
Abstract Specialization and its Application
to Program Parallelization

Germán Puebla and Manuel Hermenegildo

{german,herme}@fi.upm.es

Department of Computer Science
Technical University of Madrid (UPM)

Abstract. Program specialization optimizes programs for known valúes
of the input. It is often the case that the set of possible input valúes is
unknown, or this set is infinite. However, a form of specialization can
still be performed in such cases by means of abstract interpretation, spe­
cialization then being with respect to abstract valúes (substitutions),
rather than concrete ones. This paper reports on the application of ab­
stract múltiple specialization to automatic program parallelization in the
&-Prolog compiler. Abstract executability, the main concept underlying
abstract specialization, is formalized, the design of the specialization sys-
tem presented, and a non-trivial example of specialization in automatic
parallelization is given.

1 Introduction

A good number of compiler optimizations can be seen as special cases of par­
tial evaluation [CD93,JGS93]. The main objective of partial evaluation is to
automatically overeóme losses in performance which are due to general purpose
algorithms by specializing the program for known valúes of the inputs. Much
work has been done in partial evaluation (deduction) and specialization of logic
programs (see e.g. [LS91,Kom92,GB90,GCS88,JLW90]). It is often the case tha t
the set of possible input valúes is unknown, or this set is infinite. However, a
form of specialization can still be performed in such cases by means of abstract
interpretation [CC77], specialization then being with respect to abstract valúes
(substitutions), rather than concrete ones.

A procedure may have different uses within a program, i.e. it is called from
different places in the program with different (abstract) input valúes. In prin­
cipie, optimizations are then allowable only if the optimization is applicable to
all uses of the predicate. However, it is possible tha t in several different uses
the input valúes allow different and incompatible optimizations and then none
of them can take place. This can be overeóme by means of program múltiple
specialization [JLW90,GH91,Bru91,Win92] (the counterpart of polyvariant spe­
cialization [Bul84]), where a different versión of a predicate is generated for each
use, so tha t each one of them is optimized for the particular subset of input
valúes with which each versión is to be used.

In [PH95] we presented a framework for abstract múltiple specialization.
In order to reduce the size of the resulting program as much as possible, the
framework incorporates a minimization algorithm that associates a set of op-
timizations to each of the múltiple versions of a procedure generated during
multi-variant abstract interpretation. This framework achieves the same results
as those of Winsborough's [Win92] but with only a slight modiñcation of a
standard abstract interpreter. We argüe that the experimental results given in
[PH95] showed that múltiple specialization is indeed practical and useful in au-
tomatic parallelization, and also that such results shed some light on its possible
practicality in other applications. However, due to space limitations, the na-
ture of the optimizations, the procedure used to detect them, and the actual
source to source transformations by which optimizations are materialized, were
not presented. This work tries to ñll this gap by describing the application of
abstract múltiple specialization to automatic program parallelization in the &-
Prolog compiler. Abstract executability, the main concept underlying abstract
specialization, is formalized, the design of the specialization system presented,
and a non-trivial example of specialization in automatic parallelization is given.

The structure of the paper is as follows. Section 2 briefly recalls abstract
interpretation. In Section 3 the notion of abstract executability is formalized.
Then Section 4 presents a particular application of abstract specialization. Sec­
tion 5 shows the design of the abstract specializer and an example of specialized
program. Finally, Section 6 concludes.

2 Abstract Interpretation of Logic Programs

Abstract interpretation [CC77] is a useful technique for performing global anal­
ysis of a program in order to compute at compile-time characteristics of the
terms to which the variables in that program will be bound at run-time. The
interesting aspect of abstract interpretation vs. classical types of compile-time
analyses is that it offers a well founded framework which can be instantiated
to produce a rich variety of types of analysis with guaranteed correctness with
respect to a particular semantics.

In abstract interpretation a program is executed using abstract substitutions
(A) instead of actual substitutions (6>). An abstract substitution is a ñnite repre-
sentation of a, possibly infinite, set of actual substitutions in the concrete domain
(D). The set of all possible terms that a variable can be bound to in an abstract
substitution represents an abstract domain (Da) which is usually a complete
lattice or cpo which is ascending chain finite.

Abstract substitutions and sets of concrete substitutions are related via a pair
of functions referred to as the abstraction (a) and concretization (7) functions.
The usual definition for partial order (C) over abstract domains, is VA, A' <G
Da A IZ A' iff 7(A) C 7(A'). In addition, each primitive operation u of the
language (unification being a notable example) is abstracted to an operation u'
over the abstract domain. Soundness of the analysis requires that each concrete

operation u be related to its corresponding abstract operation v! as follows: for
every x in the concrete computational domain, u(x) C j(u'(a(x))).

We now introduce some notation. A program is a sequence of clauses. Clauses
are of the form h <— b, where h is an atom and 6 is a possibly empty conjunction
of literals. Clauses in the program are written with a unique subscript attached
to the head atom (the clause number), and dual subscript (clause number, body
position) attached to each literal in the body atom e.g. Hk <— -Bfc,i, • • • ,Bk¡n,k

where Bk¿ is a subscripted literal. The clause may also be referred to as clause
k, the subscript of the head atom, and each literal in the program is uniquely
identiñed by its subscript k,i.

