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Abstract 

Concurrency in Logic Programming has received much attention in the past. 
One problem with many proposals, when applied to Prolog, is that they in-
volve large modifications to the standard implementations, and/or the commu-
nication and synchronization facilities provided do not fit as naturally within 
the language model as we feel is possible. In this paper we propose a new 
mechanism for implementing synchronization and communication for concur­
rency, based on atomic accesses to designated facts in the (shared) datábase. 
We argüe that this model is comparatively easy to implement and harmo-
nizes better than previous proposals within the Prolog control model and 
standard set of built-ins. We show how in the proposed model it is easy 
to express classical concurrency algorithms and to subsume other mechanisms 
such as Linda, variable-based communication, or classical parallelism-oriented 
primitives. We also report on an implementation of the model and provide 
performance and resource consumption data. 

1 Introduction 

Concurrency has been studied in the context of a wide range of programming 
paradigms, and many different mechanisms have been devised for expressing con­
current computations in procedural programming languages [4]. In this paper we 
are interested in developing a model of concurrency for Prolog. In fact, concurrency 
has also received much attention in the context of logic languages. However, most 
previous proposals have the drawback tha t they either involve large modifications to 
s tandard Prolog implementations, and/or the communication and synchronization 
facilities provided do not fit as naturally within the Prolog language model as we 
feel is possible. 

One approach to concurrency is represented by the family of concurrent logic 
languages, which includes PARLOG, Concurrent Prolog, Guarded Horn Clauses, 
Janus, and others (see [25, 30] and their references). These languages share a num-
ber of characteristics. First, concurrency is implicit, i.e., every literal in a clause 
body represents a concurrent process. While this can be attractive in principie, it 
can cause an unnecessarily high number of processes to be generated, and can also 
make it difficult t o write sequential code. Consequently, we feel tha t the spawning 
of a concurrent computation should preferably be done via an explicit language 
primitive (or, conversely, t ha t the language should have an explicit operator for se­
quential composition of processes) [15, 7]. While there is certainly still much debate 
on this issue, it is noteworthy tha t designs which started out as implicitly concur­
rent languages, such as Oz [12], have opted for the explicit concurrency approach 
in more recent versions. 
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Another common characteristic of the family of concurrent logic languages is 
that communication and synchronization between processes is performed by means 
of shared variables. This initially extremely attractive model has turned out to suffer 
from a number drawbacks in practice. The most important one is that backtracking 
has been found very difficult to implement. As a result, most of these languages 
have simply eliminated backtracking altogether. However, we feel that backtracking 
is an integral part of the Prolog control model, and that eliminating it is therefore 
not an option in our context. 

A more recent family of languages, including Andorra-I [24] and AKL [17] di-
rectly addresses the backtracking problem. In Andorra-I, choices are suspended 
until a deterministic path can be taken. AKL allows encapsulated search while, 
at the same time, communicating deterministic bindings outside such encapsulated 
operations. While these very interesting proposals solve to some extent the back­
tracking problem, they still have what we perceive as drawbacks in our context: 
apart from supporting the implicit concurrency approach, they require quite spe-
cialized implementation technology, particularly with regard to the representation 
of variables (which sometimes also results in a slowdown of sequential execution). 
As a result, they require what would be major changes to standard Prolog abstract 
machines, which are almost invariably based on the WAM [1, 31]. Also, the oper-
ational semantics of these models (specially in the case of AKL) are far removed 
from that of Prolog and it does not appear straightforward to adapt the related 
ideas to Prolog without affecting the language in a signiñcant way. 

Another interesting approach to concurrency is to use the capabilities of parallel 
Prolog implementations such as &-Prolog [16], Aurora [22], MUSE [2], ACE [11], 
etc. These systems proved early on that it is possible to construct very efficient 
multi-worker (i.e., multi-thread) Prolog engines. While these systems were designed 
with parallelism in mind, they contain many useful basic building blocks for a 
concurrent system. In fact, some of these engines have been used for some time now 
to implement concurrent applications (e.g., Aurora in [28]) or even fully concurrent 
and distributed Prolog systems (e.g., &-Prolog in [7, 14], which uses explicit creation 
of threads and a combination of a blackboard and marked shared variables for 
communication). Our approach builds on these experiences, but tries to improve on 
them in several áreas. First, from the engine point of view, although these systems 
were all designed as extensions of the WAM, we feel that for practical purposes a 
model that requires smaller modiñcations to the WAM is useful. Furthermore, we 
are interested in ñnding better solutions to the communication and synchronization 
among threads. 

The difficulties associated with shared variable-based communication have led 
to the development of other communication and synchronization primitives. One of 
them is ports [17], used for example by MT-SICStus [10]. MT-SICStus implements a 
relatively simple design, some aspects of which are derived from Erlang [3]. Threads 
can be spawned (with an initial goal) and k i l l ed . They can also send and receive 
fresh copies of terms, using a single port per thread. This allows creating a simple 
goal server which executes whichever goal it receives. This is certainly a quite useful 
model, but we feel that it can be improved upon: ports (similarly to streams) do 
not have a clean interaction with backtracking (what is sent down a port is not put 
back on backtracking), the overall model is some what restrictive, and the explicit 
codiñcation of the above mentioned server seems to be needed for most applications. 
In Oz 2.0 [12] threads are started using an explicit construction which returns a valué 
as if it were an expression. Message passing and synchronization use (in a similar 
way to AKL) shared variables and also an abstract data type Port, which can be 
shared among threads and passed to other functions/procedures, perhaps as parts 
of other data structures. A shared stack allows fast communication among threads. 
Exceptions can be injected into other threads. A very interesting characteristic of Oz 



