
Concurrency in Prolog Using Threads
and a Shared Datábase

M a n u e l C a r r o M a n u e l H e r m e n e g i l d o
mcarro@fi.upm.es herme@fi.upm.es

School of Computer Science, T.U. Madrid (UPM)

Abstract

Concurrency in Logic Programming has received much attention in the past.
One problem with many proposals, when applied to Prolog, is that they in-
volve large modifications to the standard implementations, and/or the commu-
nication and synchronization facilities provided do not fit as naturally within
the language model as we feel is possible. In this paper we propose a new
mechanism for implementing synchronization and communication for concur­
rency, based on atomic accesses to designated facts in the (shared) datábase.
We argüe that this model is comparatively easy to implement and harmo-
nizes better than previous proposals within the Prolog control model and
standard set of built-ins. We show how in the proposed model it is easy
to express classical concurrency algorithms and to subsume other mechanisms
such as Linda, variable-based communication, or classical parallelism-oriented
primitives. We also report on an implementation of the model and provide
performance and resource consumption data.

1 Introduction

Concurrency has been studied in the context of a wide range of programming
paradigms, and many different mechanisms have been devised for expressing con­
current computations in procedural programming languages [4]. In this paper we
are interested in developing a model of concurrency for Prolog. In fact, concurrency
has also received much attention in the context of logic languages. However, most
previous proposals have the drawback tha t they either involve large modifications to
s tandard Prolog implementations, and/or the communication and synchronization
facilities provided do not fit as naturally within the Prolog language model as we
feel is possible.

One approach to concurrency is represented by the family of concurrent logic
languages, which includes PARLOG, Concurrent Prolog, Guarded Horn Clauses,
Janus, and others (see [25, 30] and their references). These languages share a num-
ber of characteristics. First, concurrency is implicit, i.e., every literal in a clause
body represents a concurrent process. While this can be attractive in principie, it
can cause an unnecessarily high number of processes to be generated, and can also
make it difficult t o write sequential code. Consequently, we feel tha t the spawning
of a concurrent computation should preferably be done via an explicit language
primitive (or, conversely, t ha t the language should have an explicit operator for se­
quential composition of processes) [15, 7]. While there is certainly still much debate
on this issue, it is noteworthy tha t designs which started out as implicitly concur­
rent languages, such as Oz [12], have opted for the explicit concurrency approach
in more recent versions.

mailto:mcarro@fi.upm.es
mailto:herme@fi.upm.es

Another common characteristic of the family of concurrent logic languages is
that communication and synchronization between processes is performed by means
of shared variables. This initially extremely attractive model has turned out to suffer
from a number drawbacks in practice. The most important one is that backtracking
has been found very difficult to implement. As a result, most of these languages
have simply eliminated backtracking altogether. However, we feel that backtracking
is an integral part of the Prolog control model, and that eliminating it is therefore
not an option in our context.

A more recent family of languages, including Andorra-I [24] and AKL [17] di-
rectly addresses the backtracking problem. In Andorra-I, choices are suspended
until a deterministic path can be taken. AKL allows encapsulated search while,
at the same time, communicating deterministic bindings outside such encapsulated
operations. While these very interesting proposals solve to some extent the back­
tracking problem, they still have what we perceive as drawbacks in our context:
apart from supporting the implicit concurrency approach, they require quite spe-
cialized implementation technology, particularly with regard to the representation
of variables (which sometimes also results in a slowdown of sequential execution).
As a result, they require what would be major changes to standard Prolog abstract
machines, which are almost invariably based on the WAM [1, 31]. Also, the oper-
ational semantics of these models (specially in the case of AKL) are far removed
from that of Prolog and it does not appear straightforward to adapt the related
ideas to Prolog without affecting the language in a signiñcant way.

Another interesting approach to concurrency is to use the capabilities of parallel
Prolog implementations such as &-Prolog [16], Aurora [22], MUSE [2], ACE [11],
etc. These systems proved early on that it is possible to construct very efficient
multi-worker (i.e., multi-thread) Prolog engines. While these systems were designed
with parallelism in mind, they contain many useful basic building blocks for a
concurrent system. In fact, some of these engines have been used for some time now
to implement concurrent applications (e.g., Aurora in [28]) or even fully concurrent
and distributed Prolog systems (e.g., &-Prolog in [7, 14], which uses explicit creation
of threads and a combination of a blackboard and marked shared variables for
communication). Our approach builds on these experiences, but tries to improve on
them in several áreas. First, from the engine point of view, although these systems
were all designed as extensions of the WAM, we feel that for practical purposes a
model that requires smaller modiñcations to the WAM is useful. Furthermore, we
are interested in ñnding better solutions to the communication and synchronization
among threads.

The difficulties associated with shared variable-based communication have led
to the development of other communication and synchronization primitives. One of
them is ports [17], used for example by MT-SICStus [10]. MT-SICStus implements a
relatively simple design, some aspects of which are derived from Erlang [3]. Threads
can be spawned (with an initial goal) and k i l l ed . They can also send and receive
fresh copies of terms, using a single port per thread. This allows creating a simple
goal server which executes whichever goal it receives. This is certainly a quite useful
model, but we feel that it can be improved upon: ports (similarly to streams) do
not have a clean interaction with backtracking (what is sent down a port is not put
back on backtracking), the overall model is some what restrictive, and the explicit
codiñcation of the above mentioned server seems to be needed for most applications.
In Oz 2.0 [12] threads are started using an explicit construction which returns a valué
as if it were an expression. Message passing and synchronization use (in a similar
way to AKL) shared variables and also an abstract data type Port, which can be
shared among threads and passed to other functions/procedures, perhaps as parts
of other data structures. A shared stack allows fast communication among threads.
Exceptions can be injected into other threads. A very interesting characteristic of Oz

