
From Eventual to Atomic and Locally Atomic 
CC Programs: A Concurrent Semantics 

F. Bueno*, M. Hermenegildo* 
U. Montanari**, F. Rossi** 

'Universidad Politécnica de Madrid (UPM), Facultad de Informática 
28660 Boadilla del Monte, Madrid, Spain 

E-mail: {bueno,herme}@fi.upm.es 
**Universitá di Pisa, Dipartimento di Informática 

Corso Italia 40, 56125 Pisa, Italy 
E-mail: {ugo,rossi}@di.unipi.it 

Abs t r ac t . We present a concurrent semantics (i.e. a semantics where 
concurrency is explicitely represented) for CC programs with atomic 
tells. This allows to derive concurrency, dependency, and nondeterminism 
information for such languages. The ability to treat failure information 
puts CLP programs also in the range of applicability of our semantics: 
although such programs are not concurrent, the concurrency information 
derived in the semantics may be interpreted as possible parallelism, thus 
allowing to safely parallelize those computation steps which appear to be 
concurrent in the net. Dually, the dependency information may also be 
interpreted as necessary sequentialization, thus possibly exploiting it to 
schedule CC programs. The fact that the semantical structure contains 
dependency information suggests a new tell operation, which checks for 
consistency only the constraints it depends on, achieving a reasonable 
trade-off between efficiency and atomicity. 

1 Introduction 

A concurrent constraint (CC) program [Sar93, SR90, SRP91] consists of a set of 
agents interacting through a shared store, which is a set of constraints on some 
variables. The framework is parametric w.r.t. the kind of constraints handled. 
The concurrent agents do not communicate with each other, but only with the 
shared store, by either checking if it entails a given constraint (ask operation) or 
adding a new constraint to it (tell operation). Therefore computations proceed 
by monotonically accumulating information (that is, constraints) into the store. 

The semantics of CC programs is usually given following the SOS-style op-
erational semantics [SR90, SRP91, BP91], and thus suffering from the typical 
pathologies of an interleaving semantics. On the other hand, the concurrent se
mantics approach introduced in [MR91], which is equipped with a non-monolithic 
model of the shared store and of its communication with the agents, allows to 
express uniformly the behavior of the store and that of the agents, and, as a con-
sequence, to derive a semantical structure where it is possible and easy to see 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://upm.es
http://unipi.it


the maximal level of both concurrency and nondeterminism in a given program. 
Thus it can be much more useful than an interleaving semantics when exploiting 
semantic information for compile-time optimizations which require knowledge 
about any one of these two concepts. In fact, an interleaving semantics is not 
able to express such knowledge correctly, mainly due to the fact that concurrency 
is not directly expressible but is instead reduced to nondeterminism. 

The concurrent semantics in [MR91], from which this paper starts from, is 
based on an operational semantics described via context-dependent rewrite rules. 
The evolution of each of the agents in a CC program, as well as the declarations 
of the program and its underlying constraint system, can all be expressed by sets 
of such rules. The concurrent semantical structure is then built from the rules by 
starting from the initial agent and unfolding it applying the rules in all possible 
ways. The result is a contextual net [MR93a], which is able to represent all the 
computations of a given CC program (as defined by its operational semantics) in 
a single structure, and for each of such computations to provide a partial order 
expressing the dependency pat tern among the events of the computation. 

There are two ways in which the basic tell operation of CC languages is usu-
ally interpreted: either eventually, which means that the constraint is added to 
the current store without any check, or atomically, which instead means that the 
constraint is added only if it is consistent with the current store. The concur
rent semantics for CC programs in [MR93b]) follows the eventual interpretation. 
While the eventual interpretation of the tell operation allows for a completely 
uniform treatment of agents and constraints and thus a distributed representa-
tion of the constraint system, it suffers from the fact that possibly many com
putat ion steps of a failing computation are performed while not being needed. 
Therefore, the semantical structure presented in [MR93b] contained all such 
useless (and, most crucial, possibly infinite) parts of computations. 

Here we modify such semantics to allow for the atomic interpretation of the 
tell operation. This implies that now we must have the possibility of knowing 
immediately if a set of constraints is consistent or not. Thus it may seem that 
we have to go back to the usual notion of a constraint system as a black box 
which can answer yes/no questions in one step (which is what is used in all the 
semantics other than [MR91, MR93b]). However, this is not true: the semantical 
structure we obtain still shows all the atomic entailment steps, thus allowing to 
derive the correct dependencies among agents. 

The new semantics can be obtained from the oíd one by defining an incon-
sistency relation on agents and constraints, and then cutting all those parts of 
the semantical structure which depend on inconsistently "told" constraints. The 
basic idea is to derive the inconsistency relation from the constraint system, 
where we assume that an inconsistent set of constraints always entails the token 
false. Then, the inconsistency relation is propagated through the contextual net 
via the dependency relation. If, as a result of that , some Ítems are inconsistent 
with themselves, then it means that they could not appear in any computation 
without creating an inconsistent state of affairs. Therefore we prune such Ítems 
and everything that depends on them. We also define the new semantics from 



scratch (instead of first deriving the semantical structure for eventual tells and 
then pruning it), by adopting a slightly more complicated inference rule. 

Since our semantics introduces an explicit representation for failure (i.e. the 
a t tempt to add a constraint which is inconsistent with the current store), we 
can say that we achieve a faithful model for capturing backtracking. In fact, the 
ability of recognizing independence and/or nondeterminism in CLP programs 
is crucial when one is interested in parallelizing such programs while retaining 
their semantic meaning (in terms of input-output relation and time complexity). 
This is true also for the dual task, tha t of scheduling CC programs [KS92, KT91] 
(although for such task the t reatment of failure is not necessary). 

Both such tasks need some knowledge on dependencies (or independence) 
of goals, since in the first one we want to parallelize only goals which are not 
dependent on each other, and in the second one we want to schedule later goals 
which may be dependent on earlier scheduled goals. The attractive point of 
the proposed semantics is tha t the dependency relation is an integral part of 
the semantics and thus parallelization and scheduling decisions can be made by 
rather direct observations on the semantical structure. Furthermore, the level of 
granularity offered by the semantics allows scheduling or parallelizing tasks of a 
new nature and at a new level of detail. For example, it is possible to parallelize 
across the operations of the constraint solver and thus to créate parallel tasks 
that include part of the solver operations all in the same semantic framework. 

