
Efficient Negation Using Abstract Interpretation

Susana Muñoz, Juan José Moreno, Manuel Hermenegildo

Department of Computer Science, Technical U. of Madrid *

Abstract. While negation has been a very active área of research in
logic programming, comparatively few papers have been devoted to im-
plementation issues. Furthermore, the negation-related capabilities of
current Prolog systems are limited. We recently presented a novel method
for incorporating negation in a Prolog compiler which takes a number of
existing methods (some modified and improved by us) and uses them in
a combined fashion. The method makes use of information provided by
a global analysis of the source code. Our previous work focused on the
systematic description of the techniques and the reasoning about cor-
rectness and completeness of the method, but provided no experimental
evidence to evalúate the proposal. In this paper, we report on an im-
plementation, using the Ciao Prolog system preprocessor, and provide
experimental data which indicates that the method is not only feasible
but also quite promising from the efficiency point of view. In addition,
the tests have provided new insight as to how to improve the proposal
further. Abstract interpretation techniques are shown to offer important
improvements in this application.

Keywords: Negation, Constraint Logic Programming, Program Analy
sis, Logic Programming Implementation, Abstract Interpretation.

1 Introduction

The fundamental idea behind Logic Programming (LP) is to use a computable
subset of logic as a programming language. Probably, negation is the most sig-
nificant aspect of logic that was not included from the start due to the significant
additional complexity that it involves. However, negation has an important role
for example in knowledge representation, where many of its uses cannot be simu-
lated by positive programs. The different proposals differ not only in expressivity
but also in semantics. Presumably as a result of this, implementation aspects
have received comparatively little attention. A search on the The Collection of
Computer Science Bibliographies [13] with the keyword "negation" yields nearly
60 papers, but only 2 include implementation in the keywords, and fewer than
10 treat implementation issues at all. Perhaps because of this, the negation tech
niques supported by current Prolog compilers are rather limited.

Our objective is to design and implement a practical form of negation and
incorpórate it into a Prolog compiler. In [19] we studied systematically what

* Mail: Facultad de Informática, Universidad Politécnica de Madrid, Campus de Mon-
tegancedo s/n, 28660, Madrid, SPAIN. email: susana|jjmoreno|herme@fi.upm.es.
voice: +34-91-336-7455. fax: +34-91-336-7412.

mailto:herme@fi.upm.es

we understood to be the most interesting existing proposals: negation as fail-
ure (naf) [8], use of delays to apply na/ in a secure way [15], intensional nega
tion [1],[2], and constructive negation [6],[7]. We could not find a single technique
that offered both completeness and an efficient implementation. However, we
proposed to use a combination of these techniques and that information from a
static analysis of the program could be used to reduce the cost of selecting among
techniques. We provided a coherent presentation of the techniques, implementa
tion solutions, and a proof of correctness for the method, but we did not provide
any experimental evidence to support the proposal. This is the purpose of this
paper. One problem that we face is the lack of a good collection of benchmarks
using negation to be used in the tests. One of the reasons has been discussed
before: there are few papers about implementation of negation. Another fact is
that negation is typically used in small parts of programs and it is very dimcult
to find it because it is not one of their main components. Additionally, the lack of
sound implementations makes programmers avoid negations, even complicating
the code or changing its semantics. We have had to collect a number of examples
using negation from logic programming textbooks, research papers, and our own
experience teaching Prolog.

We have tested these examples with all of our techniques in order to establish
their efficiency. We have also measured the improvement of efficiency thanks to
the use of the static analyzers. We have used the Ciao system [4] that is an
efficient Prolog implementation and incorporates all the needed static analyses.
However, it is important to point out that the techniques used are fairly standard,
so they can be incorporated into almost any Prolog compiler.

In both cases the results have been very interesting. The comparison of the
techniques has allowed us to improve the right order in which to apply them.
Furthermore, we have learned that the impact of the use of the information from
the analyzers is quite significant.

The rest of the paper is organized as follows. Section 2 presents more de-
tails on our method to handle negation and how it has been included in the
Ciao system. Section 3 presents the evaluation of the techniques and how the re
sults have helped us reformulate our strategy. The impact of the use of abstract
interpretation is studied in 3.3.

