as performing a translation
from Prolog to &-Prolog that makes the exploitation of IAP possible. In order to make
this also possible in Andorra-I, a fnll transformation of a Prolog program can be done,
nsing as a front-end the mentioned algorithms, and as a back-end a bagof encapsnlation
based on the ideas presented above.

3 The Transformation

Having as inpnt an annotated &-Prolog program, which itself makes explicit the
available (independent-and) parallelism via if-then-else constrnctions, the transforma­
tion that encapsnlates goals in bagofs can be performed over the annotated goals. These
goals wonld appear in the "then" part of the ite (if-then-else) connected by the '&' op-
erator, which states that they can be rnn in parallel; otherwise they wonld appear in
the "else" part of the ite connected by a comma ',' for seqnential conjnnction. The
conditions for independence of the goals always consist of checks on the gronndness and
independence of variables. Thns

ground(X), indep(Y,Z) -> p(X,Y) & p(X,Z)
; p(X,Y), p(X,Z).

can be read as "if X is gronnd and Y and Z are independent, then rnn p(X,Y) and
p(X,Z) in parallel, otherwise rnn them seqnentially." This has the same meaning as
the eqnivalent constrnction known as CGE (Conditional Graph Expression [MH90]),
which in this case wonld be:

ground(X), indep(Y,Z) => p(X,Y) & p(X,Z).

The proposed transformation will then pnt these goals as the second argnment of
(sepárate) bagofs, and their respective variables in a tnple as the first argnment of the
respective bagof. Provided the bagof is constrncted as determínate, these two goals will
rnn in parallel in Andorra-I, achieving the desired effect. The only thing left is to obtain
each of the solntions for each one of the goals and combine them in a cartesian prodnct
way (i.e. simnlate a "join" operation, as discnssed in section 4). To do this, advantage
can be taken of the backtracking capability, present in Andorra-I as well as in Prolog:
as all solntions are collected in a list strnctnre, each of these can be inspected nsing a
member/2 predicate, which will give in tnrn a solntion for each goal; all solntions will
then be traversed by backtracking, in a standard Andorra-I compntation.

This transformation is reminiscent of the encapsnlation of independent and-parallel
goals in or-parallelism proposed in [CD088], althongh it serves a qnite different pnr-
pose. Here, onr aim is to exploit the and-parallelism capability of the target system,
resembling that of [Ued87], and as in this, it also can be seen as an optimization for
exhanstive search programs, althongh the transformation performed can be viewed as
opposite to that one.

Following the above gnidelines, the previons example, after being transformed, wonld
look like:

ground(X), indep(Y,Z)
-> bagof((X,Y),p(X,Y),Pl),

bagof((X,Z),p(X,Z),P2),
member((X,Y),Pl),
member((X,Z),P2)

; p(X,Y), p(X,Z).

Note that the original variables X, Y and Z have been used in the member/2 predicates;
this poses no new problems, since execntion of the bagofs does not further instantiate
these variables. Also, all variables in the original goals have been included in the term
that captures the solutions, the first argument of the bagofs. This ensures that bagofs
are determínate and is general enough for our purposes; nonetheless, it can be further
optimized, as we will see in the following.

First, there is no need to include in the tupie for the first argument of the bagofs
variables whose valúes are known, i.e. variables which are ground at execution-time.
One of these in the above example is the variable X: because the bagofs are only executed
when the condition for independence succeeds, there it is already known that this
variable is actually ground, therefore it can be omitted from the tupie, and this can
reduce the size of the list structure for all solutions (i.e. P l , P2). This optimization
has general applicability for every variable for which it can be known at compile-time
that it would be ground at execution-time. This information can be obtained by a local
analysis based on the inspection of the conditions of the ites, as in this example, or by
a global analysis, commented below in section 5.

To ensure that the above optimization is correct in every case, the fact that all
variables of a given goal can be ground has to be taken into account. In this case one
may think that the bagof could be omitted, but there is no guarantee that the original
goal, although ground, will be clause-determinate, and thus parallelism could be lost if
it is not encapsulated. Therefore it is preferable to introduce the bagof with any one of
the variables in the original goal, but then, as the list of solutions for this goal would
have only one element, there is no reason to include the member/2 goal and it can be
omitted.

Second, the original goals can have as arguments anonymous variables, i.e. variables
whose valúes are not relevant for execution of the body of the clause in which they
appear3. As before, there is no need to include these variables in the tupie for the
bagofs, instead they can be existentiated in the second argument of the bagofs4, so that
their valúes are ignored, but the bagofs remain determínate. This optimization requires
a renaming of these variables so that they can be referred to in the existentiation as
well as in the goal.

