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Abstract 

Knowing the size of the terms to which program variables are bound at run-time 
in logic programs is required in a class of optimizations which includes granularity 
control and recursion elimination. Such size is difficult to even approximate at com­
pile time and is thus generally computed at run-time by using (possibly predeñned) 
predicates which traverse the terms involved. We propose a technique which has the 
potential of performing this computation much more efficiently. The technique is 
based on ñnding program procedures which are called before those in which knowl-
edge regarding term sizes is needed and which traverse the terms whose size is to 
be determined, and transforming such procedures so that they compute term sizes 
"on the fly". We present a systematic way of determining whether a given program 
can be transformed in order to compute a given term size at a given program point 
without additional term traversal. Also, if several such transformations are possible 
our approach allows ñnding minimal transformations under certain criteria. We 
also discuss the advantages and applications of our technique (specifically in the 
task of granularity control) and present some performance results. 

Keywords: Granularity Analysis and Control, Parallelism, Term Size Compu­
tation. 

1 Introduction 

The need to know the size of the terms to which program variables are bound 
at run-time in logic programs arises in a class of applications related to program 
optimization which includes recursion elimination, granularity control, and selection 
among different algorithms or control rules whose performance may be dependent on 
such size. By term size we refer to measures such as list length, term depth, number 
of nodes in a term, etc. We address the problem of term size calculation, with 
special emphasis on its application in granularity control. We start by describing 
this application in more detail, since it is the fundamental motivation of our work. 

It has been shown (see e.g. [6]) that several types of parallelism can be exploited 
in logic programs while preserving correctness (i.e. the parallel execution obtains 
the same results as the sequential) and efficiency (i.e. the amount of work performed 
is not greater or, at least, there is no slow-down). However, such results assume 
an idealized execution environment in which a number of practical overheads are 
ignored, such as those associated with task creation, possible task migration of tasks 
to remote processors, the associated communication overheads, etc. Due to these 
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overheads, and if the granularity of parallel tasks, i.e. the "work available" under-
neath them, is too small, it may happen that the costs are larger than the beneñts 
in their parallel execution. This makes it desirable to devise a method whereby the 
granularity of parallel goals and their number can be controlled. Granularity con­
trol has been studied in the context of traditional programming [10, 12], functional 
programming [7], and also logic programming [9, 3, 18, 11]. 

The aim of granularity control is to change parallel execution to sequential exe­
cution or vice-versa based on some conditions related to grain size and overheads. 
However, granularity control itself can induce new overheads, which should obvi-
ously be minimized. As pointed out in [3], granularity analysis for a set of non-
recursive procedures is relatively straightforward. However, recursive procedures 
are somewhat more problematic: the amount of work done by a recursive cali de-
pends on the depth of recursion, which in turn depends on the size of the input. 
Reasonable estimates for the granularity of recursive predicates can thus be made 
only with some knowledge of the size of the input. In [3] a technique was presented 
for solving this problem in the context of logic programs. In [11] a complete gran­
ularity control system for logic programs based on these ideas is described. The 
technique is based on performing a compile-time analysis which reduces granularity 
analysis work at run-time to evaluating simple functions of term sizes. However, the 
actual determination of those sizes in order to evalúate such functions is necessarily 
postponed until runtime. A similar technique has been also proposed by Rabhi and 
Manson in the context of functional programs [15]. An alternative is to determine 
only the relative cost of goals [18], which can be useful for optimizing an on-demand 
run-time scheduler, but may not be as effective in reducing task creation cost. 

The postponement of accurate term size computation to run-time appears in­
evitable in general. This based on the fact that even sophisticated compile-time 
techniques such as abstract interpretation are based on computing approximations 
of variable substitutions for generic executions corresponding to general classes of 
inputs. In contrast, size is clearly a quite speciñc characteristic of an input. Al-
though the approximation approach can be useful in some cases we would like to 
tackle the more general case in which actual sizes have to be computed dynamically 
at run-time. Of course computing term sizes at run-time is quite simple but at the 
same time it can involve a signiñcant amount of overhead. This overhead includes 
both having to traverse signiñcant parts of the term (often the entire term) and the 
counting process done during this traversal. 

The objective of this paper is to propose a novel and more efficient way of 
computing such sizes. The essential idea is based on the observation that terms 
are often already traversed by procedures which are called in the program before 
those in which knowledge regarding term sizes is needed, and thus that such sizes 
can often be computed "on the fly" by the former procedures after performing some 
transformations to them. While the counting overhead is not eliminated, overhead 
is reduced because additional traversals of terms are not needed. We present a 
systematic way of determining whether a given program can be transformed in 
order to compute a given term size at a given program point without additional 
term traversal. Also, if several such transformations are possible our approach 
allows ñnding minimal transformations under certain criteria. We have omitted 
proofs for the sake of conciseness. They can be found in [5]. 