is the caching and coherence mechanism used in concurrent, distributed execution. 
An alternative to ports is to use Linda blackboards [8]. Linda is a simple but 

powerful concurrency paradigm which focuses on (and uniñes) the mechanisms for 
communication and synchronization. The Linda model assumes a shared memory 
área (the blackboard) where tupies are written and read (using pattern matching) 
by concurrent processes. Writing and reading are performed through a number of 
primitives and are atomic actions. Reading may suspend if the requested tupie 
is not present in the blackboard, this being the main synchronization mechanism. 
This approach has been made available either natively or as librarles in several 
logic programming systems (e.g., [5, 27, 7, 14, 29, 9]). A practical example of 
this approach is the BinProlog-based Jinni system [29]. Jinni has a relatively rich 
set of primitives for creating threads (called engines), also providing them with a 
starting goal and means for recovering the answers returned. Obtaining múltiple 
answers from an engine is possible by asking the engine, until this cali finally fails. 
Coordination among engines is achieved using a Linda-style set of primitives, which 
access and modify a shared blackboard. These operations allow writing and reading 
(with pattern matching) from the blackboard, and gathering in a list and at once 
all the tupies which match a pattern. A form of constraint-based synchronization 
is also available, as well as the possibility of migrating computations to remote 
places. Jinni is quite attractive, but still the main means for communication, the 
blackboard, is an external object to the Prolog model. 

Although the approaches proposed to date are undoubtedly interesting and use-
ful, we feel that they either do not provide all the features we perceive as most inter­
esting in a practical concurrent Prolog system or they require complex implementa-
tions. The main novelty of the model we present in this paper is that both commu­
nication and synchronization are based on concurrent, atomic accesses to the shared 
Prolog datábase, which we argüe can be used in the same way as a blackboard. We 
will show that, apart from the conceptual simpliñcation, this choice creates very 
useful synergies in the overall language design, while remaining reasonably easy to 
implement. In our approach, an extensión of the assert /retract family of Pro­
log calis allows suspensión on calis and redos. We show that these primitives, when 
combined with the Prolog module system, have the same or richer functionality than 
blackboard-based systems, while ñtting well within the Prolog model: they offer full 
uniñcation instead of pattern matching on tupies and provide a clean interaction 
with Prolog control, naturally supporting backtracking. The model, as described 
in this paper, is available in the current distribution of CIAO (a next-generation, 
public domain Prolog system - see http://www.clip.dia.fi.upm.es/Software). 

2 A First Level Interface 

As mentioned before, the signiñcant effort realized by the logic programming com-
munity in building parallel Prolog systems has proven that it is possible to construct 
sophisticated and very efficient multi-worker Prolog engines. However, it is also true 
that the inherent complication of these systems has prevented their availability as 
part of mainstream Prolog systems (with the possible exception of SICStus/MUSE, 
and, to a more limited extent, &-Prolog, Aurora, Andorra-I, and ACE). One of 
our main objectives in the design of the proposed concurrency model has been to 
simplify the low-level implementation, i.e., the modiñcations to the Prolog engine 
required, in order to make it as easy as possible to incorpórate into an existing 
WAM-based Prolog system. Such simplicity should also result in added robustness. 

With this in mind, we start by deñning a set of basic building blocks for concur­
rency which we argüe can be efficiently implemented with small effort. We will then 
stack higher-level functionality as abstractions over these basic building blocks. 

http://www.clip.dia.fi.upm.es/Software


2.1 Primitives for Creating Threads 
A thread corresponds conceptually to an independent Prolog evaluator, capable of 
executing a Prolog goal to completion in a local environment, Le., unaffected by 
other threads. It is related to the notion of agent [16] or worker [22, 2] used in 
parallel logic programming systems. 

Basic Thread Creation and Management: Thread creation is performed 
by calling launch_goal/2, which is similar in spirit to the &/1 operators of &-
Prolog, the spawn of MT-SICStus, or the new_engine of BinProlog. A cali to 
launch_goal(Goal, GoalHandle) ñrst copies Goal and its arguments to the ad-
dress space of a new thread and returns a handle in GoalHandle which allows the 
creating thread to have (restricted) control of and access to the state of the created 
thread. Execution of Goal then proceeds in the new thread within an independent 
environment. An exception may be raised if the spawning itself is not successful, 
but otherwise no further communication or synchronization with the caller occurs 
until a cali to join_goal (GoalHandle) is made, unless explicitly programmed using 
the synchronization and communication primitives (Section 2.2). 

A cali to join_goal(GoalHandle) waits for the success or failure of the goal 
corresponding to GoalHandle. If a solution is found by the concurrent goal, this 
goal can at a later time be forced to backtrack and produce another solution (or fail) 
using backtrack_goal(GoalHandle). When no more solutions are needed from a 
given goal, the builtin release_goal(GoalHandle) must be called to reléase the 
corresponding thread. This also frees the memory áreas used during the execution 
of the goal, and makes them available for other goals. 