In the example, let p/2 be p /3 , adding to it an extra argument which is not relevant
in the computation. Thus, the final complete transformation would lead to:

ground(X), indep(Y,Z)
3These variables appear usually as '_' in the program, but not necessarily,
4The hndall/3 builtin can be used as syntactic sugar for this.

-> bagof(Y,Arp(X,Y,Al) ,Pl) ,
bagof(Z,A2"p(X,Z,A2),P2),
member(Y,Pl),
member(Z,P2)

; p(X,Y,_), p(X,Z,_) .

A ñnal point that should be noted here concerns the builtin predicates. In principie,
most of them are themselves determínate, and tiras it makes no sense to include them
in a bagof. Moreover, we find that some considerations on the granularity of goals
shonld apply to parallelization: only goals with a reasonable execution size shonld be
parallelized, otherwise the extra work needed for rnnning in parallel wonld overeóme
the advantage obtained from parallel execntion. Thns, bniltins in general shonld not be
parallelized. These considerations have been taken into acconnt in the above mentioned
algorithms for annotation of parallelism, thns onr transformation wonld deal only with
goals already annotated.

4 Collecting Solutions in Andorra-I

The Andorra-I system implements the langnage Andorra-I Prolog [SCWY91b], This
snbsnmes standard Prolog, inclnding side-effeets and most standard bniltins, with the
cnt prnning operator, and also the commit prnning operator, as in committed-choice
langnages.

A bagof bniltin predicate is being implemented in Andorra-I with a semantics that
resembles that of standard Prolog. Thns a general goal bagof (Term, Goal, L i s t) shonld
be trne if L is t inclndes all solntions (abstraction made of their ordering) for the term
Term for which the particular instance of Goal is trne. If Term inclndes all the variables
of Goal the bagof goal will be considered determínate. Otherwise, if Goal contains
nninstantiated variables not inclnded in Term the bagof goal will wait for these to get
instantiated; this can be avoided if these variables are existentiated in Goal: their
instantiation will not be considered relevant and the bagof goal will not wait for their
valnes to execnte.

In an Andorra-I compntation two distinct phases are performed [SCWY91a]: in the
determínate phase determínate goals are evalnated (in and-parallel); when this ends, the
nondeterminate phase seleets a goal for rednetion and creates a choice-point, branches
of this can be explored in or-parallel. If no particular control is specified, the goal
redneed is the leftmost goal, as in Prolog. In the presence of failnre, the branch failed
is abandoned, and execntion procceeds with the rest of the branches, backtracking is
performed for this pnrpose, if needed; no backtracking is needed throngh determínate
goals.

In this framework, the bagofs constrncted as in section 3 will be execnted in the
determínate phase, provided that the conditions for independence sneceed, giving all
solntions for their variables, which will afterwards be traversed by the member/2 goals

in the nondeterminate phase, throngh backtracking. Two distinct matters shonld be
discnssed: how conditions will evalnate in this framework, and to which point collection
for all solntions and traversal of them is worth doing.

Conditions for the annotated ites wonld evalnate in the same context as in Prolog
if they are execnted when leftmost. Otherwise, if their execntion is performed before
goals to its left, there is no gnarantee that their evalnation will be as in Prolog. As
we will see in next section, the algorithms for the transformation for IAP make several
optimizations based on a global analysis of the program for the Prolog semantics;
tiras information on the state of instantiation of variables will be assnmed as in a
Prolog execntion. If this is the case, the execntion in Andorra-I shonld resemble that
of Prolog (in fact, that of &-Prolog) and parallel expressions (whether conditional or
not) execnted only when leftmost. To achieve this, the parallel expressions shonld be
seqnentialized to their left5.

Fnrthermore, as has been discnssed elsewhere [GSCYH91, BH92], goals execnting
before the ites themselves conld vary the state of instantiation of the variables involved
in the conditions, therefore ites shonld also be seqnentialized to their right. This
will fnrther restrict the parallelism available and can be avoided in Andorra-I if the
determínate phase selects determínate goals in a left-to-right order. In this case, checks
for gronnd/1 and indep/2 (in a conditional parallel expression) or the bagof/3 goals
themselves (in nnconditional expressions) wonld be selected before other determínate
goals to their right. This is trne for the body of the clanse where the expression appears,
bnt calis to the procednre of this clanse do still need to be seqnentialized.

