
Efficient Term Size Computat ion
for Granularity Control
M. Hermenegildo and P. López-García
herineMn.upin.es pedro@dia.fi.upm.es
Computer Science Department
Technical University of Madrid (UPM), Spain

Abstract

Knowing the size of the terms to which program variables are bound at run-time
in logic programs is required in a class of optimizations which includes granularity
control and recursion elimination. Such size is difficult to even approximate at com­
pile time and is thus generally computed at run-time by using (possibly predeñned)
predicates which traverse the terms involved. We propose a technique which has the
potential of performing this computation much more efficiently. The technique is
based on ñnding program procedures which are called before those in which knowl-
edge regarding term sizes is needed and which traverse the terms whose size is to
be determined, and transforming such procedures so that they compute term sizes
"on the fly". We present a systematic way of determining whether a given program
can be transformed in order to compute a given term size at a given program point
without additional term traversal. Also, if several such transformations are possible
our approach allows ñnding minimal transformations under certain criteria. We
also discuss the advantages and applications of our technique (specifically in the
task of granularity control) and present some performance results.

Keywords: Granularity Analysis and Control, Parallelism, Term Size Compu­
tation.

1 Introduction

The need to know the size of the terms to which program variables are bound
at run-time in logic programs arises in a class of applications related to program
optimization which includes recursion elimination, granularity control, and selection
among different algorithms or control rules whose performance may be dependent on
such size. By term size we refer to measures such as list length, term depth, number
of nodes in a term, etc. We address the problem of term size calculation, with
special emphasis on its application in granularity control. We start by describing
this application in more detail, since it is the fundamental motivation of our work.

It has been shown (see e.g. [6]) that several types of parallelism can be exploited
in logic programs while preserving correctness (i.e. the parallel execution obtains
the same results as the sequential) and efficiency (i.e. the amount of work performed
is not greater or, at least, there is no slow-down). However, such results assume
an idealized execution environment in which a number of practical overheads are
ignored, such as those associated with task creation, possible task migration of tasks
to remote processors, the associated communication overheads, etc. Due to these

http://herineMn.upin.es
mailto:pedro@dia.fi.upm.es

overheads, and if the granularity of parallel tasks, i.e. the "work available" under-
neath them, is too small, it may happen that the costs are larger than the beneñts
in their parallel execution. This makes it desirable to devise a method whereby the
granularity of parallel goals and their number can be controlled. Granularity con­
trol has been studied in the context of traditional programming [10, 12], functional
programming [7], and also logic programming [9, 3, 18, 11].

The aim of granularity control is to change parallel execution to sequential exe­
cution or vice-versa based on some conditions related to grain size and overheads.
However, granularity control itself can induce new overheads, which should obvi-
ously be minimized. As pointed out in [3], granularity analysis for a set of non-
recursive procedures is relatively straightforward. However, recursive procedures
are somewhat more problematic: the amount of work done by a recursive cali de-
pends on the depth of recursion, which in turn depends on the size of the input.
Reasonable estimates for the granularity of recursive predicates can thus be made
only with some knowledge of the size of the input. In [3] a technique was presented
for solving this problem in the context of logic programs. In [11] a complete gran­
ularity control system for logic programs based on these ideas is described. The
technique is based on performing a compile-time analysis which reduces granularity
analysis work at run-time to evaluating simple functions of term sizes. However, the
actual determination of those sizes in order to evalúate such functions is necessarily
postponed until runtime. A similar technique has been also proposed by Rabhi and
Manson in the context of functional programs [15]. An alternative is to determine
only the relative cost of goals [18], which can be useful for optimizing an on-demand
run-time scheduler, but may not be as effective in reducing task creation cost.

The postponement of accurate term size computation to run-time appears in­
evitable in general. This based on the fact that even sophisticated compile-time
techniques such as abstract interpretation are based on computing approximations
of variable substitutions for generic executions corresponding to general classes of
inputs. In contrast, size is clearly a quite speciñc characteristic of an input. Al-
though the approximation approach can be useful in some cases we would like to
tackle the more general case in which actual sizes have to be computed dynamically
at run-time. Of course computing term sizes at run-time is quite simple but at the
same time it can involve a signiñcant amount of overhead. This overhead includes
both having to traverse signiñcant parts of the term (often the entire term) and the
counting process done during this traversal.

The objective of this paper is to propose a novel and more efficient way of
computing such sizes. The essential idea is based on the observation that terms
are often already traversed by procedures which are called in the program before
those in which knowledge regarding term sizes is needed, and thus that such sizes
can often be computed "on the fly" by the former procedures after performing some
transformations to them. While the counting overhead is not eliminated, overhead
is reduced because additional traversals of terms are not needed. We present a
systematic way of determining whether a given program can be transformed in
order to compute a given term size at a given program point without additional
term traversal. Also, if several such transformations are possible our approach
allows ñnding minimal transformations under certain criteria. We have omitted
proofs for the sake of conciseness. They can be found in [5].