2 Overview of the Approach 

As mentioned in the introduction, we are interested in transforming some predicates 
in such a way that they will compute some of their argument data sizes at run-
time, in addition to performing their normal computation. It is often the case that 



because of previous transformations or other reasons, the size of certain terms is 
already known and it can be used as a start ing point in the dynamic computation 
of those tha t we need to determine at a given point. Thus, we will be interested 
in the general problem of transforming programs to determine the sizes of one set 
of terms given tha t the sizes of the terms in another (disjoint) set are known. For 
example, consider the predicate append/3, deñned as: 

a p p e n d ( [ ] , L, L) . 
append([H|L] , L l , [H|R]) : - append(L, L l , R ) . • 

Suppose tha t we want to transform this predicate in such a way tha t it com­
putes the length of its third argument. Observing the base case we can infer tha t 
the length of the term appearing in the third argument of the head is equal to tha t 
of the term appearing in the second argument after any successful computation. We 
can express this size relation as follows: /iea<¿[3] = head[2], where head[i] denotes 
the size of the term appearing at the ith argument position in the head. Thus, 
a transformation of this base case can be performed by adding two additional ar-
guments, which s tand for the size of the term appearing in the second and third 
arguments, respectively: append3i2 ( [ ] , L, L, S, S ) . 

In this way, if we cali the base case supplying the size of the second argument, 
we will obtain tha t of the third one. Observing the recursive clause, we can see 
tha t the size of the third argument of the head is equal to the size of the third 
argument of the ñrst body literal plus one. We express this size relation as follows: 
/iea<¿[3] = &oefa/i[3] + 1, where bodyj[i] denotes the size of the term appearing at 
jth a r g U m e n t position in the j t h literal of the body (literals are numbered from 
left to right, start ing by assigning " 1 " to the literal just after the head). Then we 
can think of using a transformed versión of this body literal in order to compute 
bodyi [3]. But to do this it is necessary tha t the size of the second argument of this 
body literal (bodyi[2\) be supplied at the cali (so tha t &oefa/i[3] can be computed 
when recursion ñnishes). Since we already have the bodyi\2] = head[2] size relation, 
we can conclude tha t it is possible to compute the size of the third argument of 
append/3 if the size of the second one is supplied at the cali. 

The recursive clause can be trivially transformed as follows with the knowledge 
of the previous size relations:2 

a p p e n d 3 i 2 ( [ ] , L , L , S , S ) . 
append3i2 ( [H|L] ,L1 , [H |R] ,S2 ,S3) : - append3i2 (L ,Ll ,R ,S2 ,Sb3) , 

S3 i s Sb3 + 1. 

We can see tha t the problem can be reduced to ñnding what we will cali a "size 
dependency graph" for each clause of the predicate to be transformed. Figure 1 
shows the size dependency graphs corresponding to the previous example. In this 
ñgure, the graphs G2 and Gl correspond to the base case and recursive clause of 
append/3 respectively. 

Informally, the set of size dependency graphs contains the information needed to 
transform a predicate, and is represented by means of what we cali a transformation 
node. In general it is necessary to transform more than one predicate to perform a 
particular size computation. In this case, transformation nodes are viewed as nodes 

2For clarity, this class of transformations is used in the examples even if they are not ideal, given 
that they destroy tail recursion optimization. However it is quite straightforward to perform the 
equivalent transformation which preserves tail recursion optimization by using an accumulating 
parameter. These are the transformations performed in practice. Note also that although present-
ing the technique proposed in terms of source-to-source transformations is useful both didactically 
and as a viable implementation technique, the transformation can also be implemented at a lower 
level in order to reduce the run-time overheads involved even further. 



Figure 1: Size dependency graphs for predicate append/3. 

in a search tree which will have to be explored with the objective of ñnding a set 
of such nodes leading to a program transformation which correctly computes the 
desired term sizes. 

In essence, the proposed approach involves ñrst inferring all possible size rela­
tions between arguments of the program clauses which can be involved in the desired 
size computation,3 constructing all possible transformation nodes from these size 
relations, and, finally, ñnding the set of transformation nodes leading to correct size 
computations. 

The static inference of argument size relations have been widely studied [16, 17, 
3]. In particular, we refer to the size relations described in [3]. Consider the function 
\ • \m '• 7~t —> -A/i. ( a s deñned in [3]), that maps ground terms to their sizes under 
a speciñc measure m (various measures can be used, e.g., term-size, term-depth, 
list-length, integer-valué, etc.), where Tí is the Herbrand universe, i.e. the set of 
ground terms of the language, and J\í± the set of natural numbers augmented with 
a special symbol ± , denoting "undefined". For example, |[a,b]|iist_iength = 2, but 
|/(a)|iist_iength = -I- In [3], argument size relations are classiñed as either "intra-
literal" or "inter-literal". The former refer to size relations between the argument 
positions of a single literal. They hold between the sizes of arguments of all atoms 
in the success set for the predicate corresponding to the literal and are similar to 
those described in [17]. The latter refer to relations between argument positions of 
different literals in a clause or the clause head. For example size¡ = síze\ + size2 is 
an intra-literal size relation for the predicate append/3 which states that the length 
of its third argument is the sum of the lengths of its two ñrst arguments. However 
/iea<¿[3] = bodyi [3] + 1 is an inter-literal size relation corresponding to the recursive 
clause of append/3 , and states that for every substitution that makes the terms 
appearing at positions /iea<¿[3] and body\ [3] ground, the size of the term appearing 
at position /iea<¿[3] is equal to the size of the term appearing at position 6oefo/i[3] 
plus one, i.e. | [H| R] |ustjength = I R |iist_iength + 1 holds for every substitution that 
makes H and R ground. 