A number of specializations of launch_goal/2 are useful in practice. A sim-
pliñed versión launch_goal(Goal) causes Goal to be executed to completion (ñrst 
solution or failure) in a new thread, which (conceptually) then dies silently. This 
behavior is useful when the created thread is to run completely detached from its 
parent, or when all the communication is performed using the communication / 
synchronization primitives (Section 2.2). There are also other primitives, such as 
kill_goal(GoalHandle), which kills the thread executing that goal and releases 
the memory áreas taken up by it, which are useful in practice to handle exceptions 
and recover from errors. 

Implementation Issues and Performance: The implementation requires the 
Prolog engine to be reentrant, Le., several invocations of the engine code must be 
able to proceed concurrently with sepárate states. The modiñcations required are 
well understood from the parallel Prolog implementation work (we follow [16]). 

A concurrent goal is launched by copying it with fresh, new variables, to the 
storage áreas of a sepárate engine, which has its own working storage (stack set1) 
and attaching a thread (agent) to this stack set. The code área is shared and vis­
ible by all engines. Goal copying ensures that execution is completely local to the 
receiving WAM. This avoids many complications related to the concurrent bind-
ing and unbinding (on backtracking) of shared variables, since bindings/trailing, 
backtracking, and garbage collection are always local to a WAM, and thus need no 
changes with respect to the original, single-threaded implementation. 

An important issue is how to handle goals which are suspended (e.g., are waiting 
at a join, or have executed other primitives which may cause suspensión, to be 
described later) and goals which have returned a solution but are waiting to be 
joined. This issue was studied in [13, 26]. There are two basic solutions: one is 
to freeze the corresponding stack set, which then cannot be used until the goal 
is resumed. The same occurs with a stack set containing the execution of a goal 
which has produced a solution but has pending alternatives. When this stack set 

-'-The memory áreas used by a WAM, which are usually managed using a stack policy. 



Thread creation 
2.03 ms / 702 LI 

Engine coupling 
3.16 ms / 1091 LI 

Engine creation 
10.3 ms / 3579 LI 

Table 1: Proñle of engine and thread creation (average for 800 threads). 

is asked for another alternative a thread attaches to it and forces backtracking. 
This approach has the advantage of great simplicity at the cost of some memory 
consumption: it causes memory áreas of the WAM (the upper parts of frozen stack 
sets) to be unused, since a new WAM is created for every new goal if the other WAMs 
are frozen and cannot be reused. WAMs are reused when a goal detaches after 
completion or when they are explicitly freed via a cali to r e l ease^oa l /1 , in which 
case they are left empty and ready to execute another goal. The alternative is to 
reuse frozen stacks using markers to sepárate executions corresponding to different 
concurrent goals [13, 26]. This can be more efficient in memory consumption, but 
is also more complicated to implement. We have implemented an intermedíate 
approach which is possible if the stacks in the engine can be resized dynamically. 
We start with very small stacks which are expanded automatically as needed. This 
has allowed us to run quite large benchmarks with a considerable number of threads 
without running into memory exhaustion problems. It is also possible to shrink the 
stacks upon goal success, so that no memory is wasted in exchange for a small 
overhead. This is planned for future versions. 

For our experiments we implemented the proposed primitives in the CIAO Pro­
log engine (essentially a simpliñed versión of the &-Prolog engine, itself an inde-
pendent evolution from SICStus 0.5-0.7, and whose performance is comparable to 
current SICStus versions running emulated code). We have used a minimal set of 
the POSIX thread primitives, in the hope of abstracting away the quite different 
management of threads provided in different operating systems, and to favor port-
ing among UNIX flavors. All the experiments reported in this paper have been 
run on a SparcCenter 2000, with 10 55MHz processors, Solaris 2.5, CIAO-Prolog 
0.9p75. All the measurements have been made using walltime clock. 

Table 1 provides figures for several operations involving threads. Since the 
overhead per thread seems to remain fairly constant with the number of threads 
used, we show the average behavior for 800 (simultaneous) threads. Measure­
ments correspond to the Prolog view of the execution: they reflect the time from 
a launch._goal(Goal) is issued, to the time Goal is started. Times are given in 
ms. and, to abstract away from the processor speed, in "number of naive-reverse 
Logical Inferences" (at the ratio of 345 logical inferences per millisecond, the result 
given by nrev in the machine used). Although these numbers depend heavily on 
the implementation of O.S. primitives, we feel that providing them is interesting, 
since they are real indications of the cost of thread management. 

The column labeled "Thread creation" reflects the time needed to start a thread, 
including the time used in copying the goal. The column labelled "Engine coupling" 
adds the time needed to lócate an already created, free WAM, and to attach to it, 
and includes the initialization of the WAM registers. The column "Engine creation" 
takes into account the time used in actually creating a new engine (i.e., memory 
áreas) and attaching to it. The last one is, as expected, larger, and this supports the 
idea of not disposing of the engines which are not being used. These figures are also 
useful in order to determine the threshold which should be used to decide whether 
execution should be sequential or parallel, based on granularity considerations [21]. 
Regarding memory consumption, the addition of thread support increased only very 
marginally the memory space needed per WAM. 