The goal of the abstract interpreter is, for a given abstract domain, to an-
notate the program with information about the current environment (i.e. the
valúes of variables), at each program point. Correctness of the analysis requires
that annotations be valid for any cali (program execution). Different ñames dis-
tinguish abstract substitutions depending on the point in a clause to which they
correspond. In particular, we will be interested in the abstract cali suhstitution
Xk i for each literal L¡. i which is the abstract substitution just before calling the
literal L^j .

If the analysis is goal oriented, then the abstract interpreter receives as input,
in addition to the program, a set of calling patterns which are descriptions of the
calling modes into the program. In its minimal form (least burden on the pro-
grammer) the calling patterns may simply be the ñames of the predicates which
can appear in user queries. In order to increase the precisión of the analysis, it is
often possible to include a description of the set of abstract (or concrete) substi­
tutions allowable for each predicate by means of entry declarations [BCHP96].
Information inferred by goal oriented analysis may be more accurate as each A ^
"only" has to be valid when executing calis described by the calling patterns.

3 Abstract Execution

The concept of abstract executability was, to our knowledge, ñrst introduced
informally in [GH91]. It allows reducing at compile-time certain literals in a pro­
gram to the valué true or false using information obtained with abstract inter-
pretation. That work also introduced some simple semantics-preserving program
transformations and showed the potential of the technique, including elimination
of invariants in loops. We introduce in the following an improved formalization
of abstract executability. The set of variables in a literal L is represented as
var(L). The restriction of the substitution 9 to the variables in L is denoted 9\L.

Operationally, each literal L in a program P can be viewed as a procedure cali.
Each run-time invocation of the procedure cali L will have a local environment e,
which stores the particular valúes of each variable in var(L) for that invocation.
We will write 9 <G e(L) if 9 is a substitution such that the valué of each variable
in var(L) is the same in the environment e and the substitution 9.

Def in i t ion 1 (R u n - t i m e S u b s t i t u t i o n S e t) . Given a literal L from a pro­
gram P we define the run-time substitution set of L in P as

RT(L, P) = {0\L '• e is a run-time environment for L and 9 £ e(L)}

RT(L, P) is not computable in general. The set of run-time environments
for a literal is not known at compile-time. However, it is sometimes possible to
ñnd a set of bindings which will appear in any environment for L. These "in-
variants" can be synthesized in a substi tution 9S such tha t V6> <G RT(L,P) 39¿ :
L9 = L9s9d- Note tha t it is always possible to ñnd a trivial 9S = e, the empty
substitution, which corresponds to having no static knowledge of the run-time
environment. In this case, we can simply take 0¡¡ = 9 for any 9.

The substitutions 9S and 0¡¡ correspond to the so-called static and dynamic
valúes respectively in partial evaluation [JGS93]. As a result, we can specialize
L for the statically known da ta 9S. Specialization is then usually performed by
unfolding L9S. If all the leaves in the SLD tree for L9S are failing nodes and L9S

is puré (i.e., its execution does not produce side-effects), then the literal L can
be replaced by false. If all the leaves are failing nodes except for one which is a
success node and L9S is puré then L can be replaced by a set of uniñcations on
var(L9s) which have the same effect as actually executing L9s9d in P. If such
set of uniñcations is empty, L can be replaced by true.

The goal of abstract specialization is also to replace a literal by false, true
or a set of uniñcations, but rather than start ing from RT(L, P) it will use infor-
mation on RT(L,P) provided by abstract interpretation, i.e., the abstract cali
substitution for L. For simplicity, we will restrict our discussion to replacing L
with false or true.

Def in i t ion 2 (Trivial Success Se t) . Given a literal L from a program P we
define the trivial success set of L in P as

9\L : L9 succeeds exactly once in P
TS(L,P) = ^ \with empty answer substitution (e) í

otherwise

Def in i t ion 3 (F in i te Failure S e t) . Given a literal L from a program P we
define the ñnite failure set of L in P as

, > J {0\L '• L9 fails finitely in P} if L is puré
\ ^ otherwise

Note tha t if two distinct literals Lk,i and L¡ ¿ are equal up to renaming then
the sets TS(Lk¡i,P) (resp. FF(Lk¡i,P)) and'TS(Lld,P) (resp. FF(Lld,P))
will also be equal up to renaming. However, there is no a priori relation between
RT(Lkti,P) &nd RT(Lld,P).

Def in i t ion 4 (E l e m e n t a r y Literal R e p l a c e m e n t) . Elementary Literal Re-
placement (ER) of a literal L in a program P is defined as:

true if RT(L, P) C TS(L, P)
ER(L,P) = { false ifRT(L,P) C FF(L,P)

L otherwise

file:///with

Note tha t given the deñnitions of TS(L,P) and FF(L,P), any literal L
which is not dead code and produces some side-effect (Le., L is not puré) will
not be affected by elementary literal replacement, Le., ER(L,P) = L.

T h e o r e m 1 (E l e m e n t a r y R e p l a c e m e n t) . Let PER be the program obtained
by replacing each literal L^i in P by ER(L]~i,P). P and PER produce the same
computed answers and side-effects.

The idea is to optimize a program by replacing the execution of L9 with the
execution of either the builtin predicate true or fail, which can be executed in
zero or constant t ime. Even though the above optimization may seem not very
widely applicable, for many builtin predicates such as those tha t check basic
types or meta-logical predicates tha t inspect the instantiation state of terms,
this optimization is indeed very relevant. However, elementary replacement is
not directly applicable because RT(L, P), TS(L, P), and FF(L, P) are generally
not known at specialization t ime.