3 Transforming Procedures 

A size dependency graph is a directed, acyclic graph whose nodes can be of the 
foUowing types: a) A position in a clause: head[i] or bodyj[i], as described in 
Section 2; b) A binary arithmetic operator (+, —, etc.); or c) A non-negative 
integer number. 

We distinguish two classes of edges: 
3We can consider only predicates in the strongly connected component of the cali graph corre­

sponding to the predicate which is the entry point of the transformation. 



• Intra-literal edges are those from a position in a body literal to another posi­
tion in the same body literal, more formally, from bodyi[k] to bodyj[n] where 
i = j and k ^ n. Their meaning is the following: the size of the term appear­
ing at the kth argument position in the ith literal of the body is computed by 
a transformed versión of the predicate of this literal. In order to perform such 
size computation this versión requires that the size of the term appearing at 
its nth argument position be supplied at the cali. 

• ínter-literal edges are those which are not intra-literal. 

There is an inter-literal edge from a position x to another position y, if the 
size of the term appearing at position x is equal to the size of the term appearing 
at position y. Arithmetic operator nodes and number nodes are used to express 
arithmetic relations between the size of argument positions, as illustrated in Fig­
ure 1. Regarding the number and type of outgoing and incoming edges allowed, we 
establish a classiñcation of nodes as follows: 

• Only two cases are allowed for head positions nodes, namely: 

— Input size nodes, which have one or more inter-literal incoming edges 
and no outgoing edges. 

— Output size nodes, which have exactly one outgoing inter-literal edge and 
no incoming edges. 

• For body positions, also only two cases are allowed, namely: 

— Supplied size nodes, which have one outgoing inter-literal edge and one or 
more incoming intra-literal edges. They correspond to those arguments 
whose size is supplied at the cali of a transformed body literal. 

— Computed size nodes, which have one or more incoming inter-literal edges 
and zero or more outgoing intra-literal edges. They correspond to those 
arguments whose size is computed by transformed body literals. 

• A binary arithmetic operator node has two outgoing inter-literal edges and 
one incoming inter-literal edge. 

• A non-negative integer number node has only one inter-literal incoming edge 
and no outgoing edges. 

Consider the size dependency graph Gl in Figure 1. head[2] is an input size 
node, /ieac¿[3] is an output size node, body\\2] is a supplied size node and 6oc¿j/i[3] 
is a computed size node. A transformation node for a predicate Pred is a pair 
(Label, Graphs), where Graphs is a set of size dependency graphs. There is exactly 
one graph for each clause deñning the predicate. Suppose that there are n clauses 
in the deñnition of predicate Pred. Let Gi be the size dependency graph for clause 
i, and I i and 0¿ the set of input and output size arguments of Gi respectively. Let 
/ = lj™=i h

 a n ( i O = (jr=i O*- Then Label, the label of the transformation node, 
is a tupie (Pred,Is,Os), where Is = {i \ head[i] <G / } and Os = {i \ head[i] <G O}. 
With the above deñned label we can express which predicate Pred is transformed 
and which argument sizes will be computed as a function of which others. The 
transformed versión of Pred will have an additional argument for each item i £ Is 
(which will be bound to the size of the term appearing at the ith argument position 
in the head at the predicate cali) and j <G Os (which will be bound to the size of the 
term appearing at the j t h argument position in the head once the cali succeeds). For 
example, (append/3, {2}, {3}) is a label which states that the predicate append/3 
will be transformed to compute the size of its third argument, provided that the size 
of the second one is supplied at the procedure cali. This means that it is necessary 



Figure 2: Size dependency graphs for predicate qsort/2. 

to add two extra arguments to the transformed predicate which will stand for the 
sizes of the second and third arguments of append/3. 

Example 3.1 Figure 1 represents the transformation node composed by the size 
dependency graphs Gl and G2, namely ((append/3, {2}, {3}), {Gl, G2}). D 

We require that the size dependency graphs meet the following condition: if there 
is an inter-literal edge from a supplied size node bodyi[k] to a computed size node 
bodyj[n] then j < i. This condition ensures that the sizes supplied to a transformed 
literal are computed only by previous literals of the body. This requirement is due 
to the fact that the sizes supplied have to be "ground" at the cali, because we are 
interested in using built-ins similar to "is/2" (in fact, more efficient and specialized 
versions) to perform the arithmetic operations needed to compute sizes and these 
built-ins require all but one of their arguments to be ground. It is important to note 
that this condition may be relaxed if the target language is for example a Constraint 
Logic Programming language [8] which can solve linear equations. However actual 
equation solving would probably incur in signiñcant overhead. Thus we enforce 
the condition both for efficiency reasons and for allowing the transformed programs 
to be executed without requiring any constraint solving capabilities in the target 
language. 