A Note on Avoiding the Copy of the Calling Goal: Copying goals on launch, 
despite its advantages, may be very expensive. We support an additional set of 



Operation 
Put tupie 
Wait, read tupie 
Wait, read, delete tupie 
Read tupie or fail 
Read and delete or fail 
No more tupies 
(More tupies may appear) 

Linda 
out 

read 
in 

read_noblock 
imioblock 

— 
— 

concurrent/1 Facts 
asserta /1 , assertz /1 

c a l l / 1 , simple cali 
retract /1 
call_nb/l (+) 

retractJEib/1 (+) 
close_predicate/l 
(open_predicate/l) 

Table 2: Comparing Linda primitives and database-related Prolog primitives 

primitives which perform sharing of arguments instead of copying.2 To simplify 
the implementation and avoid a performance impact on sequential execution, con-
current accesses to the shared variables are not protected. The programmer has 
to ensure correct, locked accesses to them, including the effects of backtracking in 
other agents. 

More complex management of variables can be built on top of these primitives 
by using, for example, attributed variables for automatic locking and publication 
of deterministic bindings, with techniques similar to those in [14], and incremental, 
on demand copying of goal arguments, as shown in [7, 19]. 

2.2 Synchronization and Communication Primitives 

For the reasons argued previously, in this design we would like to use communi­
cation and synchronization primitives simpler to implement than those based on 
shared-variable instantiation. The use of the dynamic datábase that we propose 
as a concurrent shared repository of terms for communication and synchronization 
requires some (local) modiñcations to the semantics of the accesses to the dynamic 
datábase, but also results in some very interesting synergies. 

Making the Datábase Concurrent: We start by assuming that we can mark 
certain dynamic predicates as concurrent by using a concurrent/1 declaration. The 
implication is that these predicates can be updated concurrently and atomically by 
different threads. We also assume for simplicity that these predicates will only 
contain facts, i.e., they are data/1 predicates in the sense of [6] and Ciao (this 
makes them faster and helps global analysis). Finally, we assume that if a concurrent 
predicate is called and no matching fact exists at that time in the datábase, then the 
calling thread suspends and is resumed only when such a matching fact appears (i.e., 
is asserted by a different thread, instead of failing). With these assumptions, there 
is a relationship between the Linda primitives (Table 2, middle column) and the 
Prolog assert/retract/call family of builtins in the context of concurrent predicates 
(right column). The ñrst three Linda operations, out/read/in, have now clear 
counterparts in terms both of information sharing and synchronization. In the 
following example: 

: - concurrent s t a t e / l . 
p : - launch_goal(q), q:- <...produce Resu l t . . .> , !, 

state(X), !, asserta(s tate(correct (Resul t ) ) ) . 
(X = fa i led - > . . . ; . . . ) . q:- a s ser ta ( s ta te ( fa i l ed ) ) . 

p launches predicate q and waits for notiñcation of its ñnal state, which may be a 
Result or a failed state (the use of the Prolog cuts will be clariñed further later). 
Making the dynamic predicate s t a t e / l be concurrent ensures atomic updates and 
the suspensión of the cali to s tate (X) in p. 

2That is, as long as the goals are being executed in the same machine (Section 3). 



One interesting difference with Linda primitives appears at this point: it is clear 
that we may want to be able to backtrack into a cali to a concurrent predicate 
(such as the one to state(X) above). The behavior on backtracking of calis to 
concurrent predicates is as follows: if an alternative unifying fact exists in the 
datábase, then the cali matches with it and proceeds forward again. If no such fact 
exists, then execution suspends until one is asserted. This is the natural extensión 
of the behavior when the predicate is called the ñrst time, and makes sense in our 
concurrent environment where facts of this predicate can be generated by another 
thread and may appear at any time. It allows, for example, implementing producer-
consumer relations using simple failure-driven loops. In the following temperature 
example a thread accesses a device for making temperature readings, and asserts 
these, while a concurrent reader accesses them in a failure driven loop as they 
become available. 

: - concurrent temp/l . 

temperature : - launch_goal(read_temp), produce_temp. 

produce_temp:- read_temp:- temp(Temp), 
( read_temp_device(Temp) -> ( Temp = end -> 

assertz(temp(Temp)), t rue 
produce_temp ; <.. .work with Temp...>, 

; assertz(temp(end)) ) . f a i l ) . 

When no more temperature readings are possible, read_temp_device/l fails and 
the end token, instead of a a temperature, is stored, which causes the reader to 
exit. Conceptually, when backtracking is performed, the next clause pointer moves 
downwards in the clauses of the temp/l predicate until the last fact is reached. 
Then, the calling thread waits for more facts to appear. Note that assertion is 
done using assertz/1 , which adds new clauses at the end of the predicate, so 
that they can be seen by the reader waiting for them. If asserta/1 were used, 
newly added facts would not be visible, and thus the reader would not wake up and 
read the new data available. Also, note that the data produced remains, so that 
other readers could process it as well by backtracking over it. For example, assume 
the temperature asserted has the time of the reading associated with it. Different 
readers can then to consult the temperature at a given time concurrently, suspending 
if the temperature for the desired time has not been posted yet. Alternatively, if 
the cali to temp (Temp) above is replaced with a cali to retract (temp (Temp)), 
then each consumer will eliminate a piece of data which will then not be seen by 
the other consumers. This is useful for example for implementing a task scheduler, 
where consumers "steal" a task which will then not be performed by others. 

The concurrent datábase thus allows representing a changing outside world in 
a way that is similar to other recent proposals in computational logic, such as 
condition-action rules [18]. A sequence of external states can be represented by a 
predicate to which a series of suitably timestamped facts are added monotonically, 
as in the temperature sensor example above. Processes can sense this state and 
react to it or suspend waiting for a given outside event to happen. 

