
ACE: And/Or-parallel Copying-based
Execution of Logic Programs

Gopal GuptaJ Manuel Hermenegildo* Enrico PontelliJ and Vítor Santos Costa'

Abstract

In this paper we present a novel execution model for
parallel implementation of logic programs which is ca-
pable of exploiting both independent and-parallelism
and or-parallelism in an efficient way. This model ex-
tends the stack copying approach, which has been suc-
cessfully applied in the Muse system to implement
or-parallelism, by integrating it with proven tech-
niques used to support independent and-parallelism.
We show how all solutions to non-deterministic and-
parallel goals are found without repetitions. This is
done through recomputation as in Prolog (and in var-
ious and-parallel systems, like &-Prolog and DDAS),
i.e., solutions of and-parallel goals are not shared. We
propose a scheme for the efficient management of the
address space in a way that is compatible with the ap-
parently incompatible requirements of both and- and
or-parallelism. We also show how the full Prolog lan-
guage, with all its extra-logical features, can be sup-
ported in our and-or parallel system so that its se-
quential semantics is preserved. The resulting system
retains the advantages of both purely or-parallel sys­
tems as well as purely and-parallel systems. The stack
copying scheme together with our proposed memory
management scheme can also be used to implement
models that combine dependent and-parallelism and
or-parallelism, such as Andorra and Prometheus.

1 Introduction

Recently, stack copying has been demonstrated to
be a very successful alternative for representing múlti­
ple environments in or-parallel execution of logic pro­
grams. In this approach, stack frames are explicitly
copied from the stack(s) of one processor1 to that of
another whenever the latter processor needs to share
a branch of the or-parallel tree of the former. In prac-
tice, by having an identical logical address space for

tLaboratory for Logic, Datábase, and Advanced Program-
ming, Dept. of Computer Science, New México State Univer-
sity, Las Cruces, NM, USA.

* Facultad de Informática, U. Madrid (UPM), Madrid -
Spain.

^Dept. of Computer Science, University of Bristol, Bristol,
UK.

Throughout the paper we will often refer to the "stack" of a
"processor" meaning the memory áreas that a computíng agent
is using.

all processors and allocating the stack(s) of each pro­
cessor in identical locations of this address space, the
copying of stack frames can be reduced to copying
large contiguous blocks of memory from the address
space of one processor to that of the other—an oper-
ation which most current architectures perform quite
efficiently—without requiring any sort of pointer relo-
cation. The chief advantage of the stack copying ap­
proach is that program execution in a single processor
is exactly the same as in a sequential system. This
considerably simplifies the building of parallel sys­
tems from existing sequential systems, as was shown
by MUSE [2, 1] which was built using the sequential
SICStus Prolog System.

Similar arguments can also be made for the de-
sign of independent and-parallel systems based on pro­
gram annotation (i.e. using Conditional Graph Ex-
pressions) and recomputation of subgoals [7] (i.e. non-
deterministic and-parallel subgoals are recomputed
and not shared), as proven by the experiences of &-
Prolog [16] and DDAS [23]. Briefly, a program an-
notated for independent and-parallelism contains ex-
pressions of the form

• • • , (< conditions > =>• HteraliSz • • • <kliteraln), • • •
where literali, ..., literaln will be executed in (and-)
parallel only if the < conditions > are satisfied.

A long standing goal of parallel logic programming
systems designers has been to obtain more general sys­
tems by combining different forms of parallelism into
a single framework. In particular, one would expect
that independent and-parallelism and or-parallelism,
that have been exploited so well in Prolog, could nat-
urally be exploited together. In fact, this is a hard
problem, as the difficulties (e.g. supporting full Pro­
log) faced by several previous proposals [14, 26, 22] do
show. Recently an abstract model, called the Compo-
sition Tree [12], has been designed that allows efficient
realization of systems that combine both forms of par­
allelism while supporting full Prolog. In this paper we
design a novel model, a realization of the C-tree, ex­
ploiting or- and independent and-parallelism, which
subsumes both the stack copying approach (for or-
parallelism) and the subgoal recomputation approach
(for and-parallelism).

The resulting and-or parallel system, called ACE,
is in the same category as PEPSys [26], ROPM [22]
and the AO-WAM System [14]. However, our system
is arguably better than the above systems in many re-

spects, the chief ones being ease of implementation, se-
quential efficiency, and better support for the full Pro­
log language, in particular being able to incorpórate
side-effects in a more elegant way. These advantages
are due to several factors. One of them is that ACE re-
computes independent and-parallel goals, rather than
sharing their solutions (solution sharing was adopted
in all the previously proposed models [14, 26, 22]). Re-
computation means that , given a goal a(X) & b(Y) ,
where the two subgoals a and b are independent, the
solutions for the subgoal b will be recomputed for ev-
ery solution found for subgoal a. Recomputat ion has
important advantages (they are are discussed at length
in [12, 25]), and was fundamental in the design of
the C-Tree model. In [12] we presented the C-tree,
along with a few preliminary ideas on how to realize
the C-tree using an environment representation tech-
nique based on stack copying as well as binding arrays.
In this paper we show how the complete independent
and- and or-parallel system based on C-Tree can be
constructed using stack-copying.

ACE subsumes both MUSE [2] and &-Prolog [16]
in terms of execution behaviour. One of our aims is
to have ACE subsume performance characteristics of
MUSE and &-Prolog as well, namely, their low paral-
lel overhead, their considerable speedups for interest-
ing applications, and their support for the full Prolog
language. To accomplish this we need to carefully ad-
dress the many issues that arise in combining both
forms of parallelism. These issues are:

• Synchronization between independent and-work
and or-work: that is, deciding when should the
alternatives created by goals working in indepen­
dent and-parallel be made available for or-parallel
processing. In ACE we lay down a set of sharing
requirements tha t a choicepoint should satisfy be-
fore a processor can pick an or-parallel alternative
from it.

• Memory management: for or-parallel execution
in MUSE the stacks of one processor should not
be visible to the other processors (except during
copying), while in independent and-parallel ex­
ecution in &-Prolog the stacks of one processor
should be visible to all other processors. In ACE
processors are organized into teams to get around
these conflicting requirements for or- and inde­
pendent and-parallelism respectively.

• Scheduling: ACE can use the existing schedulers
of MUSE and &-Prolog for scheduling or- and in­
dependent and-parallelism respectively. However,
in addition, it should also balance the amount of
resources allocated for exploiting or- and indepen­
dent and-parallelism.

• Efficient implementation of copying: while MUSE
copies stacks of a single processor at a t ime,

ACE needs to copy stacks of múltiple proces­
sors. Therefore, developing optimized copying
techniques is even more fundamental for ACE.

• Implementation of Prolog's extra-logical features
(such as cuts and side-effects): Both MUSE and
&-Prolog have developed techniques for support-
ing full Prolog. In ACE we need to extend these
techniques to support sequential Prolog seman-
tics in presence of both or- and independent and-
parallelism. Here we can benefit from the princi­
pies designed for the C-tree abstraction [10].

In designing the solutions to these problems, our
aim is to obtain a full Parallel Prolog system that
will have low sequential overheads and good parallel
speedups. Also, we try to follow the techniques that
have been used for &-Prolog and MUSE as much as
possible, as they have proven to be effective in prac-
tice.

Our perspective so far of ACE is as concretizing the
C-tree framework for combining independent and- and
or-parallelism using stack copying. Once ACE is fully
described, it will be apparent that ACE can be seen
in quite a different perspective. In this new perspec­
tive, ACE generalizes the principie of copying, from
the copying used in MUSE to obtain or-parallelism
between sequential computations, to copying to ob­
tain or-parallelism between and-parallel computations.
In the paper we show that this principie, Generalized
Copying, not only gives a way to understand ACE,
but it applies, and should be useful, to combine or-
parallelism with many forms of and-parallelism, such
as parallelism between determinate and-goals as ex-
ploited in Basic Andorra [6], or with dependent and in­
dependent and-parallelism as exploited in DDAS [23].