In a size dependency graph the set of all the nodes corresponding to a literal 
with number i (i.e. those of the form bodyi[j]) is referred to as the literal node 
bodyi. As an example, consider the size dependency graph Gl in Figure 1. There, 
the set {bodyi [2], body\ [3]} is the literal node body\. We also group the supplied size 
nodes and computed size nodes corresponding to a particular literal node into the 
sets S and C respectively (in the example S = {bodyi [2]} and C = {bodyi [3]})- We 
associate with the literal node the label (Pred,Is, Os), where Pred is the predicate 
ñame and arity of the literal and Is = {j | body^j] <G S} and Os = {j | body^j] <G C} 
(in the example, the label associated with literal node bodyi is (append/3, {2}, {3})). 
The label of the literal node indicates which transformed versión of the predicate of 
the literal corresponds to such literal. This is the versión which performs the size 
computation that is also expressed by such label. Then, when the clause where the 
literal appears is transformed, the literal will be replaced by a cali to the predicate 
that performs the size computation. 

4 Transforming Sets of Procedures 

In this section we address the problem of transforming a set of procedures which 
are part of a call-graph, in order that they perform a size computation. To this end, 



it is necessary to have at least a transformation node for some of those procedures 
and these nodes have to meet some conditions tha t are explained below. 

Def in i t ion 4.1 [Transformation] Is a graph composed by a set N of transformation 
nodes and a set of edges. There is a distinguished transformation node E £ N which 
is called the entry point of the transformation and: 

1. Let G be any size dependency graph of T\ , where T\ is a transformation node 
T\ <G N, and let l be any literal node of G, then l has exactly one outgoing 
edge and no incoming edges. This edge goes from l to some transformation 
node T2 <G N such tha t the label of T2 is equal t o the label associated with 
the literal node l (note tha t T\ and T2 can be the same transformation node). 
The intuition behind this edge is the following: suppose tha t L\ is the literal 
corresponding to l in the source clause corresponding to G, and L2 is the 
transformed versión of L\ which perform the size computation indicated by 
the label associated with l. The edge states tha t the predicate of L\ can 
be transformed according to the information represented in T2 yielding the 
predicate of ¿2-

2. There is an edge from transformation node T\ G J V t o a transformation node 
T2 <G N if and only if there is an edge from some literal node l of Ti to T2. 
Intuitively, this edge states tha t the transformed predicate corresponding to 
Ti calis the transformed predicate corresponding to T2. 

3. All the transformation nodes T £ N are reachable from E. D 

Def in i t ion 4.2 [Size Computat ion Speciñcation] We deñne a size computation spe-
cification as a pair (Pred, Os), where Pred is the ñame and arity of the predicate 
to be transformed, and Os is a set of argument numbers whose sizes are computed 
by the transformed predicate at run-time. D 

Def in i t ion 4.3 [Transformation for a size computation speciñcation] A Transfor­
mation for a size computation speciñcation (Pred, Os) is a transformation T such 
tha t the label of the entry point of T is of the form (Pred, Is, Os). D 

T h e o r e m 1 If there is a, Transformation T for a size computation specification 
(Pred, Os) such that the label of the entry point of T is (Pred, Is, Os) then it is 
possible to transform the clauses of Pred to obtain a transformed, Predicate Pred', 
such that Pred' computes the sizes of the arguments indicated, in Os, provided, that 
the sizes of arguments indicated, in Is are supplied, (while still also performing the 
same computations originally performed, by Pred).O 

5 Irreducible/Optimal Transformations 

Since there may be many possible transformations for a given size computation 
speciñcation, we are interested in those involving the least amount of overhead at 
run-time. Such overhead is dependent on the system, since it depends on the cost 
of argument passing and tha t of arithmetic operations. Reducing this overhead 
suggests considering transformations having the minimum number of transforma­
tion nodes and each of them having the minimum number of Ítems in Is, where 
(Pred, Is, Os) is the label of any node in the transformation. Tha t is, to transform 
a predicate to make it compute the sizes of some of its arguments we would like 
to know which are the arguments whose sizes are strictly necessary to perform this 
computation (in order to add only the absolutely necessary additional arguments 



and operations to the transformed predicates) and also what is the minimum num-
ber of predicates which have to be transformed. We ñrst introduce the concept 
of irreducible transformation and show that in order to determine whether it is 
possible to transform a predicate we only need to consider irreducible transforma-
tions. Then we present some ideas regarding the generation of optimal irreducible 
transformations. 

Definition 5.1 [Ordering between labels] Given two labels, X = (Pred,Isx,Os) 
and Y = (Pred,Isy,Os), we say that X <¡ Y if and only ií Isx C Isy. • 

For example: (append/3, {2}, {3}) <¡ (append/3, {1, 2}, {3}), but 
(append/3, {2}, {3}) ^t¡ (append/3, {1}, {3}) 

Definition 5.2 [Irreducible Transformation] A transformation T is irreducible iff: 

1. The labels of transformation nodes in T are unique. 

2. There are no two transformation nodes in T, labeled with the labels X and 
Y respectively, such that X <iY. D 

We represent an irreducible transformation as a pair (L,T), where T is a set of 
transformation nodes and L is the label of the transformation node that is the entry 
point of the transformation (recall that the labels of the transformation nodes in 
T are unique). The entry point belongs to the set T. Since the labels of the 
transformation nodes are unique, it is not necessary to explicitly represent any 
edges in the irreducible transformation (they can be determined from conditions in 
Definition 4.3 without ambiguity). Thus, all edges are omitted. 