While the atomic interpretation of the tell operation allows to recognize, and 
thus stop, a failing computation possibly much earlier, it has the disadvantage 
that it can be extremely costly to achieve, especially in a distributed implemen-
tat ion of a CC language. The store could be scattered over many locations, and 
thus checking its consistency with the new constraint to be told could require 
locking all the locations and thus all the other operations until the consistency 
check has been performed. For this reason, it would be reasonable to achieve a 
convenient trade-off between efficiency and atomicity, thus defining a new inter
pretation of the tell operation, which just checks some of the constraints in the 
current store, and not all of them. Our semantics gives a very natural hint on 
the definition and also the possible implementation of one such interpretation of 
the tell operation. In fact, being based on dependency information, it is natural 
to think of checking for consistency only the part of the current store on which 
the tell operation is dependent on. The interesting, and convenient, thing is that 
these are the constraints which are in some sense responsible for the presence of 
the tell agent, and therefore, in a distributed implementation, could be stored in 
a memory which is local to that agent. This means that they will be the most 
easily accessible and that thus the tell operation can be performed efficiently. 
For this locality reason we cali this new operation a ¡ocally atomic tell. 

2 Concurrent Constraint Programming 

In the CC paradigm, the underlying constraint system can be described [SRP91] 
as a partial information system (derived from the information system introduced 



in [Sco82]) of the form (D, h) where D is a set of tokens (or primitive constraints) 
and hC p(D) x D is the entailment relation which states which tokens are 
entailed by which sets of other tokens. The relation h has to be reflexive and 
transitive. Note that there is no notion of consistency in a partial information 
system. This means that inconsisteney has to be modelled through entailment. 
More precisely, the convention is that D contains a false element, so that an 
inconsistent set of tokens is that one which entails false. 

Given D, \ D | is the set of all subsets of D closed under entailment. Then, a 
constraint in a constraint system (D, h) is simply an element of | D |, tha t is, a 
set of tokens, closed under entailment. In the rest of the paper we will consider 
a constraint as simply a set of tokens. 

Consider the class of programs P, the class of sequences of procedure decla-
rations F, and the class of agents A. Let c range over constraints, and x denote a 
tupie of variables. The following grammar describes the CC language we consider: 
P ::= F.A F ::= p(x) :: A \ F.F 

A ::= success | failure \ tell(c) —• A | > ask(ci) —• Ai \ A || A \ 3TÍ.A | p(x) 
i = 1,..., n 

Each procedure is defined once, thus nondeterminism is expressed via the + com-
binator only (which is here denoted by ^ ) . We also assume that , in p(x) :: A, 
vars(A) C x, where vars(A) is the set of all variables oceurring free in agent A. 
In a program P = F.A, A is called initial agent, to be executed in the context 
of the set of declarations F. 

Agent "X2¿=i n
 ask(ci) —> Ai" behaves as a set of guarded agents Ai, where 

the success of the guard ask(ci) coincides with the entailment of the constraint c¿ 
by the current store. If instead c¿ is inconsistent with the current store, then the 
guard fails. Lastly, if c¿ is not entailed but it is consistent with the current store, 
then the guarded agent gets suspended. No particular order of selection of the 
guarded agents is assumed, and only one of the choices is taken. In an "atomic" 
interpretation of the tell operation, agent "tell(c) —• A" adds constraint c to 
the current store and then, if the resulting store is consistent, behaves like A, 
otherwise it fails; in an "eventual" interpretation of the tell, this same agent 
adds c to the store (without any consistency check) and then behaves like A (if 
the resulting store is inconsistent this will result in an uncontrolled behaviour of 
the system, since from now on all ask operations will succeed). 

Given a program P, in the following we will refer to Ag(P) as the set of all 
agents (and subagents) oceurring in P, i.e. all the elements of type A oceurring 
in a derivation of P according to the above grammar . 

The CC language we consider in this paper does not use the notion of cylm-
dric constraint system, as defined for example in [SRP91]. Therefore, constraints 
cannot be projected over some of their variables. However, we strongly believe 
that our whole framework and results can be extended to this more general case. 
Another extensión could be the presence of tell agents in the guards of an inde-
terministic agent: this would certainly not cause any problem to our approach. 
We have made a less general choice here for space reasons. 



3 The Operational Semantics 

Each state of a CC computation consists of a multiset of (active) agents and of 
(already generated) tokens. Each computation step models either the evolution 
of a single agent, or the entailment of a new token through the h relation. Such 
a change in the state of the computation is performed via the application of 
a rewrite rule. There are as many rewrite rules as the number of agents and 
declarations in a program (which is finite), plus the number of pairs of the 
entailment relation (which can be infinite). 

D e f i n i t i o n l (computation state) . Given a program P = F.A with a con-
straint system (D, h) , a state is a multiset of elements of Ag(P) U D. • 

c(r)(~X.) 

D e f i n i t i o n 2 (rewrite rules). Have the form r : _L(r)(x) ~» R(r)(xy) where 
L(r) is an agent, c(r) is a constraint, and R(r) is a state. Also, x is the tupie 
of variables appearing in both L(r) U c(r) and in R(r), while y is the tupie of 
variables appearing free only in R(r). • 

The intuitive meaning of a rule is tha t L(r),1 which is called the left hand side 
of the rule, is rewritten into (or replaced by) R(r), i.e. the right hand side, if c(r) 
is present in the current state. R(r) could contain some variables not appearing 
(free) in L(r) ñor in c(r) (i.e. the tupie y) . As computations will be defined over 
constants, then the application of r would have to rename such variables y to 
constants which are different from all the others already in use. The Ítems in 
c(r) have to be interpreted as a context, since it is necessary for the application 
of the rule but it is not affected by such application. In the CC framework, such 
context is used to represent asked constraints. 

D e f i n i t i o n 3 (from programs to rules). The rules corresponding to agents, de
clarations, and entailment pairs are given as follows: 

1. (tell(c) -+ A) ~> c, A 4. ( Y^ ask(ci) -+ Ai) ^ Ai 
y i = 1 . . . . . n 

i = l,...,n 

2. Ax || A2~~> Al,A2 5. p (x )~> A for all p(x) :: A 
3. 3 x . A - > A 6. -ttíoi a l l S h í 

Given a CC program P = F.A and its underlying constraint system (£), h) , we 
will cali RR(P) the set of rewrite rules associated to P, which consists of the rules 
corresponding to all agents in Ag(P), plus the rules representing the declarations 
in F, plus those rules representing the pairs of the entailment relation. • 

In an eventual CC language, a rule r can be applied to a state Si if both the 
left hand side of r and its context can be found (via a suitable substitution) in 
Si. The application of r removes its left and adds its right hand side to Si. 