is the caching and coherence mechanism used in concurrent, distributed execution.
An alternative to ports is to use Linda blackboards [8]. Linda is a simple but

powerful concurrency paradigm which focuses on (and uniñes) the mechanisms for
communication and synchronization. The Linda model assumes a shared memory
área (the blackboard) where tupies are written and read (using pattern matching)
by concurrent processes. Writing and reading are performed through a number of
primitives and are atomic actions. Reading may suspend if the requested tupie
is not present in the blackboard, this being the main synchronization mechanism.
This approach has been made available either natively or as librarles in several
logic programming systems (e.g., [5, 27, 7, 14, 29, 9]). A practical example of
this approach is the BinProlog-based Jinni system [29]. Jinni has a relatively rich
set of primitives for creating threads (called engines), also providing them with a
starting goal and means for recovering the answers returned. Obtaining múltiple
answers from an engine is possible by asking the engine, until this cali finally fails.
Coordination among engines is achieved using a Linda-style set of primitives, which
access and modify a shared blackboard. These operations allow writing and reading
(with pattern matching) from the blackboard, and gathering in a list and at once
all the tupies which match a pattern. A form of constraint-based synchronization
is also available, as well as the possibility of migrating computations to remote
places. Jinni is quite attractive, but still the main means for communication, the
blackboard, is an external object to the Prolog model.

Although the approaches proposed to date are undoubtedly interesting and use-
ful, we feel that they either do not provide all the features we perceive as most inter­
esting in a practical concurrent Prolog system or they require complex implementa-
tions. The main novelty of the model we present in this paper is that both commu­
nication and synchronization are based on concurrent, atomic accesses to the shared
Prolog datábase, which we argüe can be used in the same way as a blackboard. We
will show that, apart from the conceptual simpliñcation, this choice creates very
useful synergies in the overall language design, while remaining reasonably easy to
implement. In our approach, an extensión of the assert /retract family of Pro­
log calis allows suspensión on calis and redos. We show that these primitives, when
combined with the Prolog module system, have the same or richer functionality than
blackboard-based systems, while ñtting well within the Prolog model: they offer full
uniñcation instead of pattern matching on tupies and provide a clean interaction
with Prolog control, naturally supporting backtracking. The model, as described
in this paper, is available in the current distribution of CIAO (a next-generation,
public domain Prolog system - see http://www.clip.dia.fi.upm.es/Software).

2 A First Level Interface

As mentioned before, the signiñcant effort realized by the logic programming com-
munity in building parallel Prolog systems has proven that it is possible to construct
sophisticated and very efficient multi-worker Prolog engines. However, it is also true
that the inherent complication of these systems has prevented their availability as
part of mainstream Prolog systems (with the possible exception of SICStus/MUSE,
and, to a more limited extent, &-Prolog, Aurora, Andorra-I, and ACE). One of
our main objectives in the design of the proposed concurrency model has been to
simplify the low-level implementation, i.e., the modiñcations to the Prolog engine
required, in order to make it as easy as possible to incorpórate into an existing
WAM-based Prolog system. Such simplicity should also result in added robustness.

With this in mind, we start by deñning a set of basic building blocks for concur­
rency which we argüe can be efficiently implemented with small effort. We will then
stack higher-level functionality as abstractions over these basic building blocks.

http://www.clip.dia.fi.upm.es/Software

2.1 Primitives for Creating Threads
A thread corresponds conceptually to an independent Prolog evaluator, capable of
executing a Prolog goal to completion in a local environment, Le., unaffected by
other threads. It is related to the notion of agent [16] or worker [22, 2] used in
parallel logic programming systems.

Basic Thread Creation and Management: Thread creation is performed
by calling launch_goal/2, which is similar in spirit to the &/1 operators of &-
Prolog, the spawn of MT-SICStus, or the new_engine of BinProlog. A cali to
launch_goal(Goal, GoalHandle) ñrst copies Goal and its arguments to the ad-
dress space of a new thread and returns a handle in GoalHandle which allows the
creating thread to have (restricted) control of and access to the state of the created
thread. Execution of Goal then proceeds in the new thread within an independent
environment. An exception may be raised if the spawning itself is not successful,
but otherwise no further communication or synchronization with the caller occurs
until a cali to join_goal (GoalHandle) is made, unless explicitly programmed using
the synchronization and communication primitives (Section 2.2).

A cali to join_goal(GoalHandle) waits for the success or failure of the goal
corresponding to GoalHandle. If a solution is found by the concurrent goal, this
goal can at a later time be forced to backtrack and produce another solution (or fail)
using backtrack_goal(GoalHandle). When no more solutions are needed from a
given goal, the builtin release_goal(GoalHandle) must be called to reléase the
corresponding thread. This also frees the memory áreas used during the execution
of the goal, and makes them available for other goals.

A number of specializations of launch_goal/2 are useful in practice. A sim-
pliñed versión launch_goal(Goal) causes Goal to be executed to completion (ñrst
solution or failure) in a new thread, which (conceptually) then dies silently. This
behavior is useful when the created thread is to run completely detached from its
parent, or when all the communication is performed using the communication /
synchronization primitives (Section 2.2). There are also other primitives, such as
kill_goal(GoalHandle), which kills the thread executing that goal and releases
the memory áreas taken up by it, which are useful in practice to handle exceptions
and recover from errors.

Implementation Issues and Performance: The implementation requires the
Prolog engine to be reentrant, Le., several invocations of the engine code must be
able to proceed concurrently with sepárate states. The modiñcations required are
well understood from the parallel Prolog implementation work (we follow [16]).