The paper is organized as follows. We first present
the ACE model. Although the C-tree abstraction is
implicit to our reasoning, it is not needed for under-
standing the rest of the paper. We use the stack
copying approach to give a more intuitive feel for the
model. We then enter the more specific problems of
memory management, and how copying can be imple-
mented between stacks sets. We give a brief overview
of the new scheduling problems that arise, and present
and discuss two schemes for the optimization of copy­
ing in ACE. We also propose a scheme to support cut
and side-effects in ACE. We finally discuss the effec-
tiveness of ACE and show how our scheme can be gen­
eralized to dependent and-parallel systems. Through-
out the paper, we assume some familiarity with the
implementation of Prolog, &-Prolog, and MUSE.

Like in &-Prolog, we assume that programs are
annotated to express the and-parallelism using basic
Conditional Graph Expressions (CGEs) before execu­
tion commences. The &-Prolog parallelization tools
[20] will be used to automatically genérate such an-
notations from standard Prolog code. Alternatively,

programs can always be annotated by the user.2

2 The Stack Copying Approach to
And-Or Parallelism

In ACE, the múltiple environments that are needed
to implement or-parallelism are supported through ex-
plicit stack copying. We first summarize the stack
copying approach (as used by the MUSE system). In
a stack-copying or-parallel system several processors
explore different alternatives in the search tree inde-
pendently (modulo side-effect synchronization). The
execution of each processor is identical to a sequential
Prolog execution. Whenever a processor P l exhausts
its branch and wants to share work with another pro­
cessor P2 it selects an untried alternative from a choice
point cp in P2's stack. It then copies the entire stack
of P2, backtracks up to the choice point cp in order
to undo all the conditional bindings made below cp,
and starts executing one of the untried alternatives.
In this approach, provided there is a mechanism for
copying stacks, the only cells that need to be shared
during execution are those corresponding to the choice
points. Shared choice points are thus copied from P2's
private memory to shared memory where they can be
accessed from both P l ' s and P2's private memory via
pointers3 (these choice points are said to have been
made public, following MUSE's terminology).

If we consider the presence of and-parallelism in
addition to or-parallelism, then, depending on the ac­
tual types of parallelism appearing in the program and
the nesting relation between them, a number of cases
can be distinguished. The simplest two cases are of
course those where the execution is purely or-parallel
or purely and-parallel. Trivially, in these situations
s tandard or-parallel and independent and-parallel ex­
ecution respectively apply, modulo the memory man-
agement issues, which will be dealt with later. We
next discuss the interesting cases where both forms of
parallelism are present in the computation.

2.1 A n d "Under" Or

And "under" or refers to cases where or-parallelism
present inside and-parallel goals is not exploited [25].
Thus, only alternatives in those choice points that are
not nested inside any CGE, i.e. not created during
processing of and-parallel goals, are made available
for or-parallel processing. The two cases are, first the

2 In &-Prolog unrestricted dependency graphs can be ex-
pressed (i.e. more general than those possible with CGEs), by
combining the "&" operator and synchronizationbuiltins. How-
ever, since such graphs can be handled in a similar way to that
given in the description that follows, the discussion will be lim-
ited for simplicity and without loss of generality to CGEs.

To be precise, shared choice points are not copied but a
record representing the choice point is created in the shared
área.

case in which the goal that gives rise to or-parallelism
is not preceded by any CGE; and second, the case in
which this goal is in the continuation (but not inside)
of some CGE.

The first case is illustrated in Figure 1. Consider
the tree, shown in Figure l .(i), tha t is generated as a
result of executing a query a which during its execu­
tion calis a clause containing a CGE (t rue => b(X)
& c (Y)) . In Figure l.(i) processor P l has started ex­
ecution of goal a, left an untried alternative ("embry-
onic branch") a2, and then entered the CGE. And-
parallel execution can remain identical to the s tandard
subgoal recomputation approach (like in &-Prolog),
henee a processor P2 can simply pick up the execu­
tion of goal c. Or-parallel execution can also remain
identical to puré stack-copying. If processor P3 wants
to pick up the a2 branch left behind by P l , it can
simply copy the portion of the tree from the root to
the embryonic node, and continué with the untried al­
ternative (Figure l.(ii)). This resembles a s tandard
stack-copying execution (as in MUSE).

Figure l .(iü) and Figure l.(iv) present the second
case, when a processor selects an untried alternative
from a choice point created during execution of a goal
gj in the body of a goal which oceurs after a CGE. In
other words, there has been and-parallelism above the
selected alternative, but all the and-tasks are finished.
A processor selecting such an alternative will have to
copy all the stack portions in the branch from the root
to the CGE, the portions of stacks corresponding to all
the and-tasks inside the CGE, and those of the goals
between the end of the CGE and gj. All these portions
have in principie to be copied because the untried al­
ternative may need access to variables in all of them.
In Figure l.(iii), processor P l started execution of the
goal creating a CGE (b & c) , and fully executes b.
Processor P2 executed the goal c in and-parallel. Both
have finished execution of the CGE (leaving no choice
points behind) and then processor P l has taken the
continuation d and left an untried alternative d2. This
alternative can be picked up by another processor P3 .
The processor P3 has therefore to copy the portion of
the tree from the root to the CGE, the portions inside
the CGE, and the portion of the continuation up to
the embryonic node. The processor P3 can then start
execution of the d2 alternative (Figure l .(iv)).

2.2 Or "Under" A n d

In "Or Under And" the untried alternatives of
choice points created within and-parallel goals in
CGEs are also made available for or-parallel process­
ing. One could simplify, and disallow or-parallel pro­
cessing of such alternatives, trying them sequentially
via backtracking instead, but there is experimental ev-
idence that a considerable amount of or-parallelism
may be lost [25]. Therefore, ACE does support or-
under-and parallelism. When an alternative created
within and-parallel goals in a CGE is selected, one

P3

,a

(d & e)

di el

el (i) (ü)

branch executed locally

copied branch

P3

a

(b & c)

bl

(iv)

\cl

\
d2

O embryonic branch (untried alternative)

end of and-parallel goal, beginning
of execution of continuation of CGE

Figure 1: And Under Or

needs to carefully decide which portions of the stacks
to copy. Our guiding principie is the following: copy
all branches that would be copied in an equivalent
or-parallel (MUSE in this case) execution, and recom-
pute all those branches that would be recomputed in
an equivalent puré and-parallel computation. As far
as the and-parallel execution is concerned, we want
to be as cióse as possible to the recomputation ap-
proach henee implementing the PWAM "point back-
tracking" strategy [19] used in &-Prolog. As we will
see, our strategy results in copying only parts that
&-Prolog reuses during backtracking and recomput-
ing those that &-Prolog (and also MUSE and Prolog)
recomputes.

Consider a CGE (true = > g\!k ...gi .. .<kgn) tha t
is encountered during execution, and whose goal <¡r¿ has
an untried alternative in one of the choice points in its
search tree. Assume a processor picks up this untried
alternative for or-parallel processing. Then this pro­
cessor will have to copy all the stack portions in the
branch from the root to the CGE including the CGE
descriptor41 (called C'-node in [12] and parcall frame in
&-Prolog [18]). It will also have to copy the stack por­
tions corresponding to the goals g\ . . . <7¿_i (i.e. goals
to the left of <¡r¿). The stack portions up to the CGE
need to be copied because each different alternative
within gi might produce a different binding for a vari­
able, X, defined in an ancestor goal of the CGE. The
stack portions corresponding to goals g\ through gi-\
have to be copied because execution of the goals fol-

The CGE descriptor records the control information for the
CGE and its independent and-parallel goals for exploiting and-
parallelism.

Figure 2: Execution tree with alternatives inside the
CGE

lowing the CGE may need to access some of the bind-
ings generated by the goals g\ . . . <7¿_i. The stack por­
tions corresponding to the goals gi+i . . .gn need not
be copied, because these goals would be recomputed.
The issue is further illustrated with a simple example.

Figure 2 shows the and-or tree for the query q
containing a CGE (t rue => a(X) & b (Y)) , each of
whose goals leads to two solutions. For sake of sim-
plicity, we have only shown the path from root of the
tree to the CGE.