Def in i t ion 5 (A b s t r a c t Trivial Success Se t) . Given an abstract domain Da

we define the abstract trivial success set of L in P as

TSa(L,P,Da) = {\GDa: 7(A) C TS(L,P)}

Def in i t ion 6 (A b s t r a c t F in i t e Failure Se t) . Given an abstract domain Da

we define the abstract ñnite failure set of L in P as

FFa(L,P,Da) = {\GDa: 7(A) C FF(L,P)}

Note tha t by using the least upper bound operator (U) of the abstract domain
Da, TSa(L, P, Da) and FFa(L, P, Da) could be represented by a single abstract
substitution (rather than a set of them) , say ^TSa(L,p,Da) = ^TSa(L,p,Da)^

 a n (i
^FFa(L,p,Da) = ^FFa(L,p,Da)^- However, this alternative approximation of the
actual sets TS(L, P) and FF(L, P) can introduce an important loss of accuracy
for some abstract domains because j(^TSa(L,p,Da)) 2 U T S (L PD)7(^)> thus
reducing the optimizations achievable by abstract executability .

Def in i t ion 7 (A b s t r a c t E x e c u t i o n) . Abstract Execution (AE) of L in P
with abstract cali substitution A £ Da is defined as:

(true if\£TSa(L,P,Da)
AE(L,P,Da,X) = ¡ false if A G FFa(L,P, Da)

I L otherwise

If AE(L,P, Da,X) = true (resp. false) we will say tha t L is abstractly exe-
cutable to true (resp. false). If AE(L, P, Da,X) = L then L is not abstractly
executable.

T h e o r e m 2 (A b s t r a c t E x e c u t a b i l i t y) . Let let PAE be the program obtained
by replacing each literal L^i in P by AE(L]~ ¿, P, Da, A^ ¿). P and PAE produce
the same computed, answers and side-effects.

The advantage of abstract executability as given in Deñnition 7 over elemen-
tary replacement is tha t instead of using RT(L, P) which is not computable in
general, such sets are approximated by abstract substitutions which for appro-
priate abstract domains (and widening mechanisms) will be computable in ñnite
time.

Def in i t ion 8 (O p t i m a l T S a) . An abstract trivial success set TSa(L,P,Da)

is optimal iff

(| J 7(A)) = TS(L,P)
\eTSa(L,P,Da)

Optimal abstract ñnite failure sets are deñned similarly. One ñrst possible dis-
advantage of abstract execution with respect to elementary replacement is due
to the loss of information associated to using an abstract domain instead of
the concrete domain. This is related to the expressive power of the abstract
domain, i.e. what kind of information it provides. If TSa(L, P,Da) and/or
FFa(L,P,Da) are not optimal then there may exist literals in the program
such tha t RT(L,P) C TS(L,P) or RT(L,P) C FF(L,P) and thus elemen­
tary replacement could in principie be applied but abstract execution cannot. In
general, domains will be optimal for some predicates but not all.

Another possible disadvantage is tha t even if the abstract domain is ex­
pressive enough and both TSa(L,P, Da) and FFa(L,P,Da) are optimal, the
computed abstract substitutions may not be accurate enough to allow abstract
execution. Therefore, the choice of the domain should be ñrst guided by the pred­
icates whose optimization is of interest so tha t TSa(L, P, Da) and FFa(L, P, Da)
are as adequate as possible for them, and second by the accuracy of the abstract
substitutions it provides and its computational cost.

Def in i t ion 9 (Maxin ia l S u b s e t) . Let S be a set and let Q be a partial order
over the elements of S. We define the maximal subset of S with respect to E as

M E (S) = {seS : ^s' GS (s^s' AsQ s ') } 1

Abstract execution as given in Deñnition 7 is not applicable in general be-
cause even though each A ^ is computable by means of abstract interpretation,
TSa and FFa are not computable in general. Additionally, if Da is infinite,
TSa and FFa may also be infinite. However, based on the observation tha t
if A G TSa then VA' E A A' G TSa, the conditions A G TSa(L,P,Da) and
A G FFa(L,P,Da) are equivalent to 3A' G MQ(TSa(L,P,Da)) : A E A' and
3A' G M^(FFa(L, P, Da)) : A E A' respectively and thus can be replaced in Def­
inition 77Unlike TSa and FFa, M^(TSa(L, P,Da)) and M^(FFa(L, P,Da))
are finite for any Da with finite width. Additionally, they usually have one or
just a few elements for most practical domains.

Def in i t ion 10 (Base F o r m) . The Base Form of a literal L which calis pred­
ícate Pred of arity n (represented as L) is the literal Pred{X\,... , Xn) where
X\,..., Xn are distinct free variables.

1 s / s ' A s C s ' may also be written as s C s'.

As the number of literals in a program that cali a given predícate is not
bounded and in order to reduce the number of TSa and FFa sets that need to
be computed to optimize a program, in what follows we will only consider one
TSa and FFa per predícate which refers to its base form.