2 Overview of the Approach

As mentioned in the introduction, we are interested in transforming some predicates
in such a way that they will compute some of their argument data sizes at run-
time, in addition to performing their normal computation. It is often the case that

because of previous transformations or other reasons, the size of certain terms is
already known and it can be used as a start ing point in the dynamic computation
of those tha t we need to determine at a given point. Thus, we will be interested
in the general problem of transforming programs to determine the sizes of one set
of terms given tha t the sizes of the terms in another (disjoint) set are known. For
example, consider the predicate append/3, deñned as:

a p p e n d ([] , L, L) .
append([H|L] , L l , [H|R]) : - append(L, L l , R) . •

Suppose tha t we want to transform this predicate in such a way tha t it com­
putes the length of its third argument. Observing the base case we can infer tha t
the length of the term appearing in the third argument of the head is equal to tha t
of the term appearing in the second argument after any successful computation. We
can express this size relation as follows: /iea<¿[3] = head[2], where head[i] denotes
the size of the term appearing at the ith argument position in the head. Thus,
a transformation of this base case can be performed by adding two additional ar-
guments, which s tand for the size of the term appearing in the second and third
arguments, respectively: append3i2 ([] , L, L, S, S) .

In this way, if we cali the base case supplying the size of the second argument,
we will obtain tha t of the third one. Observing the recursive clause, we can see
tha t the size of the third argument of the head is equal to the size of the third
argument of the ñrst body literal plus one. We express this size relation as follows:
/iea<¿[3] = &oefa/i[3] + 1, where bodyj[i] denotes the size of the term appearing at
jth a r g U m e n t position in the j t h literal of the body (literals are numbered from
left to right, start ing by assigning " 1 " to the literal just after the head). Then we
can think of using a transformed versión of this body literal in order to compute
bodyi [3]. But to do this it is necessary tha t the size of the second argument of this
body literal (bodyi[2\) be supplied at the cali (so tha t &oefa/i[3] can be computed
when recursion ñnishes). Since we already have the bodyi\2] = head[2] size relation,
we can conclude tha t it is possible to compute the size of the third argument of
append/3 if the size of the second one is supplied at the cali.

The recursive clause can be trivially transformed as follows with the knowledge
of the previous size relations:2

a p p e n d 3 i 2 ([] , L , L , S , S) .
append3i2 ([H|L] ,L1 , [H |R] ,S2 ,S3) : - append3i2 (L ,Ll ,R ,S2 ,Sb3) ,

S3 i s Sb3 + 1.

We can see tha t the problem can be reduced to ñnding what we will cali a "size
dependency graph" for each clause of the predicate to be transformed. Figure 1
shows the size dependency graphs corresponding to the previous example. In this
ñgure, the graphs G2 and Gl correspond to the base case and recursive clause of
append/3 respectively.

Informally, the set of size dependency graphs contains the information needed to
transform a predicate, and is represented by means of what we cali a transformation
node. In general it is necessary to transform more than one predicate to perform a
particular size computation. In this case, transformation nodes are viewed as nodes

2For clarity, this class of transformations is used in the examples even if they are not ideal, given
that they destroy tail recursion optimization. However it is quite straightforward to perform the
equivalent transformation which preserves tail recursion optimization by using an accumulating
parameter. These are the transformations performed in practice. Note also that although present-
ing the technique proposed in terms of source-to-source transformations is useful both didactically
and as a viable implementation technique, the transformation can also be implemented at a lower
level in order to reduce the run-time overheads involved even further.

Figure 1: Size dependency graphs for predicate append/3.

in a search tree which will have to be explored with the objective of ñnding a set
of such nodes leading to a program transformation which correctly computes the
desired term sizes.

In essence, the proposed approach involves ñrst inferring all possible size rela­
tions between arguments of the program clauses which can be involved in the desired
size computation,3 constructing all possible transformation nodes from these size
relations, and, finally, ñnding the set of transformation nodes leading to correct size
computations.

The static inference of argument size relations have been widely studied [16, 17,
3]. In particular, we refer to the size relations described in [3]. Consider the function
\ • \m '• 7~t —> -A/i. (a s deñned in [3]), that maps ground terms to their sizes under
a speciñc measure m (various measures can be used, e.g., term-size, term-depth,
list-length, integer-valué, etc.), where Tí is the Herbrand universe, i.e. the set of
ground terms of the language, and J\í± the set of natural numbers augmented with
a special symbol ± , denoting "undefined". For example, |[a,b]|iist_iength = 2, but
|/(a)|iist_iength = -I- In [3], argument size relations are classiñed as either "intra-
literal" or "inter-literal". The former refer to size relations between the argument
positions of a single literal. They hold between the sizes of arguments of all atoms
in the success set for the predicate corresponding to the literal and are similar to
those described in [17]. The latter refer to relations between argument positions of
different literals in a clause or the clause head. For example size¡ = síze\ + size2 is
an intra-literal size relation for the predicate append/3 which states that the length
of its third argument is the sum of the lengths of its two ñrst arguments. However
/iea<¿[3] = bodyi [3] + 1 is an inter-literal size relation corresponding to the recursive
clause of append/3 , and states that for every substitution that makes the terms
appearing at positions /iea<¿[3] and body\ [3] ground, the size of the term appearing
at position /iea<¿[3] is equal to the size of the term appearing at position 6oefo/i[3]
plus one, i.e. | [H| R] |ustjength = I R |iist_iength + 1 holds for every substitution that
makes H and R ground.

3 Transforming Procedures

A size dependency graph is a directed, acyclic graph whose nodes can be of the
foUowing types: a) A position in a clause: head[i] or bodyj[i], as described in
Section 2; b) A binary arithmetic operator (+, —, etc.); or c) A non-negative
integer number.

