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Abstract. While negation has been a very active área of research in 
logic programming, comparatively few papers have been devoted to im-
plementation issues. Furthermore, the negation-related capabilities of 
current Prolog systems are limited. We recently presented a novel method 
for incorporating negation in a Prolog compiler which takes a number of 
existing methods (some modified and improved by us) and uses them in 
a combined fashion. The method makes use of information provided by 
a global analysis of the source code. Our previous work focused on the 
systematic description of the techniques and the reasoning about cor-
rectness and completeness of the method, but provided no experimental 
evidence to evalúate the proposal. In this paper, we report on an im-
plementation, using the Ciao Prolog system preprocessor, and provide 
experimental data which indicates that the method is not only feasible 
but also quite promising from the efficiency point of view. In addition, 
the tests have provided new insight as to how to improve the proposal 
further. Abstract interpretation techniques are shown to offer important 
improvements in this application. 

Keywords: Negation, Constraint Logic Programming, Program Analy
sis, Logic Programming Implementation, Abstract Interpretation. 

1 Introduction 

The fundamental idea behind Logic Programming (LP) is to use a computable 
subset of logic as a programming language. Probably, negation is the most sig-
nificant aspect of logic that was not included from the start due to the significant 
additional complexity that it involves. However, negation has an important role 
for example in knowledge representation, where many of its uses cannot be simu-
lated by positive programs. The different proposals differ not only in expressivity 
but also in semantics. Presumably as a result of this, implementation aspects 
have received comparatively little attention. A search on the The Collection of 
Computer Science Bibliographies [13] with the keyword "negation" yields nearly 
60 papers, but only 2 include implementation in the keywords, and fewer than 
10 treat implementation issues at all. Perhaps because of this, the negation tech
niques supported by current Prolog compilers are rather limited. 

Our objective is to design and implement a practical form of negation and 
incorpórate it into a Prolog compiler. In [19] we studied systematically what 
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we understood to be the most interesting existing proposals: negation as fail-
ure (naf) [8], use of delays to apply na/ in a secure way [15], intensional nega
tion [1],[2], and constructive negation [6],[7]. We could not find a single technique 
that offered both completeness and an efficient implementation. However, we 
proposed to use a combination of these techniques and that information from a 
static analysis of the program could be used to reduce the cost of selecting among 
techniques. We provided a coherent presentation of the techniques, implementa
tion solutions, and a proof of correctness for the method, but we did not provide 
any experimental evidence to support the proposal. This is the purpose of this 
paper. One problem that we face is the lack of a good collection of benchmarks 
using negation to be used in the tests. One of the reasons has been discussed 
before: there are few papers about implementation of negation. Another fact is 
that negation is typically used in small parts of programs and it is very dimcult 
to find it because it is not one of their main components. Additionally, the lack of 
sound implementations makes programmers avoid negations, even complicating 
the code or changing its semantics. We have had to collect a number of examples 
using negation from logic programming textbooks, research papers, and our own 
experience teaching Prolog. 

We have tested these examples with all of our techniques in order to establish 
their efficiency. We have also measured the improvement of efficiency thanks to 
the use of the static analyzers. We have used the Ciao system [4] that is an 
efficient Prolog implementation and incorporates all the needed static analyses. 
However, it is important to point out that the techniques used are fairly standard, 
so they can be incorporated into almost any Prolog compiler. 

In both cases the results have been very interesting. The comparison of the 
techniques has allowed us to improve the right order in which to apply them. 
Furthermore, we have learned that the impact of the use of the information from 
the analyzers is quite significant. 

The rest of the paper is organized as follows. Section 2 presents more de-
tails on our method to handle negation and how it has been included in the 
Ciao system. Section 3 presents the evaluation of the techniques and how the re
sults have helped us reformulate our strategy. The impact of the use of abstract 
interpretation is studied in 3.3. 

2 Implementat ion of a Negation System 

In this section we present shortly the techniques from the literature which we 
have integrated in a uniform framework. The techniques and the proposed com
bination share the following characteristics: 

— We are interested in techniques with a single and simple semantics. The 
simplest alternative is to use the Closed Word Assumption (CWA) [8] by 
program completion and Kunen's 3-valued semantics [11]. These semantics 
will be the basis for soundness results. 

— Another important issue is that they must be "constructive", Le., program 
execution should produce adequate goal variable valúes for making a negated 



goal false. Chan's constructive negation [6],[7] fulfills both objectives. How-
ever, it is difncult to implement and expensive in terms of execution re-
sources. Our idea is to use the simplest technique for each particular case. 

— The formulations need to be uniform in order to allow the mixture of tech-
niques and to establish sufficient correctness conditions to use them. 

— We also provide a Prolog implementation of each of the techniques so that 
they can be easily combined and we obtain a portable implementation. 