Execution in ACE begins with processor P l exe-
cuting the top level query q. When P l encounters the

P l P2 P3 P4

P5
P6

(a & b) (a & b)

a l

(i)

&
^

b l b l

(a & b) (a & b)

S
/ &

(i i) a2

a l

(i i i)
b 2

(iv) a 2 b 2

branch executed l o c a l l y

yonic branch
r i e d a l t e r n a t i v e)

- /"̂ V embryonic branch
* \J (unt

copied branch

. choice point
(branch point)

Figure 3: Or Under And

CGE, it picks the subgoal a for execution, leaving b
for some other processor. Let us assume that proces-
sor P2 picks up goal b for execution (Figure 3.(i)). As
execution continúes P l finds solution a l for a, gener-
ating a choice point along the way. Likewise, P2 finds
solution b l for b.

Since we allow for full or-parallelism within and-
parallel goals, a processor can steal the untried alter­
native in the choice point created during execution of
a by P l . Let us assume that processor P3 steals this
alternative, and sets itself up for executing it (before
P3 can steal the alternative, P l has to move the choi-
cepoint into the shared área). To begin execution of
this untried alternative P3 copies the stack of proces­
sor P l (Figure 3.(ii) shows this process; see Índex at
the bo t tom of Figure 3 for explanation of the sym-
bols). P3 then simulates failure to remove conditional
bindings made below the choice point, and restarts the
goals to its right (i.e. the goal b) . Processor P4 picks
up the restarted goal b and finds a solution, b l , for it.
In the meantime, P3 finds the solution a2 for a (see
Figure 3. (ii)).

Note that before P3 can commence with the execu­
tion of the untried alternative and P4 can execute the
restarted goal b, they have to make sure that any con­
ditional bindings made by P l after the selected choice
point, as in Muse, and that any bindings made by P2
while executing b have been cleared. The former can
be implemented by either (i) P4 copying b from P2

and completely backtracking over it5; or, (ii) P3 (or
P4) getting a copy of the trail stack of P2 and resetting
all the variables that appear in it (see later).

At this point, two copies of b are being executed
in or-parallel, one for each solution of a. Note that
the process of finding the solution b l for b leaves a
choice point behind. The untried alternative in this
choice point can be picked up for execution by another
processor. This is indeed what is done by processors
P5 and P6 for each copy of b that is executing. These
processors copy the stack of P2 and P4 respectively, up
to the choice point. The stack portions corresponding
to goal a are also copied (Figures 3.(iii), 3.(iv)) from
processors P l and P3 , respectively. The processors P5
and P6 then proceed to find the solution b2 for b.

Note that if there were no processors available to
steal the alternative (corresponding to solution b2)
from b then this solution would have been found by
processors P2 and P4 (in their respective copies of b)
through backtracking as in &-Prolog. The same would
apply if no processors were available to steal the al-

An optimization could be that P4 choses not to backtrack
over b or recompute it again, rather P4 simply copies b and
reuses it. This optimization is only valid if b has not yet gener-
ated a solution (or at least, execution of the continuation of the
CGE, which may bind variables conditionally in b, should not
have begun). Some problems may also arise with extra-logical
predicates in b, and in general only the part before such an
extra-logical predicate can be copied into P4.

ternative from a corresponding to solution a2.
In the above example, all other operations that are

performed during and-parallel execution remain the
same as in &-Prolog. Thus, execution of the con-
tinuation of the CGE can begin only after at least
one solution has been found for all goals in the CGE.
Also, backtracking in the CGE takes place just as in
&-Prolog, i.e. goals to the right should be completely
explored before a processor can backtrack inside a goal
to the left.

We place a restriction (called the sharing reqmre-
ment) on choice points inside a CGE that can be made
available for or-parallel processing: given a goal <¡r¿ in a
CGE, choice points arising in it can be made available
for or-parallel processing only if the goals to the left of
<7¿ in that CGE have reached a solution. If the CGE
containing <¡r¿ is nested inside another CGE, then all
goals to the left of the goal leading to the inner CGE
should also have found a solution, and so on. Thus, in
the example above (Fig. 3(i)), the alternative b2 of b
cannot be picked up by any team 6 until the solution
a l has been found. The sharing requirement serves
two purposes:

(i) as far as or-parallel scheduling is concerned it
keeps us very cióse to the scheduling strategy em-
ployed by MUSE;

(ii) it avoids (a form of) speculative or-parallelism,
because if the goal to the left (for which a solution
had not been found yet) failed, the work would
have gone wasted.

We could go one step further, and stipulate that choice
points inside CGEs will be made available only if all
goals in the CGE have found at least one solution.
Although this will keep us closer to &-Prolog and en-
able us to do a limited form of intelligent backtracking
(the kind that is also present in &-Prolog), this will
overly restrict the amount of or-parallelism. So this
restriction is not adopted, although its lack might re-
sult in extra work in some situations. For instance, in
the example above (Figure 3), if b were a failing goal,
i.e. a goal without any solutions, then trying múltiple
alternatives of a in or-parallel would result in wasted
work: b's failure would be discovered múltiple times
since b is recomputed for every alternative of a.

3 Memory Management in ACE

One of the main features of stack-copying based or-
parallel systems which greatly facilitates stack copying
is that each processor has an identical logical mem­
ory address space. This enables one processor to copy
(part of) the stack of another without relocating any
pointer. In the presence of and-parallelism this fea-
ture may be hard to ensure, as each goal in a CGE

The idea of viewing a set of workers as a team will be ana-
lyzed in details later on.

may be executed in and-parallel by a different pro­
cessor. In other words, as far as and-parallel exe­
cution is concerned, all the participating processors
should work on sepárate segments of a common ad­
dress space, whereas for or-parallel execution each pro­
cessor should have an identical but independent logical
address space (so that stack portions can be copied
without any pointer relocation). Thus, the require-
ments for or- and and-parallelism seem to be antithet-
ical to each other. The problem can be resolved by di-
viding all the available processors into teams such that
and-parallel work can only be shared between proces­
sors of the same team, and or-parallel work can only
be shared between teams. All processors in a team
thus share the same logical address space, but each
team has its own independent logical address space
(which must be identical to the address space of all
other teams to allow copying without any pointer re­
location).

To implement and-parallelism, the address space
of each team is divided up into k memory segments
(as happens in &-Prolog), where k is the máximum
number of processors allowed in any given team. The
memory segments are numbered from 1 to k. Each
processor of the team allocates its stack set (heap,
local stacks, trail etc.) in one of the segments. The
sizes of the k different memory segments in the address
space of a team are not required to be the same. How-
ever, once one team's address space has been divided
into segments using some scheme for división, the ad­
dress spaces of all other teams should be divided into
segments in an identical way, so that during copying
of stacks no pointer relocation is needed7 (Figure 4).

Processors belonging to other teams are allowed to
join a different team as long as there is a memory
segment available for them to allocate their stacks in
the new team's address space.

Consider the simple scenario where a choice point,
belonging to a team T I and outside the scope of any
CGE, is picked by a team T2. Let i be the memory
segment number in T I in which this choice point lies.
For simplicity, we assume that the root of the Pro­
log execution tree also lies in memory segment i. T2
will thus copy the stack from the ¿th memory segment
of T I into its own ¿th memory segment. Since the
logical address space of each team is identical and is
divided into identical segments, no pointer relocation
is needed. Failure is then simulated and the execution
of the untried alternative of the stolen choice point
begun.

Now consider the more interesting scenario where
a choice point, created by a team T I and which lies
within the scope of a CGE, is picked up by a processor
in a team T2. Let this CGE be (true =>• g\!k . . .8¿gn)
and let <¡r¿ be the goal in the CGE whose sub-tree con-

This constraint may be relaxed quite a bit, since identical
división of address space needs to be done only for those teams
that will share computatíon, and then only for the parts that
are shared.