2 Implementat ion of a Negation System

In this section we present shortly the techniques from the literature which we
have integrated in a uniform framework. The techniques and the proposed com
bination share the following characteristics:

— We are interested in techniques with a single and simple semantics. The
simplest alternative is to use the Closed Word Assumption (CWA) [8] by
program completion and Kunen's 3-valued semantics [11]. These semantics
will be the basis for soundness results.

— Another important issue is that they must be "constructive", Le., program
execution should produce adequate goal variable valúes for making a negated

goal false. Chan's constructive negation [6],[7] fulfills both objectives. How-
ever, it is difncult to implement and expensive in terms of execution re-
sources. Our idea is to use the simplest technique for each particular case.

— The formulations need to be uniform in order to allow the mixture of tech-
niques and to establish sufficient correctness conditions to use them.

— We also provide a Prolog implementation of each of the techniques so that
they can be easily combined and we obtain a portable implementation.

2.1 Disequality constraints

An instrumental step in order to manage negation in a more advanced way
is to be able to handle disequalities between terms such as ti ^ í2- Prolog
implementations typically include only the built-in predicate /== /2 which can
only work with disequalities if both terms are ground and simply succeeds in the
presence of free variables. A "constructive" behavior must allow the "binding"
of a variable with a disequality. On the other hand, the negation of an equation
X = t(Y) produces the universal quantification of the free variables in the
equation, unless a more external quantification affects them. The negation of
such an equation is V Y X ^ t{Y).

We have defined a predicate =/= /2 , used to check disequalities, in a similar
way to explicit unification (=). The main difference is that it incorporates nega-
tive normal form constraints instead of bindings and the decomposition step can
produce disjunctions. When a universal quantification is used in a disequality
(e.g., VY X T¿ c(Y)) the new constructor fA/1 is used (e.g., X / c(fA(Y))).

2.2 Negation Techniques

— Negation as failure and delays: Typical Prolog systems implementation
of naf (Q) is unsound unless the free variables of Q are ground. The sound
versión ensures that the cali to naf is made only when the variables of the
negated goal are ground (although it has the risk of floundering). It replaces
a cali to -ip(X) by: . . . , when(ground(X),naf(p(X))),...

— Constructive negation for flnite solutions: We have implemented a
Prolog predicate cnegf (Q) to implement finite constructive negation, that
can be used if the number of solutions can be determined to be finite. It
calculates the negation of the disjunction of all solutions of Q. It is a simple
and efficient versión of the constructive negation.

— Intensional negation and universal quantification: Intensional nega
tion is a novel approach to obtain the program completion by transforming
the original program into a new one that introduces the "only if" part of
the predicate definitions (Le., interpreting implications as equivalences). We
reformulate the transformation by using a single constraint to express the
complement of a term, instead of a set of terms. The transformation is fully
formalized in [19].

— General constructive negation: Full constructive negation is needed when
all the previous techniques are not applicable. While there are several papers
treating theoretical aspects of it, we have not found papers with full descrip-
tions of implementations. We have completed a simple implementation from
scratch (cneg/1) which is complete, although it can certainly be improved.

2.3 Strategy

Our starting point is a (pseudo)predicate neg / l which computes constructively
the negation of any Prolog (sub)goal -¡G(X), selecting the most appropriate tech
nique at run-time. However, the program is analyzed and optimized at compile-
time to genérate specialized versions of neg for each negated literal in the pro
gram (each cali to neg), using only the simplest technique required. The basic
decisión steps are:

1. Groundness of X is checked before the cali to G. If proved true statically, then
simple negation as failure is applied, i.e., ->G(X) is compiled to naf (G(X)).1

2. Otherwise, a new program is generated replacing the goal ->G(X) by
when(grovmd(X), naf(G(X))) and the "elimination of delays" technique
is applied to it. If the analysis and the program transformation are able to
remove the delay (perhaps moving the goal) the resulting program is used.2

3. Otherwise, if the finiteness analysis over G(X) succeeds, then finite construc
tive negation can be used, transforming the negated goal into cnegf (G(X)).