2.1 Disequality constraints 

An instrumental step in order to manage negation in a more advanced way 
is to be able to handle disequalities between terms such as ti ^ í2- Prolog 
implementations typically include only the built-in predicate /== /2 which can 
only work with disequalities if both terms are ground and simply succeeds in the 
presence of free variables. A "constructive" behavior must allow the "binding" 
of a variable with a disequality. On the other hand, the negation of an equation 
X = t(Y) produces the universal quantification of the free variables in the 
equation, unless a more external quantification affects them. The negation of 
such an equation is V Y X ^ t{Y). 

We have defined a predicate =/= /2 , used to check disequalities, in a similar 
way to explicit unification (=). The main difference is that it incorporates nega-
tive normal form constraints instead of bindings and the decomposition step can 
produce disjunctions. When a universal quantification is used in a disequality 
(e.g., VY X T¿ c(Y)) the new constructor fA/1 is used (e.g., X / c(fA(Y))). 

2.2 Negation Techniques 

— Negation as failure and delays: Typical Prolog systems implementation 
of naf (Q) is unsound unless the free variables of Q are ground. The sound 
versión ensures that the cali to naf is made only when the variables of the 
negated goal are ground (although it has the risk of floundering). It replaces 
a cali to -ip(X) by: . . . , when(ground(X),naf(p(X))),... 

— Constructive negation for flnite solutions: We have implemented a 
Prolog predicate cnegf (Q) to implement finite constructive negation, that 
can be used if the number of solutions can be determined to be finite. It 
calculates the negation of the disjunction of all solutions of Q. It is a simple 
and efficient versión of the constructive negation. 

— Intensional negation and universal quantification: Intensional nega
tion is a novel approach to obtain the program completion by transforming 
the original program into a new one that introduces the "only if" part of 
the predicate definitions (Le., interpreting implications as equivalences). We 
reformulate the transformation by using a single constraint to express the 
complement of a term, instead of a set of terms. The transformation is fully 
formalized in [19]. 



— General constructive negation: Full constructive negation is needed when 
all the previous techniques are not applicable. While there are several papers 
treating theoretical aspects of it, we have not found papers with full descrip-
tions of implementations. We have completed a simple implementation from 
scratch (cneg/1) which is complete, although it can certainly be improved. 

2.3 Strategy 

Our starting point is a (pseudo)predicate neg / l which computes constructively 
the negation of any Prolog (sub)goal -¡G(X), selecting the most appropriate tech
nique at run-time. However, the program is analyzed and optimized at compile-
time to genérate specialized versions of neg for each negated literal in the pro
gram (each cali to neg), using only the simplest technique required. The basic 
decisión steps are: 

1. Groundness of X is checked before the cali to G. If proved true statically, then 
simple negation as failure is applied, i.e., ->G(X) is compiled to naf (G(X)).1 

2. Otherwise, a new program is generated replacing the goal ->G(X) by 
when(grovmd(X), naf(G(X))) and the "elimination of delays" technique 
is applied to it. If the analysis and the program transformation are able to 
remove the delay (perhaps moving the goal) the resulting program is used.2 

3. Otherwise, if the finiteness analysis over G(X) succeeds, then finite construc
tive negation can be used, transforming the negated goal into cnegf (G(X)). 

4. Otherwise, the intensional negation approach is tried by generating the cor-
responding negated predicates and replacing the goal by call_tiot (G(X), 
S) that will cali not__G(J5Q. During this process, new negated goals can ap-
pear and the same compiler strategy is applied to each of them. If S is bound 
to success or f a i l then negation is solved, otherwise we continué. 

5. If everything fails, full constructive negation must be used and the executed 
goal is cneg(G(X)). 

The strategy is complete and sound with respect to Kunen 3-valued seman-
tics. This follows from the soundness of the negation techniques, the correctness 
of the analysis, and the completeness of constructive negation. 

Let us illustrate the behavior of the method by using some simple examples. 
Consider the following program: 

1 Since floundering is undecidable, the analysis only provides an approximation of the 
cases where negation as failure can be applied safely. This means that in some cases 
the technique will not be applied even it might provide a sound result. 

2 Again, the approximations made during analysis could result in the method not 
being applied in some cases in which it might still provide a sound result. 



l e s s ( 0 , s ( Y ) ) . member(X, [ X | L ] ) . 
l e s s ( s ( X ) , s (Y)) : - l e s s ( X , Y) . member(X, [Y|L]) : - m e m b e r ( X , L ) . 

p l (X) : - member(X, [O, s ( O ) ] ) , p3(X) : - n e g ( l e s s ( X , s ( s ( 0 ) ) ) ) . 
n e g ( l e s s ( X , s ( O ) ) ) . p4(X) : - n e g ( l e s s ( s ( 0 ) , X ) ) . 

p2(X) : - n e g ( l e s s ( X , s ( O ) ) ) , p5(X) : - n e g ( l e s s ( X , s ( X ) ) ) . 

member(X, [O, s ( O ) ] ) . 