0...0

Proc 1

Segment 1

Proc n

f...f

Segment m

Team 1 addressing space

0...0 f...f

Proc n+1

Segment 1

Proc 2n

Segment m

Team 2 addressing space

0...0

Proc p-n+1

Segment 1

Proc p

f...f

Segment m

Team t addressing space

Figure 4: Address Space in Muse

tains the stolen choice point. T2 needs to copy the
stack segments corresponding to the computation from
the root up to the CGE and the stack segments cor­
responding to the goals g\ through <¡r¿. Let us assume
these stack segments lie in the niemory segments of
team T I numbered ii, . . . ,i¡¡. They will be copied, at
the same position, into the niemory segments num­
bered ii,...,i¡¡ of team T2. (section 7 describes a
strategy for incremental copying). Failure would then
be simulated on <¡r¿. We further need to remove the
conditional bindings made during the execution of the
goal <7¿+i . . . gn by team T I . Let ik+i . . . ¿¡ be the stack
segments where <¡r¿_|_i . . .gn are executing in team T I .
As before, we can either copy the trail stacks of these
segments and reinitialize (i.e. mark unbound) all vari­
ables that appear in them and then discard the copied
trails, or we can copy the stack segments correspond­
ing to goal <7¿+i . . . gn themselves in the appropriate
niemory segments of T2 and then backtrack over them.
Once removal of conditional bindings is done the ex­
ecution of the untried alternative of the stolen choice
point is begun. The execution of the goals <¡r¿_|_i . . .gn

is reinitiated (since we are following a recomputation
approach) and these can be executed by other pro-
cessors which are members of the team (some of this
re-computation can be avoided, as mentioned earlier).
Note that whereas copied stack segments occupy the
same niemory segments as the original stack segments
restarted goals can be executed in any of the available
niemory segments (clearly if T2 decides to copy the
computations done by team T I for goals gi+i through
gn to save recomputation or for untrailing, as men-

Choice Point Parcall Frame

Figure 5: Illustration of Stack Copying

tioned earlier, then the corresponding stack segments
will have to be copied in the same niemory segments,
i.e. ik+i through i¡, of T2) .

Returning to the earlier example (fig. 3), for execu­
tion to proceed as shown there, each pair of processors
(P l , P2), and (P3, P4) would have to be in the same
team (respectively teams T I and T2) . Each of pro­
cessors P5 and P6 will also have to be in a sepárate
team (respectively teams T3 and T4) . Assuming that
P l starts the execution of query q in niemory seg­
ment numbered 1, and P2 starts the execution of b in
niemory segment numbered 2 (in the address space of
team T I) , then P3 would be forced to copy the stack
segment corresponding to a in niemory segment num-
ber 1 of its address space. Assuming that only the
trail stack of b is copied (to reset conditional bind­
ings), P4 is free to execute b in any niemory segment
of T2 (which will be a segment other than niemory
segment 1, because only one processor in a team can
use a niemory segment at a t ime). Suppose P4 has
its stacks located in segment 4 of the address space of
team T2; then, it will execute b in niemory segment
number 4. When P5 and P6 steal the alternative cor­
responding to solution b2 then each of them will copy
stack segments corresponding to a to niemory segment
1 of their respective address spaces, and the stack seg­
ment corresponding to b to niemory segments 2 and 4
of their respective address spaces.

The copying of stacks by team T2 from team T I
corresponding to figures 3.(i) and 3.(ii) is further il-
lustrated in figure 5. To keep the figure simple only

the local stacks are shown. In reality, the heap and the
trail will be copied too. Also note that copied choice
points are transferred to a shared área to which the
choice points in the local address space now point, as
in MUSE.

The shared memory área is not shown in Figure
5. Note that because goals in a CGE are recomputed,
parcall frames and any other structure used to support
and-parallelism (as the various markers used by the
PWAM [18]) are copied rather than shared (see Figure
5)

Note also that each memory segment in a team's
address space has a complete set of stacks for a pro-
cessor to work on corresponding to the "stack set" of
&-Prolog [16]. Thus, the segmented memory manage-
ment proposed can also be viewed as each team having
a number of stack sets on which different processors
("agents") can work on. This view allows the immedi-
ate application of s tandard memory management tech-
niques developed for independent and-parallelism [17]
within each team.

This leads to a layering of the parallelism exploita-
tion in ACE: at the lower layer, within each team,
the computation is purely and-parallel, as in a group
of "stack sets" in &-Prolog to which a number of
"agents" are attached; at the higher layer, among
the teams, the computation is purely or-parallel (as
in MUSE). Thus, it is easy to see that in the pres-
ence of only and-parallelism our system would be as
efñcient as &-Prolog, while in the presence of only or-
parallelism it will be as efñcient as the MUSE system.
Also notice that the amount of stack copying that will
be done, in the presence of both and- and or- paral­
lelism, would be identical to that done in the MUSE
system provided, of course, tha t the scheduling strat-
egy is the same.

However, the set up t ime for executing the untried
alternative choice points that fall within the scope of
a CGE may be different than in MUSE, due to the
spreading of the computation across different stacks.
On the other side, the actual copying operation may
result even faster than in MUSE, since ACE can take
advantage of having múltiple processors transferring
in parallel parts of the computation tree. Note that
these differences only appear when both and- and or-
parallelism are being exploited simultaneously.

An interesting property of ACE also related to
memory management is tha t it adapts quite natu-
rally to a hybrid multiprocessor in which parts of the
address space are shared among subsets of proces­
sors, as, for example, in a system containing múltiple
shared-memory multiprocessors connected by a mes-
sage passing or broadcast local network [4]. In this
kind of system each shared-memory multiprocessor
would naturally be a candidate for constituting a team
with its own memory address space, and the various
teams would then be spread over the different multi­
processors and communicated by the message-passing
or broadcast local network. And-parallelism would

be exploited within the shared-memory system while
or-parallelism would be exploited over the distributed
network of these shared memory systems. The argu-
ment above has been based on locality of addressing
space issues, but a perhaps even more important fac­
tor involved is that of the access t ime depending on
location. It also makes sense from this point of view to
keep processors in a team, which communicate more
often, within the fast communication área and put
different teams, which communicate less often, at a
larger distance from the point of view of communica­
tion. Similar principies apply and a similar approach
can be taken for implementing and-or parallel systems
on general NUMA (Non Uniform Memory Access) Ma­
chines even if they have a global addressing space.

4 Scheduling

The need to schedule work arises at two indepen­
dent levéis: (i) and-parallel work at the level of pro­
cessors within a team and, (ii) or-parallel work at
the level of teams. Thus a processor can steal and-
parallel work only from members of its own team and
an idle team can steal an untried alternative from a
choice point. This suggests that sepárate schedulers
can be used for managing the and-parallel and or-
parallel work respectively. Schedulers developed for
&-Prolog and for MUSE can be used for this purpose.

For example, and-parallel work can be managed ex-
actly as in the &-Prolog scheduler: idle processors
steal available goals from goal-stacks of other proces­
sors in their team.

Or-parallel work can be managed as in MUSE: idle
teams request work from other teams (as in MUSE,
it will be convenient to share as much work as pos-
sible). A distinction can be made between the pub­
lic part and the prívate parí of the execution tree:
the choice points in the public part have been made
sharable, while those in private part have not been
made sharable yet. Execution in a team continúes
normally as in an and-parallel system (as described
above), until the team is interrupted by another that
is looking for work. At this point all choice points in
the private part tha t satisfy the sharing requirement
are made sharable or public. The requesting team
picks an alternative from one of these choice points
for or-parallel processing.

Finally, one has the new problem of balancing the
number of teams and the number of processors in each
team, in order to fully exploit all the and- and or-
parallelism available in a given Prolog program. In
order to solve this problem dynamically processors can
migrate from one team to another or start new teams.
An idle processor first looks for and-parallel work in
its own team. If no and-parallel work is found, it can
decide to migrate to another team where there is work,
provided (a) it is not the last remaining processor in
that team, and (b) there is a free memory segment

in the memory space of the team it joins. If no such
team exists it can start a new team of its own, perhaps
with idle processors of other teams, provided there is
a free address space available for the new team. The
new team can now steal or-parallel work from other
teams. Some of the 'flexible scheduling' techniques [8]
that are being developed for deciding when a processor
should switch teams etc. in the Andorra-I system can
also be used in ACE.