4. Otherwise, the intensional negation approach is tried by generating the cor-
responding negated predicates and replacing the goal by call_tiot (G(X),
S) that will cali not__G(J5Q. During this process, new negated goals can ap-
pear and the same compiler strategy is applied to each of them. If S is bound
to success or f a i l then negation is solved, otherwise we continué.

5. If everything fails, full constructive negation must be used and the executed
goal is cneg(G(X)).

The strategy is complete and sound with respect to Kunen 3-valued seman-
tics. This follows from the soundness of the negation techniques, the correctness
of the analysis, and the completeness of constructive negation.

Let us illustrate the behavior of the method by using some simple examples.
Consider the following program:

1 Since floundering is undecidable, the analysis only provides an approximation of the
cases where negation as failure can be applied safely. This means that in some cases
the technique will not be applied even it might provide a sound result.

2 Again, the approximations made during analysis could result in the method not
being applied in some cases in which it might still provide a sound result.

l e s s (0 , s (Y)) . member(X, [X | L]) .
l e s s (s (X) , s (Y)) : - l e s s (X , Y) . member(X, [Y|L]) : - m e m b e r (X , L) .

p l (X) : - member(X, [O, s (O)]) , p3(X) : - n e g (l e s s (X , s (s (0)))) .
n e g (l e s s (X , s (O))) . p4(X) : - n e g (l e s s (s (0) , X)) .

p2(X) : - n e g (l e s s (X , s (O))) , p5(X) : - n e g (l e s s (X , s (X))) .

member(X, [O, s (O)]) .

Each of the p¿ predicates requires a different variant. For p l , the groundness test
for variable X succeeds and n a f / l can be used, so it behaves as:
pl (X) : - member(X, [0 , s (0)]) , ? - p l (X) .

n a f (l e s s (X , s (0))) . X = s (0)

Applying the "elimination of delays" analysis to the program:
p2(X) : - when(ground(X) , n a f (l e s s (X , s (0)))) ,

member(X, [0 , s (0)]) .

the delay can be eliminated, reordering the goals as follows:
p2(X) : - member(X, [0 , s (0)]) , ? - p 2 (X) .

n a f (l e s s (X , s (0))) . X = s (0)

The case for p3 is solved because the finiteness test can be proved to succeed,
so the program is rewritten as:
p3(X) : - c n e g f (l e s s (X , s (s (0)))) . ? - p 3 (X) .

X / 0 , X / s (0)

p4 needs intensional negation, so the generated program is:
n o t _ _ l e s s (W , Z) : - W =/= 0 , ? - p 4 (X) .

fA(X, W =/= s (X)) , X = 0 ? ;
fA(Y, Z =/= s (Y)) . X = s (0)

n o t _ _ l e s s (s (X) , s (Y)) : -
no t l e s s (X , Y) .

p4(X) : -

no t l e s s (s (0) , X) .

Finally, p5 needs full constructive negation because the intensional approach is
not able to give a result:
p5(X) : - c n e g (l e s s (X , s (X))) . ? - p 5 (X) .

no

3 Evaluating the strategy

3.1 Example programs

As mentioned earlier, one problem that we have faced is the lack of a good
collection of benchmarks using negation to be used in the tests. We have, how-
ever, collected a number of examples using negation from logic programming
textbooks, research papers, and our own experience teaching Prolog:

— disjoint: Code to verify that two lists have no common elements. Negation
is used to check that elements of the first list are not in the second one.

— jugs: Classical jugs puzzle. A sequence of actions is planned that will produce
4 gallons of water in the larger jug. Negation is used to check that the state
of the jugs is not repeated during the process.

— robot: Simulation of the behavior of a robot. Negation is used to check that
possible new positions for the robot are not dangerous.

— trie: It finds the list of word-FileList couples that shows the sublist of files
where each word appears (from an initial list of words and files). Negation
is used when reading words to find the first non alphanumeric character.

— numbers9: It uses negation to detect impossible cases in balanced trees.
— closure: Transitive closure of a network. Negation is used to avoid infinite

loops (detecting repeated nodes). From [16] page 169.
— unión: It is used neg(member (X, Li)) to check if an element X appears

in both lists (for unión of two lists without repetitions). From [16] page 154.
— include: include(P,Xs,Ys) is true when Ys is the list of the elements of

Xs such that P(X) is true. Negation is used to detect elements that do not
satisfy the property P(X). From [16] page 227.