The function named calLto-entry, which is normally deñned for each domain
in most abstract interpretation frameworks, will be used to relate an abstract
substitution over the variables of an arbitrary literal with the base form of the
literal. The format of this function is calUo-entry(Ll, L2, Da, A). Given a literal
Ll and an abstract substitution A <G Da over the variables in Ll, this function
computes an abstract substitution over the variables in L2 which is the result of
unifying Ll and L2 both with respect to concrete and abstract substitutions.

Using the base form and calido j¡ntry the conditions A <G TSa(L, P, Da) and
A <G FFa(L, P, Da) in Deñnition 7 can be replaced by calido_entr•$/(L, L, Da, A) <G
TSa(L, P, Da) and calido_entr-y<(L, L, Da,X) <G FFa(L, P, Da) respectively. The
transformed conditions are not equivalent, but are sufficient. This means that
correctness is guaranteed, but possibly some optimizations will be lost.

3.1 Optimization of Calis to Builtin Predicates.

Even though abstract executability is applicable to any predícate, in what follows
we will concéntrate on builtin predicates. This is because the semantics of builtin
predicates does not depend on the particular program in which they appear, Le.,
yP,P' TSaiB^Da) = TSaCE^P^Da) = TSa{B,Da)- As a result, we can
compute TSa(B, Da) and FFa(B, Da) once and for all for each builtin predícate
B and they will be applicable to all literals that cali the builtin predícate in any
program.

Definition 11 (Operational Abstract Execution of Builtins). Operational
abstract execution (OAEB) of a literal L with abstract cali substitution A that
calis a builtin predícate B is defined as:

if3\'GATS(B,Da):
call-to-entry(L,B, Da, A) U A' = A'

OAEB(L,Da,X) = { fnUp if3\> e AFF(B,Da) :
callJbo-entry(L,B, Da, A) U A' = A'

otherwise

ATS(B,DO) and AFF(B,Da) are approximations of M\z(TSa(B,Da)) and
M\z(FFa(B, Da)) respectively. This is because there is no automated method
that we are aware of to compute M\z(TSa(B,Da)) and M\z(FFa(B,Da)) for
each builtin predícate B. For soundness it is required that both AFs(B, Da) Q
TSa(B, Da) and AFF(B, Da) Q FFa(B, Da). We believe that a good knowledge
of Da allows ñnding safe approximations, and that in many cases it is easy
to ñnd the best possible approximations ATs(B,Da) = M\z(TSa(B,Da)) and
AFF(B,Da) = M^(FFa(B,Da)).

Additionally, the condition call-to-entry(L, B, Da,X) C. A' has been replaced
by the equivalent one call_to_entry(L, B, Da, A) U A' = A', where U stands for
the least upper bound, which can be computed effectively.

Theorem 3 (Operational Abstract Executability of Builtins). Let P be
a program and let POAEB be the program obtained, by replacing each literal Lk,i
in P by OAEB(Lkyi,\k,i) where \k,i is the abstract cali substitution for Lk,i-
IfVB ATS(B,Da) C TSa(B,Da) AAFF(B,Da) C FFa(B,Da) then PQAEB is
computahle in finite time, and both P and POAEB produce the same computed,
answers and side-effects.

Example 1 Consider an abstract domain Da consisting of the ñve elements
{bottom, int, float, free, top}. These elements respectively correspond to the
empty set of terms, the set of all integers, the set of floating point numbers,
the set of all unbound variables, and the set of all terms. Suppose we are inter-
ested in optimizing calis to the builtin predicate ground/1 by reducing them to
the valué true. Then, TS(ground(X{)) = {{Xi/g} where g is any term without
variables} and its abstract versión TSa(ground(X\),Da) = {int, float, bottom},
which is clearly not optimal (there are many ground terms which are neither in­
tegers ñor floating numbers). We can take ATs(ground(Xi),Da) = {int, float}
= M\z({int, float, bottom}). Consider the following clause containing the literal
ground(X):

p(X,Y) <- q(Y),ground(X),r(X,Y).
Assume now that analysis has inferred the abstract substitution just before the
literal ground(X) to be {Y/free, X/int}. Then OAEB(ground(X), Da,X/int)
= true (the literal can be replaced by true) because call-tojentry(ground(X),
ground(Xi), Da, {X/int}) = {Xi/int}, and X\jint U X\jint = X\jint.

If we were also interested in reducing literals that cali ground/1 to false, the
most accurate AFF(ground(Xi),Da) = {free} = M^(FFa(ground(Xi),Da))
which again is not optimal.

4 The Application: Compile-time Parallelization

The ñnal aim of parallelism is to achieve the máximum speed (effectiveness)
while computing the same solution (correctness) as the sequential execution.
The two main types of parallelism which can be exploited in logic programs are
well known [Con83,CC94]: or-parallelism and and-parallelism. And-parallelism
refers to the parallel execution of the goals in the body of a clause (or, more
precisely, of the goals in a resolvent). Several models have been proposed to take
advantage of such opportunities (see, for example, [CC94] and it references).

Guaranteeing correctness and efficiency in and-parallelism is complicated
by the fact that dependencies may exist among the goals to be executed in
parallel, due to the presence of shared variables at run-time. It turns out that
when these dependencies are present, arbitrary exploitation of and-parallelism
does not guarantee efficiency. Furthermore, if certain impure predicates that
are relatively common in Prolog programs are used, even correctness cannot be
guaranteed.