A concurrent goal is launched by copying it with fresh, new variables, to the
storage áreas of a sepárate engine, which has its own working storage (stack set1)
and attaching a thread (agent) to this stack set. The code área is shared and vis­
ible by all engines. Goal copying ensures that execution is completely local to the
receiving WAM. This avoids many complications related to the concurrent bind-
ing and unbinding (on backtracking) of shared variables, since bindings/trailing,
backtracking, and garbage collection are always local to a WAM, and thus need no
changes with respect to the original, single-threaded implementation.

An important issue is how to handle goals which are suspended (e.g., are waiting
at a join, or have executed other primitives which may cause suspensión, to be
described later) and goals which have returned a solution but are waiting to be
joined. This issue was studied in [13, 26]. There are two basic solutions: one is
to freeze the corresponding stack set, which then cannot be used until the goal
is resumed. The same occurs with a stack set containing the execution of a goal
which has produced a solution but has pending alternatives. When this stack set

-'-The memory áreas used by a WAM, which are usually managed using a stack policy.

Thread creation
2.03 ms / 702 LI

Engine coupling
3.16 ms / 1091 LI

Engine creation
10.3 ms / 3579 LI

Table 1: Proñle of engine and thread creation (average for 800 threads).

is asked for another alternative a thread attaches to it and forces backtracking.
This approach has the advantage of great simplicity at the cost of some memory
consumption: it causes memory áreas of the WAM (the upper parts of frozen stack
sets) to be unused, since a new WAM is created for every new goal if the other WAMs
are frozen and cannot be reused. WAMs are reused when a goal detaches after
completion or when they are explicitly freed via a cali to r e l ease^oa l /1 , in which
case they are left empty and ready to execute another goal. The alternative is to
reuse frozen stacks using markers to sepárate executions corresponding to different
concurrent goals [13, 26]. This can be more efficient in memory consumption, but
is also more complicated to implement. We have implemented an intermedíate
approach which is possible if the stacks in the engine can be resized dynamically.
We start with very small stacks which are expanded automatically as needed. This
has allowed us to run quite large benchmarks with a considerable number of threads
without running into memory exhaustion problems. It is also possible to shrink the
stacks upon goal success, so that no memory is wasted in exchange for a small
overhead. This is planned for future versions.

For our experiments we implemented the proposed primitives in the CIAO Pro­
log engine (essentially a simpliñed versión of the &-Prolog engine, itself an inde-
pendent evolution from SICStus 0.5-0.7, and whose performance is comparable to
current SICStus versions running emulated code). We have used a minimal set of
the POSIX thread primitives, in the hope of abstracting away the quite different
management of threads provided in different operating systems, and to favor port-
ing among UNIX flavors. All the experiments reported in this paper have been
run on a SparcCenter 2000, with 10 55MHz processors, Solaris 2.5, CIAO-Prolog
0.9p75. All the measurements have been made using walltime clock.

Table 1 provides figures for several operations involving threads. Since the
overhead per thread seems to remain fairly constant with the number of threads
used, we show the average behavior for 800 (simultaneous) threads. Measure­
ments correspond to the Prolog view of the execution: they reflect the time from
a launch._goal(Goal) is issued, to the time Goal is started. Times are given in
ms. and, to abstract away from the processor speed, in "number of naive-reverse
Logical Inferences" (at the ratio of 345 logical inferences per millisecond, the result
given by nrev in the machine used). Although these numbers depend heavily on
the implementation of O.S. primitives, we feel that providing them is interesting,
since they are real indications of the cost of thread management.

The column labeled "Thread creation" reflects the time needed to start a thread,
including the time used in copying the goal. The column labelled "Engine coupling"
adds the time needed to lócate an already created, free WAM, and to attach to it,
and includes the initialization of the WAM registers. The column "Engine creation"
takes into account the time used in actually creating a new engine (i.e., memory
áreas) and attaching to it. The last one is, as expected, larger, and this supports the
idea of not disposing of the engines which are not being used. These figures are also
useful in order to determine the threshold which should be used to decide whether
execution should be sequential or parallel, based on granularity considerations [21].
Regarding memory consumption, the addition of thread support increased only very
marginally the memory space needed per WAM.

A Note on Avoiding the Copy of the Calling Goal: Copying goals on launch,
despite its advantages, may be very expensive. We support an additional set of

Operation
Put tupie
Wait, read tupie
Wait, read, delete tupie
Read tupie or fail
Read and delete or fail
No more tupies
(More tupies may appear)

Linda
out

read
in

read_noblock
imioblock

—
—

concurrent/1 Facts
asserta /1 , assertz /1

c a l l / 1 , simple cali
retract /1
call_nb/l (+)

retractJEib/1 (+)
close_predicate/l
(open_predicate/l)

Table 2: Comparing Linda primitives and database-related Prolog primitives

primitives which perform sharing of arguments instead of copying.2 To simplify
the implementation and avoid a performance impact on sequential execution, con-
current accesses to the shared variables are not protected. The programmer has
to ensure correct, locked accesses to them, including the effects of backtracking in
other agents.

More complex management of variables can be built on top of these primitives
by using, for example, attributed variables for automatic locking and publication
of deterministic bindings, with techniques similar to those in [14], and incremental,
on demand copying of goal arguments, as shown in [7, 19].

2.2 Synchronization and Communication Primitives

For the reasons argued previously, in this design we would like to use communi­
cation and synchronization primitives simpler to implement than those based on
shared-variable instantiation. The use of the dynamic datábase that we propose
as a concurrent shared repository of terms for communication and synchronization
requires some (local) modiñcations to the semantics of the accesses to the dynamic
datábase, but also results in some very interesting synergies.