Note that in a slight abuse of notation we consider L(r) as a set, which will be either 
a singleton or the empty set. 



D e f i n i t i o n 4 (eventual c o m p u t a t i o n s teps ) . Let a computation state Si (a) 
c(r)(~X.) 

and a rule r : _L(r)(x) ~» i? ( r ) (xy) , such that (L(r) U c(r))[a /x] C Si (a) . 
The application of r to Si is an eventual computation step which yields a new 
computation state 62 = (Si \ _L(r)[a/x]) U R(r)[a/x][b/y], where the constants 

in b are fresh, i.e. they do not appear in Si. We will write Si ==>- S2. • 

Instead, in an atomic CC language, not only the left hand side and the 
context of a rule have to match some elements in the current state, but also, if 
the rule implements a tell agent, a check has to be done for the constraints that 
such tell wants to add to be consistent with the current store. 

D e f i n i t i o n 5 (a tomic c o m p u t a t i o n s teps ) . Let a computation state Si (a) and 

a rule r : _L(r)(x) ~» i? ( r ) (xy) , such that 

- (L(r) U c(r))[a /x] C Si (a) and 
— if r = ((tell(c) —• A) ~~» c,A), then cU cons(Si) \f false (where cons(S) is 

the set of constraints in state S) 

The application of r to Si is an atomic computation step which yields a new 
computation state S2 = (Si \ _L(r)[a/x]) U R(r)[a/x][b/y], where the constants 

in b are fresh, i.e. they do not appear in S i . We will write Si ==>• S2. d 

D e f i n i t i o n 6 ( compu ta t ions ) . Given a CC program P = F.A, an eventual 
(resp. atomic) computation segment for P is any sequence of eventual (resp. 

rda-^/x-^] r 2 [ a 2 / x 2 ] 
atomic) computation steps Si => S2 ==>• S3 . . . such that Si = 
{j4[ao/xo]} and r¿ £ RR(P), i = 1,2, . . . . Two eventual (resp. atomic) com
putat ion segments which are the same except that different fresh constants are 
employed in the various steps, are called a-equivalent. An eventual (resp. atomic) 
computation is an eventual (resp. atomic) computation segment CS such that 
for each eventual (resp. atomic) computation segment CS', of which CS is a 
prefix, CS' adds to CS only steps applying rules for the entailment relation. • 

D e f i n i t i o n 7 (successful, suspended , and failing c o m p u t a t i o n s ) . A successful 
computation is a finite computation where the last state contains only a set of 
constraints, say S, and S \f false. A suspended computation is a finite compu
tation where the last state does not contain tell agents but contains ask agents, 
and its set of constraints S is such that S \f false. A failing computation is a 
computation which is neither successful ñor suspended. • 

Notice that a computation has been defined as a sequence of computation 
steps which is maximal w.r.t. the evolution of the agents. This means that there 
could be some subsequent step due to the entailment relation, but no step due 
to the agents. The reason for this is that , after all the agents have evolved, there 
could be an infinite number of entailment steps, and still we do not want to 
consider such a computation failing just because of tha t . A consequence of this is 



tha t to recognize a successful computation we have to ask the constraint system 
for a consistency test even in an eventual environment. Thus, the difference 
between atomic and eventual tell is just when such a check is asked for. 

In the following we will only consider either finite computations or infinite 
computations which are fair. Here fairness means, informally, tha t if a rule can 
continuously be applied from some point onwards, then it will eventually be 
applied. This implies that both goal selection (among several goals in the current 
state) and rule selection (among several rules applicable to a goal) are fair. 

D e f i n i t i o n 8 (eventual and a tomic opera t iona l semant ics ) . Given a CC pro-
gram P = F.A, its eventual operational semantics, say EO(P), is the set of all 
its eventual computations, and its atomic operational semantics, say AO(P), is 
the set of all its atomic computations. • 

4 Contextual Nets and Consistent Contextual Nets 

In the following, we assume the reader to be familiar with the classical notions 
of nets. For the formal definitions missing here we refer to [Rei85] and [MR93a]. 

4 .1 C o n t e x t u a l N e t s 

The formal technique which we use to introduce contexts consists in adding a 
new relation, besides the usual flow relation, which we cali the context relation. 

D e f i n i t i o n 9 (contextua l ne t s ) . A contextual net is a quadruple (B, E; F\, F2) 
where elements of B are called conditions and those of E events; f i C ( B x J Í ) U 
(E x B) is called the flow relation; F'¿ C (B x E) is called the context relation; 
and it holds that B n E = 0 and ( í \ U F^1) n F2 = 0. • 

D e f i n i t i o n l O (pre-set , post -se t , and con tex t ) . Given a contextual net N = 
(B, E; F\, F2) and an element l E B U Í í , the pre-set of x is the set *x = {y \ 
yFix)}; the post-set of x is the set x* = {y \ xFiy)}; the context of x is defined 
if x G E and it is the set x = {y \ yF'^x)}. • 

Contextual nets will be graphi-
cally represented in the same way 
as nets. Thus, conditions are circles, 
events are boxes, the flow relation is 
represented by directed ares from cir
cles to boxes or viceversa, and the 
context relation by undirected ares. 
An example of a contextual net can 
be seen in Figure 1. In this figure we 
see four events, of which two of them 
share a context. 

In our concurrent semantics the underlying notion is that of a contextual 
process, which is a contextual occurrence net together with a suitable mapping 

Fig. 1. A contextual net. 



of the elements of the net to the syntactic objects of the program execution. 
Through the mapping, each condition of the contextual net represents an agent 
or a constraint, and each event represents a rule application. Informally, a con
textual occurrence net is just an acyclic contextual net, where acyclicity refers 
to the dependency relation induced by F\ and F'¿. 

D e f i n i t i o n l l ( dependency) . Consider a contextual net N = (B, E; F\, F2). 
Then we define a corresponding structure (B U E, < J V ) , where the dependency 
relation <JV is the minimal relation which is reflexive, transitive, and which 
satisfies the following conditions: xF\y implies x <JV y, eiFib and bF'¿e.'i implies 
t\ <JV e-'i\ bF'¿t\ and bF\t2 implies e\ <N &2- n 

Therefore in the following we will say that x depends on y whenever y <JV x. 
However, a contextual net gives information not only about dependency of events 
and conditions, but also about concurrency and mutual exclusión (or conflict). 