However, if only independent goals are executed in parallel, both correctness
and efficiency can be ensured [Con83,HR95]. Thus, the dependencies among

: -module(mmatrix, [mmultiply/3]) .

mmultiply([] , _ , []) .
mmultiply([VO|Rest], VI, [Result I Others]) : -

multiply(Vl,VO,Result), mmultiply(Rest, VI, Others).

multiplyCÜ ,_,[]).

multiply([VO|Rest], VI, [ResultIOthers]):-

vmul(VO,VI,Result), multiply(Rest, VI, Others).

vmul([] ,[],0).

vmul ([Hl | TI] , [H21 T2] , Result) : -
Product i s H1*H2, vmul(Tl,T2, Newresult),
Result i s Product+Newresult.

Fig. 1. mmatrix.pl

the different goals must be determined, and there is a related parallelization
overhead involved. It is vital that such overhead remain reasonable. Herein we
follow the approach proposed initially by R. Warren et al [WHD88,HWD92] (see
their references for alternative approaches) which combines local analysis and
run-time checking with a data-flow analysis based on abstract interpretation
[CC77]. This combination of techniques has been shown to be quite useful in
practice [WHD88,MJMB89,RD90,Tay90,dMSC93].

4.1 The Annotation Process and Run-time Tests

In the &-Prolog system, the automatic parallelization process is performed as
follows [BGH94a]. Firstly, if required by the user, the Prolog program is analyzed
using one or more global analyzers, aimed at inferring useful information for de-
tecting independence. Secondly, since side-effects cannot be allowed to execute
freely in parallel, the original program is analyzed using the global analyzer de-
scribed in [MH89] which propagates the side-effect characteristics of builtins de-
termining the scope of side-effects. In the current implementation, side-effecting
literals are not parallelized. Finally, the annotators perform a source-to-source
transformation of the program in which each clause is annotated with parallel
expressions and conditions which encode the notion of independence used. In
doing this they use the information provided by the global analyzers mentioned
before.

The annotation process is divided into three subtasks. The ñrst one is con­
cerned with identifying the dependencies between each two literals in a clause
and generating the conditions which ensure their independence. The second task
aims at simplifying such conditions by means of the information inferred by the
local or global analyzers. In other words, transforming the conditions into the

http://mmatrix.pl

mmultiply([] , _ , []) .
mmultiply([VO|Rest] ,V1, [Result I Others]) : -

(ground(Vl),
indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others]]) ->

multiply(Vl,VO,Result) k mmultiply(Rest,VI,Others)
; multiply(VI,VO,Result) , mmult iply(Rest ,VI,Others)) .

mul t ip ly([] , _ , []) .
mult iply ([VO | Rest] , VI, [Result I Others]) : -

(ground(Vl),
indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others]]) ->

vmul(V0,VI,Result) k mult iply(Rest ,VI,Others)
; vmul(VO,VI,Result), mul t ip ly(Res t ,VI ,Others)) .

Fig. 2. Parallel mmatrix

minimum number of tests which, when evaluated at run-time, ensure the in-
dependence of the goals involved. Finally, the third task is concerned with the
core of the annotation process [BGH94a], namely the application of a particular
strategy to obtain an optimal (under such a strategy) parallel expression among
all the possibilities detected in the previous step.

4.2 An Example: Matrix Multiplication

We illustrate the process of automatic program parallelization with an exam­
ple. Figure 1 shows the code of a Prolog program for matrix multiplication. The
declaration :-module (mmatrix, [mmultiply/3]). is used by the (goal-oriented) an-
alyzer to determine that the only predicate which may appear in top-level queries
is mmatrix/3. No information is given about the arguments in calis to the pred­
icate mmatrix/3. As mentioned before, this could be done using one or more
entry declarations [BCHP96]. If for example we want to specialize the program
for the case in which the ñrst two arguments of mmatrix/3 are ground valúes and
we inform the analyzer about this, the program would be parallelized without
the need for any run-time tests.

Figure 2 contains the source program after automatic parallelization. if-then-
else's, like in Prolog, are written (cond -> then ; e l s e) . Even though pro-
grams as deñned in Section 2 do not have if-then-else's in the body of clauses,
this construct poses no additional theoretical difficulties. The same effect (mod­
ulo some run-time overhead) can be achieved using conjunctions of literals and
the cut. The & signs between goals indicate that they can be executed in parallel.
As can be seen, a lot of run-time tests have been introduced. They are used to
determine independence at run-time. If the tests hold the parallel code is exe­
cuted. Otherwise the original sequential code is executed. As usual, ground(X)
succeeds if X contains no variables. indep(X,Y) succeeds if X and Y have no vari-

ables in common. For conciseness and efficiency, a series of tests indep(Xl,X2),
. . . , indep(Xn-l,Xn) is written as indep([[X1,X2] , . . . , [Xn-1,Xn]]).

Obviously, the tests will cause considerable overhead in run-time perfor­
mance, to the point of not even knowing at ñrst sight if the parallelized program
will run faster than the sequential one. The predícate vmul/3 does not appear
in Figure 2 because automatic parallelization has not detected any proñtable
parallelism in it (due to granularity control) and its code remains the same as
in the original program.