Making the Datábase Concurrent: We start by assuming that we can mark
certain dynamic predicates as concurrent by using a concurrent/1 declaration. The
implication is that these predicates can be updated concurrently and atomically by
different threads. We also assume for simplicity that these predicates will only
contain facts, i.e., they are data/1 predicates in the sense of [6] and Ciao (this
makes them faster and helps global analysis). Finally, we assume that if a concurrent
predicate is called and no matching fact exists at that time in the datábase, then the
calling thread suspends and is resumed only when such a matching fact appears (i.e.,
is asserted by a different thread, instead of failing). With these assumptions, there
is a relationship between the Linda primitives (Table 2, middle column) and the
Prolog assert/retract/call family of builtins in the context of concurrent predicates
(right column). The ñrst three Linda operations, out/read/in, have now clear
counterparts in terms both of information sharing and synchronization. In the
following example:

: - concurrent s t a t e / l .
p : - launch_goal(q), q:- <...produce Resu l t . . .> , !,

state(X), !, asserta(s tate(correct (Resul t))) .
(X = fa i led - > . . . ; . . .) . q:- a s ser ta (s ta te (fa i l ed)) .

p launches predicate q and waits for notiñcation of its ñnal state, which may be a
Result or a failed state (the use of the Prolog cuts will be clariñed further later).
Making the dynamic predicate s t a t e / l be concurrent ensures atomic updates and
the suspensión of the cali to s tate (X) in p.

2That is, as long as the goals are being executed in the same machine (Section 3).

One interesting difference with Linda primitives appears at this point: it is clear
that we may want to be able to backtrack into a cali to a concurrent predicate
(such as the one to state(X) above). The behavior on backtracking of calis to
concurrent predicates is as follows: if an alternative unifying fact exists in the
datábase, then the cali matches with it and proceeds forward again. If no such fact
exists, then execution suspends until one is asserted. This is the natural extensión
of the behavior when the predicate is called the ñrst time, and makes sense in our
concurrent environment where facts of this predicate can be generated by another
thread and may appear at any time. It allows, for example, implementing producer-
consumer relations using simple failure-driven loops. In the following temperature
example a thread accesses a device for making temperature readings, and asserts
these, while a concurrent reader accesses them in a failure driven loop as they
become available.

: - concurrent temp/l .

temperature : - launch_goal(read_temp), produce_temp.

produce_temp:- read_temp:- temp(Temp),
(read_temp_device(Temp) -> (Temp = end ->

assertz(temp(Temp)), t rue
produce_temp ; <.. .work with Temp...>,

; assertz(temp(end))) . f a i l) .

When no more temperature readings are possible, read_temp_device/l fails and
the end token, instead of a a temperature, is stored, which causes the reader to
exit. Conceptually, when backtracking is performed, the next clause pointer moves
downwards in the clauses of the temp/l predicate until the last fact is reached.
Then, the calling thread waits for more facts to appear. Note that assertion is
done using assertz/1 , which adds new clauses at the end of the predicate, so
that they can be seen by the reader waiting for them. If asserta/1 were used,
newly added facts would not be visible, and thus the reader would not wake up and
read the new data available. Also, note that the data produced remains, so that
other readers could process it as well by backtracking over it. For example, assume
the temperature asserted has the time of the reading associated with it. Different
readers can then to consult the temperature at a given time concurrently, suspending
if the temperature for the desired time has not been posted yet. Alternatively, if
the cali to temp (Temp) above is replaced with a cali to retract (temp (Temp)),
then each consumer will eliminate a piece of data which will then not be seen by
the other consumers. This is useful for example for implementing a task scheduler,
where consumers "steal" a task which will then not be performed by others.

The concurrent datábase thus allows representing a changing outside world in
a way that is similar to other recent proposals in computational logic, such as
condition-action rules [18]. A sequence of external states can be represented by a
predicate to which a series of suitably timestamped facts are added monotonically,
as in the temperature sensor example above. Processes can sense this state and
react to it or suspend waiting for a given outside event to happen.

One nice characteristic of the approach, apart from naturally supporting back­
tracking, is that many concurrent programs using shared facts are very similar to
the non-concurrent ones. There is, however, a subtle difference which must be
taken into account: when calling standard, non-concurrent facts with alternatives,
the choicepoint disappears when the last fact is accessed. In the reader the "last
fact" was assumed to be that with the "end" token, but this did not make the choi­
cepoint pushed in by the access to the datábase go away. A failure at a later point
of the reader would cause it to backtrack to this choicepoint, and probably suspend
— which may or may not be desired. Getting around this behavior is possible by
simply putting an explicit cut at the point in which we decide that no more facts

are needed (i.e., the communication channel has been conceptually closed), so that
the dynamic concurrent choicepoint is removed. This is the reason for the cut in
the ñrst example of synchronization: we just wanted to wait for a fact to be present,
and then we did not want to leave the choicepoint lying around.

Closing Concurrent Predicates: There are cases in which we prefer failure
instead of suspensión, if no matching is possible. This can be achieved in two ways.
The ñrst one is using non-blocking (_nb) versions of the retract and cali primitives
(marked + in Table 2), which fail instead of suspending, while still ensuring atomic
accesses and updates. The second, and more interesting one, is explicitly closing
the predicate using c lose_predica te / l . This states that all alternatives for the
predicate have been produced, and any reader backtracking over the last asserted
fact will then fail rather than suspending. The example can now be coded as:

:- concurrent temp/l.
temperature:- launch_goal(read_temp), produce_temp.
produce_temp:- read_temp:-

(read_temp_device(Temp) -> temp(Temp),
assertz(temp(Temp)), <.. .work with Temp...>,
produce_temp f a i l .