We distinguish two classes of edges:
3We can consider only predicates in the strongly connected component of the cali graph corre­

sponding to the predicate which is the entry point of the transformation.

• Intra-literal edges are those from a position in a body literal to another posi­
tion in the same body literal, more formally, from bodyi[k] to bodyj[n] where
i = j and k ^ n. Their meaning is the following: the size of the term appear­
ing at the kth argument position in the ith literal of the body is computed by
a transformed versión of the predicate of this literal. In order to perform such
size computation this versión requires that the size of the term appearing at
its nth argument position be supplied at the cali.

• ínter-literal edges are those which are not intra-literal.

There is an inter-literal edge from a position x to another position y, if the
size of the term appearing at position x is equal to the size of the term appearing
at position y. Arithmetic operator nodes and number nodes are used to express
arithmetic relations between the size of argument positions, as illustrated in Fig­
ure 1. Regarding the number and type of outgoing and incoming edges allowed, we
establish a classiñcation of nodes as follows:

• Only two cases are allowed for head positions nodes, namely:

— Input size nodes, which have one or more inter-literal incoming edges
and no outgoing edges.

— Output size nodes, which have exactly one outgoing inter-literal edge and
no incoming edges.

• For body positions, also only two cases are allowed, namely:

— Supplied size nodes, which have one outgoing inter-literal edge and one or
more incoming intra-literal edges. They correspond to those arguments
whose size is supplied at the cali of a transformed body literal.

— Computed size nodes, which have one or more incoming inter-literal edges
and zero or more outgoing intra-literal edges. They correspond to those
arguments whose size is computed by transformed body literals.

• A binary arithmetic operator node has two outgoing inter-literal edges and
one incoming inter-literal edge.

• A non-negative integer number node has only one inter-literal incoming edge
and no outgoing edges.

Consider the size dependency graph Gl in Figure 1. head[2] is an input size
node, /ieac¿[3] is an output size node, body\\2] is a supplied size node and 6oc¿j/i[3]
is a computed size node. A transformation node for a predicate Pred is a pair
(Label, Graphs), where Graphs is a set of size dependency graphs. There is exactly
one graph for each clause deñning the predicate. Suppose that there are n clauses
in the deñnition of predicate Pred. Let Gi be the size dependency graph for clause
i, and I i and 0¿ the set of input and output size arguments of Gi respectively. Let
/ = lj™=i h

 a n (i O = (jr=i O*- Then Label, the label of the transformation node,
is a tupie (Pred,Is,Os), where Is = {i \ head[i] <G / } and Os = {i \ head[i] <G O}.
With the above deñned label we can express which predicate Pred is transformed
and which argument sizes will be computed as a function of which others. The
transformed versión of Pred will have an additional argument for each item i £ Is
(which will be bound to the size of the term appearing at the ith argument position
in the head at the predicate cali) and j <G Os (which will be bound to the size of the
term appearing at the j t h argument position in the head once the cali succeeds). For
example, (append/3, {2}, {3}) is a label which states that the predicate append/3
will be transformed to compute the size of its third argument, provided that the size
of the second one is supplied at the procedure cali. This means that it is necessary

Figure 2: Size dependency graphs for predicate qsort/2.

to add two extra arguments to the transformed predicate which will stand for the
sizes of the second and third arguments of append/3.

Example 3.1 Figure 1 represents the transformation node composed by the size
dependency graphs Gl and G2, namely ((append/3, {2}, {3}), {Gl, G2}). D

We require that the size dependency graphs meet the following condition: if there
is an inter-literal edge from a supplied size node bodyi[k] to a computed size node
bodyj[n] then j < i. This condition ensures that the sizes supplied to a transformed
literal are computed only by previous literals of the body. This requirement is due
to the fact that the sizes supplied have to be "ground" at the cali, because we are
interested in using built-ins similar to "is/2" (in fact, more efficient and specialized
versions) to perform the arithmetic operations needed to compute sizes and these
built-ins require all but one of their arguments to be ground. It is important to note
that this condition may be relaxed if the target language is for example a Constraint
Logic Programming language [8] which can solve linear equations. However actual
equation solving would probably incur in signiñcant overhead. Thus we enforce
the condition both for efficiency reasons and for allowing the transformed programs
to be executed without requiring any constraint solving capabilities in the target
language.

In a size dependency graph the set of all the nodes corresponding to a literal
with number i (i.e. those of the form bodyi[j]) is referred to as the literal node
bodyi. As an example, consider the size dependency graph Gl in Figure 1. There,
the set {bodyi [2], body\ [3]} is the literal node body\. We also group the supplied size
nodes and computed size nodes corresponding to a particular literal node into the
sets S and C respectively (in the example S = {bodyi [2]} and C = {bodyi [3]})- We
associate with the literal node the label (Pred,Is, Os), where Pred is the predicate
ñame and arity of the literal and Is = {j | body^j] <G S} and Os = {j | body^j] <G C}
(in the example, the label associated with literal node bodyi is (append/3, {2}, {3})).
The label of the literal node indicates which transformed versión of the predicate of
the literal corresponds to such literal. This is the versión which performs the size
computation that is also expressed by such label. Then, when the clause where the
literal appears is transformed, the literal will be replaced by a cali to the predicate
that performs the size computation.