5 Abstract Specialization in the &-Prolog Compiler

As stated in Section 4.1, analysis information is used in the &-Prolog system to
introduce as few run-time tests as possible in the process of automatic program
parallelization. However, analysis information allows more powerful program op-
timizations than the ones performed during program annotation. First, analy­
sis information can be used to perform abstract specialization to all program
points, instead of just those ones in which run-time tests are going to be intro-
duced. Second, the abstract interpretation framework used in &-Prolog (PLAI
[MH91,MH92,BGH94b]) is multi-variant. This allows, in principie, the introduc-
tion of múltiple specialization based on abstract interpretation. To this end, the
analysis framework has been augmented in order to distinguish abstract substi-
tutions for the different variants and additional structure information has been
added to recover the analysis and-or graph (the ancestors information of [PH95]).

Analysis information is not directly available at all program points after
automatic parallelization because the process modiñes certain parts of the pro­
gram originally analyzed. However, the &-Prolog system uses incremental anal­
ysis techniques to efficiently obtain updated analysis information from the one
generated for the original program [HMPS95,PH96]. This updated analysis in­
formation is then used by the abstract specializer to optimize the program as
much as possible.

5.1 Design of the Abstract Múltiple Specializer

Conceptually, the process of abstract múltiple specialization is composed of ñve
steps, which are shown in Figure 3 (picture on the right), together with the role
of abstract specialization in the &-Prolog system (picture on the left).

In the ñrst step (simplify) the program optimizations based on abstract ex-
ecution are performed whenever possible. This saves having to optimize the dif­
ferent versions of a predícate when the optimization is applicable to all versions.
Any optimization that is common to all versions of a predícate is performed at
this stage. The output is an abstractly specialized program. This is also the ñnal
program if múltiple specialization is not performed. The remaining four steps
are related to múltiple specialization.

In the second step (detect optimizations) information from the multi-variant
abstract interpretation is used to detect (but not to perform) the optimizations

Original Program

Abstract

Domain

Final Program

Parallel Program

i
[Simplify J

Detect Optim

Minimize

Genérate Code

Optimize Code

Specialized Program

Fig. 3. Program Annotation and Abstract Múltiple Specialization

allowed in each of the (possibly) múltiple versions generated for each predicate
during analysis. Note that the source for the multiply specialized program has
not been generated yet (this will be done in the fourth step, genérate code) but
rather the code generated in the ñrst step is used, considering several abstract
substitutions for each program point instead of their lowest upper bound, as is
done in the ñrst step. The output of this step is the set of literals that become
abstractly executable (and their valué) in each versión of a predicate due to
múltiple specialization. Note that these literals are not abstractly executable
without múltiple specialization, otherwise the optimization would have already
been performed in the ñrst step.

The third step (minimize) is concerned with reducing the size of the mul­
tiply specialized program as much as possible, while maintaining all possible
optimizations without the need of introducing run-time tests to select among
different versions of a predicate. A detailed presentation of the algorithm used
in this step and its evaluation is the subject of [PH95].

In the fourth step (genérate code) the source code of the minimal multiply
specialized program is generated. The result of the minimization algorithm in
the previous step indicates the number of implementations needed for each pred­
icate. Each of them receives a unique ñame. Also, literals must also be renamed
appropriately for a predicate with several implementations.

In the ñfth step (optimize code), the particular optimizations associated with
each implementation of a predicate are performed. Other simple program opti­
mizations like eliminating literals in a clause to the right of a literal abstractly
executable to false, eliminating a literal which is abstractly executable to true
from the clause it belongs instead of introducing the builtin true/1, dead code
elimination, etc. are also performed in this step.

Domain

sharing
sh+fr
asub

TSa(ground(X1))

O
O
O

FFa(ground(X1))

N
S
N

TSa(indep(X1))

O
O
O

FFa(indep(X1))

N
S
N

Table 1. Optimality of Different Domains

In the implementation, for the sake of efficiency, the ñrst and second steps,
and the fourth and fifth are performed in one pass (this is marked in Figure 3 by
dashed squares), thus reducing to two the number of passes through the source
code. The third step is not performed on source code but rather on a synthetic
representation of sets of optimizations and versions. The core of the múltiple
specialization technique (steps minimize and genérate code) are independent
from the actual optimizations being performed.

5.2 Abstract Domains

The abstract specializer is parametric with respect to the abstract domain used.
Currently, the specializer can work with all the abstract domains implemented in
the analyzer in the &-Prolog system. In order to augment the specializer to use
the information provided by a new abstract domain (Da), correct ATs(B,Da)
and App(B, Da) sets must be provided to the analyzer for each builtin predicate
B whose optimization is of interest. Alternatively, and for efficiency issues, the
specializer allows replacing the conditions in Definition 11 with specialized ones
because in 3A' <G ATS(B, Da) '• calido_entry(L,B,Da,ty U A' = A' all valúes
are known before specialization time except for A which will be computed by
analysis. Le., conditions can be partially evaluated with respect to Da, B and a
set of A', as they are known in advanee.

5.3 Example

As seen before, in the context of automatic parallelization in the &-Prolog system
abstract interpretation is mostly used to eliminate run-time tests necessary to
determine independen ce. These tests are of two types: ground/1 and indep/1.
As these builtin predicates are the main target of optimization, the abstract
domains used in analysis should be able to provide useful TSa and FFa for
them. For the three domains these sets are computable and we can take ATS =
M^(TSa(B,Da)) and AFF = MQ(FFa(B,Da)).