On the other hand, the transformation nsing bagofs will collect all solntions and
afterwards select the first of them by means of a member/2 goal to procceed with the
execntion. The rest of the solntions will be extracted if needed by backtracking. The
efñciency gained with parallel execntion of the bagofs can be rednced or even lost dne
to having to execnte the goals for all solntions, if only the first is asked for. On the
other hand, we regard that it will incnr no penalty if the intended nse of the program
is to collect all solntions6.

5 Algorithm for Automatic Translation

A general algorithm implementing the points mentioned in the preceding sections
will do the following, where global analysis (possibly based on abstract interpretation)
is optional:

1. Annotate goals to rnn in (independent-and) parallel, except bniltins. Consider-
ations on grannlarity apply. Optimizations on conditions also apply. Local and
global analysis is nsed.

sFor this purpose the sequentialization operator '::' of Andorra-I may be used,
6This supported by results obtained in [Ued87],

2. For eacli annotated goal tlie correspondent bagof is built. Optimizations for tliese
apply. Local and global analysis is used again.

3. Consider tlie cut as a guard operator.

For an implementation of tlie translation algoritlim, advantage can be taken of the
tools already developed in the context of &-Prolog. Annotators for parallelism have
been implemented that already supply the first item of the above. Also three global
analyzers are implemented in the compile-time system of the &-Prolog, namely the
"modes" analyzer [HWD92], the "sharing" analyzer [MH92] and the "sharing+freeness"
analyzer [MH91]. Onr objective has been, for simplicity, to implement the rest of the
translation as part of this compile-time system, as can be seen in figure 1. This is
specially relevant since the native global analyzer of the Andorra-I system [SCWY91b],
itself based on some of the ideas of [HWD92, MH92, MH91], is also being incorporated
as another analysis tool to the system presented in the figure.

The initial Prolog program is conveniently preprocessed for analysis based on ab-
stract interpretation, then it is annotated for parallelism, and finally transformed into
the ontpnt Andorra-I program. The back-end translator will deal with the bagof en-
capsnlation, side-effects and cuts.

For the bagof encapsnlation a local analysis for simplification of the bagofs, as men-
tioned in section 3, can be done. This analysis will look at the conditions of the ites
to gather information on which variables are ground inside the ite. Nevertheless, the
annotators themselves take advantage of information of the global analysis to simplify
the conditions on the ites. Tiras, information obtained by local analysis will not be
complete. The solntion to this is obviously to allow annotation plus translation with
only local analysis, or both steps plus global analysis, both accessing the information
of the latter. A raw algorithm for this step will:

1. For each clause,

• lócate an ite or CGE in its body,

• perform 2 with the above constraction,

• sequentialize to its left and right (depending on the style of transformation
desired - recall section 4),

• itérate.

2. For each goal in the ite or CGE,

• perform local analysis and access global analysis information: the set of
ground variables for the goal at this point in the execution is made available,

• perform 3 to build the bagof-member constraction,

Prolog

Translator
Preprocess

General
Preprocess

Annotator

Abstract
Interpreter

&-Prolog

Translator

Andorra-I

'

Preprocess

Andorra-I System

Figure 1: Overview of the full translator implementation.

• itérate.

• obtain all variables for the goal,

• subtract to them those known to be ground,

• lócate and subtract to the previous the anonymous variables, rename them
apart in the goal,

• existentiate the renamed variables,

• créate a tupie with the remaining variables,

• build the functors for bagof/3 and member/2

The algorithm just translates the &-operator constraction of the ites or CGEs to
the bagof-member constraction that simulates the same behaviour. Additionally, the
definitions for the new predicates ground/1, indep/2 and member/2, which appear in
the translation process, must be included in the output program. In order for the output
program to be rannable in Andorra-I, extra considerations must be done: influence of
the cut in Andorra-I must be taken into account (much of this done by the Andorra-I
preprocessor [SCWY91b]).

Andorra-I has inherited from the committed-choice languages the concept of guará.
The body of a clause may be separated into the guard part of it and the body part,
by a guard operator, which can be either one of the two praning operators: cut (!)
or commit (|). As commit is not inclnded in standard Prolog programs, only the cnt
shonld be taken into acconnt.

What has to be achieved is that only one gnard operator is allowed in a clause, while
in Prolog a clause body can have as many cuts as wanted. A simple way to overeóme
this is to fold the original clause, creating a new predicate deflned by a single clause
with a body composed by the goals from the original body which appeared after the
flrst cut. Then this new clause can be recursively transformed in the same way.