— flatten: Flattening a list using difference-lists. Negation is used to consider
lists that are not empty. From [12] Program 915.2, page 241.

— lessNodd: Returns the list of odd natural numbers that are less than a
number N. Negation is used to control that a number is not even.

— friend: Deduces the relationship between two people using the stored infor-
mation from a datábase. Negation is used to exelude ancestors and descen-
dants from the category of friends of a person.

3.2 Experimental results

We have first measured the execution times in milliseconds for the previous ex-
amples when using all the different (applicable) negation techniques that we
have discussed, and also noted which technique is selected by our strategy (in
boldface). A '- ' in a cell means that the technique is not applicable. All mea-
surements were made using Ciao Prolog3 1.5 on a Pentium II at 350 Mhz. Small
programs were executed a sufficient number of times to obtain repeatable data.
The results are shown in Table 1, where each column means:

— const. shows the time taken by general constructive negation (cneg).
— naf/delay uses either naf directly or within a delay directive. A 'D' is placed

before the time in the second case.
— fin.const. is the time of the finite versión of constructive negation, cnegf.
— intens. uses the n o t _ ' p ' predicate from the intensional negation program

transformation.
— ratio columns measure the speedup of the technique to their left w.r.t. con

structive negation. An 'x' means the ratio is extremely high.

It is clear that the technique chosen by our strategy is always equal to or
better than general constructive negation. In many cases, it is also the best
possible of the examined techniques. We now study each technique separately:
3 The negation system is coded as a library module ("package" [5]), which includes the

corresponding syntactic and semantic extensions (i.e. Ciao's attributed variables).
Such extensions apply locally within each module which uses this negation library.

programs
disjointl
disjoint2

jugs
robot
trie
numbers9
closurela
closure2a
closure3a
closurelb
closure2b
closure3b
unión 1
unión 2
includel
include2
flatten
lessNoddl
lessNodd2
lessNodd3
friendla
friend2a
friend3a
friend4a
friendlb
friend2b
friend3b
friend4b

average

const.
7440
3330
8140
4600
8950

286779
5100
3520

10550
26350
17400
16700
1150

20930
9020
9910

32379
58980

7750
>3600000

16150
17630

447200
>3600000

17350
17650
92500

>3600000

naf/delay
780

-
8 5 9

1310
1850

-
730
5 6 0

1700
D2240
D1500
D4510

3 0 0
-

1270
-

8500
4850
1490

-
2280

< 1
D4430
D8750

3020
< 1

D3060
D6050

ratio
9.5

-
9.4

3.5
4.8

-
6.9
6.2

6.2

11.7
11.6

3.7

3.8

-

7.1

-

3.8
12.1

5.2

-

7.0
X

100.9
X

5.74
X

30.2
X

13.0

fin.const.
2740

1120
2175
1900
2140

-
1450

900

2700
16460
10580
10120

320
9470
2680

2995
12570
17550

2700
-

-

-

-

-

-

-

-

-

ratio
2.7

2.9

3.7
2.4

4.1

-
3.5

3.9

3.9

1.6

1.6

1.6

3.5
2.2

3.3

3.3

2.5

3.3

2.8

-
-
-
-
-
-
-
-

-

2.9

intens.
-
-

< 1
-
-

25230
140

100

280

8570
5420

16070
189

2940
170

-

10

1270
-

1540
39500

10

43200
>3600000

9

10

43200
171290

ratio
-

-
X

-

-

11.3
36.4
35.2
37.6

3.0
3.2

1.0

6.0

7.1

53.0
-

X

46.4
-

X

0.4

X

10.3
X

X

X

2.1

X

18.3

Table 1. Comparing different negation techniques

— Using naf instead of const. results in speed-ups that range from 3.5 to 30.2.
The average is more than 8.

— The delay technique, when applicable, has a considerable impact, speeding
programs up to 100 times.

— The fin.const. technique is around 3 times faster than const..
— intens. has a more random behavior. Very significant speed-ups are inter-

leaved with more modest results and even some slow-down (friendla).