D e f i n i t i o n l 2 (mu tua l exclusión and concur rency) . Consider a contextual net 
N = (B, E; F\, F2) and the associated dependency relation <JV- Assume that <JV 
is antisymmetric, and let < > G (B U E) x (B U E) be defined as < > = {(x, y) \ 
x <N y or y <N x}. 

— The mutual exclusión relation # J V Q {(B'OE) x (BUE)) is defined as follows. 
First we define x#'y iff x, y G E and 3z G B such that zF\x and zF\y. Then, 
# J V is the minimal relation which includes # ' and which is symmetric and 
hereditary (i.e. if x^^y and x < z, then z^^y). 

- The concurrency relation coN is just ((B U E) x (B U E)) \ ( < > U#N). • 

In words, the mutual exclusión is originated by the existence of conditions 
which cause more than one event, and then it is propagated downwards through 
the dependency relation. Instead, two Ítems are concurrent if they are not de-
pendent on each other ñor mutually exclusive. 

D e f i n i t i o n l 3 (contextua l occur rence n e t ) . A contextual occurrence net is a 
contextual net N, where N = (B, E; F\, F2) and: <JV is antisymmetric; b G B 
implies I *b |< 1; # J V is irreflexive. • 

A useful special case of a contextual occurrence net occurs when the mutual 
exclusión relation is empty. This means that , taken any two Ítems in the net, 
they are either concurrent or dependent. Since no conflict is expressed in such 
nets, they represent a completely deterministic behaviour. 

D e f i n i t i o n l 4 (de te rmin is t i c con tex tua l occur rence n e t ) . A deterministic 
contextual occurrence net is a quadruple N = (B, E; F\, F2) such that N is a 
contextual occurrence net with # J V = 0. d 

Given a (nondeterministic) contextual occurrence net, it is easy to derive the 
set of all its subnets which are deterministic. For this we use restrictions defined 
as F\s = {x G F\x G S} (set intersection). 



D e f i n i t i o n l 5 (from contextual to deterministic contextual occ. nets) . Let 
a contextual occurrence net N = (B, E; F\, F2) and the associated relations <N, 
# J V , and CON , a deterministic contextual occurrence net of N is a deterministic 
contextual occurrence net N' = (B', E'; F[, F¡¿) where B' C B and E' C E and 

— x £ (B' U E') and y £ (B U E) s.t. t/ <N x implies that y £ (B' U £"); 
_ F\ = Fl\(B'xE')u(E'xB') a n C ^ ^2 = F2\(B'xE')- D 

We are now ready to define contextual processes. We recall that , informally, 
a contextual process is just a contextual occurrence net plus a suitable mapping 
from the Ítems of the net (i.e. conditions and events) to the agents of the CC 
program and the rules representing it. 

D e f i n i t i o n l 6 (contextual process). Given a CC program P with initial agent 
A, and the associated sets of rewrite rules RR(P), agents Ag(P), and tokens D, 
consider the sets RB = {b9} and RE = {r9}, with b £ (Ag(P) U f l ) , r £ RR(P) 
and 9 any substitution. Then a contextual process is a pair (N, ir), where 

— N = (B, E; F\, F2) is a (nondeterministic) contextual occurrence net; 
— 7r : (B U E) —• (RB U RE) is a mapping where 

• V& £ B, TT(6) £ RB and Ve £ E, 7r(e) £ RE; 
• Mx £ B such that ¡By £ ( 5 U £"), j / <N %, ir[x) = A; 

• let 7r(e) = rí?, with r = _L ~> R, then {7T(;K)|;K £ *e} = L9, 

{%(x)\x £ e} = c^, {%(x)\x £ e*} = ñ ^ . D 

4.2 C o n s i s t e n t C o n t e x t u a l N e t s 

A consistent contextual net is just a contextual net with an additional relation, 
called the mutual inconsistency relation, which defines, together with the mu
tual exclusión relation, which Ítems of the net cannot be present in the same 
computation. In the same way as mutual exclusión, dependency, and concurreny 
are defined in contextual nets starting from the basic relations F\ and F'¿, the 
mutual inconsistency relation is defined starting from them and a new basic re
lation Í 3 . The addition of such relation has however some heavy consequences, 
among which the fact that the concurrency relation is not binary any more. 

D e f i n i t i o n l 7 (consistent contextual nets) . A consistent contextual net is a 
quintuple (B, E; F\, F'¿, Í3) where N = (B, E; F\, F2) is a contextual net, and 
^3 C p(E) s.t. F3(S) implies Vei, e2 £ S, ex coN e2 and V5" C S, ^F3(S'). D 

Pre-set, post-set, and context are defined as for contextual nets. The same 
holds also for the dependency (< from now on) and the mutual exclusión ( # ) 
relation. However, now we have to define the new mutual inconsistency relation 
(@), starting from Í 3 , and we have to redefine the concurrency relation (co). 

D e f i n i t i o n l 8 (mutual inconsistency and concurrency). Let a consistent con
textual net (B, E; F\, F2, Í 3 ) , and its dependency and mutual exclusión relations 
< and # . 



— The mutual inconsistency relation @ C p(B U E) is defined as follows: 
• F3(S) implies @(S), and 
• @(S U {t}) and t < t' implies @(S U {t1}). 

— The concurrency relation co G p ( 5 U £") is defined as follows: co(S) if there 

is no subset 5" C S s.t. @(5") and no si,S2 £ 51 s.t. s i #S2 or si < S2- n 

In words, the mutual inconsistency relation includes the Í 3 relation and it 
is hereditary. Instead, the concurrency relation is as usually defined by taking 
what is forbidden by the other relations. However, while usually such relation is 
binary, now it becomes n-ary, due to the fact that the new mutually inconsistency 
relation may be n-ary in general. 

Since the mutual inconsistency relation is hereditary, there could be Ítems 
inconsistent with themselves (which will be called self-inconsistent in the follow-
ing). This informally means that they cannot appear in any computation, since 
they are inconsistent with their parents. We cali a net admissible if it does not 
contain any of such Ítems, and from now on we will only consider admissible 
consistent contextual nets. 