; c lose_predicate(temp/l)) . read_temp.

where the cali to temp(Temp) eventually fails after the predicate is closed. This is
useful for example for marking that a stream modeled by a concurrent predicate is
closed: all the threads reading/consuming facts from this predicate will fail upon
the end of the data. For completeness, a symmetrical open_predicate/l cali is
available in order to make a closed predicate behave concurrently again (although
it is arguably best practice not to re-open closed predicates).

Local Concurrent Predicates: New, concurrent predicates can be created dy-
namically by calling the builtin concurrent /1 . The argument to concurrent /1
can be a new predicate. Also, if the argument of the cali to concurrent /1 contains
a variable in the predicate ñame, the system will créate dynamically a new, local
predicate ñame. This allows encapsulating the communication, which is now private
to those threads having access to the variable:

temp:- concurrent(T/1) , launch_goal(read_temp(T)), produce_temp(T).
produce_temp(T):- read_temp(T):-

(read_temp_device(Temp) -> T(Temp),
assertz(T(Temp)), <.. .work with Temp...>,
produce_temp f a i l .

; c lose_predicate(T/ l)) . read_temp(_) .

where we could replace the higher-order syntax T(X) supported by CIAO Prolog
with calis to =. . and ca l l /n (e.g., cali(T,Data)). Note that the functionality at
this point is not unlike that of a port, but with a richer backtracking behavior.

Another way of encapsulating communication stems from an interesting synergy
between the concurrent datábase and the module system. Concurrent predicates

usual, in principie local to the module in which they appear. If they are not
exported, they constitute is a channel which is local to the module and can only
be used by the predicates in it. The module-local datábase thus acts as a local
blackboard. By exporting and reexporting concurrent predicates between modules,
sepárate, private blackboards, can be easily created whose accessibility is restricted
to those importing the corresponding module. This is particularly useful when
several instantiations (objects) are created from a given module (class) - see [23].

Logical View vs. Immediate Update: A ñnal difference between concurrent
predicates and standard dynamic predicates is that the logical view of datábase
updates [20], while convenient for many reasons, is not really appropriate for them.
In fact, if this view were implemented then consumers would not see the facts
produced by sibling producers. Thus, an immediate update view is implemented
for concurrent predicates so that changes are immediately visible to all threads.

a O—g

1H^

fe fe D C

Figure 1: Choicepoints and suspended calis before and after updating clauses

Locks on Atoms/Predicate Ñames: A method for associating semaphores [4]
to atoms / predicate ñames is available. Mimicking those in procedural languages,
a counter is associated with each atom which can be tested or set atomically using
atom_lock_state(+Atom, ?Value). It can be atomically tested and decremented
if its valué is non-zero, or waited on if it is zero, using lock_atom(+Atom), and
incremented atomically using unlock_atom(+Atom). The implementation is very
cheap, avoiding the overkill of simulating semaphores with concurrent predicates,
when only a simple means of synchronization is needed.

Implementation Issues and Performance: Concurrent accesses are made atom-
ic by using internal, user-transparent locks, one per predicate. Every cali to a con­
current predicate creates a dynamic choicepoint with special ñelds. In particular,
its next alternative ñeld points to the next clause to try on backtracking through
an indirect pointer. AU the indirect pointers from different choicepoints leading to
a given clause are linked together into a chain reachable from that clause, so that
any goal updating the predicate can access and relocate all of them atomically if
needed (for example, if the clause is removed). Calis which suspend do not have
their associated choicepoint removed, and the corresponding indirect pointers are
linked in a sepárate suspensión chain (Figure 1, left). When a thread tries to access
its next alternative and no alternative matching clause exists, the thread waits on
changes to that indirect pointer instead of failing. This behavior ultimately depends
on whether the cali was blocking or not, and on whether the predicate was closed or
not at the time. We discuss the interesting case of blocking calis on open predicates.

When a clause is removed, the chain of indirect pointers leading to it is checked:
some of the pointers might be moved forwards in the clause list to the next possibly
matching instance (as dictated by indexing), and in some cases it can be determined
that no matching clause exists. In the latter case, they are linked to the chain of
suspended calis. On the other hand, every time a new clause is appended, the list
of suspended calis is checked, and those which may match the new clause (again,
according to indexing), are made to point to that new clause. This is performed
even if the affected goal is not actively waiting on an update of the clause, but
executing some other code.

Figure 1 depicts a possible state of the datábase before and after some clause
updates take place. On the left, choicepoints A and B point (indirectly) to clause
e l as next clause to try. Choicepoints C and D point to nuil clauses, and they
are either suspended, or they would suspend should they backtrack now. Let us
remove e l and add c3. The thread which adds / removes clauses is in charge of
updating the affected pointers, based on indexing considerations. The cali from A,
which was pointing to e l , does not match neither c2 ñor c3, so it points to the nuil
clause now, and is enqueued in the list of calis to suspend. The cali from B may
match c3 but does not match c2, and its indirect pointer is set accordingly. The
cali from C does not match c3 and so its state does not change. And, finally, the

Primes

5000
10000
15000
20000
25000
30000
35000

Conc

1511
2475
4775
6386
9061
11900
13252

Data

1915
5204
9100
12560
17804
24298
29450

Table 3: Sieve of Erathostenes

Fact spec

p/0

P/l
p/2
p/4
p/8
p/16

P(g/1)
P(g/2)
p(g/4)
p(g/8)
p(g/16)

Memory

1264
1753
1871
2105
2571
3507
1615
1753
1967
2435
3373

bytes/fact

21.57
29.91
31.93
35.92
43.87
59.85
27.56
29.91
33.57
41.86
57.56

bytes/arg

—
8.34
5.18
3.58
2.78
2.39
5.99
4.17
3.00
2.53
2.24

Table 4: Memory usage, 60000 facts

cali from D might match c3, and it is updated to point to this clause.
The cut needs some additional machinery to retain its semantics. Not only the

(dynamic) choicepoints in the scope of a cut should be swept away (which boils down
to updating a pointer), but also the possibly suspended goals corresponding to the
concurrent choicepoints must be removed. This is currently done by traversing part
of the choicepoint stack, following the links to suspended calis, and removing them.