Example 5.1 Consider the predicate qsor t /2 defined as follows: 

Cl: qsort( [],[]). 
C2: qsort([First|L1],L2) :-

partition(First,Ll,Ls,Lg), 
qsort(Ls,Ls2),qsort(Lg,Lg2), 
append(Ls2,[First|Lg2],L2) . 

and suppose we want to transform it to compute the length of its second argument. 
Figure 2 shows size dependency graphs corresponding to the clauses of predicate 
qsor t /2 . In this figure, the size dependency graph G3 corresponds to the base case 
(Cl) of this predicate, and G4 and G5 correspond to its recursive clause (C2). Let 
NI be the transformation node NI = ((qsort/2,®, {2}), {G3, G5}). Let N2 be the 
transformation node from Example 3.1. Then, the pair ((qsort/2, 0, {2}), {N1,N2}) 
is an irreducible transformation, with entry point the node NI. This irreducible 
transformation is represented in Figure 3. The pair ((append/3, {2}, {3}), {^2}) is 
also an irreducible transformation. D 

A note on the generation and nature of transformation nodes: this generation 
is performed through a mode analysis to determine data flow patterns [2, 13, 1] 
and an argument size analysis [3]. It is important to note that this combined 
analysis can in some cases infer intra-literal size relations between arguments of a 
predicate. This information can be used to genérate transformation nodes which 
can be part of a transformation, but which need to traverse less data because 
a size computation can be performed directly in one operation, rather than by 
counting during the execution of the predicate. For example, suppose that the 
analysis infers the intra-literal size relation size¡ = síze\ + size2 for append/3 
(which states that the length of its third argument is the sum of the lengths of its 



—* Node: N1 Label: (qsort/2,{ },{2}) Node: N2 Label: (append/3,{2},{3}) 

Figure 3: An irreducible transformation. 

two ñrst arguments), and the intra-literal size relation size2 = síze\ for predicate 
qsort/2. Consider the clause C2 in Example 5.1. Using size¡ = síze\ + size2 for 
append/3 we have that |L2|iistjength = |Ls2|iist_iength + |[First|Lg2]|iistjength holds 
for every substitution that makes all the terms appearing in it ground, and also 
|L2|nst_iength = |Ls2|iistje„gth + |Lg2|iistjength + 1 holds. Thus we can infer the fol-
lowing inter-literal size relation head[2] = body2[2]+body¡[2] + l which doesn't imply 
any transformation of predicate append/3 but of the predicate qsort/2. Moreover, 
using size2 = size\ for qsort/2 we have that |Ls2|iist_iength = |Ls|iist_iength snd 
|Lg2|iist_iength = |Lg|nst_iength also holds. Thus, we can infer another inter-literal 
size relation head[2] = body-¡_[3] + 6oefo/i[4] + 1 (which implies the transformation of 
predicate pa r t i t i on /4 ) ) . 

Theorem 2 If there is a transformation T for a size computation specification X 
then there is an irreducible transformation T' for X.D 

Theorem 2 implies that we only need to ñnd irreducible transformations to deter­
mine whether a procedure is transformable to compute sizes. Obviously, irreducible 
transformations will result in transformed procedures with potentially less overhead 
at run-time than the transformations they have been obtained from, but now the 
problem is to decide which irreducible transformation will have less overhead, or, 
in other words, which of them will be optimal. The problem of ñnding such opti-
mal irreducible transformations lies in the fact that we need to use two parameters 
(number of transformation nodes and number of arguments needed) in the compari-
son and some transformations may be incomparable, in the sense that one is smaller 
than the other one on one criteria but the converse is true on the other criteria. 
In practice we can always assign costs or weights to both argument passing steps 
and arithmetic operations so that for each transformation we can obtain a function 
which gives its cost or overhead as a function of the input data sizes. In this case 
we can compare the cost of irreducible transformations and decide which of them is 
optimal. In the same way, we can compare the cost of irreducible transformations 
with the cost of performing the standard size computation, i.e. the one using pre-
deñned predicates such as length/2, in order to see how convenient performing the 
transformation to compute sizes is. 



Pred íca te : find_trans(SCS, S, Trans) 
Input: a size computation specification SCS and the information S about size relations 

between arguments in the different clauses of a program for the predicate in SCS, 
derived through size analysis. 

Output: an irreducible transformation Trans for SCS. 
Deñnition: find_trans(SCS, S, Trans) <— 

generate_label(SCS, L), search( [L] , S, n i l , T) , Trans=(L, T) . 
Predicate: generate_label(SCS, L) 
Description: generates a label L for SCS. Fails when all possible labels have been gener­

ated via backtracking. 
Predicate: search(LabelList , SizeRel, InTrans, OutTrans) 
Deñnition: s e a r c h ( n i l , SizeRel, Trans, Trans) . 

search( [Label |LabLis t ] , SizeRel, InTrans, OutTrans) <— 
generate_node(Label,SizeRel,[LabelILabList],InTrans,Node,LL), 
append(LL, LabList, NewLabList), Trans = [NodeIInTrans], 
search(NewLabList, SizeRel, Trans, OutTrans). 