D e f i n i t i o n l 9 (admissible consistent nets) . A consistent contextual net N = 
(B, E; F\, F2, Í3 ) is admissible whenever ¡Be G E such that @({e}). • 

An admissible consistent contextual 
net can be seen in Figure 2. Notice that 
we choose to represent the mutual exclu
sión relation by (hyper)arcs which have 
arrows on all their endings. In this fig
ure, suposse that the inconsistency link 
was between the event on the left and 
the one generating its context. Because 
of inheritance, the leftmost event will 
then be inconsistent with itself. There-
fore, the net will not be admissible. 

As in the previous section, we now define deterministic and occurrence nets 
for the class of consistent contextual nets. The only difference is that now we 
define a net to be deterministic whenever both the mutual exclusión and the 
mutual inconsistency relations are empty. 

D e f i n i t i o n 2 0 ((deterministic) consistent contextual occ. nets) . A consis
tent contextual occurrence net is a consistent contextual net (B, E; F\, F2, Í3) 
such that (B, E; F\, F'¿) is a contextual occurrence net. A consistent contextual 
occurrence net (B, E; F\, F'¿, Í3 ) is deterministic when Í 3 = # = 0. • 

Notice that a deterministic consistent contextual occurrence net is just a 
(deterministic) contextual occurrence net, since Í 3 = 0. Therefore the way to 
obtain the deterministic consistent contextual occurrence nets of a given consis
tent contextual net is the same as in Definition 15. 

Fig. 2. A consistent contextual net. 



If instead we just require the absence of mutually exclusive elements, just as in 
classical and contextual nets, then we still get subnets which have a meaning. In 
fact, we will see that they will be used to model the locally atomicalinterpretation 
for the tell operation, in which a computation step just checks the consistency 
of the constraint told within a local store. 

D e f i n i t i o n 2 1 ( (de terminis t ic ) locally consis tent con tex tua l occ. ne t s ) . A 
deterministic locally consistent contextual occurrence net (B, E; F\, F'¿, Í3 ) is a 
consistent contextual occurrence net with # = 0. • 

Finally, we will relate consistent occurrence nets to CC programs by means 
of consistent contextual processes, whose definition is straightforward. 

D e f i n i t i o n 2 2 (consistent con tex tua l process) . A consistent contextual pro-
cess is a pair (N, ir) such that N = (B, E; F\, F'¿, Í3) is a consistent contextual 
occurrence net, and {{B, E; F\, í^);"") is a contextual process . • 

5 Concurrent Semantics for CC with Eventual Tell 

The key idea in the semantics is to take the set of rewrite rules RR(P) associated 
to a given CC program P and to incrementally construct a corresponding con
textual process. A longer description of this semantics is contained in [MR93b]. 

D e f i n i t i o n 2 3 (from rewr i te rules to a con tex tua l process) . Given a CC pro
gram P, the pair CP(P) = ((B, E; F\, F2), ir) is constructed by means of the 
following two inference rules: 

- if A(EL) initial agent of P then (A(EL), 0, 1} £ B; 
- if 3r £ RR(P) such that L(r) U c(r) = { 5 i ( x i ) , . . ., 5 n ( x n ) } , and 

• 3{si, . . ., sn} C B such that Mi, j = 1, . . ., n, s¿ CON Sj, and 

• Mi = 1, . . ., n, SÍ = (e¿, 5¿(aj) , fc¿), and for some a, 5¿(x¿)[a/x] = 5¿(a¿) 

then 

• e = ( r [a /x ] , {si , . . ., s „} , 1} £ E, 
• SiF\e for all s¿ = (e¿, 5¿(aj) , fc¿) such that for some a, 5¿(x¿)[a/x] = 

5¿(a¿) and 5¿(x¿) £ L(r) 
• SiF'¿e for all s¿ = (e¿, 5¿(aj) , fc¿) such that for some a, 5¿(x¿)[a/x] = 

5¿(a¿) and 5¿(x¿) £ c(r) 
• let h be the multiplicity of 5 ( x , t/i, . . ., ym) G R(r), then V/ = 1, . . ., h, 

b¡ = (5[a /x][ (e , t / i ) / t / i ] . . .[(e,ym)/ym],e,l) £ B, and eFib¡. 

Moreover, for any item x = (xi,X'¿, X3} £ (B U E), it(x) = x\. • 

The elements of the net in the contextual process are built in such a way that 
elements generated by using different sequences of rules are indeed different. In 
fact, each element is a term consisting of a triple, of which the first element is 
the type of the term, and represents the rule or agent or constraint the term 



corresponds to, the second element is its history, and this is what makes dif-
ferent terms which are generated in different ways, and the third element is its 
multiplicity, and takes care of different copies of the same element in the same 
computation state. 

Each time the inference rule is applied, a rule in RR(P) is chosen whose 
left hand side and context are matched by some elements already present in the 
partially built process. Such elements have to be concurrent, otherwise it would 
mean that they cannot be together in a state. Then, a new element representing 
the rule application is added (as an event), as well as new elements representing 
the right hand side of the rule (as conditions). 

T h e o r e m 2 4 (CP(P) is a con tex tua l process) . Given a CC program P, its cor-
responding structure CP(P) from Definition 23 is a contextual process. • 

T h e o r e m 2 5 (soundness and coinpleteness ofCP(P) w.r . t . EO(Pj). Given a 
CC program P and its corresponding contextual process CP(P) = (N,ir). 

— For a given computation in EO(P) there are (1) an a-equivalent computa

tion Si ==>• S2 ==>• S3 . . ., and (2) one linearization (restricted to 

events), say t\t2, • • •, of the partial order associated to a maximal determin-

istic contextual occurrence net of N, s.t. Mi = 1,2, ..., 7r(e¿) = r¿[a¿/x¿] 
— For any linearization t\t'i • • • of the partial order associated to a determin-

istic contextual occurrence net of N, there is a computation in EO(P), say 
n[ai/Xi] r2[a2/x2] 

¿1 =>• ¿2 => 03 • • •, such that, if e¿ = (e¿i, e¿2, e¿3) and 7r(e¿) = r, 
then r¿[a¿/x¿] = r for all i = 1, . . . • 

As just shown by the above theorem, the concurrent semantics defined in this 
section considers the eventual interpretation of the tell operation: constraints are 
added to the store without checking their consistency with the current set of con
straints already in it. Therefore there may be parts of the net which represent 
computation sequences which would not happen if taking the atomic interpre
tat ion of the tell operation. In the following section we show how to recognize 
and then delete such parts, obtaining a (possibly much) smaller process. We will 
also give a new inference rule which allows to not even genérate those parts . 