The implementation of concurrent predicates is not trivial, but we argüe that it
is much simpler than implementing variable-based communication that behaves well
on backtracking. Also, it affects only one part of the abstract machine, datábase
access, which is typically well isolated from the rest. In our experience, the changes
to be performed are fairly local. The resulting communication among threads based
on access to the datábase may be slower than communication using shared variables,
although, depending on the implementation, reading can be faster. However, note
that in this design we are not primarily interested in speed, but rather in flexibility
and robustness, for which we believe the proposed solution is quite appealing. Also,
in the proposed implementation the execution speed of sequential code which makes
no use of concurrency is not affected in any way, which is not as easy with a shared-
variable approach. Furthermore, the fact that concurrent predicates should not
meet the logical view of datábase updates [20], eliminates the need to check whether
a fact is alive or not within the time window of a cali, which makes, in some cases,
the access and modiñcation of concurrent predicates up to more than twice as fast
as that of standard dynamic predicates.

As an example of the impact on speed of the immediate datábase updates,
Table 3 shows timings (in milliseconds) for a datábase implementation of the well-
known Sieve of Erathostenes, using a failure loop to both traverse the table of
live elements and to remove múltiples. The "Data" column corresponds to the
versión which uses the CIAO data/1 declaration (which is faster than dynamic,
and specialized for facts). The "Conc" row uses the concurrent/1 declaration.
Clause liveness (i.e., whether a given clause should or not be seen by a given cali)
must be tested quite often in this case, which accounts for the performance jump.
On the other hand, other patterns of accesses to datábase perform this liveness test
quite sparingly (if at all), and beneñt less from the immediate update, suffering
instead from the mandatory lock of the predicates being accessed. However, the
factors seem to compénsate even in the worst cases since we have not been able to
ñnd noticeable slowdowns.

With respect to memory consumption, Table 4 lists average memory usage per
fact and per argument for the CIAO Prolog implementation in a benchmark which
asserts 60000 facts to the datábase. A fact p with different arguments (integers)

1 2 4 6 12

4327 2823 1687 1400 1625

Table 5: Adding and removing facts from a datábase, 10 processors available

:- concurrent fork/l.

philosophers:-
atom_lock_state(room, 0),
launch_goal(philosopher(1))
launch_goal(philosopher(2))
launch_goal(philosopher(3))
launch_goal(philosopher(4))
launch_goal(philosopher(5))
atom_lock_state(room, 4).

eat:- .
think:-

fork(l). fork(2).
fork(3). fork(4).

philosopher(ForkLeft):-

ForkRight is (ForkLeft mod 5) + 1,
think,
lock_atom(room),
retract(fork(ForkLeft)),
retract(fork(ForkRight)), !,
eat,

assertz(fork(ForkLeft)),
assertz(fork(ForkRight)),
unlock_atom(room),
philosopher(ForkLeft).

fork(5).

Figure 2: Code for the Five Dining Philosophers

was asserted, as well as a fact with a single argument, containing a functor with
different numbers of arguments (integers again). It is encouraging that these figures
are well behaved, as we may expect large numbers of facts asserted in the datábase.

Another interesting issue is the impact of contention in concurrent predicate ac­
cesses. Our implementation ensures that concurrent accesses to different predicates
will not interfere with each other: Table 5 shows speeds for the access and removal
of a total of 10000 facts using different numbers of threads. Each thread accesses
a different predicate ñame, which results in speedups until the number of threads
is greater than the number of available processors, when other contention factors
appear. However, there is obviously some interference in the concurrent accesses to
the same predicate.

3 Some Applications and Examples
We now illustrate the use of the proposed concurrency scheme with some examples.

The Five Dining Philosophers: Figure 2 presents the code for the problem of
the Five Dining Philosophers, with the aim of showing how a standard solution can
be adapted to the concurrent datábase approach. The code mimics the solution
presented in [4]. Each philosopher is modeled as a concurrent goal which receives
its number as an argument. Fork-related actions are modeled by accesses to a
concurrent predicate fork/l . A global semaphore, associated with the atom room,
controls the máximum number of philosophers in the dining room, and also makes
sure that all philosophers start at once.3 No attempt is made to record when a
philosopher is thinking or eating, but this can be done by asserting a concurrent
predicate recording what every philosopher is doing at each time.

A Skeleton for a Server: A server is a perpetual process which receives requests
from other programs (clients) and attends them. Typically, the server should accept
more queries while previous ones are being serviced, since otherwise the service
would stop temporarily. Therefore, servers usually are multithreaded, and children

3Actually, this is not strictly needed: letting philosophers think and eat as they become alive
does not change the behavior of the algorithm, but this decisión illustrates the use of atom-based
locks for global synchronization.

No handle, local
Handle, local
Remotely concurrent
Locally concurrent, remote execution
Remote handle, remotely concurrent
Local handle, remote execution

Start thread

. . . , G &, . . .
. . . , G &> H, . . .

(G &) 0 S
(G 0 S) &

(G &> H) 0 S
(G 0 S) &> H

Gather bindings

—
H <&
—
—

(H <&) © S
H <&

Table 6: Starting concurrent / distributed goals and waiting for bindings.

fork from the parent in order to handle individual requests. A simple skeleton for
a server is shown in Figure 3. The main thread waits for a request and, when one
arrives, launches a child thread to process it. The server itself is started within
the context of a catch/throw construction which will exit the execution should the
server receive any external signal.4

Possible internal errors of the server can
be dealt with by the s e r v i c e / 1 predi- main:- catch(server, _AnyError, halt) .
cate itself, since each one of its invoca- server: -
tions is detached from the main thread. wait_f or_request (Query),
The shared datábase provides a com- launch_goal(service(Query)),
munication means in case the children server.
have to report any data to the dispatcher.