4 Transforming Sets of Procedures

In this section we address the problem of transforming a set of procedures which
are part of a call-graph, in order that they perform a size computation. To this end,

it is necessary to have at least a transformation node for some of those procedures
and these nodes have to meet some conditions tha t are explained below.

Def in i t ion 4.1 [Transformation] Is a graph composed by a set N of transformation
nodes and a set of edges. There is a distinguished transformation node E £ N which
is called the entry point of the transformation and:

1. Let G be any size dependency graph of T\ , where T\ is a transformation node
T\ <G N, and let l be any literal node of G, then l has exactly one outgoing
edge and no incoming edges. This edge goes from l to some transformation
node T2 <G N such tha t the label of T2 is equal t o the label associated with
the literal node l (note tha t T\ and T2 can be the same transformation node).
The intuition behind this edge is the following: suppose tha t L\ is the literal
corresponding to l in the source clause corresponding to G, and L2 is the
transformed versión of L\ which perform the size computation indicated by
the label associated with l. The edge states tha t the predicate of L\ can
be transformed according to the information represented in T2 yielding the
predicate of ¿2-

2. There is an edge from transformation node T\ G J V t o a transformation node
T2 <G N if and only if there is an edge from some literal node l of Ti to T2.
Intuitively, this edge states tha t the transformed predicate corresponding to
Ti calis the transformed predicate corresponding to T2.

3. All the transformation nodes T £ N are reachable from E. D

Def in i t ion 4.2 [Size Computat ion Speciñcation] We deñne a size computation spe-
cification as a pair (Pred, Os), where Pred is the ñame and arity of the predicate
to be transformed, and Os is a set of argument numbers whose sizes are computed
by the transformed predicate at run-time. D

Def in i t ion 4.3 [Transformation for a size computation speciñcation] A Transfor­
mation for a size computation speciñcation (Pred, Os) is a transformation T such
tha t the label of the entry point of T is of the form (Pred, Is, Os). D

T h e o r e m 1 If there is a, Transformation T for a size computation specification
(Pred, Os) such that the label of the entry point of T is (Pred, Is, Os) then it is
possible to transform the clauses of Pred to obtain a transformed, Predicate Pred',
such that Pred' computes the sizes of the arguments indicated, in Os, provided, that
the sizes of arguments indicated, in Is are supplied, (while still also performing the
same computations originally performed, by Pred).O

5 Irreducible/Optimal Transformations

Since there may be many possible transformations for a given size computation
speciñcation, we are interested in those involving the least amount of overhead at
run-time. Such overhead is dependent on the system, since it depends on the cost
of argument passing and tha t of arithmetic operations. Reducing this overhead
suggests considering transformations having the minimum number of transforma­
tion nodes and each of them having the minimum number of Ítems in Is, where
(Pred, Is, Os) is the label of any node in the transformation. Tha t is, to transform
a predicate to make it compute the sizes of some of its arguments we would like
to know which are the arguments whose sizes are strictly necessary to perform this
computation (in order to add only the absolutely necessary additional arguments

and operations to the transformed predicates) and also what is the minimum num-
ber of predicates which have to be transformed. We ñrst introduce the concept
of irreducible transformation and show that in order to determine whether it is
possible to transform a predicate we only need to consider irreducible transforma-
tions. Then we present some ideas regarding the generation of optimal irreducible
transformations.

Definition 5.1 [Ordering between labels] Given two labels, X = (Pred,Isx,Os)
and Y = (Pred,Isy,Os), we say that X <¡ Y if and only ií Isx C Isy. •

For example: (append/3, {2}, {3}) <¡ (append/3, {1, 2}, {3}), but
(append/3, {2}, {3}) ^t¡ (append/3, {1}, {3})

Definition 5.2 [Irreducible Transformation] A transformation T is irreducible iff:

1. The labels of transformation nodes in T are unique.

2. There are no two transformation nodes in T, labeled with the labels X and
Y respectively, such that X <iY. D

We represent an irreducible transformation as a pair (L,T), where T is a set of
transformation nodes and L is the label of the transformation node that is the entry
point of the transformation (recall that the labels of the transformation nodes in
T are unique). The entry point belongs to the set T. Since the labels of the
transformation nodes are unique, it is not necessary to explicitly represent any
edges in the irreducible transformation (they can be determined from conditions in
Definition 4.3 without ambiguity). Thus, all edges are omitted.

Example 5.1 Consider the predicate qsor t /2 defined as follows:

Cl: qsort([],[]).
C2: qsort([First|L1],L2) :-

partition(First,Ll,Ls,Lg),
qsort(Ls,Ls2),qsort(Lg,Lg2),
append(Ls2,[First|Lg2],L2) .

and suppose we want to transform it to compute the length of its second argument.
Figure 2 shows size dependency graphs corresponding to the clauses of predicate
qsor t /2 . In this figure, the size dependency graph G3 corresponds to the base case
(Cl) of this predicate, and G4 and G5 correspond to its recursive clause (C2). Let
NI be the transformation node NI = ((qsort/2,®, {2}), {G3, G5}). Let N2 be the
transformation node from Example 3.1. Then, the pair ((qsort/2, 0, {2}), {N1,N2})
is an irreducible transformation, with entry point the node NI. This irreducible
transformation is represented in Figure 3. The pair ((append/3, {2}, {3}), {^2}) is
also an irreducible transformation. D