5 Implementat ion of ACE

The discussion so far has aimed at providing a
general, high-level description of the ACE execution
model. In this section we will present a number of
practical issues which arise in the implementation of
the model and propose a number of solutions for effi-
ciently resolving them. The two main issues we study
are related to memory management and how efficient
copying through only copying parts of the stack sets
between teams can be implemented, and how full Pro­
log should be supported in ACE. (Further details on
implementation of ACE, that are not included here for
lack of space, can be found in [13]).

5.1 Goal Execut ion Order in C G E s

Memory management is a complex problem in the
implementation of parallel logic programming sys-
tems, one that is closely related to scheduling [17].

Memory management is simplified in MUSE be-
cause each processor manipulates a sepárate Prolog
stack set. In contrast, in ACE a team manipulates
múltiple stack sets that may have to be copied when
teams fetch work from other teams. Furthermore, de-
pending on and-scheduling, only parts of such stack
sets may be needed: the order in which stack frames
are pushed on the processor's stack may not obey
the order in which they would have been pushed in
a sequential Prolog implementation, and thus a stack
segment may contain "trapped" stack frames (actu-
ally, whole "stack sections") that are not part of the
computation surrounding it [17]. As a result of this,
when copying stack segments we may copy sections
that are unrelated to the branch we need. We can
completely avoid copying these non-relevant parts, but
then many small fragments of the stack will have to
be copied making the copying operation somewhat
inefficient[13], and, in any case, the hole created by
the t rapped goal would remain in the copying stacks
because copying is address-to-address to avoid pointer
relocation. Incremental copying is also made difficult
by this potential lack of order. We explain these prac­
tical issues in more detail next.

Ideally, we would prefer that a parallel stack-based
system implementing Prolog semantics would obey the
seniority constraint: Given two stack frames, / i and
¡2, corresponding to two nodes in the Prolog search

tree, then / i should be allowed to appear above j'¿
(there might be other intervening nodes between / i
a n d j'¿) if and only if / i will appear above j'¿ in the
stack in s tandard sequential execution of Prolog. Thus
frames of descendent nodes in the execution tree must
appear on top of frames of their ancestors. The rea-
son why this is helpful is that , while backtracking, if
we reach a frame / then we know that / is on top
of the stack and that the frames corresponding to all
its descendents have been backtracked over and re-
claimed, thus considerably simplifying memory man­
agement. If the seniority constraint is not obeyed,
then holes may appear in the stack both in and- and
or-parallel systems, and "trapped goals" may appear
in and-parallel systems [17].

In fact, the seniority constraint may impose severe
constraints on parallel systems. Enforcing this con­
straint for an independent and-parallel system such as
&-Prolog (or ACE) may severely constrain the way
and-parallel goals can be scheduled. Given a CGE

(t r u e = > a & b & c) i f a processor
picks the goal c for and-parallel processing, then fol-
lowing this constraint will effectively shut it out from
picking any goals (after it has finished processing c)
to the left of c, or goals from CGEs created during
execution of a or b, or goals from ancestor CGEs that
are to the left. The seniority constraint is obviously
too severe in this case and indeed systems such as &-
Prolog [16] and Aurora [9] do not obey it. Rather
they let holes (and trapped goals, in the case of &-
Prolog) be created in the stack, that will be reclaimed
when everything above the hole gets reclaimed (see
Figure 6). This creates many problems in ACE, be-
cause now when we copy a stack set, we may copy
many trapped goals that are not part of the current
alternative stolen. These t rapped goals may need to
be identified before execution can begin in the copying
team. This problem and our solutions are further dis-
cussed in the next section in the context of techniques
for incremental copymg of stacks8 .

5.2 Incrementa l Copying in A C E

An optimization that significantly improves the
performance of stack-copying or-parallel systems, like
MUSE, is incremental copying, i.e., when a processor
copies a stack of another, then only those parts are
copied in which the two processors differ. This is il-
lustrated in Figure 7 (only local stacks are shown).
Suppose processor P l is working on branch 1, and P2
on branch 2. At this point both P l and P2 have a
common stack up till the branch node a (modulo con-
ditional bindings). Suppose now that after exploring
branch 2, P2 decides to pick an alternative from P l

Note that goal-recomputation, as used in ACE, actually
helps in maintaining seniority constraints, because every time
we recompute goals, we execute them on top of existing solved
goals that are to the left, thus righting the order somewhat.

choicepoint
Processors Pl , P2 and P3 are processing the and-or tree shown on the left.
Processor P3 picks goal d from Pl for and-parallel processing, finds solution
di , and starts helping P2 to solve the goals in its CGE by picking up goal h. The
goal d is now trapped under goal h, because it would be backtracked over first.

Similarly, k is picked
by P3 after finishing
hl , which inturn
traps h.
Note that b&c&d etc.
in the stacks denote
the Parcall frame for
that CGE.

P1

b
i

j i

j & k

b

b&c&d

a

P2 P3

9 i

g

g&h&i

c

k i

h
i

h

d
i

d

Figure 6: Trapped Goals in And-parallel Execution

P2

i
o
p
tin

iiz
e
d

__
 i

n
cr

e
m

e
rit

a
l

•
_

i '

Figure 7: Incremental Copying in MUSE

(along branch marked 3) in node b. To do so it back-
tracks up to node a and steals the second alternative
from b in P l . Therefore, before P2 can proceed, it
needs to créate on its stacks the state that existed in
P l at the t ime the choicepoint corresponding to b was
created. To do so it copies P l ' s stacks. The copying
and restoring of state can be done in three ways [3]
(Figure 7):

(i) Total: copy the entire stacks of P l (everything
from the root to the bot tom most node along
branch 1), then backtrack until choicepoint b is
reached. Thus, the hatched, gray, and the black
shaded segments of P l ' s stack in Figure 7 will be
copied;

(ii) Incremental: copy only frames below choice point
a (those above a are already on P2's stack), then
backtrack until choice point b. Thus, only the
gray and black segments in P l ' s stack in Figure
7 will be copied);

(ii i) Optiniized incremental: copy only the stack seg­
ments between choice points b and a because
those above a are already on P2's stack, and those
below b are not needed for execution. Thus, only
the gray shaded portion of P l ' s stack in Figure 7
is copied. The exception is that the entire trail
stack below a is copied, so that the parts of the
trail stack below choice point b can be used for
removing conditional bindings.

Clearly, option (i) involves unnecessary copying9 be-
cause there are copied parts that are immediately

Experiments on the Sequent Symmetry have shown that for
memory chunks larger than 4K the copying time is proportional
to the size of the memory chunk being copied [13].

backtracked over and reclaimed. Option (ii) also does
unnecessary copying, unless the black shaded part of
the stack in Figure 7 is very small in size. In MUSE
the difference between Incremental and Optimized is
almost irrelevant, since in most of the cases there will
be hardly anything on the stack below the choice point
(assuming the stack is growing downward as in Fig­
ure 7) from which the new alternative is taken. This
is a consequence of the scheduling policy adopted by
MUSE, in which alternatives are always taken from
the bot tommost choice point (known as dispatching-
on-bottommost [2]).

In ACE, however, things are different due to the
presence of and-parallelism. Referring again to the
and-or tree shown in Figure 6, suppose that a team,
T2, was working on alternative g2 of goal g in the inner
CGE (which it stole from a team, T I , earlier). It finds
a solution, looks for more work, and decides to pick
an alternative h.2 from node h (corresponding to solu­
tion gi from T I) . T2 and T I have a common stack up
to the CGE labeled (g & h & i) . The stack frames
leading up to choicepoint g are also present in both.
Applying the idea of incremental copying, T2 will have
to copy the difference between T I and itself. As be-
fore, there are two ways of copying incrementally: (i)
blindly copying the difference between corresponding
stacks (of different processors of the two teams) on
T2's stacks (Incremental Copying); (ii) copying only
those parts which will be useful for T2, i.e. leaving
out the parts that will be immediately backtracked
over (e.g. the frames corresponding to h i , i , ci and
di) copying only the trail for such parts . (Incremental
Copying is illustrated in Figure 8).