Figure 3: A skeleton for a server
Implementing Higher-Level Concurrency Primitives: The interface offered
by the primitives related to threads, locks, and datábase is sufficient for building
many different concurrent programs, but it is somewhat low-level. For example,
the number of simultaneous threads has to be controlled explicitly as part of the
application code. Similarly, waiting for completion of the computation of a thread
and accessing the bindings created by it need the execution of a (ñxed) sequence of
steps. Also, implementing backtracking over concurrent goals requires some often
repeated coding sequences. Such sequences are clear candidates to be abstracted as
higher-level constructs.

Using the basic primitives, we have implemented the set of concurrency and
distributed execution constructs proposed in [14, 7], some examples of which are
shown in table 6. Remote goals are executed in a server S, speciñed with the
placement operator @/2 (so that, for example, G 0 S means "execute G at S, wait
for its completion, and import the bindings performed"). Handles (H) allow waiting
for the (remote) completion of the goal, and gathering the bindings. Lack of space
prevenís us from including the actual implementation code, but it is easy to port
the implementations given in [14, 7]. Using concurrent predicates instead of the
external blackboard used there results in a simpliñcation of the code. Signiñcant
simpliñcations also stem from the fact that with the proposed primitives goals which
have produced a solution can be left frozen and then asked for additional solutions.
Thus, concurrent and distributed goals now need not be called in the context of
f indall .

As a simple example, we discuss the implementation of a versión of the tra-
ditional &-Prolog &/2 operator, which, placed instead of a comma, speciñes that
the two adjacent goals are to be executed in parallel and independently: GoalA &
GoalB. This operator was implemented at a very low-level (i.e., modifying the un-
derlying abstract machine) in the &-Prolog system [16] and in other systems [11],
which resulted in very good performance, but at the cost of a non-trivial amount of
implementation work. Figure 4 shows the code for our source-level implementation

4Exceptions in CIAO Prolog are installed on a per-thread basis, so every concurrent goal can
have its own exception handlers without altering the behavior of the other threads.

:- concurrent goal_to_execute/2.
:- concurrent solution/3.

GoalA & GoalB :- new_id(IdA), assertz(goal_to_execute(IdA, GoalA)),
call_with_result(GoalB, ResultB),
(retract_nb(goal_to_execute(IdA, GoalA)) ->

call_with_result(GoalA, ResultA)
; repeat, perform_some_other_work(IdA, GoalA, ResultA), !) ,
ResultA = success, ResultB = success.

perform_some_other_work(Id, Sol, Res):- retract_nb(solution(Id, Sol, Res)),
perform_some_other_work(_Id, _Sols, _Result):-

retract_nb(goal_to_execute(Id, Goal)), !,
call_with_result(Goal, Result),
assertz(solution(Id, Goal, Result)),

fail.

scheduler : - re t rac t (goa l_ to_execute (Id , Goal)) ,
ca l l_with_resul t (Goal , Resu l t) ,
a s s e r t z (s o l u t i o n (I d , Goal, R e s u l t)) ,
f a i l .

ca l l_wi th_resu l t (Goal, success) : - ca l l (Goa l) , !.
cal l_with_resul t (_Goal , f a i l u r e) .

Figure 4: Code for an and-parallel scheduler for deterministic goals

which assumes that the goals to be executed are deterministic. Extending it for non-
deterministic goals is easy, but makes the code too long for our space limitations.
However, we will compare performance results for both the simple implementation
and the one which fully supports backtracking.

In this implementation, the parallel operator &/2 assigns a unique identiñer to
every parallel conjunction. One of the parallel goals is executed locally, while the
other is stored in the datábase, together with its identiñer, waiting for a scheduler
to pick it up. Such a scheduler is implemented by the predicate sch.eduler/0.
To use N processors of a parallel machine, N — 1 threads should be created, all
running initially sch.eduler/0. As soon as one goal is posted to the datábase, one
of the threads running the scheduler grabs and executes it, leaves the solution in
the datábase, and fails in order to wait for another goal. If no free schedulers are
available, the main thread may ñnd, upon completion of the local goal, that the goal
stored in the datábase is still there. Then, this local thread picks it up and executes
it locally. On the other hand, if the solution waited for is not in the datábase, and
the goal left there from the conjunction has been taken, the main thread switches
personality and tries to execute any other goals present in the datábase while also
checking whether the solution it requires for the original goal has been posted or
not.

This very naive implementation cannot, of course, achieve the same performance
as &-Prolog (and this is obviously not the objective of the exercise). However, it
is interesting that a correct selection of the granularity level [21] does produce
speedups due to parallel execution on at least some benchmarks. Table 7 shows
times (in milliseconds) for the parallel execution of the doubly recursive Fibonacci
benchmark (computing the 2Ath Fibonacci number) using the scheduler for deter­
ministic goals. Each column is labelled with a different granularity level, Le., the
column labeled "17" corresponds to a cali which stops spawning goals from the cali
to compute the 17í/l Fibonacci number downwards. Table 8 shows results for the
same benchmark using a scheduler which supports non-deterministic goals. The