A note on the generation and nature of transformation nodes: this generation
is performed through a mode analysis to determine data flow patterns [2, 13, 1]
and an argument size analysis [3]. It is important to note that this combined
analysis can in some cases infer intra-literal size relations between arguments of a
predicate. This information can be used to genérate transformation nodes which
can be part of a transformation, but which need to traverse less data because
a size computation can be performed directly in one operation, rather than by
counting during the execution of the predicate. For example, suppose that the
analysis infers the intra-literal size relation size¡ = síze\ + size2 for append/3
(which states that the length of its third argument is the sum of the lengths of its

—* Node: N1 Label: (qsort/2,{ },{2}) Node: N2 Label: (append/3,{2},{3})

Figure 3: An irreducible transformation.

two ñrst arguments), and the intra-literal size relation size2 = síze\ for predicate
qsort/2. Consider the clause C2 in Example 5.1. Using size¡ = síze\ + size2 for
append/3 we have that |L2|iistjength = |Ls2|iist_iength + |[First|Lg2]|iistjength holds
for every substitution that makes all the terms appearing in it ground, and also
|L2|nst_iength = |Ls2|iistje„gth + |Lg2|iistjength + 1 holds. Thus we can infer the fol-
lowing inter-literal size relation head[2] = body2[2]+body¡[2] + l which doesn't imply
any transformation of predicate append/3 but of the predicate qsort/2. Moreover,
using size2 = size\ for qsort/2 we have that |Ls2|iist_iength = |Ls|iist_iength snd
|Lg2|iist_iength = |Lg|nst_iength also holds. Thus, we can infer another inter-literal
size relation head[2] = body-¡_[3] + 6oefo/i[4] + 1 (which implies the transformation of
predicate pa r t i t i on /4)) .

Theorem 2 If there is a transformation T for a size computation specification X
then there is an irreducible transformation T' for X.D

Theorem 2 implies that we only need to ñnd irreducible transformations to deter­
mine whether a procedure is transformable to compute sizes. Obviously, irreducible
transformations will result in transformed procedures with potentially less overhead
at run-time than the transformations they have been obtained from, but now the
problem is to decide which irreducible transformation will have less overhead, or,
in other words, which of them will be optimal. The problem of ñnding such opti-
mal irreducible transformations lies in the fact that we need to use two parameters
(number of transformation nodes and number of arguments needed) in the compari-
son and some transformations may be incomparable, in the sense that one is smaller
than the other one on one criteria but the converse is true on the other criteria.
In practice we can always assign costs or weights to both argument passing steps
and arithmetic operations so that for each transformation we can obtain a function
which gives its cost or overhead as a function of the input data sizes. In this case
we can compare the cost of irreducible transformations and decide which of them is
optimal. In the same way, we can compare the cost of irreducible transformations
with the cost of performing the standard size computation, i.e. the one using pre-
deñned predicates such as length/2, in order to see how convenient performing the
transformation to compute sizes is.

Pred íca te : find_trans(SCS, S, Trans)
Input: a size computation specification SCS and the information S about size relations

between arguments in the different clauses of a program for the predicate in SCS,
derived through size analysis.

Output: an irreducible transformation Trans for SCS.
Deñnition: find_trans(SCS, S, Trans) <—

generate_label(SCS, L), search([L] , S, n i l , T) , Trans=(L, T) .
Predicate: generate_label(SCS, L)
Description: generates a label L for SCS. Fails when all possible labels have been gener­

ated via backtracking.
Predicate: search(LabelList , SizeRel, InTrans, OutTrans)
Deñnition: s e a r c h (n i l , SizeRel, Trans, Trans) .

search([Label |LabLis t] , SizeRel, InTrans, OutTrans) <—
generate_node(Label,SizeRel,[LabelILabList],InTrans,Node,LL),
append(LL, LabList, NewLabList), Trans = [NodeIInTrans],
search(NewLabList, SizeRel, Trans, OutTrans).

Predicate: generate_node(Label, SizeRel, LabList, InTrans, Node, LL)
Description: Generates a transformation node Node with label Label, using the infor­

mation about size relations SizeRel in such a way that the following condition is
met: Let St be the set of labels of the transformation nodes in the current trans­
formation InTrans. Let Si be the set of labels in LabList. Let Sn be the set of
labels associated with literal nodes in Node. Then, there are no two labels h and h,
h G S„ and l2 G (St U Si U S„), such that l2 <i h.

If it is not possible, or all possible transformation nodes have been generated previ-
ously via backtracking, then it fails. Otherwise, it creates a list LL containing the
labels in the set Sn — (St U Si) and succeeds. We omit the detailed description of
the generation of Node for the sake of brevity.

Figure 4: A top-down algorithm for ñnding irreducible transformations.

6 Searching for Irreducible Transformations

Since the number of transformation nodes for a given size computation specification
is finite, a possible algorithm to find transformations may be to simply genérate
all possible sets of transformation nodes and test which of them are irreducible
transformations. Note tha t the number of transformation nodes is in any case
restricted by the number of size relations tha t can be inferred by size analysis
[3] (in fact, if the algorithm does not find any transformation it does not mean
tha t a transformation does not exist, but rather tha t it is impossible to find a
transformation with the inferred information by size analysis). However, some other
more efficient approaches are possible.