One nice characteristic of the approach, apart from naturally supporting back­
tracking, is that many concurrent programs using shared facts are very similar to 
the non-concurrent ones. There is, however, a subtle difference which must be 
taken into account: when calling standard, non-concurrent facts with alternatives, 
the choicepoint disappears when the last fact is accessed. In the reader the "last 
fact" was assumed to be that with the "end" token, but this did not make the choi­
cepoint pushed in by the access to the datábase go away. A failure at a later point 
of the reader would cause it to backtrack to this choicepoint, and probably suspend 
— which may or may not be desired. Getting around this behavior is possible by 
simply putting an explicit cut at the point in which we decide that no more facts 



are needed (i.e., the communication channel has been conceptually closed), so that 
the dynamic concurrent choicepoint is removed. This is the reason for the cut in 
the ñrst example of synchronization: we just wanted to wait for a fact to be present, 
and then we did not want to leave the choicepoint lying around. 

Closing Concurrent Predicates: There are cases in which we prefer failure 
instead of suspensión, if no matching is possible. This can be achieved in two ways. 
The ñrst one is using non-blocking (_nb) versions of the retract and cali primitives 
(marked + in Table 2), which fail instead of suspending, while still ensuring atomic 
accesses and updates. The second, and more interesting one, is explicitly closing 
the predicate using c lose_predica te / l . This states that all alternatives for the 
predicate have been produced, and any reader backtracking over the last asserted 
fact will then fail rather than suspending. The example can now be coded as: 

:- concurrent temp/l. 
temperature:- launch_goal(read_temp), produce_temp. 
produce_temp:- read_temp:-

( read_temp_device(Temp) -> temp(Temp), 
assertz(temp(Temp)), <.. .work with Temp...>, 
produce_temp f a i l . 

; c lose_predicate( temp/l) ) . read_temp. 

where the cali to temp(Temp) eventually fails after the predicate is closed. This is 
useful for example for marking that a stream modeled by a concurrent predicate is 
closed: all the threads reading/consuming facts from this predicate will fail upon 
the end of the data. For completeness, a symmetrical open_predicate/l cali is 
available in order to make a closed predicate behave concurrently again (although 
it is arguably best practice not to re-open closed predicates). 

Local Concurrent Predicates: New, concurrent predicates can be created dy-
namically by calling the builtin concurrent /1 . The argument to concurrent /1 
can be a new predicate. Also, if the argument of the cali to concurrent /1 contains 
a variable in the predicate ñame, the system will créate dynamically a new, local 
predicate ñame. This allows encapsulating the communication, which is now private 
to those threads having access to the variable: 

temp:- concurrent(T/1) , launch_goal(read_temp(T)), produce_temp(T). 
produce_temp(T):- read_temp(T):-

( read_temp_device(Temp) -> T(Temp), 
assertz(T(Temp)), <.. .work with Temp...>, 
produce_temp f a i l . 

; c lose_predicate(T/ l ) ) . read_temp(_) . 

where we could replace the higher-order syntax T(X) supported by CIAO Prolog 
with calis to =. . and ca l l /n (e.g., cali(T,Data)). Note that the functionality at 
this point is not unlike that of a port, but with a richer backtracking behavior. 

Another way of encapsulating communication stems from an interesting synergy 
between the concurrent datábase and the module system. Concurrent predicates 

usual, in principie local to the module in which they appear. If they are not 
exported, they constitute is a channel which is local to the module and can only 
be used by the predicates in it. The module-local datábase thus acts as a local 
blackboard. By exporting and reexporting concurrent predicates between modules, 
sepárate, private blackboards, can be easily created whose accessibility is restricted 
to those importing the corresponding module. This is particularly useful when 
several instantiations (objects) are created from a given module (class) - see [23]. 

Logical View vs. Immediate Update: A ñnal difference between concurrent 
predicates and standard dynamic predicates is that the logical view of datábase 
updates [20], while convenient for many reasons, is not really appropriate for them. 
In fact, if this view were implemented then consumers would not see the facts 
produced by sibling producers. Thus, an immediate update view is implemented 
for concurrent predicates so that changes are immediately visible to all threads. 
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Figure 1: Choicepoints and suspended calis before and after updating clauses 

Locks on Atoms/Predicate Ñames: A method for associating semaphores [4] 
to atoms / predicate ñames is available. Mimicking those in procedural languages, 
a counter is associated with each atom which can be tested or set atomically using 
atom_lock_state(+Atom, ?Value). It can be atomically tested and decremented 
if its valué is non-zero, or waited on if it is zero, using lock_atom(+Atom), and 
incremented atomically using unlock_atom(+Atom). The implementation is very 
cheap, avoiding the overkill of simulating semaphores with concurrent predicates, 
when only a simple means of synchronization is needed. 

Implementation Issues and Performance: Concurrent accesses are made atom-
ic by using internal, user-transparent locks, one per predicate. Every cali to a con­
current predicate creates a dynamic choicepoint with special ñelds. In particular, 
its next alternative ñeld points to the next clause to try on backtracking through 
an indirect pointer. AU the indirect pointers from different choicepoints leading to 
a given clause are linked together into a chain reachable from that clause, so that 
any goal updating the predicate can access and relocate all of them atomically if 
needed (for example, if the clause is removed). Calis which suspend do not have 
their associated choicepoint removed, and the corresponding indirect pointers are 
linked in a sepárate suspensión chain (Figure 1, left). When a thread tries to access 
its next alternative and no alternative matching clause exists, the thread waits on 
changes to that indirect pointer instead of failing. This behavior ultimately depends 
on whether the cali was blocking or not, and on whether the predicate was closed or 
not at the time. We discuss the interesting case of blocking calis on open predicates. 