The most surprising result is the erñciency of intensional negation. The trans-
formational approach seems the most adequate in those cases, provided that we
restrict the use of the technique to the case where there are no universal quan-
tifications in the resulting program. On the other hand, it is possible that the
intensional program may not be able to produce a result (wasting time) and its
use is a dynamic decisión. Although these problems do not arise often in practice,

they are a serious risk. As a result we modified the strategy to use intensional
negation as the preferable technique, but only when it can be used safely.

The overall conclusión is that, at least for the benchmarks studied, our strat
egy produces notable benefits. It preserves the completeness of general construc-
tive negation but typically at a fraction of the cost.

3.3 Measuring the impact of abstract interpretation

As mentioned above, the selection strategy and the program optimizations per-
formed make use of information from global program analysis. We have obtained
the information and performed the transformations using the analyzers and spe-
cializers that are part of the Ciao system's preprocessor, CiaoPP [10]. In particu
lar, from the analysis point of view, the groundness analysis has been performed
using the domain and algorithms described in [14]. In order to eliminate delays
a technique is used which, given a program with delays, tries to identify those
that are not needed, perhaps after some safe reordering of literals, as described
in [9,17]. Finally, the upper bounds complexity and execution cost analysis 4

has been used to determine finiteness in the number of solutions.

The transformations have been implemented using the specializer in CiaoPP [18].
The source programs always make calis to a versión of the generic predicate simi
lar to the neg predicate presented in section 2. The specializer creates specialized
versions of the generic predicate for each literal calling neg in which tests and
clauses are eliminated as determined by the information available from the an
alyzers. For example, if the groundness test is proven true at compile-time, the
specializer will eliminate the test and the rest of the clauses of neg and eventu-
ally even replace the literal calling neg with a direct cali to naf. This is done
automatically by CiaoPP without having to write any additional code.

In order to estimate the advantages obtained by using this approach we
now present some experimental results comparing the execution time of the
programs that might be generated without the help of the analyzers and the
versions produced automatically by the Ciao preprocessor. In the first case, the
calis to neg always cali (a slightly modified versión of) the full versión of the neg
predicate. Thus, for example, the groundness test is performed at execution time.
The clause to check the finiteness of the goal and then cali cnegf is removed since
such checking cannot be made safely at run-time. Moreover, the delay technique
is not used because, in general, it has the risk of floundering. In contrast, the
versión obtained with the help of the analyzers can remove the groundness check,
use the reordering proposed by the elimination of delays, and use the information
of the finiteness analysis to cali cnegf.

Table 2 presents the results. We have also added for reference columns show-
ing the execution time of using naf directly and a secure versión of naf, Le.,
checking groundness before. Finally, we have also added the time taken by
CiaoPP to perform the analysis and transformation.

Note that an upper bound cost that is not infinity implies a finite number of solutions
(an alternative is [3].

program
disjointl
jugs
robot
trie
unión 1
closurela
closure2a
closure3a
includel
flatten
lessNoddl
lessNodd2
friendlb
friendla
average