In Figure 4 we propose a simple, goal directed algorithm (for which we will
later propose some optimizations) which performs a top-down search start ing from
a given size computation specification (a bot tom-up algorithm is also possible). The
search space is described by the f ind_trans/3 predicate. Note tha t the irreducible
transformations generated still have to be checked in order to determine which of
them has the least overhead in the size computation process.

E x a m p l e 6.1 Consider the predicate q s o r t / 2 as defined in Example 5.1, and
suppose we want to transform it to compute the length of its second argument,
tha t is, we want to find a transformation for the size computation specification
(qsort/2, {2}). We assume a depth-first search (as obtained when the f i n d _ t r a n s / 3
predicate is executed in Prolog).

1. The search starts by calling f incLtrans (SCS, S, Trans), where SCS =
(qsort/2, {2}) and S is the information about size relations for the predicates
in the quick-sor t program (i.e. qsor t /2 , p a r t i t i o n / 4 , and append/3).

2. Suppose that generate_label(SCS, L) generates the label L
= (qsort/2,%,{2}).

3. Then search([L] , S, n i l , T) is called. Suppose that generate_node(L,
S, [L] , n i l , Node, LL) succeeds generating the transformation node Node
= NI, where NI = ((qsort/2,9, {2}), {03,04}), where G3 and G4 are the
size dependency graphs in Figure 2, and making LL = [Ll], where Ll=
(append/3, 0, {3}).

4. A recursive cali search([Ll] , S, [NI], OutTrans) is made. This cali
fails because of the failure of generate_node(Ll, S, [Ll] , [NI] , Node2,
LL2). Thus, backtracking occurs and generate_node(L, S, [L] , n i l ,
Node, LL) is retried. Suppose that this cali succeeds generating the trans­
formation node Node = N2, where N2 = ((gsorí/2,0, {2}), {G3, G5}), and G3
and G5 are the size dependency graphs in Figure 2, and making LL = [L2],
where L2= (append/3, {2}, {3}).

5. A recursive cali search([L2] , S, [N2] , OutTrans) is made. Suppose that
generate_node (L2, S, [L2] , [N2] , Node3, LL3) succeeds generating the
node Node3 = N3, where N3 = ((append/3, {2}, {3}), {Gl, G2}), where Gl and
G2 are the size dependency graphs in Figure 1, and making LL3 = n i l .

6. Finally a recursive cali search.(ni l , n i l , [N3, N2] , OutTrans) is made.
This cali succeeds making OutTrans = [N3, N2]. Thus Trans = (L, [N3,
N2]). D

The efficiency of the previous top-down algorithm can be improved if certain
information is used during the generation of transformation nodes performed by
generate_node/3. In particular, knowledge regarding which of the labels associated
with literal nodes in the generated transformation node are likely to make the
genératejnode/3 predicate fail further on while trying to ñnd transformation nodes
for such labels. This can prune the search space considerably. It is sometimes
possible to detect such labels by examining facts in the program. For example, it
is possible to detect that generatejnode/3 will not ñnd any transformation node
for (append/3, %, {3}), since, examining the fact which appears in the deñnition of
append/3, we can infer that at least it is necessary to supply the size of the second
argument of append/3 at the cali. Thus, no transformation node will be generated
having the label (append/3, %, {3}) associated with some literal node. We have
built a prototype implementation in Prolog along these lines which makes use of
the built-in search capabilities of Prolog to perform such a top-down search.

It should be noted that our transformation algorithm can be classiñed as a "rules
+ strategies" approach - see [14] and its references- and thus, can be described in
terms of applying certain folding and unfolding rules in a particular order. In fact,
what our algorithm expresses is a particular "strategy" tailored to ñnding optimal
transformations, in the sense that, if several possible transformations are suitable,
it constructs those which have the least runtime overhead, based on the criteria
of choosing those which traverse less data and perform less arithmetic operations.
This is useful for implementation reasons since it avoids having to implement a full
partial evaluator which would be an overkill for the task in hand.

In some simple cases similar transformations to the ones we propose can be
obtained by adding to the original program some code that would perform the size
computation in a naive way, and then applying a general purpose transformation
strategy (e.g. partially evaluating a "length/2" predicate into a previous recursive

bench
c/2
qsort/2
q/2
deriv/2

T
-*- w s c 202.90

1218.00
52.59

119.00

TB t
405.69

1495.00
90.20

3349.00

T P t
277.99

1343.90
61.69

239.00

J- s t J- WSC

202.79
277.00

37.61
3110.00

J- p t J- WSC

75.09
125.90

9.10
120.00

gain
63.0 %
55.3 %
76.7 %
92.9 %

Table 1: Execution times (ms) for benchmarks.

loop). However, the need for our algorithm comes from the fact that the general
purpose strategies used in program transformation systems are less powerful in
this particular application than our algorithm, in the sense that a general strategy
would not ensure obtaining transformations for some cases that our algorithm does,
and, also, it would not ensure the optimality of the transformations if they are
found. Note, for example, that there are certain transformations which are based
on detecting that some term sizes need to be known and used as a starting point
for other size computations. This can only be done by reasoning at the "strategy"
level.