When a clause is removed, the chain of indirect pointers leading to it is checked: 
some of the pointers might be moved forwards in the clause list to the next possibly 
matching instance (as dictated by indexing), and in some cases it can be determined 
that no matching clause exists. In the latter case, they are linked to the chain of 
suspended calis. On the other hand, every time a new clause is appended, the list 
of suspended calis is checked, and those which may match the new clause (again, 
according to indexing), are made to point to that new clause. This is performed 
even if the affected goal is not actively waiting on an update of the clause, but 
executing some other code. 

Figure 1 depicts a possible state of the datábase before and after some clause 
updates take place. On the left, choicepoints A and B point (indirectly) to clause 
e l as next clause to try. Choicepoints C and D point to nuil clauses, and they 
are either suspended, or they would suspend should they backtrack now. Let us 
remove e l and add c3. The thread which adds / removes clauses is in charge of 
updating the affected pointers, based on indexing considerations. The cali from A, 
which was pointing to e l , does not match neither c2 ñor c3, so it points to the nuil 
clause now, and is enqueued in the list of calis to suspend. The cali from B may 
match c3 but does not match c2, and its indirect pointer is set accordingly. The 
cali from C does not match c3 and so its state does not change. And, finally, the 



Primes 

5000 
10000 
15000 
20000 
25000 
30000 
35000 

Conc 

1511 
2475 
4775 
6386 
9061 
11900 
13252 

Data 

1915 
5204 
9100 
12560 
17804 
24298 
29450 

Table 3: Sieve of Erathostenes 

Fact spec 

p/0 

P/l 
p/2 
p/4 
p/8 
p/16 

P(g/1) 
P(g/2) 
p(g/4) 
p(g/8) 
p(g/16) 

Memory 

1264 
1753 
1871 
2105 
2571 
3507 
1615 
1753 
1967 
2435 
3373 

bytes/fact 

21.57 
29.91 
31.93 
35.92 
43.87 
59.85 
27.56 
29.91 
33.57 
41.86 
57.56 

bytes/arg 

— 
8.34 
5.18 
3.58 
2.78 
2.39 
5.99 
4.17 
3.00 
2.53 
2.24 

Table 4: Memory usage, 60000 facts 

cali from D might match c3, and it is updated to point to this clause. 
The cut needs some additional machinery to retain its semantics. Not only the 

(dynamic) choicepoints in the scope of a cut should be swept away (which boils down 
to updating a pointer), but also the possibly suspended goals corresponding to the 
concurrent choicepoints must be removed. This is currently done by traversing part 
of the choicepoint stack, following the links to suspended calis, and removing them. 

The implementation of concurrent predicates is not trivial, but we argüe that it 
is much simpler than implementing variable-based communication that behaves well 
on backtracking. Also, it affects only one part of the abstract machine, datábase 
access, which is typically well isolated from the rest. In our experience, the changes 
to be performed are fairly local. The resulting communication among threads based 
on access to the datábase may be slower than communication using shared variables, 
although, depending on the implementation, reading can be faster. However, note 
that in this design we are not primarily interested in speed, but rather in flexibility 
and robustness, for which we believe the proposed solution is quite appealing. Also, 
in the proposed implementation the execution speed of sequential code which makes 
no use of concurrency is not affected in any way, which is not as easy with a shared-
variable approach. Furthermore, the fact that concurrent predicates should not 
meet the logical view of datábase updates [20], eliminates the need to check whether 
a fact is alive or not within the time window of a cali, which makes, in some cases, 
the access and modiñcation of concurrent predicates up to more than twice as fast 
as that of standard dynamic predicates. 

As an example of the impact on speed of the immediate datábase updates, 
Table 3 shows timings (in milliseconds) for a datábase implementation of the well-
known Sieve of Erathostenes, using a failure loop to both traverse the table of 
live elements and to remove múltiples. The "Data" column corresponds to the 
versión which uses the CIAO data/1 declaration (which is faster than dynamic, 
and specialized for facts). The "Conc" row uses the concurrent/1 declaration. 
Clause liveness (i.e., whether a given clause should or not be seen by a given cali) 
must be tested quite often in this case, which accounts for the performance jump. 
On the other hand, other patterns of accesses to datábase perform this liveness test 
quite sparingly (if at all), and beneñt less from the immediate update, suffering 
instead from the mandatory lock of the predicates being accessed. However, the 
factors seem to compénsate even in the worst cases since we have not been able to 
ñnd noticeable slowdowns. 