Table 1 shows the accuracy of a number of abstract domains (sharing [JL92,MH92],
sharing-hfreeness (sh+fr) [MH91], and asub [Son86,CDY91]) present in the &-
Prolog system with respect to the run-time tests. O stands for optimal, S stands
for approximate, and N stands for none, i.e. FFa(B, Da) = {i-}- The three of
them are optimal for abstractly executing both types of tests to true. However,
only sharing+freeness (sh+fr) allows abstractly executing these tests to false,
even though not in an optimal way.

mmultiply([] , _ , []) .
mmultiply([VO|Rest] ,V1, [Result I Others]) : -

(ground(Vl),
indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others]]) ->

multiplyKVl.VO,Result) k mmultiplyKRest, VI, Others)
; multiply2(Vl,VO,Result) , mmult iply(Rest ,VI,Others)) .

mmultiplyKÜ , _ , []) .
nmult iplyl ([VO I Rest] , VI, [Result I Others]) : -

(indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others]]) ->
multiplyKVl.VO,Result) k mmultiplyKRest, VI, Others)

; mul t ip lyKVl , VO,Result) , mmultiplyKRest,VI,Others)) .

mul t ip lyK [] , _ , []) .
mult iplyl([VO|Rest] ,V1,[Resul tIOthers]) : -

(ground(Vl) , indep([[Result , Others]]) ->
vmul(VO,VI,Result) k mult iply3(Rest ,VI,Others)

; vmul(VO, VI,Result) , mul t ip lyKRes t , VI,Others)) .
multiply2 ([] , _ , []) .
mult iply2([V0|Rest] ,V1,[Resul tIOthers]) : -

(ground(Vl),
indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result ,Others]]) ->

vmul(VO,VI,Result) k mult iply4(Rest ,VI,Others)
; vmul(VO,VI,Result), mul t ip ly2(Rest ,VI ,Others)) .

mult iply3 ([] , _ , []) .
mult iply3([V0|Rest] ,V1,[Resul tIOthers]) : -

(indep([[Result , Others]]) ->
vmul(VO,VI,Result) k mult iply3(Rest ,VI,Others)

; vmul(VO,VI,Result), mul t ip ly3(Rest ,VI ,Others)) .
multiply4 ([] , _ , []) .
mult iply4([V0|Rest] ,V1,[Resul tIOthers]) : -

(indep([[VO,Rest] , [VO,Others] , [Rest ,Result] , [Result , Others]]) ->
vmul(VO,VI,Result) k mult iply4(Rest ,VI,Others)

; vmul(VO,VI,Result), mul t ip ly4(Rest ,VI ,Others)) .

Fig. 4. Specialized mmatrix

The resulting program after abstract múltiple specialization is performed is
shown in Figure 4. Two versions have been generated for the predicate mmul­
tiply/3 and four for the predicate multiply/3. They all have unique ñames and
literals have been renamed appropriately to avoid run-time tests. As in Figure 2,
the predicate vmul/3 is not presented in the ñgure because its code is identical
to the one in the original program (and the parallelized program). Only one
versión has been generated for this predicate even though multi-variant abstract
interpretation generated eight different variants for it. As no further optimiza-

Fig. 5. Cali Graph of the Specialized Program

tion is possible by implementing several versions of vmul/3, the minimization
algorithm has collapsed all the different versions of this predicate into one.

It is important to mention that abstract múltiple specialization is able to
automatically detect and extract some invariants in recursive loops: once a cer-
tain run-time test has succeeded it does not need to be checked in the following
recursive calis [GH91]. Figure 5 shows the cali graph of the specialized program.
mm stands for mmultiply and m for multiply. Edges are labeled with the number
of tests which are avoided in each cali to the corresponding versión with respect
to the non specialized program. For example, g+3i means that each execution
of this specialized versión avoids a groundness and three independence tests. It
can be seen in the ñgure that once the groundness test in any of mm, mi, or m2
succeeds, it is detected as an invariant, and the more optimized versions mml,
m3, and m4 respectively will be used in all remaining iterations.

The specialized versión of matrix multiplication obtains speed-ups ranging
from 2.75 for one processor to 2.24 with 9 processors with respect to the non-
specialized parallel program. The speed-up with respect to the original sequential
program is 5.31 for nine processors. The parallelized program without special­
ization obtains a speed-up of (only) 2.37 with nine processors. Detailed experi­
mental results, including specialization times and size of the resulting specialized
programs can be found in [PH95].

6 Conclusions and Future Work

In this paper we have presented the use of abstract (múltiple) specialization in
the context of a parallelizing compiler and formalized the concept of abstract
executability. By means of an example, we have shown the ability of abstract
specialization to perform non-trivial optimizations, such as loop-invariant detec-
tion, on the parallel code generated.

It remains as future work to improve the abstract specialization system pre­
sented in several directions. One of them would be the extensión of the abstract

specialization framework in order to perform other kinds of optimizations, in-
cluding those based on concrete (as opposed to abstract) valúes, as in traditional
partial evaluation. Obviously, the specialization system should be augmented in
order to be able to detect and materialize the new optimizations.

Another direction would be to devise and experiment with different mini-
mization criteria: even though the programs generated by the specializer are
minimal to allow all possible optimizations, it would sometimes be useful to
obtain smaller programs even if some of the optimizations are lost.

References

[BCHP96] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-flow Analysis
of Standard Prolog Programs. In European Symposium on Programming,
Sweden, April 1996.