7 Experimental Results and Advantages

We have run a series of experiments using SICStus PROLOG running on a SUN
IPC workstation to measure the gain obtained with our predicate transformation
technique with respect to what we will cali the "standard approach" to computing
term sizes, that is, by introducing new calis to predicates that explicitly compute
them. An example is by using the Prolog length/2 built-in to compute lengths
of lists. Theoretically this gain can be up to 100%. To measure this in practice
we have chosen a few benchmarks which we feel represent either worst or typi-
cal cases and which we argüe allow getting some feeling for the performance gain
which can be obtained in practice. Table 1 shows execution times for the experi­
ments performed with these benchmarks. T w s c is the execution time without size
computation. T s t is the execution time with size computation using the standard
approach. T p t is the execution time of the predicate transformation approach.
T s t — T w s c and T p t — T w s c are then the overheads due to size computation with
the standard and predicate transformation approach, respectively. The last column
shows the gain achieved by the predicate transformation approach with respect
to the standard one. This gain is computed according to the following exprés-
sion: gain = •L-s!—^sc; „; 2 ^^^ÍOO For brevity only a brief description of the

J- s t J- WSC

benchmarks is provided. A more complete description (including the program text)
can be found in [5]. The ñrst benchmark that we have chosen contains only the
predicate c/2 followed by a cali to length/2. c/2 performs the standard, simplest
possible form of list traversal, performing no work during the iterations. Thus, the
transformation approach will incur in máximum overhead.

The second benchmark is the predicate qsort/2, in which the lengths of the two
output lists of part i t ion/4 are computed. This size computation is useful when
transforming the predicate qsort/2 in order to perform granularity control.

The third benchmark is the predicate q/2 deñned as follows:

q ([] , [])
q ([X | Y] ,
q ([X | Y] ,

[X
[X

X|Y1]) : -
X,X|Y1])

X
: -

>
X

7,
=<

i

7,
q(Y,
q(Y,

Yl)
Yl)

Execution times have been measured for different lengths of the input list for these
three benchmarks, and the observed gain is approximately constant in each case.

Finally, the fourth benchmark is the predícate der iv/2 , also performing size
computation. Note that in this case the size measure is not list length, but rather
term size (we do not include the corresponding transformation for the sake of
brevity).

The observed gain arise from two factors: avoiding additional term traversal
and performing less arithmetic operations. In both der iv /2 and q/2 the "standard
approach" has to traverse more data and thus the number of arithmetic operations
is greater than in the predicate transformation approach.

Note that another advantage of our approach is that it can take proñt of previous
size computations so that no recomputation is performed.

On the other hand, there are also certain cases in which the predicate transfor­
mation approach can be more expensive than the standard one. Such cases may
appear in connection with backtracking - if there is frequent failure and backtracking
within a predicate which has been transformed to perform term size computation it
may be better to compute term sizes once and for all using the standard approach
upon success. Also, one can construct predicate transformations which perform
redundant size computations.

8 Applying the Technique in Granularity Control

As mentioned in the introduction, the approach we propose to the problem of gran­
ularity control, and in which the size calculation proposed is instrumental, is by
computing cost functions and performing program transformations at compile-time
based on such functions, so that the transformed program automatically controls
granularity at run-time [3, 11]. The idea is to perform a transformation of the pro­
gram in such a way that the cost computations and spawning decisions are encoded
in the program itself, and in the most efficient way possible. The actual computa­
tions and decisions are postponed until run-time when the parameters missing at
compile-time, such as data sizes or processor load, are available. In particular, the
transformed programs will perform the following tasks: compute input data sizes;
use those sizes to evalúate the cost functions; estimate the spawning and schedul-
ing overheads; decide whether to schedule tasks in parallel or sequentially; decide
whether granularity control should be continued or not, etc. This is illustrated in the
following example, which presents actual output obtained from an implementation
of the proposed techniques.

Example 8.1 Consider a parallel versión of the deñnition of the qsort/2 predicate
given in Example 5.1:

q s o r t ([] , []) .
qsort([First |Ll] ,L2) :- partit ion(First ,L1,Ls,Lg),

qsort(Ls,Ls2) & qsort(Lg,Lg2),
append(Ls2,[First|Lg2],L2).

in which qsort(Ls,Ls2) and qsort(Lg,Lg2) are executed in parallel, as expressed
by the & symbol [4]. The cost analysis performed at compile-time would provide a
function that gives an approximation on the cost of predicate qsort/2 in terms of
the size of its ñrst argument, assuming that this argument is ground at procedure in-
vocation. Then a predicate transformation can be done automatically for predicate
qsort/2 in order to perform granularity control. As a result of this transformation
the following code is obtained:

70 Versión of qsort/2 that performs granularity control.
g_qsort([] , [] , _) .

g _ q s o r t ([F i r s t | L l] , L 2 , S i z e l) : -
70 compute upper-bound of execut ion t ime .
q s o r t t i m e (S i z e l , T i m e) ,
Time < 10 ->

(p a r t i t i o n (F i r s t , L 1 , L s , L g) ,
s _ q s o r t (L s , L s 2) , s _ q s o r t (L g , L g 2)) ;

(t r p a r t i t i o n (F i r s t , L 1 , L s , L g , 0 , S i z e L s , 0 , S i z e L g) ,
g_qsor t (Ls ,Ls2 ,S i zeLs)&g_qsor t (Lg ,Lg2 ,S i zeLg)) ,

append(Ls2 , [F i r s t |Lg2] ,L2) .
70 Sequent ia l v e r s i ó n for q s o r t / 2 .
s_qsor t ([] , []) .
s _ q s o r t ([F i r s t | L 1] , L 2) : -

p a r t i t i o n (F i r s t , L 1 , L s , L g) ,
s _ q s o r t (L s , L s 2) , s _ q s o r t (L g , L g 2) ,
append(Ls2 ,nF ir s t |Lg2] ,L2) .