1
3
5
7
9

17

1289
463
287
219
178

18

1253
455
290
220
178

19

1253
480
312
210
197

20

1287
491
312
244
220

21

1266
524
376
309
213

22

1264
623
319
318
330

23

1285
533
510
504
519

24

1305
820
818
823
836

25

1309
1309
1309
1309
1309

Table 7: Deterministic and-parallel scheduler: granularity against no. of agents

1
3
5
7
9

17

1621

571
367
286
246

18

1555

570
363
290
229

19

1530

570
380
266
247

20

1549

588
392
299
256

21

1541

611
453
378
262

22

1582

746
411
393
403

23

1584

635
617
628
633

24

1613
1062
1029
1081
1040

25

1325
1332
1332
1332
1332

Table 8: Non deterministic and-parallel scheduler: granularity against no. of agents

lower the granularity level, the more goals are executed in parallel, and the smaller
they are. The speedups shown approach linearity when execution is performed at a
large enough granularity level. As expected, execution also speeds up as more paral­
lel goals are available, until a turning point is reached (at the level of granularity of
17). At this level of granularity the cost of accessing the datábase for copying goals
and recovering the solutions exceeds the speedup obtained from parallel execution.
The nondeterministic scheduler, additionally, adds an overhead to the execution,
which for this benchmark case ranges from 16% to 30%, with an isolated peak of
39%—and therefore, has a higher granularity, with the "turning point" in 18.

References
[1] Hassan Ait-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction. MIT Press,

1991.

[2] K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor­
mance. In 1990 North American Conference on Logic Programming, pages 757-776.
MIT Press, October 1990.

[3] J. Armstrong, R. Virding, C. Wistrom, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall, 1996.

[4] M. Ben-Ari. Principies of Concurrent Programming. Prentice Hall International,
1982.

[5] A. Brogi and P. Ciancarini. The Concurrent Language, Shared Prolog. ACM Trans-
actions on Programming Languages and Systems, 13(1):99-123, 1991.

[6] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard
Prolog Programs. In European Symposium on Programming, number 1058 in LNCS,
pages 108-124, Sweden, April 1996. Springer-Verlag.

[7] D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In Proc. of the AGP'96 Joint Conference on Declar-
ative Programming, pages 67-78, July 1996.

[8] N. Carreiro and D. Gelernter. Linda in Context. Comm. of the ACM, 32(4), 1989.

[9] K. De Bosschere. Multi-Prolog, Another Approach for Parallelizing Prolog. In Pro-
ceedings of Parallel Computing, pages 443-448. Elsevier, North Holland, 1989.

[10] J. Eskilson and M. Carlsson. SICStus MT—A Multithreaded Execution Environment
for SICStus Prolog. In PLILP'98, volume 1490 of LNCS. Springer, September 1998.

[11] G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In International Conference on Logic
Programming, pages 93-110. MIT Press, June 1994.

[12] S. Haridi. A Tutorial of Oz 2.0. Technical report, SICS, 1996.

[13] M. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Management
in AND-Parallel Execution of Logic Programs. In Fourth International Conference on
Logic Programming, pages 556-575. University of Melbourne, MIT Press, May 1987.

[14] M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in the
Implementation of Concurrent and Parallel Logic Programming Systems. In ICLP'95.
MIT Press, June 1995.

[15] M. Hermenegildo and The CLIP Group. Some Methodological Issues in the Design
of CIAO - A Generic, Parallel Concurrent Constraint System. In Evan Tick, editor,
Proc. of the 1994 ICOT/NSF Workshop on Parallel and Concurrent Programming.
U. of Oregon, March 1994.

[16] M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

[17] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.
In ILPS'91, pages 167-183. MIT Press, 1991.

[18] R. A. Kowalski. Logic Programming with Integrity Constraints. In Proceedings of
JELIA, pages 301-302, 1996.

[19] E. Lamma, P. Mello, C. Stefanelli, and P. Van Hentenryck. Improving Distributed
Unification through Type Analysis. In Proceedings of Euro-Par 1997, volume 1300 of
LNCS, pages 1181-1190. Springer-Verlag, 1997.

[20] T. G. Lindholm and R. A. O'Keefe. Efñcient Implementation of a Defensible Seman-
tics for Dynamic Prolog Code. In Jean-Louis Lassez, editor, JICSLP'87. The MIT
Press, 1987.

[21] P. López-García, M. Hermenegildo, and S.K. Debray. A Methodology for Granularity
Based Control of Parallelism in Logic Programs. Journal of Symbolic Computation,
Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

[22] E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing,
7(2,3), 1990.

[23] A. Pineda and M. Hermenegildo. O'Ciao: An Object Oriented Programming Model
for (Ciao) Prolog. Technical Report CLIP 5/99.0, Facultad de Informática, UPM,
July 1999.

[24] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog Sys­
tem that Transparently Exploits both And- and Or-parallelism. In Proc. 3rd. ACM
SIGPLAN PPoPP Symposium. ACM, April 1990.

[25] E.Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21(3):412-510, September 1989.

[26] K. Shen and M. Hermenegildo. Flexible Scheduling for Non-Deterministic, And-
parallel Execution of Logic Programs. In Proceedings of EuroPar'96, number 1124 in
LNCS, pages 635-640. Springer-Verlag, August 1996.

[27] Swedish Institute of Computer Science, P.O. Box 1263, S-16313 Spanga, Sweden.
Sicstus Prolog V3.0 User's Manual, 1995.

[28] P. Szeredi, K. Molnár, and R. Scott. Serving Múltiple HTML Clients from a Prolog
Application. In Proc- of the Ist Workshop on Logic Programming Tools for INTER­
NET Applications, JICSLP"96, Bonn, September 1996.

[29] Paul Tarau. Jinni: Intelligent Mobile Agent Programming at the Intersection of Java
and Prolog. In PAAM'9. The Practical Applications Company, 1999.

[30] E. Tick. The Deevolution of Concurrent Logic Programming Languages. The Journal
of Logic Programming, 23(l-3):89-125, 1995.

[31] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI
International, 1983.