Predicate: generate_node(Label, SizeRel, LabList, InTrans, Node, LL) 
Description: Generates a transformation node Node with label Label, using the infor­

mation about size relations SizeRel in such a way that the following condition is 
met: Let St be the set of labels of the transformation nodes in the current trans­
formation InTrans. Let Si be the set of labels in LabList. Let Sn be the set of 
labels associated with literal nodes in Node. Then, there are no two labels h and h, 
h G S„ and l2 G (St U Si U S„), such that l2 <i h. 

If it is not possible, or all possible transformation nodes have been generated previ-
ously via backtracking, then it fails. Otherwise, it creates a list LL containing the 
labels in the set Sn — (St U Si) and succeeds. We omit the detailed description of 
the generation of Node for the sake of brevity. 

Figure 4: A top-down algorithm for ñnding irreducible transformations. 

6 Searching for Irreducible Transformations 

Since the number of transformation nodes for a given size computation specification 
is finite, a possible algorithm to find transformations may be to simply genérate 
all possible sets of transformation nodes and test which of them are irreducible 
transformations. Note tha t the number of transformation nodes is in any case 
restricted by the number of size relations tha t can be inferred by size analysis 
[3] (in fact, if the algorithm does not find any transformation it does not mean 
tha t a transformation does not exist, but rather tha t it is impossible to find a 
transformation with the inferred information by size analysis). However, some other 
more efficient approaches are possible. 

In Figure 4 we propose a simple, goal directed algorithm (for which we will 
later propose some optimizations) which performs a top-down search start ing from 
a given size computation specification (a bot tom-up algorithm is also possible). The 
search space is described by the f ind_trans/3 predicate. Note tha t the irreducible 
transformations generated still have to be checked in order to determine which of 
them has the least overhead in the size computation process. 

E x a m p l e 6.1 Consider the predicate q s o r t / 2 as defined in Example 5.1, and 
suppose we want to transform it to compute the length of its second argument, 
tha t is, we want to find a transformation for the size computation specification 
(qsort/2, {2}). We assume a depth-first search (as obtained when the f i n d _ t r a n s / 3 
predicate is executed in Prolog). 



1. The search starts by calling f incLtrans (SCS, S, Trans), where SCS = 
(qsort/2, {2}) and S is the information about size relations for the predicates 
in the quick-sor t program (i.e. qsor t /2 , p a r t i t i o n / 4 , and append/3). 

2. Suppose that generate_label(SCS, L) generates the label L 
= (qsort/2,%,{2}). 

3. Then search([L] , S, n i l , T) is called. Suppose that generate_node(L, 
S, [L] , n i l , Node, LL) succeeds generating the transformation node Node 
= NI, where NI = ((qsort/2,9, {2}), {03,04}), where G3 and G4 are the 
size dependency graphs in Figure 2, and making LL = [Ll], where Ll= 
(append/3, 0, {3}). 

4. A recursive cali search( [Ll] , S, [NI], OutTrans) is made. This cali 
fails because of the failure of generate_node(Ll, S, [Ll] , [NI] , Node2, 
LL2). Thus, backtracking occurs and generate_node(L, S, [L] , n i l , 
Node, LL) is retried. Suppose that this cali succeeds generating the trans­
formation node Node = N2, where N2 = ((gsorí/2,0, {2}), {G3, G5}), and G3 
and G5 are the size dependency graphs in Figure 2, and making LL = [L2], 
where L2= (append/3, {2}, {3}). 

5. A recursive cali search([L2] , S, [N2] , OutTrans) is made. Suppose that 
generate_node (L2, S, [L2] , [N2] , Node3, LL3) succeeds generating the 
node Node3 = N3, where N3 = ((append/3, {2}, {3}), {Gl, G2}), where Gl and 
G2 are the size dependency graphs in Figure 1, and making LL3 = n i l . 

6. Finally a recursive cali search.(ni l , n i l , [N3, N2] , OutTrans) is made. 
This cali succeeds making OutTrans = [N3, N2]. Thus Trans = (L, [N3, 
N2]). D 

The efficiency of the previous top-down algorithm can be improved if certain 
information is used during the generation of transformation nodes performed by 
generate_node/3. In particular, knowledge regarding which of the labels associated 
with literal nodes in the generated transformation node are likely to make the 
genératejnode/3 predicate fail further on while trying to ñnd transformation nodes 
for such labels. This can prune the search space considerably. It is sometimes 
possible to detect such labels by examining facts in the program. For example, it 
is possible to detect that generatejnode/3 will not ñnd any transformation node 
for (append/3, %, {3}), since, examining the fact which appears in the deñnition of 
append/3, we can infer that at least it is necessary to supply the size of the second 
argument of append/3 at the cali. Thus, no transformation node will be generated 
having the label (append/3, %, {3}) associated with some literal node. We have 
built a prototype implementation in Prolog along these lines which makes use of 
the built-in search capabilities of Prolog to perform such a top-down search. 