6 Examples

This section is intended to demónstrate the behaviour of the implemented tool for
the transformation algorithm presented in the preceding one. This will be done through
the exposure of the translated output for a number of benchmark programs, showing
the different issues of the translation.

We begin with a program presented by D.H.D. Warren [War77], which consists of two
simple queries to a datábase made up of a number of (Prolog) faets, what makes the
corresponding goals (pop/2 and area/2) highly nondeterminate, though independent.
In its original formulation, the program was:

query([Cl,Dl,C2,D2]) :-
density(Cl,Dl),
density(C2,D2),
DI > D2,
TI is 20*D1,
T2 is 21*D2,
TI < T2.

density(C,D):-
pop(C,P),
area(C,A),
D is (P*100)/A.

From this versión we reach the following one by a simple unfolding of the density/2

predicate deñnition, in order to avoid its original determinism. Tlms we have:

query([Cl,Dl,C2,D2]) : -
pop(Cl ,P l) , a r ea (C l ,A l) , DI i s (P1*100)/A1,
pop(C2,P2), area(C2,A2), D2 i s (P2*100)/A2,
DI > D2,
TI i s 20*D1,
T2 i s 21*D2,
TI < T2.

Despite of the nondeterminism of the queries (now represented by the two pop/2
and area/2 conjunctions), these remain independent, and tlms are eligible for and-
parallel execution. This is captured by onr compile-time tools, which give as ontpnt
the following automatically translated versión:

query([Cl,Dl,C2,D2]) : -
bagof ((C2 ,P2 ,A2) , ' query / l / l ^cge / l ' (A2 ,P2 ,C2) ,L_bagof_ l) ,
b a g o í ((C l , P l , A l) , , q u e r y / l / l / $ c g e / 2 , (A l , P l , C l) , L _ b a g o í _ 2) ,
member((C2,P2,A2),L_bagoí_l),
member((Cl,Pl,Al),L_bagoí_2),
DI i s P1*100/A1,
D2 i s P2*100/A2,
D1>D2,
TI i s 20*D1,
T2 i s 21*D2,
TKT2.

, que ry / l / l / $cge / l , (A2 ,P2 ,C2) : -
pop(C2,P2),
area(C2,A2).

, q u e r y / l / l / $ c g e / 2 , (A l , P l , C l) : -
pop(Cl ,P l) ,
a r ea (C l ,A l) .

member(X,[X|_]).
member(X,[_|T]) : -

member(X,T).

Note that the goals for the is /2 bniltin have not been parallelized, thongh have been
(safely) moved ont to allow for and-parallelism of the other two. New predicates are
created for the independent conjunctions (thongh not strictly necessary) and these
encapsulated in bagofs.

For the next example we have the safe/1 predicate for solntions on the N-Qneens
problem, programmed in a manner snch that negation is avoided:

s a f e ([Q |Qs]) : - safe(Qs) , a t t ack ing(q , Qs, A), A=no.

sa í e ([]) .

attacking(C), Qs, yes) : - attack(C), Qs), !.
attacking(_, _, no).

The recursive cali is independent of the nondeterminate goal for attacking/3 in the
body of the first clause for safe/1. In the standard execution of this program, the onter
goal for this predicate is always ground, so now we have to encapsnlate goals with
ground variables, which gives us:

saíe([q|Qs]) :-
bagof(Qs,safe(Qs),L_bagof_l),
bagoí (A,attacking(C¡,C¡s,A) ,L_bagoí_2),

member(A,L_bagoí_2),

A=no.
saíe([]).

where the member/2 goal for the first bagof has been omitted, as it is unnecessary,
as well as the ground variables in the second bagof. In fact the first bagof itself can
be omitted, recalling that the safe/1 goal is determinate; this can not be done auto-
matically unless a determinacy analysis is performed, similar to that of the Andorra-I
preprocessor itself.

On the contrary, in the following example although both member/2 goals can be
omitted, none of the corresponding bagofs can, as the encapsulated goals are in fact
nondeterminate. This example consists of a common/3 predicate to check if a given
list is a sublist of two other given lists, and tiras its intended use is in queries with its
three arguments gronnd:

common(L,Ll,L2):-
sublist(L,L1),
sublist(L,L2).

sublist ([] , []) .
sublist([XIL],[XILl]):- sublist(L,Ll) .
subl is t (L,[_ILl]) : - sublist(L,Ll) .