6 Concurrent Semantics for CC with Atomic Tell 

In order to correctly treat atomic tell, we need to know when a set of constraints 
is inconsistent. This can be done by just looking at the constraint system, since 
we assumed that a set of inconsistent constraints entails the token false. 

D e f i n i t i o n 2 6 ( inconsis tent cons t ra in t s ) . Given a constraint system (£), h) , 
we say that u G p{D) is inconsistent, and we write inc(u), whenever u h false. 
Moreover, we write inco(u) whenever inc(u) holds and also jz3i> £ p{D) such that 
v C u and v h false. • 



From the inconsistency of a set of tokens we can then derive the mutual 
inconsistency of a set of conditions and/or events in the contextual process. 
Mutual inconsistency means impossibility of appearing in the same computation 
without creating an inconsistent store. 

D e f i n i t i o n 2 7 (mutual inconsistency). Given a CC program P, a constraint 
system (£), h) , and the contextual process CP(P) = ((B, E; F\, F2), 7r), we define 
a mutual inconsistency relation @ C p(B U E) (and @') as follows: 

- if {61, . . ., bn} £ B and V¿ = 1, . . ., n, 7r(6¿) £ D and mc0({7r(&i), . . ., 7r(&n)}) 
and ¿Qi, j = l, . . . ,n such that &¿#&j, then @'({&i, . . ., &„}); 

- if @'({&i,.. . ,&„}) and V¿ = l , . . . , n , 3 e ¿ £ E s.t. e¿.Fi&¿, then @'({ei, . . ., e n}) ; 
- @ is the minimal relation which includes @' and which is hereditary (i.e. if 

@(S U {s}) and s < s', then @(S U {«'})). D 

In particular, the elements of the process which are self-inconsistent cannot 
appear in any computation. Therefore, one step which allows us to change the 
semantical structure which represents the eventual operational semantics of a 
CC program and get closer to that which represents the atomic operational 
semantics of the same program consists in deleting everything that depends on 
them. In fact, such steps are exactly those tell operations which could be done 
only because it was not performed any consistency check. 

D e f i n i t i o n 2 8 (net pruning). Given a CC program P, a constraint system 
(D,\~), the contextual process CP(P) = ((B, E; F\, F2), ÍT), and the relation 
@ of Definition 27, the new process is CP'(P) = ((B', E'; F[, F!¿), TT'}, where 

- B' = B \ {b I 3e £ E s.t. @({e}) and e < &}, 
- E' = E \ {e I 3e' £ E s.t. @({e'}) and é < e}, 

- F[ = Fi\BixE>uE'xB' a n d F'2 = F2\B'xE', and 
- 7r' is the restriction of 7r to B' U E'. • 

T h e o r e m 2 9 (CP'(P) is a consistent contextual process). Consider the pro
cess CP'(P) = ((B', E';Fl,F!2),ir') of Definition 28 and the relation @ of Defi
nition 27. Then ((B', E'; F[, F¡¿, @'\P(E')), ^') ts a consistent contextual process. 
D 

T h e o r e m 3 0 (soundness and completeness oíCP'(P) w.r.t. AO(Pj). Given 
a CC program P and its consistent contextual process CP'(P) = (N,ir). 

- For any computation in AO(P), there are (1) an a-equivalent computa

tion Si ==?- S2 ==?- S3 . . ., and (2) one linearization (restricted to 

events), e\, 62, • • ., of the partial order associated to a maximal deterministic 

consistent contextual occurrence net of N, s.t. V¿ = 1 ,2 , . . . , 7r(e¿) = r¿[a¿/x¿] 
- For any linearization t\t2 • • • ofthe partial order associated to a deterministic 

consistent contextual occurrence net of N, there is a computation in AO(P), 
n[ai/Xi] r2[a2/x2] 

say ¿1 ==> ¿2 = > ¿3 • • -, such that, 1}e¿ = {en, e¿2, e¿3) and 7r(e¿) = 
r, then r¿[a¿/x¿] = r for all i = 1, . . . • 



It is also possible to characterize failing, successful, and suspended computa-
tions directly in the concurrent semantics, instead of having to map them back 
to the corresponding computations in the operational semantics. 

D e f i n i t i o n 3 1 (successful, failing, and suspended ne t s ) . Given a CC program 
P and a constraint system (£), h) , consider the corresponding consistent contex-
tual process CP(P) = ((B, E; F\, F2, Í 3 ) , ÍT). Consider also any maximal deter-
ministic consistent contextual net of (B, E; F1,F2, F3), DN = (B', E'; F{, F'2, 0), 
and the elements DN" = {b \ b G B' and ¡Bb' G B', b< b'}. Then DN is: 

— successful if the set of events representing agent rules is finite, and V& G 
DN", TT(6) £ (D\{false}); 

— suspended if the set of events representing agent rules is finite, and V& G DN° 
such that 7r(6) G Ag(P), ir(b) is an ask agent; 

— failing otherwise. • 

T h e o r e m 3 2 (charac ter iza t ion of success, failure, and suspens ión) . Let P be 
a CC program and CP(P) = ((B, E; F\, F2, Í 3 ) , ir) its corresponding consistent 
contextual process. Consider any maximal deterministic consistent contextual net 
of(B,E;F1,F2,F3), say DN = (B', EJ'; F[, F^,%). If DN is successful (resp., 
suspended, failing) then all the computations m AO(P) corresponding to DN 
according to Theorem 30 are successful (resp., suspended, failing). • 

Now we will obtain the same consistent contextual process by means of a new 
inference rule, instead of first producing the contextual process as in Definition 23 
and then pruning it. The advantage consists in a possibly much smaller resulting 
process. However, the drawback is a much more costly condition to check during 
the generation, each t ime the inference rule is applied. 