It should be noted that our transformation algorithm can be classiñed as a "rules 
+ strategies" approach - see [14] and its references- and thus, can be described in 
terms of applying certain folding and unfolding rules in a particular order. In fact, 
what our algorithm expresses is a particular "strategy" tailored to ñnding optimal 
transformations, in the sense that, if several possible transformations are suitable, 
it constructs those which have the least runtime overhead, based on the criteria 
of choosing those which traverse less data and perform less arithmetic operations. 
This is useful for implementation reasons since it avoids having to implement a full 
partial evaluator which would be an overkill for the task in hand. 

In some simple cases similar transformations to the ones we propose can be 
obtained by adding to the original program some code that would perform the size 
computation in a naive way, and then applying a general purpose transformation 
strategy (e.g. partially evaluating a "length/2" predicate into a previous recursive 
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92.9 % 

Table 1: Execution times (ms) for benchmarks. 

loop). However, the need for our algorithm comes from the fact that the general 
purpose strategies used in program transformation systems are less powerful in 
this particular application than our algorithm, in the sense that a general strategy 
would not ensure obtaining transformations for some cases that our algorithm does, 
and, also, it would not ensure the optimality of the transformations if they are 
found. Note, for example, that there are certain transformations which are based 
on detecting that some term sizes need to be known and used as a starting point 
for other size computations. This can only be done by reasoning at the "strategy" 
level. 

7 Experimental Results and Advantages 

We have run a series of experiments using SICStus PROLOG running on a SUN 
IPC workstation to measure the gain obtained with our predicate transformation 
technique with respect to what we will cali the "standard approach" to computing 
term sizes, that is, by introducing new calis to predicates that explicitly compute 
them. An example is by using the Prolog length/2 built-in to compute lengths 
of lists. Theoretically this gain can be up to 100%. To measure this in practice 
we have chosen a few benchmarks which we feel represent either worst or typi-
cal cases and which we argüe allow getting some feeling for the performance gain 
which can be obtained in practice. Table 1 shows execution times for the experi­
ments performed with these benchmarks. T w s c is the execution time without size 
computation. T s t is the execution time with size computation using the standard 
approach. T p t is the execution time of the predicate transformation approach. 
T s t — T w s c and T p t — T w s c are then the overheads due to size computation with 
the standard and predicate transformation approach, respectively. The last column 
shows the gain achieved by the predicate transformation approach with respect 
to the standard one. This gain is computed according to the following exprés-
sion: gain = •L-s!—^sc; „; 2 ^^^ÍOO For brevity only a brief description of the 

J- s t J- WSC 

benchmarks is provided. A more complete description (including the program text) 
can be found in [5]. The ñrst benchmark that we have chosen contains only the 
predicate c/2 followed by a cali to length/2. c/2 performs the standard, simplest 
possible form of list traversal, performing no work during the iterations. Thus, the 
transformation approach will incur in máximum overhead. 

The second benchmark is the predicate qsort/2, in which the lengths of the two 
output lists of part i t ion/4 are computed. This size computation is useful when 
transforming the predicate qsort/2 in order to perform granularity control. 

The third benchmark is the predicate q/2 deñned as follows: 

q ( [ ] , [ ] ) 
q ( [ X | Y ] , 
q ( [ X | Y ] , 

[X 
[X 

X|Y1]) : -
X,X|Y1]) 

X 
: -

> 
X 

7, 
=< 

i 

7, 
q(Y, 
q(Y, 

Yl) 
Yl) 

Execution times have been measured for different lengths of the input list for these 
three benchmarks, and the observed gain is approximately constant in each case. 



Finally, the fourth benchmark is the predícate der iv/2 , also performing size 
computation. Note that in this case the size measure is not list length, but rather 
term size (we do not include the corresponding transformation for the sake of 
brevity). 

The observed gain arise from two factors: avoiding additional term traversal 
and performing less arithmetic operations. In both der iv /2 and q/2 the "standard 
approach" has to traverse more data and thus the number of arithmetic operations 
is greater than in the predicate transformation approach. 

Note that another advantage of our approach is that it can take proñt of previous 
size computations so that no recomputation is performed. 

On the other hand, there are also certain cases in which the predicate transfor­
mation approach can be more expensive than the standard one. Such cases may 
appear in connection with backtracking - if there is frequent failure and backtracking 
within a predicate which has been transformed to perform term size computation it 
may be better to compute term sizes once and for all using the standard approach 
upon success. Also, one can construct predicate transformations which perform 
redundant size computations. 

8 Applying the Technique in Granularity Control 

As mentioned in the introduction, the approach we propose to the problem of gran­
ularity control, and in which the size calculation proposed is instrumental, is by 
computing cost functions and performing program transformations at compile-time 
based on such functions, so that the transformed program automatically controls 
granularity at run-time [3, 11]. The idea is to perform a transformation of the pro­
gram in such a way that the cost computations and spawning decisions are encoded 
in the program itself, and in the most efficient way possible. The actual computa­
tions and decisions are postponed until run-time when the parameters missing at 
compile-time, such as data sizes or processor load, are available. In particular, the 
transformed programs will perform the following tasks: compute input data sizes; 
use those sizes to evalúate the cost functions; estimate the spawning and schedul-
ing overheads; decide whether to schedule tasks in parallel or sequentially; decide 
whether granularity control should be continued or not, etc. This is illustrated in the 
following example, which presents actual output obtained from an implementation 
of the proposed techniques. 