While in MUSE Incremental copying (rather than
Optimized incremental copying) results in very little
space being copied that gets immediately backtracked
over, in ACE this may not be the case, as ACE sup-
ports and-parallelism and follows the sharing reqmre-
ment to make nodes public. Consider the following
scenario: suppose as before that T2 tries to steal al­
ternative h.2 from choicepoint h, and that T I had not
yet found a solution for goal i . In this case, T I will
not make the choice points of all the branches to the
right of i public (that is, choice points created from
the goal d in the example). This is for two main rea-
sons. Firstly, and as mentioned when presenting the
sharing requirement, work available from these choice
points will be very speculative, as i may yet fail (pos-
sibly after computing for a long time) and all the work
in copying these branches and picking work from them
may therefore be wasted. Second, making these choice
points public will lead to mixing of public and private
parts of the logical search t ree 1 0 . For instance, if exe-
cution of i (or the CGE's continuation) in T I was to
lead to further choice points, they will initially be pri­
vate and henee not be visible to other teams, although
choice points of goals to the right of i (such as d) will

Note that they are already mixed in the physical stacks.

be public. Thus, during normal backtracking through
a CGE private choice points might be encountered af­
ter a processor has backtracked into the public área
(or worse yet, if another team steals alternative from
d and later backtracks, it will not see parts of i at all
since they were never copied because of being private
to T I) . This mixing of public and private áreas of the
logical search tree, thus, will result in complications in
scheduling. Henee, choice points in goals to the right
of an incomplete goal in a CGE are never made pub­
lic. As a consequence of this, Incremental copying will
end up copying all the private goals, tha t may form
a large part of the tree, and immediately descarding
them (by backtracking over them), which is clearly a
waste.

Therefore, it makes sense to use Optimized copying
for ACE, although it is more complicated to imple-
ment.

It is not very clear, on the other side, which incre­
mental copying approach (Incremental or Optimized)
will reduce the synchronization t ime between teams
T I and T2. However, it is obvious that Incremental
copying is the simpler of the two: in the case of Incre­
mental copying T I has to synchronize for the duration
of the copying of the difference, while in the Optimized
case we first have to figure out the limits of copying for
each processor stack in T I (which may require a com­
plete traversal of the and-parallel tree computed by
T I) and then do the copying. Optimized incremental
copying for ACE for the and-or tree shown in Figure
8 is illustrated in Figure 9.

In ACE we propose to use both Incremental and
Optimized incremental copying depending on the sit-
uation. The following heuristic tries to balance the
excessive unnecessary copying (Incremental copying)
and the excessive synchronization t ime (Optimized
copying) by dynamically detecting which of the two
options may give the best results. If the choice­
point from which the alternative is being stolen is
outside the scope of any CGE, or it is in the scope
of some CGEs and all these CGEs have found a so­
lution (i.e. each subgoal of each CGE has already
found a solution) in the team from which the alterna­
tive is being stolen, then Incremental copying will be
adopted. Otherwise, Optimized incremental copying
will be used. As mentioned, Optimized copying re-
quires traversal of all CGEs in which the choicepoint
is nested and obtaining the addresses of input-markers
and end-markers [18, 16, 13] for each goal in these
CGEs. From these addresses and the information in
Parcall frames we determine the useful part of the var-
ious stacks to be copied. Finally, note that all proces­
sors in a team can cooperate to speed up detecting the
áreas to be copied and copying of stack segments from
one team to another.

choicepoint

end of parcall

b & c & d Pl

itir
b&c&d

a

P4

P2

g&h&i

P5

b 1

l\ j & k

b
b&c&d

a

Ai
g

g&h&i
c

c i
i

k 1
h i
h
d i
d

P3

P6

T e a m T l = (P l , P 2 , P 3) ;

TI computes

d 1
d
kJ
h i
h
d i
d

Team T2 = (P4, P5, P6)
T2, initially positioned at choice
point b, steals alternative g2
from g, does blind incremental
copying, backtracks over d, c, i,
gl, and h (creating hole in stack
of P6, shown shaded), computes
g2, and restarts all goals to right
(h, i, and d). The state of stacks
is shown after all this is done.

Figure 8: Incremental Copying in ACE

Pl P2

b!
k j&k

b
b&c&d

a

9!
9

g&h&i
c

<*!
1
k 1
h!
h
d!
d

P3

Fig. (i) TI computes along gl

TeamTl=(Pl,P2, P3)

T&V

b&c&d
9

g&h&i

P4 P5 P6

WC

b&c&d
9

g&h&i

d!
d

b h!
h
d i
d

P4 P5 P6
Fig (ii) T2 steals from g and

computes along g2

Team T2 = (P4, P5, P6)

Only this part is copied (the frames
below CGE (g&h&i) up to choicept h).

D-

Fig (iv) T2 uses optimized incre­
mental copying to pick h2 from T1

Blind incremental copying, in
addition to the copying done here,
will also copy the stuff above
g in P2, and above hl in P3 and
then backtrack over it. Also, note
that useless space (holes) might
have some useful information copied
in them later (e.g., stack frame h in
figure iv to the left).

T&^r

b&c&d g&h&i

P4 P5 P6
Fig (iii) T2 backtracks to g

d!
d
b!

i\ j&k

b
b&c&d

a

c i

i
9

g&h&i
c

h2

* i
h.
h
««!
d

P4 P5 P6
Fig (v) T2 finds solution h2
for h and recomputes i, and d.

Figure 9: Optimized Incremental Copying in ACE

5 . 3 I m p l e m e n t i n g S i d e - e f f e c t s a n d C u t s
in t h e A C E M o d e l

One advantage of an and-or parallel model that
recomputes independent goals is tha t since it closely
mirrors traditional Prolog execution it can quite easily
support full Prolog, i.e. support the execution of or-
der sensitive predicates such as side-effect predicates
(e.g. read, write, assert, retract, and calis to dynamic
predicates) and cut (!).

Essentially, a side-effect predicate (sep for brevity)
should be executed only after the sep "preceding" it
(preceding in the sense of left-to-right, top-to-bot tom
Prolog order) has finished execution. If the preceding
sep has not been executed, the current sep should sus-
pend, and resume after the execution of the preceding
sep is over. However, given a sep, determining the
sep tha t "precedes" it is akin to solving the halting
problem, and therefore the knowledge that the preced­
ing sep has finished has to be approximated.

For example, consider supporting seps in purely
or-parallel systems [15]. Here, the preceding sep is
assumed to be finished if the or-branch containing it
has finished execution. In other words, a sep is exe­
cuted only when the branch containing it becomes the
leftmost in the or-parallel tree. Likewise, in purely
independent and-parallel system, such as &-Prolog, a
sep encountered in an independent and-parallel goal g
in a CGE C is executed only after all the independent
and-parallel goals to the left of g in the CGE C have
finished execution. If the CGE C containing the goal
g is nested inside a goal h, which is an independent
and-parallel goal in another CGE D, then all the inde­
pendent and-parallel goals in CGE D tha t are to the
left of goal h should have finished, and so on.

We can combine the conditions for executing seps
in a purely or-parallel system with those for a purely
and-parallel system to genérate the conditions for exe­
cuting a sep in an and-or parallel system such as ACE.
Given a CGE (cond =$• g\ 8¿ . . . & g¡ & . . . & g„),
where we assume that the parallel execution of goal <¡r¿
leads to a side-effect, the conditions under which this
side-effect will be executed are given below. Note that
the goal g¿ is being recomputed in response to Solu­
tions si . . . s¿_i that will be found for goals g\ . . . <7¿_i
respectively. Let b\ . . . 6¿_i be the or-branches in re­
spective search trees of goals g\ . . . <7¿_i that lead to
these solutions. The conditions are as follows:

(i) The or-branch that contains the sep in the search
tree of goal g¡ should become leftmost n .

(i i) The computation of solutions si . . . s¿_i should
have finished; and the or-branches 61 . . . 6¿_i
should be leftmost in the search tree of their re­
spective goals gi . . . <7¿_i.

(ii i) If the CGE containing <¡r¿ is nested inside another
CGE then conditions (i) and (ii) must recursively

with respect to the equivalent or-parallel tree

hold for the inner CGE with respect to the outer
CGE. If the CGE is not nested inside other CGEs,
then the or-branch in which it appears should be
leftmost with respect to the root of the whole
computation tree.