D e f i n i t i o n 3 3 (from rewr i te rules to a consis tent con tex tua l process) . Let 
P be a CC program, CCP(P) = ((B, E; F\, F2, Í3 ) , ÍT) is constructed by means 
of the following two inference rules: 

— if A(EL) initial agent of P then (A(EL), 0, 1} G B; 
— if 3r G RR(P) such that L(r) U c(r) = { 5 i ( x i ) , . . ., 5 n ( x n ) } , and 

• 3{si, . . ., sn} C B such that co({si, . . . ,«„}) , and 
• Mi = 1, . . ., n, SÍ = (e¿, 5¿(aj) , fc¿), and for some a, 5¿(x¿)[a/x] = 5¿(a¿) 
• -iinc(ct({e})), for e = ( r [a /x ] , {si, . . ., sn}, 1), where ct : p(B U E) —• 

p(D) is defined as follows: M(t1,t2,t3) e(BUE), 
{ ct(S U t2) U ( i?(r)[a/x] n D) if í i = r [a /x ] and 

r is a rule for a tell 
agent 

cí(5 'UÍ2) otherwise 

c í (5U{( í i , Í2 , í 3 )} ) = 

cí(0) = 

then 

• e G E, 



• SiF\e for all s¿ = (e¿, 5¿(aj) , fc¿) such that for some a, 5¿(x¿)[a/x] = 
5¿(a¿) and 5¿(x¿) £ L(r) 

• SiF'¿e for all s¿ = (e¿, 5¿(aj) , fc¿) such that for some a, 5¿(x¿)[a/x] = 
5¿(a¿) and 5¿(x¿) £ c(r) 

• let h be the multiplicity of B(x , t/i, . . ., t/m) G R(r), then V7 = 1, . . ., /i, 
6¡ = (5[a /x][ (e , t / i ) / t / i ] . . . [(e, t / m ) / t / m ] , {e},/} £ 5 , and eFib¡. 

• -^(S1 U {e}) for all S = {ei, . . . ,en} C £" such that co(5 U {si , . . ., sn}), 
and ¿nc(cí({e} U S)), and ,35" C E such that 5" U {s\, . . ., sn} G co, and 
¿nc(cí({e} U S1')), and Ve' G S' Be G S1 such that e' < e. 

Moreover, for any item x = (xi,X'¿, xs) G (B U E), ir(x) = x\. O 

The main difference of the above definition w.r.t. Definition 23 is the con-
dition which has to be checked for applying the second inference rule. It is not 
enough to check that there are conditions which are concurrent and which match 
the left hand side and the context of a rule. It is also necessary to check that 
the constraints which would be added to the process because of the application 
of the chosen rule are consistent with those which are in the history of the rule 
itself. In fact, such constraints would be in any store where that rule is applied, 
no mat ter which linearization one chooses. Such constraints are retrieved by 
function ct, which traverses a term and gets all the constraints in its history. 

Another difference concerns the creation of relation Í 3 . Inconsistency of the 
new event e with a set S of events, already in the process, is derived if e and the 
constraints generated in the history of S are inconsistent. This is done only if e is 
concurrent with them (checked by looking at the pre-conditions of e, si, . . ., sn, 
since e is not formally in the process yet). This would créate an Í 3 relation which 
is already hereditary. However, we prefer to have Í 3 as the base relation, and 
then to cióse it by inheritance as by Definition 18 to get the mutual inconsistency 
relation. This is the reason why we also check that there is no other set 5" of 
events which has the same relation as S with e but on which S depends. 

T h e o r e m 3 4 (equivalence oíCP'(P) and CCP(P)). Given a CC program P, 
tts corresponding pruned contextúa] process CP'(P) and consistent contextúa] 
process CCP(P), then CP'(P) = CCP(P). D 

Part of the complexity of this approach to the construction of the consistent 
contextual process for a given CC program comes from our aim of employing a 
s tandard way of selecting the subnets corresponding to (equivalence classes of) 
computations. In fact, assuming that mutual inconsistency is just another aspect 
of mutual exclusión (that is, just another reason for certain Ítems not to be in 
the same computat ion), then the desired subnets are, as usual, those which are 
maximal, left-closed, and without mutual exclusión. Simpler approaches could 
be taken; however, they would require ad hoc subnet selection procedures. 

7 Locally Atomic Tell 

Let us consider now a locally atomic tell operation, where a constraint is added 
to the store if it is consistent with the set of constraints it depends on. Then, it is 



easy to see that such operation, and the corresponding resulting computations, 
are very easily expressed by the same process. It is just a mat ter of selecting 
different subnets of the process: the (deterministic) locally consistent contextual 
occurrence nets instead of the deterministic contextual occurrence nets. Recall 
tha t the only difference between these two classes of nets is tha t in the former 
only the mutual exclusión relation is empty, while in the latter also the mutual 
inconsistency relation is so. In fact, if in a computation we allow steps which are 
mutually inconsistent between them, while still not allowing any self-inconsistent 
step, it means that the only way a computation can finitely fail is tha t a self-
inconsistent step is tried. But we know that such steps represent tell operations 
which a t tempt to add a constraint which is inconsistent with the constraints in 
their history. Therefore, these subnets only have those computation steps which 
are allowed by the locally atomic interpretation of the tell operation. 

p(X) : : t e l l (X=a) , te l l (X=b) . p(X) : : tel l(X=a) -> te l l (X=b) . 

F ig .3 . Simple CC programs: query is p(X). 

Consider the very simple CC programs of Figure 3, where the comma repre-
sents the parallel composition operator ||, and the absence of "—» A" after a tell 
operation means that A = success. 

Fig. 4. Contextual and con- Fig. 5. Consistent contextual nets. 
sistent contextual process. 

The contextual process corresponding to the program on the left in Figure 3 
can be seen in Figure 4a, while its consistent contextual process is tha t of Figure 
4b. Also, the set of subnets corresponding to classes of computations which 
differ only for the scheduling order is, in the case of eventual tell, a singleton 
set containing the whole contextual process, and in the case of atomic tell a set 
of two processes whose nets can be seen in Figure 5. In fact, in the eventual 



tell interpretation, we just have two computations (depending on the order of 
execution of the two tell operations), both of them failing. Instead, in the atomic 
tell interpretation, we have two computations, each one performing just one of 
the tell operations, and both of them failing (which can be seen from the fact 
that some tell agent is not "expanded"). Consider now the locally atomic tell 
operation. In this case there is only one subnet, which incidentally coincides with 
the contextual process. In fact, with this interpretation, both tells are performed, 
since there is no constraint they depend on (and thus the incomplete consistency 
check for such tells succeeds). 

tell(X=a)->-tell(X=b) 

tell(X=b) 

tell(X=a)->-tell(X=b) 

tell(X=b) 

\ false N/' ^ X=b 

a ) b ) 

F i g . 6 . A contextual process and a consistent contextual process. 