With respect to memory consumption, Table 4 lists average memory usage per 
fact and per argument for the CIAO Prolog implementation in a benchmark which 
asserts 60000 facts to the datábase. A fact p with different arguments (integers) 



1 2 4 6 12 

4327 2823 1687 1400 1625 

Table 5: Adding and removing facts from a datábase, 10 processors available 

:- concurrent fork/l. 

philosophers:-
atom_lock_state(room, 0), 
launch_goal(philosopher(1)) 
launch_goal(philosopher(2)) 
launch_goal(philosopher(3)) 
launch_goal(philosopher(4)) 
launch_goal(philosopher(5)) 
atom_lock_state(room, 4). 

eat:- . 
think:-

fork(l). fork(2). 
fork(3). fork(4). 

philosopher(ForkLeft):-

ForkRight is (ForkLeft mod 5) + 1, 
think, 
lock_atom(room), 
retract(fork(ForkLeft)), 
retract(fork(ForkRight)), !, 
eat, 

assertz(fork(ForkLeft)), 
assertz(fork(ForkRight)), 
unlock_atom(room), 
philosopher(ForkLeft). 

fork(5). 

Figure 2: Code for the Five Dining Philosophers 

was asserted, as well as a fact with a single argument, containing a functor with 
different numbers of arguments (integers again). It is encouraging that these figures 
are well behaved, as we may expect large numbers of facts asserted in the datábase. 

Another interesting issue is the impact of contention in concurrent predicate ac­
cesses. Our implementation ensures that concurrent accesses to different predicates 
will not interfere with each other: Table 5 shows speeds for the access and removal 
of a total of 10000 facts using different numbers of threads. Each thread accesses 
a different predicate ñame, which results in speedups until the number of threads 
is greater than the number of available processors, when other contention factors 
appear. However, there is obviously some interference in the concurrent accesses to 
the same predicate. 

3 Some Applications and Examples 
We now illustrate the use of the proposed concurrency scheme with some examples. 

The Five Dining Philosophers: Figure 2 presents the code for the problem of 
the Five Dining Philosophers, with the aim of showing how a standard solution can 
be adapted to the concurrent datábase approach. The code mimics the solution 
presented in [4]. Each philosopher is modeled as a concurrent goal which receives 
its number as an argument. Fork-related actions are modeled by accesses to a 
concurrent predicate fork/l . A global semaphore, associated with the atom room, 
controls the máximum number of philosophers in the dining room, and also makes 
sure that all philosophers start at once.3 No attempt is made to record when a 
philosopher is thinking or eating, but this can be done by asserting a concurrent 
predicate recording what every philosopher is doing at each time. 

A Skeleton for a Server: A server is a perpetual process which receives requests 
from other programs (clients) and attends them. Typically, the server should accept 
more queries while previous ones are being serviced, since otherwise the service 
would stop temporarily. Therefore, servers usually are multithreaded, and children 

3Actually, this is not strictly needed: letting philosophers think and eat as they become alive 
does not change the behavior of the algorithm, but this decisión illustrates the use of atom-based 
locks for global synchronization. 



No handle, local 
Handle, local 
Remotely concurrent 
Locally concurrent, remote execution 
Remote handle, remotely concurrent 
Local handle, remote execution 

Start thread 

. . . , G &, . . . 
. . . , G &> H, . . . 

(G &) 0 S 
(G 0 S) & 

(G &> H) 0 S 
(G 0 S) &> H 

Gather bindings 

— 
H <& 
— 
— 

(H <&) © S 
H <& 

Table 6: Starting concurrent / distributed goals and waiting for bindings. 

fork from the parent in order to handle individual requests. A simple skeleton for 
a server is shown in Figure 3. The main thread waits for a request and, when one 
arrives, launches a child thread to process it. The server itself is started within 
the context of a catch/throw construction which will exit the execution should the 
server receive any external signal.4 

Possible internal errors of the server can 
be dealt with by the s e r v i c e / 1 predi- main:- catch(server, _AnyError, halt) . 
cate itself, since each one of its invoca- server: -
tions is detached from the main thread. wait_f or_request (Query), 
The shared datábase provides a com- launch_goal(service(Query)), 
munication means in case the children server. 
have to report any data to the dispatcher. 

Figure 3: A skeleton for a server 
Implementing Higher-Level Concurrency Primitives: The interface offered 
by the primitives related to threads, locks, and datábase is sufficient for building 
many different concurrent programs, but it is somewhat low-level. For example, 
the number of simultaneous threads has to be controlled explicitly as part of the 
application code. Similarly, waiting for completion of the computation of a thread 
and accessing the bindings created by it need the execution of a (ñxed) sequence of 
steps. Also, implementing backtracking over concurrent goals requires some often 
repeated coding sequences. Such sequences are clear candidates to be abstracted as 
higher-level constructs. 

Using the basic primitives, we have implemented the set of concurrency and 
distributed execution constructs proposed in [14, 7], some examples of which are 
shown in table 6. Remote goals are executed in a server S, speciñed with the 
placement operator @/2 (so that, for example, G 0 S means "execute G at S, wait 
for its completion, and import the bindings performed"). Handles (H) allow waiting 
for the (remote) completion of the goal, and gathering the bindings. Lack of space 
prevenís us from including the actual implementation code, but it is easy to port 
the implementations given in [14, 7]. Using concurrent predicates instead of the 
external blackboard used there results in a simpliñcation of the code. Signiñcant 
simpliñcations also stem from the fact that with the proposed primitives goals which 
have produced a solution can be left frozen and then asked for additional solutions. 
Thus, concurrent and distributed goals now need not be called in the context of 
f indall . 