Example 8.1 Consider a parallel versión of the deñnition of the qsort/2 predicate 
given in Example 5.1: 

q s o r t ( [ ] , [ ] ) . 
qsort( [First |Ll] ,L2) :- partit ion(First ,L1,Ls,Lg), 

qsort(Ls,Ls2) & qsort(Lg,Lg2), 
append(Ls2,[First|Lg2],L2). 

in which qsort(Ls,Ls2) and qsort(Lg,Lg2) are executed in parallel, as expressed 
by the & symbol [4]. The cost analysis performed at compile-time would provide a 
function that gives an approximation on the cost of predicate qsort/2 in terms of 
the size of its ñrst argument, assuming that this argument is ground at procedure in-
vocation. Then a predicate transformation can be done automatically for predicate 
qsort/2 in order to perform granularity control. As a result of this transformation 
the following code is obtained: 

70 Versión of qsort/2 that performs granularity control. 
g_qsort([] , [ ] , _ ) . 



g _ q s o r t ( [ F i r s t | L l ] , L 2 , S i z e l ) : -
70 compute upper-bound of execut ion t ime . 
q s o r t t i m e ( S i z e l , T i m e ) , 
Time < 10 -> 

( p a r t i t i o n ( F i r s t , L 1 , L s , L g ) , 
s _ q s o r t ( L s , L s 2 ) , s _ q s o r t ( L g , L g 2 ) ) ; 

( t r p a r t i t i o n ( F i r s t , L 1 , L s , L g , 0 , S i z e L s , 0 , S i z e L g ) , 
g_qsor t (Ls ,Ls2 ,S i zeLs )&g_qsor t (Lg ,Lg2 ,S i zeLg) ) , 

append(Ls2 , [F i r s t |Lg2 ] ,L2) . 
70 Sequent ia l v e r s i ó n for q s o r t / 2 . 
s_qsor t ( [ ] , [ ] ) . 
s _ q s o r t ( [ F i r s t | L 1 ] , L 2 ) : -

p a r t i t i o n ( F i r s t , L 1 , L s , L g ) , 
s _ q s o r t ( L s , L s 2 ) , s _ q s o r t ( L g , L g 2 ) , 
append(Ls2 ,nF ir s t |Lg2] ,L2) . 

t r p a r t i t i o n ( F , [ ] , [ ] , [] ,S1 ,S1,S2 ,S2) . 
t r p a r t i t i o n ( F , [ X | Y ] , Y 1 , [ X | Y 2 ] , I S i z e l . O S i z e l , I S i z e 2 , 0 S i z e 2 ) : -

X > F, !, I S i z e 3 i s I S i z e 2 + 1, 
t r p a r t i t i o n ( F , Y , Y l , Y 2 , I S i z e l , 0 S i z e l , I S i z e 3 , 0 S i z e 2 ) . 

t r p a r t i t i o n ( F , [ X | Y ] , [ X | Y 1 ] , Y 2 , I S i z e l . O S i z e l , I S i z e 2 , 0 S i z e 2 ) : -
I S i z e 3 i s I S i z e l + 1, 
t r p a r t i t i o n ( F , Y , Y l , Y 2 , I S i z e 3 , 0 S i z e l , I S i z e 2 , 0 S i z e 2 ) . 

where the literal q s o r t t i m e ( S i z e l , T i m e ) computes an estimation of the cost of ex-
ecuting the clause body sequentially, evaluating the function inferred through analy-
sis at compile-time. We have omitted it for the sake of conciseness. The constant 10 
represents some experimentally determined threshold which is directly related to the 
cost of creating a parallel task (note tha t this could also be a function). The literal 
t r p a r t i t ion ( F i r s t ,L1 ,Ls , L g , 0 , S i zeLs , 0, SizeLg) is the transformed versión of 
p a r t i t i o n ( F i r s t , L l , L s , L g ) , which is obtained automatically and computes the 
sizes of its third and fourth arguments (SizeLs and SizeLg represent the sizes of 
Ls and Lg respectively). D 

Note tha t in the cases where term sizes are compared directly with a threshold 
it is not necessary tha t the transformed predicates which compute those sizes tra-
verse all the terms involved, but rather only to the point at which the threshold is 
reached. Thus it is possible t o perform more subtle transformations so tha t when 
the computed size is greater or equal than the threshold a flag is activated and the 
size computation is stopped (by executing predicate versions which do not perform 
any size computation). 

We have incorporated the techniques proposed in a prototype granularity control 
system tha t we are developing in the context of the &-Prolog system [4]. We have 
also performed some experiments-which are described in [ll]-for several degrees of 
optimization of the granularity control process. These experiments show tha t the 
most signiñcant improvement comes from the incorporation of the dynamic term 
size computation technique tha t we have proposed. While the technique needs to 
be tested on a much larger set of benchmarks to draw ñrm conclusions, we argüe 
tha t the results obtained so far are encouraging. 
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