In the rest of this section we present a concrete tech-
nique for determining when a sep 's turn for execution
has come during and-or parallel execution. The tech-
niques make use of techniques developed for &-Prolog
[7, 21, 5], MUSE [3], and Aurora [9]. For simplic-
ity, and without loss of generality, we assume that
when a processor reaches a sep it repeatedly performs
the above check until it succeeds (thus the processor
busy-waits rather than suspends). However, suspen­
sión would be used in practice1 2 so that the processor
that encountered the sep, rather than busy-waiting
and wasting cpu-cycles, can do useful work elsewhere.

5.3.1 Side-Effects in A C E

Note that while verifying the above conditions to check
if a side-effect can be executed, processors need to ac-
cess shared choice points recorded in the shared mem-
ory (to do the leftmost check). This can be expensive,
especially in a non-shared memory or a hybrid multi-
processor system. One can reduce the number of ac-
cesses to shared memory by first requiring a processor
that has reached a side-effect to:

(a) check if all goals to the left of <¡r¿ in the current
CGE, and those to the left in all the ancestor
CGEs have produced a solution (first part of con-
dition (ii), and condition (iii))

(b) check if the side-effect is in the leftmost branch,
and the solutions to preceding goals in all the
CGEs are in leftmost branches (condition (i), sec-
ond part of condition (ii), and condition (iii)).

Note that check (a) does not require access to the
shared área, it is performed wholly within the address
space of the team executing the side-effect. Check (b)
will be made only after check (a) succeeds, thus re-
ducing the number of accesses to shared área. The
above decomposition also neatly separates the and-
parallel and the or-parallel components of the check.
Both checks (a) and (b) must be implemented effi-
ciently, particularly check (a) since it is going to be
performed more often13 .

1 2Implementation of suspensión does not present problems
in &-Prolog. Techniques for implementing suspensión more ef-
ficiently in MUSE by storing the difference between the sus­
pended branch and the one that the processor switches to have
recently also been developed by the MUSE group. These tech­
niques can be adapted for ACE.

13Indeed, check (a) can be implemented quite emciently since
the appropriate information about the status of and-parallel
goals is maintainedin the CGE's descriptor, and therefore, per-
forming check (a) involves a simple look-up of the corresponding
parcall frame(s).

The presence of the sharing requirements allows
to sepárate the side-effect checks for or and and-
parallelism in a different way. In fact the sharing re­
quirements guarantee that all the branches on the left
of a public choice point are completed (otherwise the
choice point would not satisfy the requirements dur-
ing the sharing operation). Because of this we need
not perform the check (a) in the public part of the
tree. Furthermore, in the private part of the tree the
check (b) is unnecessary since no sharing operations
have been performed (the side effect is for sure in the
leftmost branch). Thanks to these observations, if P
is the bot tommost public node in the current branch,
then we can organize the side-effect check as follows:

(1) apply check (a) only to the subtree rooted at P;

(2) apply check (b) only to the public part of the tree
above P.

Two main algorithms have been proposed to handle
side-effects in independent and-parallel systems (like
&-Prolog): synchronization blocks[7, 21], and visiting
each ancestor CGE and checking if goals to the left
have finished [5]. Either one of these can be used for
performing check (a).

To check if a given node is in the leftmost branch of
a given subtree, we need access to the left sibling nodes
of the immediate ancestor choice point nodes (given a
node, if the choice point node above it doesn't have
any left siblings, the node is in leftmost branch of the
subtree rooted at tha t choice point) . However, the
sibling-nodes of a choice point are not directly acces-
sible to a team doing the check, therefore we have to
use some other technique to determine this. The tech-
nique that we use parallels the technique proposed for
MUSE [3].

We use the fact that part of the choice point in
ACE is shared, and henee the fields in the shared part
of choice-point are visible to all teams. Each shared
choice-point in ACE includes a teamsbitmap, (from
MUSE's workersbitmap). The teamsbi tmap indicate
which teams are exploiting alternatives of that node.
When the ¿th alternative is picked by a team from a
node, the ¿th bit in the teamsbi tmap is set. When
the subtree corresponding to the ¿th alternative has
been completely explored and backtracked through,
the ¿th bit is reset. In the alt-number field in the
private part of the choice-point, a team also records
the alternative number which it picked from this choice
point. Note that the alt-number field will oceupy the
same memory address in the address space of each
team that is working below this choice point.

The algorithm for verifying leftmostness is thus as
follows: the team goes up the execution tree; when-
ever it reaches a shared choice-point it looks at the
corresponding teamsbi tmap; if there are other teams
that are working on the alternatives of this node, the
corresponding images of the choice-point are checked

in the address spaces of these teams to see if the cur­
rent branch is leftmost. This is done by a a simple
arithmetic comparison of the alt-number fields in these
choice points. Note that while checking for leftmost­
ness of side-effect goals and solutions of goals to the
left in a CGE etc. we are only concerned with deter-
mining leftmostness of nodes in the subtree of a goal
in the CGE (local leftmostness), and not in the whole
program search tree (global leftmostness).

Several optimizations are necessary to make this al­
gorithm efficient. Firstly, if two teams share a choice-
point N, they will also share all ancestor nodes. Thus,
one needs to compare two teams only once for the
youngest node they share. Secondly, as in the Au­
rora schedulers (and proposed as an optimization in
MUSE), one can keep track of the current node up to
where a worker or team is leftmost.

Finally, we can completely avoid accessing any re­
mote choice point by storing in each shared frame
a b i tmap which indicates for each alternative in the
choice point whether there is at least one active team
working on that alternative.

5.3.2 I m p l e m e n t i n g Cut in t h e A C E M o d e l

The effect of a cut is to prune all branches to the right
of the path from the place where the cut is executed
to the node where the clause containing the cut was
introduced (cut level). Henee, because a cut can only
cut up to the current CGE, condition (iii) is always
trivially satisfied. The t reatment of cuts is similar to
that of side-effects except that in the case of cut some
action can be taken (i.e. some pruning can be done)
without the cut becoming leftmost in the entire tree
[15]. Basically, a cut can be immediately exercised
in the subtree in which that cut is leftmost. Other
branches can be pruned only after the cut becomes
leftmost in the entire tree. Thus, in ACE when a cut
is encountered pruning can be immediately done up
to the point where conditions (i) and (ii) above suc-
ceed. To prune other parts the team has to wait until
condition (i) and (ii) are satisfied right up to the root
node, i.e. the cut becomes a global leftmost. Note that
pruning a choice-point consists of clearing that choice-
point and signaling any teams exploring alternatives
to the right to terminate execution. Termination of
execution by a team means that all the processors in
the team abandon execution and backtrack. The effi­
cient techniques used to deal with cuts in or-parallel
systems (like those of MUSE [3] and Aurora [9]) can
be adapted to ACE.

6 Efficiency and Generality of the ACE
Model

We believe that an implementation of the ACE
model will be quite an efficient realization of an or-

and independent and-parallel system. This is pri-
marily because, as may already be evident, in the
presence of only or-parallelism ACE will be as effi-
cient as MUSE, while in the presence of only inde­
pendent and-parallelism it will be as efficient as &-
Prolog. Therefore, it appears clear that having an
ACE system would be, at least, as powerful and effi­
cient as having both a MUSE and an &-Prolog sys­
tem, in the sense that now a single system will run
or-parallel only programs and and-parallel only pro-
grams with similar performance as the MUSE and &-
Prolog systems respectively. ACE should also combine
speedups from programs where both or- and indepen­
dent and-parallelism are available, henee performing
even better than the best of MUSE or &-Prolog for
such applications. Note that with respect to MUSE,
the parts that are copied in and-or parallel execution
in ACE for a given program are exactly those that
will be copied by MUSE in an equivalent purely or-
parallel execution of the same program, but, whereas
MUSE will copy one large stack segment at any given
time, by exploiting independent and-parallelism, ACE
may spread this segment over many memory segments
in the address space of the team. This may in prin­
cipie add some overhead to the copying cost (since
many small segments rather than one large segment
may have to be copied). However, because each team
has múltiple processors, the copying of múltiple seg­
ments can be done in parallel. Wi th respect to &-
Prolog, ACE does not introduce any new overheads.
The only inefficieney present in the ACE model is with
respect to memory consumption, but that cannot be
avoided if we want to use stack-copying for represen-
tat ion of múltiple environments. Given that memory
is inexpensive, we hope that this will not be such a
big bottleneck.