closurelb
closure2b
closure3b
friend3a
friend4a
friend3b
friend4b
average

disjoint2
unión 2
include2
average

average

with pp.
1020
969

1960
1890
300
730
570

1710
1099
8859
7310
1780
3220
2820

610
570

1800
3100
6210
3100
6210

1125
9590
3070

without pp.
1700
8419
3100
2450

350
2600
1970
5050
1180
9300
8670
1830
3360
2860

8610
5700

16300
43350

>3600000
43400

171495

3700
21010
10010

ratio
1.66
8.68
1.58
1.29
1.16
3.56
3.45
2.95
1.07
1.04
1.18
1.02
1.04
1.01
2.33

14.11
10.00
9.05

13.98
X

14.00
27.61
14.79

3.28
2.19
3.26
5.65

2.37

naf
780
859

1310
1850

230
730
560

1700
1080
8500
4850
1490
3020
2280

-
-
-
-
-
-
-

-
-
-

ratio
0.76
0.88
0.66
0.97
0.76
1.00
0.98
0.99
0.98
0.95
0.66
0.83
0.93
0.80
0.86

-
-
-
-
-
-
-

-
-
-

0.86

secure naf
1469
1690
1800
1900
300
900
670

2010
1270
8080
6300
1590
3180
2840

-
-
-
-
-
-
-

-
-
-

ratio
1.44
1.74
0.91
1.00
1.00
1.23
1.17
1.17
1.15
0.91
0.86
0.89
0.98
1.00
1.10

-
-
-
-
-
-
-

-
-
-

1.10

prep.
78

227
700
508
119
257
257
257
178
168

58
58

198
198

257
257
257
198
198
198
198

78
119
178

Table 2. Impact of program analysis

The table reveáis that the impact of abstract interpretation is significant
enough to justify its use. For those examples where naf is applicable, the analyzer
is able to detect groundness statically in all the cases, so the cali to neg is
replaced by naf. It is worth mentioning that the implementation of the dynamic
groundness test in Ciao is quite efncient (it is performed at a very low level,
inherited from its &-Prolog origins). Even so, the speedup can reach a factor
of over 8, and the average is 2.33. The impact of the elimination of delay is
even better in general. Notice that if the delay technique is not used, intensional
negation could be used instead, which in many cases is a very efficient approach.
Even with this drawback, the use of abstract interpretation is helpful. When the
nniteness analysis avoids the use of full constructive negation the speed-ups are
greater than 3. The difference between the programs after preprocessing and the
direct use of naf is negligible. The code produced by the preprocessor is better
than the secure use of naf because of the elimination of groundness tests.

References

1. R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of
logic programs. Lecture notes on Computer Science, 250:96-110, 1987.

2. R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. A transformational ap-
proach to negation in logic programming. JLP, 8(3):201-228, 1990.

3. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of Prolog. In ILPS, pages 457-471. The MIT Press, 1994.

4. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla.
The Ciao Prolog System. Reference Manual. Technical Report CLIP3/97.1, School
of Computer Science, Technical University of Madrid (UPM), August 1997. System
and manual at h t tp : / /wuw.cl ip lab .org/Sof tware/Ciao/ .

5. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In CL2000,
number 1861 in LNAI, pages 131-148. Springer-Verlag, July 2000.

6. D. Chan. Constructive negation based on the complete datábase. In Proc. Int.
Conference on LP'88, pages 111-125. The MIT Press, 1988.

7. D. Chan. An extensión of constructive negation and its application in coroutining.
In Proc. NACLP'89, pages 477-493. The MIT Press, 1989.

8. K. L. Clark. Negation as failure. In J. Minker H. Gallaire, editor, Logic and Dato,
Bases, pages 293-322, New York, NY, 1978.

9. M. García , K. Marriott, and P. Stuckey. Efficient analysis of constraint logic
programs with dynamic scheduling. In ILPS, pages 417-431. MIT Press, 1995.

10. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 ICLP,
pages 52-66, Cambridge, MA, November 1999. MIT Press.

11. K. Kunen. Negation in logic programming. JLP, 4:289-308, 1987.
12. E. Shapiro L. Sterling. The Art of Prolog. The MIT Press, 1987.
13. The Collection of Computer Science Bibliographies.

ht tp:/ / l i inwww.ira.uka.de/bibliography/LogicPrograraming/index.html.
14. K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable de-

pendency using abstract interpretation. JLP, 13(2/3):315-347, July 1992.
15. L. Naish. Negation and Control in Prolog. In LNCS, number 238. Springe, 1985.
16. R. A. O'Keefe. The Craft of Prolog. The MIT Press, 1990.
17. G. Puebla, M. García , K. Marriott, and P. Stuckey. Optimization of Logic Pro

grams with Dynamic Scheduling. In 1997 International Conference on LP, pages
93-107, Cambridge, MA, June 1997. MIT Press.

18. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Appli
cation to Program Parallelization. JLP, 41(2&3):279-316, November 1999.

19. J.J. Moreno S. Muñoz. How to incorpórate negation in a prolog compiler. In
V. Santos Costa E. Pontelli, editor, 2nd International Workshop PADL'2000, vol-
ume 1753 of LNCS, pages 124-140, Boston, MA (USA), 2000. Springer.

http://wuw.cliplab.org/Software/Ciao/
http://liinwww.ira.uka.de/bibliography/LogicPrograraming/index.html