[BGH94a] F. Bueno, M. García de la Banda, and M. Hermenegildo. A Compara-
tive Study of Methods for Automatic Compile-time Parallelization of Logic
Programs. In Parallel Symbolic Computation, pages 63-73. World Scientific
Publishing Company, September 1994.

[BGH94b] F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of
Global Analysis in Strict Independence-Based Automatic Program Paral­
lelization. In International Symposium on Logic Programming, pages 320-
336. MIT Press, November 1994.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming, 10:91-124, 1991.

[Bul84] M.A. Bulyonkov. Polivariant Mixed Computation for Analyzer Programs.
Acta Informática, 21:473-484, 1984.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Fourth ACM Symposium on Principies of Programming Lan-
guages, pages 238-252, 1977.

[CC94] J. Chassin and P. Codognet. Parallel Logic Programming Systems. Com-
puting Surveys, 26(3):295-336, September 1994.

[CD93] C. Consel and O. Danvy. Tutorial Notes on Partial Evaluation. In ACM
SIGPLAN-SIGACT Symposium on Principies of Programming Languages
POPL'93, pages 493-501, Charleston, South Carolina, 1993. ACM.

[CDY91] M. Codish, D. Dams, and E. Yardeni. Derivation and Safety of an Abstract
Unification Algorithm for Groundness and Aliasing Analysis. In Eighth In­
ternational Conference on Logic Programming, pages 79-96, París, France,
June 1991. MIT Press.

[Con83] J. S. Conery. The And/Or Process Model for Parallel Interpretation of
Logic Programs. PhD thesis, The University of California At Irvine, 1983.
Technical Report 204.

[dMSC93] Vítor Manuel de Moráis Santos Costa. Compile-Time Analysis for the Par­
allel Execution of Logic Programs in Andorra-I. PhD thesis, University of
Bristol, August 1993.

[GB90] J. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Pro-
gram Specialization. In 1990 International Conference on Logic Program-
ming, pages 732-746. MIT Press, June 1990.

[GCS88] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and
FCP Programs Using Abstract Interpretation. New Generation Computing,
6:159-186, 1988.

[GH91] F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance
Detection and Selective Program Specialization. In Proc. 3rd. Int'l Sympo-
sium on Programming Language Implementation and Logic Programming,
pages 323-335. Springer-Verlag, 1991.

[HMPS95] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental
Analysis of Logic Programs. In International Conference on Logic Pro­
gramming, pages 797-811. MIT Press, June 1995.

[HR95] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efñciency, and Compile-Time
Conditions. Journal of Logic Programming, 22(l):l-45, 1995.

[HWD92] M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a
Practical Compilation Tool. Journal of Logic Programming, 13(4):349-367,
August 1992.

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prenctice Hall, New York, 1993.

[JL92] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Indepen­
dent And-Parallelism. Journal of Logic Programming, 13(2 and 3):291-314,
July 1992.

[JLW90] D. Jacobs, A. Langen, and W. Winsborough. Múltiple specialization of logic
programs with run-time tests. In 1990 International Conference on Logic
Programming, pages 718-731. MIT Press, June 1990.

[Kom92] J. Komorovski. An Introduction to Partial Deduction. In A. Pettorossi,
editor, Meta Programming in Logic, Proceedings of META '92, volume 649
of LNCS, pages 49-69. Springer-Verlag, 1992.

[LS91] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Program­
ming. Journal of Logic Programming, ll(3-4):217-242, 1991.

[MH89] K. Muthukumar and M. Hermenegildo. Complete and Efñcient Methods
for Supporting Side Effects in Independent/Restricted And-parallelism. In
1989 International Conference on Logic Programming, pages 80-101. MIT
Press, June 1989.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In
1991 International Conference on Logic Programming, pages 49-63. MIT
Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2 and 3):315-347, July 1992.

[MJMB89] A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The Impact of
Abstract Interpretation: an Experiment in Code Generation. In Interna­
tional Conference on Logic Programming. MIT Press, June 1989.

[PH95] G. Puebla and M. Hermenegildo. Implementation of Múltiple Specializa­
tion in Logic Programs. In Proc. ACM SIGPLAN Symposium on Partial
Evaluation and Semantics Based Program Manipulation. ACM, June 1995.

[PH96] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental
Analysis of Logic Programs. In International Static Analysis Symposium,
LNCS 1145, pages 270-284. Springer-Verlag, September 1996.

[RD90] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Analysis
for an Optimizing Prolog Compiler. In North American Conference on Logic
Programming, pages 501-515. MIT Press, October 1990.

[Son86] H. Sondergaard. An application of abstract interpretation of logic programs:
occur check reduction. In European Symposium on Programming, LNCS
123, pages 327-338. Springer-Verlag, 1986.

[Tay90] A. Taylor. LIPS on a MIPS: Results from a prolog compiler for a RISC. In
1990 International Conference on Logic Programming, pages 174-189. MIT
Press, June 1990.

[WHD88] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of Global
Flow Analysis of Logic Programs. In Fifth International Conference and
Symposium on Logic Programming, pages 684-699, Seattle, Washington,
August 1988. MIT Press.

[Win92] W. Winsborough. Múltiple Specialization using Minimal-Function Graph
Semantics. Journal of Logic Programming, 13(2 and 3):259-290, July 1992.