Another important point that should be noted is
that the approach outlined in this paper for imple-
menting and-or parallel systems, while presented in
terms of combining the types of parallelism present
in MUSE and &-Prolog, is actually quite general,
and can be applied to implement other systems that
exploit and- and or-parallelism, such as Andorra-
I [6], Prometheus [24], and IDIOM [11]. It is
quite easy to see how Andorra-I, a system that ex-
ploits or-parallelism and determinate dependent and-
parallelism, can be implemented (the implementa-
tion of Andorra-I by Yang, Santos Costa, and War-
ren is based on binding arrays) using stack-copying.
In Andorra-I there is no or-parallelism within and-
parallel goals since only deterministic goals can be
processed in and-parallel (thus it reduces to the case
described in section 2), thus and-parallel execution can
be performed by each team locally. Or-parallelism will
be implemented using stack-copying and the memory-
management scheme described above. Likewise,
Prometheus [24], a system that exploits or-parallelism
and non-determinate dependent and-parallelism (with
no coroutining) by extending CGEs, can be easily im­

plemented using the ACE scheme. In fact, since the
DAS-WAM abstract machine on which Prometheus
is based is itself based on that of &-Prolog no extra
measures need to be taken apart from those needed to
support dependent and-parallelism, which are for the
most part orthogonal to the issues dealt with by ACE.
IDIOM, which adds independent and-parallelism to
Andorra-I, can also be implemented using the ACE
approach. Its implementation can be thought of as a
combination of the ACE and Andorra-I implementa-
tions, and, again, is straightforward to derive.

7 Conclusions

In this paper, we presented ACE, a model capable
of exploiting both non-deterministic and-parallelism
and or-parallelism. We have discussed both high-level
and low level implementation issues and shown how
using recomputation the scheme can incorpórate side-
effeets and support Prolog as the user language easily.

We have shown how ACE subsumes two of the
most successful approaches for exploiting parallelism
in logic programming (MUSE and &-Prolog).

We have argued how the resulting system has a
good potential for low sequential overhead, can be
implemented in a reasonably easy way by extend­
ing existing systems, and retains the advantages of
both purely or-parallel systems as well as (even non-
deterministic) purely and-parallel systems. A collab-
orative implementation of ACE on Sequent and other
multiprocessors is under way at New México State
University and University of Madrid (UPM).

References

[1] K.A.M. Ali. Or-parallel Execution of Prolog on
the BC-Machine. In Fifth International Con-

ference and Symposium on Logic Programmmg,
pages 253-268. MIT Press, 1988.

[2] K.A.M. Ali and R. Karlsson. The muse or-parallel
prolog model and its performance. In 1990 N.
American Conf. on Logic Prog. MIT Press, 1990.

[3] K.A.M. Ali and R. Karlsson. Full Prolog and
Scheduling Or-parallelism in Muse. Interna­
tional Journal of Parallel Programming, 1991.
19(6):445-475.

[4] Gordon Bell. Ultracomputers: a Teraflop Before
its Time. Communications ACM, 35(8):26-47,
1992.

[5] S.-E. Chang and Y. P. Chiang. Restricted AND-
Parallelism Execution Model with Side-Effects.
In Ewing L. Lusk and Ross A. Overbeek, editors,
Proceedmgs ofthe North American Conference on
Logic Programming, pages 350-368, 1989.

[6] V. Santos Costa, D.H.D. Warren, and R. Yang.
Andorra-I: A Parallel Prolog System that Trans-
parently Exploits both And- and Or-parallelism.
In Proc. 3rd ACM S1GPLAN PPoPP, 1990.

[7] D. DeGroot. Restricted AND-Parallelism and
Side-Effects. In International Symposium on
Logic Programming, pages 80-89. San Francisco,
IEEE Computer Society, August 1987.

[8] Inés Dutra. A Flexible Scheduler for the Andorra-
I System. In ICLP'91 Pre-Conference Workshop
on Parallel Execution of Logic Programs, Com­
puter Science Department, University of Bristol,
June 1991.

[9] E. Lusk et al. The aurora or-parallel prolog sys-
tem. New Generation Computing, 7(2,3), '90.

[10] G. Gupta and V. Santos Costa. Cut and Side-
Effects in And-Or Parallel Prolog. In]¡th IEEE
Symp. on Parallel and Distr. Processing, '92.

[11] G. Gupta , V. Santos Costa, R. Yang, and
M. Hermenegildo. IDIOM: A Model Intergrating
Dependent-, Independent-, and Or-parallelism.
In Int'l Logic Prog. Symp., pages 152-166. MIT
Press, '91.

[12] G. Gupta and M. Hermenegildo. Recomputat ion
based Implementation of And-Or Parallel Prolog.
In Int'l Conf. on 5th Generation Computer Sys.
'92, pages 770-782, 1992.

[13] G. Gupta , M. Hermenegildo, E. Pontelli, and
V. Santos Costa. Ace: And/or-parallel copying-
based execution of logic programs. Technical Re-
port, 1993.

[14] G. Gupta and B. Jayaraman. Compiled And-Or
Parallelism on Shared Memory Multiprocessors.
In 1989 N. American Conf. on Logic Prog., pages
332-349. MIT Press, 1989.

[15] Bogumil Hausman. Prunmg and Speculatíve
Work tn OR-Parallel PROLOG. PhD thesis, The
Royal Insti tute of Technology, Stockholm, 1990.

[16] M. Hermenegildo and K. Greene. &-Prolog and
its Performance: Exploiting Independent And-
Parallelism. In 1990 Int'l Conf. on Logic Prog.,
pages 253-268. MIT Press, June 1990.

[17] M. V. Hermenegildo. Relating Goal Scheduling,
Precedence, and Memory Management in AND-
Parallel Execution of Logic Programs. In Proc.
4th ICLP, pages 556-575. MIT Press, 1987.

[18] M. V. Hermenegildo. An Abstract Machine for
Restricted AND-parallel Execution of Logic Pro­
grams. In Proc. 3rd ICLP, LNCS 225, pages 2 5 -
40. Springer-Verlag, 1986.

[19] M. V. Hermenegildo and R. I. Nasr. Ef-
ficient Management of Backtracking in AND-
parallelism. In 3rd ICIP, pages 40-55. Springer-
Verlag LNCS 225, 1986.

[20] K. Muthukumar and M. Hermenegildo. Compile-
time Derivation of Variable Dependency Using
Abstract Interpretation. Journal of Logic Prog.,
To appear.

[21] K. Muthukumar and M. Hermenegildo. EfBcient
Methods for Supporting Side Effects in Indepen­
dent And-parallelism and Their Backtracking Se-
mantics. In 1989 International Conference on
Logic Programming. MIT Press, June 1989.

[22] B. Ramkumar and L. V. Kale. Compiled Execu­
tion of the Reduce-OR Process Model on Multi­
processors. In Proc. NACLP'89, pages 313-331.
MIT Press, 1989.

[23] K. Shen. Exploiting Dependent And-parallelism
in Prolog: The Dynamic Dependent And-parallel
Scheme. In Proc. Joint Int'l Conf. and Symp. on
Logic Prog. MIT Press, 1992.

[24] K. Shen. Studies in And/Or Parallelism in Pro­
log. PhD thesis, U. of Cambridge, 1992.

[25] K. Shen and M. Hermenegildo. A Simulation
Study of Or- and Independent And-parallelism.
In Proc. 1991 International Logic Programming
Symposium. MIT Press, 1991.

[26] H. Westphal and P. Robert. The PEPSys Model:
Combining Backtracking, AND- and OR- Paral­
lelism. In IEEE Int'l Symp. on Logic Prog., pages
436-448, 1987.