Consider now the CC program on the right in Figure 3. With the eventual 
tell interpretation, we obtain the process in Figure 6a, while with the atomic 
tell interpretation we obtain the consistent contextual process in Figure 6b. 
Indeed, the second tell operation is self-inconsistent and thus it is not present 
in the atomic semantics. The locally atomic semantics and the atomic semantics 
coincide, since no tell a t tempts to add a constraint which is inconsistent with 
the current store but not with the current local store. With the eventual tell, 
there is only one failing computation, which performs both tells and generates an 
inconsistent store. Instead, with the (locally) atomic tell there is one computation 
as well, which however performs just one tell operation and then stops. 

8 Applications: CLP parallelization and CC scheduling 

Being able to explicitely express concurrency and dependency, our semantics can 
be exploited in several tasks which need such kind of information. One such task 



is the (compile-time) scheduling of CC programs, or schedule analysis [KS92]. 
The goal of schedule analysis is to find maximal linearizations of the pro-

gram processes (agents in our case) where the efñcient compilation techniques of 
sequential implementations can be applied. The best case would be to obtain a 
complete total order, but in general we may instead obtain a set of total orders, 
which specify threads of sequential execution which, because of the interdepen-
dencies in the program, cannot be sequentialized among them [KS92]. Moreover, 
in each single thread, one would like to schedule the producer(s) before the cor-
responding consumer(s), so that the consumers do not need to be suspended 
and then woken up later. In the specific case of CC programs, the producers are 
the tell operations and the consumers are the ask operations, so this desirable 
property of each thread here means that some ask operations could be deleted, 
if we can be sure that when they will be scheduled the asked constraint has al-
ready been told. In [KS92] a framework for this analysis is defined, which is safe 
w.r.t. the termination properties of the program, and which is based on an input 
data-dependency relation among atoms in the clauses of the program. It is easy 
to show that in our approach the dependency relation of the contextual process 
of a program can provide such an input. In fact, it is intuitive to see that the 
order between two goals in the body of a clause can be easily decided by looking 
at the contextual net describing the behaviour of the original CC program: if the 
subnets rooted at these two goals are linked by dependency links which all go in 
the same direction (from one subnet to the other one), then this direction is the 
order to be taken for the scheduling; if instead the dependency links go in both 
directions, then the two goals must belong to two different threads; otherwise 
(that is, if there are no dependency links between the two subnets), we can order 
them in any way. Once the order has been chosen, each ask operation which is 
scheduled later than all the Ítems of the net on which it depends on can safely 
be deleted. Of course finding the best scheduling is an NP-complete problem. 
Therefore the optimal solution would require a global analysis of the relationship 
among the subnets corresponding to all the goals in the body of the considered 
clause. 

Another interesting application is the parallelization of CLP programs. In 
this task, the problem consists in parallelizing the executions of some of the 
goals if we are sure that doing that will not change the input-output semantics 
of the program, ñor increase the execution t ime. Wha t is usually said is that 
we can parallelize two (or more) goals if we can recognize that they are in some 
sense "independent," meaning that their executions do not interfere with each 
other. Instead, for all the goals which do not meet this independence criteria, 
we resort to the usual left-to-right order. However, the traditional concepts of 
independence in logic programming [HR93] do not carry over trivially to CLP. In 
fact, the generalization of the conditions for search space preservation is no longer 
sufñcient for ensuring the efñciency of several optimizations when arbitrary CLP 
languages are taken into account, and the definition of constraint independence in 
the CLP framework is not trivial [dlBHM93]. Following constraint independence 
notions, we argüe that an efñcient parallelization scheme for CLP programs 



can be developed from the mutual inconsistency relation between events in the 
consistent contextual processes of the programs. Current work is being devoted 
towards making this explicit in the (consistent) contextual nets by the new 
notion of local mdependence [BBHRM93]. In particular, by using our concurrent 
semantics, we are able to apply the notion of goal independence at a granularity 
level which, to our knowledge, allows more goals to be safely run in parallel 
than any other approach. Note that local independence is in general different 
from concurrency: the idea is that only Ítems which are concurrent (as defined 
previously in this paper) and which are not dependent because of inconsistency, 
are locally independent. 

References 

[dlBHM93] M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence 
in Constraint Logic Programs. In Proc. ILPS. MIT Press, 1993. 

[BBHRM93] F. Bueno, M. García de la Banda, M. Hermenegildo, F. Rossi, and 
U. Montanari. Towards true concurrency semantics based transformation 
between CLP and CC. TR CLIP2/93.1, UPM, 1993. 

[BP91] F.S. De Boer and C. Palamidessi. A fully abstract model for concurrent 
constraint programming. In Proc. CAAP. Springer-Verlag, 1991. 

[HR93] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time 
Conditions. Journal of Logic Programming, 1993. To appear. 

[JL87] J. Jaffar and J.L. Lassez. Constraint logic programming. In Proc. POPL. 
ACM, 1987. 

[KS92] A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. 
In Proc. JICSLP, pages 478-492, MIT Press, 1992. 

[KT91] M. Koorsloot and E. Tick. Sequentializing parallel programs. In Phoenix 
Seminar and Workshop on Declaratíve Programming. Hohritt, Sasbach-
walden, Germany, Springer-Verlag, 1991. 

[MR91] U. Montanari and F. Rossi. True concurrency in concurrent constraint 
programming. In Proc. ILPS. MIT Press, 1991. 

[MR93a] U. Montanari and F. Rossi. Contextual nets. Technical Report TR-4/93, 
CS Department, University of Pisa, Italy, 1993. 

[MR93b] U. Montanari and F. Rossi. Contextual oceurrence nets and concurrent 
constraint programming. In Proc. Dagstuhl Seminar on Graph Transfor-
matíons in Computer Science. Springer-Verlag, LNCS, 1993. 

[Rei85] W. Reisig. Petrí Nets: An Introductíon. EATCS Monographs on Theo-
retical Computer Science. Springer Verlag, 1985. 

[Sar93] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993. 
[SR90] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In 

Proc. POPL. ACM, 1990. 



[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of 
concurrent constraint programming. In Proc. POPL. ACM, 1991. 

[Sco82] D. S. Scott . Domains for denotat ional semantics. In Proc. ICALP. 

Springer-Verlag, 1982. 