t r p a r t i t i o n (F , [] , [] , [] ,S1 ,S1,S2 ,S2) .
t r p a r t i t i o n (F , [X | Y] , Y 1 , [X | Y 2] , I S i z e l . O S i z e l , I S i z e 2 , 0 S i z e 2) : -

X > F, !, I S i z e 3 i s I S i z e 2 + 1,
t r p a r t i t i o n (F , Y , Y l , Y 2 , I S i z e l , 0 S i z e l , I S i z e 3 , 0 S i z e 2) .

t r p a r t i t i o n (F , [X | Y] , [X | Y 1] , Y 2 , I S i z e l . O S i z e l , I S i z e 2 , 0 S i z e 2) : -
I S i z e 3 i s I S i z e l + 1,
t r p a r t i t i o n (F , Y , Y l , Y 2 , I S i z e 3 , 0 S i z e l , I S i z e 2 , 0 S i z e 2) .

where the literal q s o r t t i m e (S i z e l , T i m e) computes an estimation of the cost of ex-
ecuting the clause body sequentially, evaluating the function inferred through analy-
sis at compile-time. We have omitted it for the sake of conciseness. The constant 10
represents some experimentally determined threshold which is directly related to the
cost of creating a parallel task (note tha t this could also be a function). The literal
t r p a r t i t ion (F i r s t ,L1 ,Ls , L g , 0 , S i zeLs , 0, SizeLg) is the transformed versión of
p a r t i t i o n (F i r s t , L l , L s , L g) , which is obtained automatically and computes the
sizes of its third and fourth arguments (SizeLs and SizeLg represent the sizes of
Ls and Lg respectively). D

Note tha t in the cases where term sizes are compared directly with a threshold
it is not necessary tha t the transformed predicates which compute those sizes tra-
verse all the terms involved, but rather only to the point at which the threshold is
reached. Thus it is possible t o perform more subtle transformations so tha t when
the computed size is greater or equal than the threshold a flag is activated and the
size computation is stopped (by executing predicate versions which do not perform
any size computation).

We have incorporated the techniques proposed in a prototype granularity control
system tha t we are developing in the context of the &-Prolog system [4]. We have
also performed some experiments-which are described in [ll]-for several degrees of
optimization of the granularity control process. These experiments show tha t the
most signiñcant improvement comes from the incorporation of the dynamic term
size computation technique tha t we have proposed. While the technique needs to
be tested on a much larger set of benchmarks to draw ñrm conclusions, we argüe
tha t the results obtained so far are encouraging.

References
[1] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic

Programs. Journal of Logic Programming, 10:91-124, 1991.

S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.
ACM Transactions on Programming Languages and Systems, ll(3):418-450, 1989.

S.K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

[41 M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

51 M. Hermenegildo and P. López-García. Dynamic Term Size Computation in Logic
Programs. Technical Report CLIP 15/94, Computer Science Faculty, Technical Uni-
versity of Madrid, November 1994.

M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efñciency, and Compile-Time Conditions. Journal
of Logic Programming, 22(l):l-45, 1995.

L. Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Time List Sizes to Guide
Parallel Thread Creation. In Proc. ACM Conf. on Lisp and Functional Programming,
June 1994.

Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. In ACM Sym-
posium on Principies of Programming Languages, pages 111-119. ACM, 1987.

S. Kaplan. Algorithmic Complexity of Logic Programs. In Logic Programming, Proc.
Fifth International Conference and Symposium, (Seattle, Washington), pages 780-
793, 1988.

[101 B. Kruatrachue and T. Lewis. Grain Size Determination for Parallel Processing. IEEE
Software, January 1988.

[11] P. López-García, M. Hermenegildo, and S.K. Debray. Towards Granularity Based
Control of Parallelism in Logic Programs. In Hoon Hong, editor, Proc. of First
International Symposium on Parallel Symbolic Computation, PASCO'94, pages 133-
144. World Scientific, September 1994.

[121 C. McGreary and H. Gilí. Automatic Determination of Grain Size for Efflcient Parallel
Processing. Communications of the ACM, 32, 1989.

[131 K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347,
July 1992.

[14] A. Pettorossi and M. Proietti. Transformations of Logic Programs: Foundations
and Techniques. Journal of Logic Programming, Special Issue: Ten Years of Logic
Programming, 19/20, May/July 1994.

[151 F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Parallelism
in Functional Programs. Res. Rep. CS-90-1, Dept. of Computer Science, Univ. of
Sheffleld, England, January 1990.

[161 J.D. Ullman and A. Van Gelder. Efflcient Tests for Top-Down Termination of Logical
Rules. Journal ACM, 35(2):345-373, 1988.

17] K. Verschaetse and D. De Schreye. Derivation of Linear Size Relations by Abstract In­
terpretation. In Fourth International Symposium PLILP'92, Programming Language
Implementation and Logic Programming, pages 296-310, Leuven, Belgium, August
1992. Springer Verlag.

18] X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan.
Towards an Efflcient Compile-Time Granularity Analysis Algorithm. In Proc. of the
1992 International Conference on Fifth Generation Computer Systems, pages 809-
816. Institute for New Generation Computer Technology (ICOT), June 1992.