As a simple example, we discuss the implementation of a versión of the tra-
ditional &-Prolog &/2 operator, which, placed instead of a comma, speciñes that 
the two adjacent goals are to be executed in parallel and independently: GoalA & 
GoalB. This operator was implemented at a very low-level (i.e., modifying the un-
derlying abstract machine) in the &-Prolog system [16] and in other systems [11], 
which resulted in very good performance, but at the cost of a non-trivial amount of 
implementation work. Figure 4 shows the code for our source-level implementation 

4Exceptions in CIAO Prolog are installed on a per-thread basis, so every concurrent goal can 
have its own exception handlers without altering the behavior of the other threads. 



:- concurrent goal_to_execute/2. 
:- concurrent solution/3. 

GoalA & GoalB :- new_id(IdA), assertz(goal_to_execute(IdA, GoalA)), 
call_with_result(GoalB, ResultB), 
( retract_nb(goal_to_execute(IdA, GoalA)) -> 

call_with_result(GoalA, ResultA) 
; repeat, perform_some_other_work(IdA, GoalA, ResultA), ! ) , 
ResultA = success, ResultB = success. 

perform_some_other_work(Id, Sol, Res):- retract_nb(solution(Id, Sol, Res)), 
perform_some_other_work(_Id, _Sols, _Result):-

retract_nb(goal_to_execute(Id, Goal)), !, 
call_with_result(Goal, Result), 
assertz(solution(Id, Goal, Result)), 

fail. 

scheduler : - re t rac t (goa l_ to_execute ( Id , Goal)) , 
ca l l_with_resul t (Goal , Resu l t ) , 
a s s e r t z ( s o l u t i o n ( I d , Goal, R e s u l t ) ) , 
f a i l . 

ca l l_wi th_resu l t ( Goal, success) : - ca l l (Goa l ) , !. 
cal l_with_resul t (_Goal , f a i l u r e ) . 

Figure 4: Code for an and-parallel scheduler for deterministic goals 

which assumes that the goals to be executed are deterministic. Extending it for non-
deterministic goals is easy, but makes the code too long for our space limitations. 
However, we will compare performance results for both the simple implementation 
and the one which fully supports backtracking. 

In this implementation, the parallel operator &/2 assigns a unique identiñer to 
every parallel conjunction. One of the parallel goals is executed locally, while the 
other is stored in the datábase, together with its identiñer, waiting for a scheduler 
to pick it up. Such a scheduler is implemented by the predicate sch.eduler/0. 
To use N processors of a parallel machine, N — 1 threads should be created, all 
running initially sch.eduler/0. As soon as one goal is posted to the datábase, one 
of the threads running the scheduler grabs and executes it, leaves the solution in 
the datábase, and fails in order to wait for another goal. If no free schedulers are 
available, the main thread may ñnd, upon completion of the local goal, that the goal 
stored in the datábase is still there. Then, this local thread picks it up and executes 
it locally. On the other hand, if the solution waited for is not in the datábase, and 
the goal left there from the conjunction has been taken, the main thread switches 
personality and tries to execute any other goals present in the datábase while also 
checking whether the solution it requires for the original goal has been posted or 
not. 

This very naive implementation cannot, of course, achieve the same performance 
as &-Prolog (and this is obviously not the objective of the exercise). However, it 
is interesting that a correct selection of the granularity level [21] does produce 
speedups due to parallel execution on at least some benchmarks. Table 7 shows 
times (in milliseconds) for the parallel execution of the doubly recursive Fibonacci 
benchmark (computing the 2Ath Fibonacci number) using the scheduler for deter­
ministic goals. Each column is labelled with a different granularity level, Le., the 
column labeled "17" corresponds to a cali which stops spawning goals from the cali 
to compute the 17í/l Fibonacci number downwards. Table 8 shows results for the 
same benchmark using a scheduler which supports non-deterministic goals. The 



1 
3 
5 
7 
9 

17 

1289 
463 
287 
219 
178 

18 

1253 
455 
290 
220 
178 

19 

1253 
480 
312 
210 
197 

20 

1287 
491 
312 
244 
220 

21 

1266 
524 
376 
309 
213 

22 

1264 
623 
319 
318 
330 

23 

1285 
533 
510 
504 
519 

24 

1305 
820 
818 
823 
836 

25 

1309 
1309 
1309 
1309 
1309 

Table 7: Deterministic and-parallel scheduler: granularity against no. of agents 

1 
3 
5 
7 
9 

17 

1621 

571 
367 
286 
246 

18 

1555 

570 
363 
290 
229 

19 

1530 

570 
380 
266 
247 

20 

1549 

588 
392 
299 
256 

21 

1541 

611 
453 
378 
262 

22 

1582 

746 
411 
393 
403 

23 

1584 

635 
617 
628 
633 

24 

1613 
1062 
1029 
1081 
1040 

25 

1325 
1332 
1332 
1332 
1332 

Table 8: Non deterministic and-parallel scheduler: granularity against no. of agents 

lower the granularity level, the more goals are executed in parallel, and the smaller 
they are. The speedups shown approach linearity when execution is performed at a 
large enough granularity level. As expected, execution also speeds up as more paral­
lel goals are available, until a turning point is reached (at the level of granularity of 
17). At this level of granularity the cost of accessing the datábase for copying goals 
and recovering the solutions exceeds the speedup obtained from parallel execution. 
The nondeterministic scheduler, additionally, adds an overhead to the execution, 
which for this benchmark case ranges from 16% to 30%, with an isolated peak of 
39%—and therefore, has a higher granularity, with the "turning point" in 18. 
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