Being all variables in the snbgoals gronnd, the translator selects any of them to pnt in
the bagof (alternatively, a new variable will serve the same pnrpose). Thns the ontpnt
program looks like:

common(L,Ll,L2) :-
bagoí(Ll,sublist(L,Ll),L_bagoí_l),
bagoí(L2,sublist(L,L2),L_bagoí_2).

7 Conclusions

We have presented a transformation that fulfills erar original objectives and which
can be easily automated. We have shown that it is possible to introduce general in-
dependent and-parallelism in a system like Andorra-I, already supporting determínate
dependent and-parallelism and or-parallelism, and that this can be done without modi-
fication of the implementation of the underlying execution model by means of program
transformation. This makes the extensión of the model much simpler an easier.

We also show that this can be achieved automatically at compile-time. An algo-
rithm and its implementation have been presented, and some examples on its behavionr
shown. Future work will include interfacing it with the Andorra-I system and bagof
implementation, and possibly its integration with the system.

Referen ees

[BH92] F. Bueno and M. Hermenegildo. An Automatic Translation Scheme from
Prolog to the Andorra Kernel Language. In Proc. of the 1992 Interna­
tional Conference on Fifth Generation Computer Systems, pages 759-769.
Institnte for New Generation Computer Technology (ICOT), June 1992.

[CD088] M. Carlsson, K. Danhof, and R. Overbeek. A Simpliñed Approach to
the Implementation of And-Parallelism in an Or-Parallel Environment.
In Fifth International Conference and Symposium on Logic Programming,
pages 1565-1577. University of Washington, MIT Press, August 1988.

[GSCYH91] G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: A
Model Integrating Dependent-, Independent-, and Or-parallelism. In 1991
International Logic Programming Symposium. MIT Press, October 1991.

M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploit-
ing Independent And-Parallelism. In 1990 International Conference on
Logic Programming, pages 253-268. MIT Press, June 1990.

S. Haridi and S. Janson. Kernel Andorra Prolog and its Compntation
Model. In Proceedings of the Seventh International Conference on Logic
Programming. MIT Press, June 1990.

M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of In­
dependent And-Parallelism in Logic Programs. In 1989 North American
Conference on Logic Programming, pages 369-390. MIT Press, October
1989.

M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism.
In 1990 International Conference on Logic Programming, pages 237-252.
MIT Press, June 1990.

M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a
Practical Compilation Tool. Journal of Logic Programming, 3(4):349-367,
August 1992.

K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Meth-
ods for Automatic Compile-time Parallelization of Logic Programs for In­
dependent And-parallelism. In 1990 International Conference on Logic
Programming, pages 221-237. MIT Press, June 1990.

K. Mntlmkimiar and M. Hermenegildo. Combined Determination of Shar-
ing and Freeness of Program Variables Through Abstract Interpretation.
In 1991 International Conference on Logic Programming, pages 49-63. MIT
Press, June 1991.

[HG90]

[HJ90]

[HR89]

[HR90]

[HWD92]

[MH90]

[MH91]

[MH92] K. Mutlmkimiar and M. Hermenegildo. Compile-time Derivation of Vari­
able Dependency Using Abstract Interpretation. Journal of Logic Pro­
gramming, 13(2 and 3):315-347, July 1992.

[SCWY90] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel
Prolog System that Transparently Exploits both And- and Or-parallelism.
In Proceedings of the 3rd. ACM SIGPLAN Symposium on Principies and
Practice of Parallel Programming. ACM, April 1990.

[SCWY91a] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Engine:
A Parallel Implementation of the Basic Andorra Model. In 1991 Interna­
tional Conference on Logic Programmingr, pages 825-839. MIT Press, June
1991.

[SCWY91b] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Prepro-
cessor: Supporting Fuil Prolog on the Basic Andorra Model. In 1991 In­
ternational Conference on Logic Programming, pages 443-456. MIT Press,
June 1991.

[Ued87] K. Ueda. Making Exhaustive Search Programs Deterministic. New Gen-
eration Computing, 5(l):29-44, 1987.

[War77] D. H. D. Warren. Applied Logic—Its Use and Implementation as Program­
ming Tool. PhD thesis, University of Edinbnrgh, 1977. Also available as
SRI Technical Note 290.

[War88] D. H. D. Warren. The Andorra Model. Presented at Gigalips Project
workshop. U. of Manchester, March 1988.

[War90] D. H. D. Warren. The Extended Andorra Model with Implicit Control. In
Sverker Jansson, editor, Parallel Logic Programming Workshop, Box 1263,
S-163 13 Spanga, SWEDEN, June 1990. SICS.