Each of the p¿ predicates requires a different variant. For p l , the groundness test 
for variable X succeeds and n a f / l can be used, so it behaves as: 
pl (X) : - member(X, [0 , s ( 0 ) ] ) , ? - p l ( X ) . 

n a f ( l e s s ( X , s ( 0 ) ) ) . X = s ( 0 ) 

Applying the "elimination of delays" analysis to the program: 
p2(X) : - when(ground(X) , n a f ( l e s s ( X , s ( 0 ) ) ) ) , 

member(X, [0 , s ( 0 ) ] ) . 

the delay can be eliminated, reordering the goals as follows: 
p2(X) : - member(X, [0 , s ( 0 ) ] ) , ? - p 2 ( X ) . 

n a f ( l e s s ( X , s ( 0 ) ) ) . X = s ( 0 ) 

The case for p3 is solved because the finiteness test can be proved to succeed, 
so the program is rewritten as: 
p3(X) : - c n e g f ( l e s s ( X , s ( s ( 0 ) ) ) ) . ? - p 3 ( X ) . 

X / 0 , X / s ( 0 ) 

p4 needs intensional negation, so the generated program is: 
n o t _ _ l e s s ( W , Z) : - W =/= 0 , ? - p 4 ( X ) . 

fA(X, W =/= s ( X ) ) , X = 0 ? ; 
fA(Y, Z =/= s ( Y ) ) . X = s ( 0 ) 

n o t _ _ l e s s ( s ( X ) , s (Y)) : -
no t l e s s ( X , Y) . 

p4(X) : -

no t l e s s ( s ( 0 ) , X) . 

Finally, p5 needs full constructive negation because the intensional approach is 
not able to give a result: 
p5(X) : - c n e g ( l e s s ( X , s ( X ) ) ) . ? - p 5 ( X ) . 

no 

3 Evaluating the strategy 

3.1 Example programs 

As mentioned earlier, one problem that we have faced is the lack of a good 
collection of benchmarks using negation to be used in the tests. We have, how-
ever, collected a number of examples using negation from logic programming 
textbooks, research papers, and our own experience teaching Prolog: 

— disjoint: Code to verify that two lists have no common elements. Negation 
is used to check that elements of the first list are not in the second one. 

— jugs: Classical jugs puzzle. A sequence of actions is planned that will produce 
4 gallons of water in the larger jug. Negation is used to check that the state 
of the jugs is not repeated during the process. 



— robot: Simulation of the behavior of a robot. Negation is used to check that 
possible new positions for the robot are not dangerous. 

— trie: It finds the list of word-FileList couples that shows the sublist of files 
where each word appears (from an initial list of words and files). Negation 
is used when reading words to find the first non alphanumeric character. 

— numbers9: It uses negation to detect impossible cases in balanced trees. 
— closure: Transitive closure of a network. Negation is used to avoid infinite 

loops (detecting repeated nodes). From [16] page 169. 
— unión: It is used neg(member (X, Li)) to check if an element X appears 

in both lists (for unión of two lists without repetitions). From [16] page 154. 
— include: include(P,Xs,Ys) is true when Ys is the list of the elements of 

Xs such that P(X) is true. Negation is used to detect elements that do not 
satisfy the property P(X). From [16] page 227. 

— flatten: Flattening a list using difference-lists. Negation is used to consider 
lists that are not empty. From [12] Program 915.2, page 241. 

— lessNodd: Returns the list of odd natural numbers that are less than a 
number N. Negation is used to control that a number is not even. 

— friend: Deduces the relationship between two people using the stored infor-
mation from a datábase. Negation is used to exelude ancestors and descen-
dants from the category of friends of a person. 

3.2 Experimental results 

We have first measured the execution times in milliseconds for the previous ex-
amples when using all the different (applicable) negation techniques that we 
have discussed, and also noted which technique is selected by our strategy (in 
boldface). A '- ' in a cell means that the technique is not applicable. All mea-
surements were made using Ciao Prolog3 1.5 on a Pentium II at 350 Mhz. Small 
programs were executed a sufficient number of times to obtain repeatable data. 
The results are shown in Table 1, where each column means: 

— const. shows the time taken by general constructive negation ( cneg). 
— naf/delay uses either naf directly or within a delay directive. A 'D' is placed 

before the time in the second case. 
— fin.const. is the time of the finite versión of constructive negation, cnegf. 
— intens. uses the n o t _ ' p ' predicate from the intensional negation program 

transformation. 
— ratio columns measure the speedup of the technique to their left w.r.t. con

structive negation. An 'x' means the ratio is extremely high. 

It is clear that the technique chosen by our strategy is always equal to or 
better than general constructive negation. In many cases, it is also the best 
possible of the examined techniques. We now study each technique separately: 
3 The negation system is coded as a library module ("package" [5]), which includes the 

corresponding syntactic and semantic extensions (i.e. Ciao's attributed variables). 
Such extensions apply locally within each module which uses this negation library. 



programs 
disjointl 
disjoint2 

jugs 
robot 
trie 
numbers9 
closurela 
closure2a 
closure3a 
closurelb 
closure2b 
closure3b 
unión 1 
unión 2 
includel 
include2 
flatten 
lessNoddl 
lessNodd2 
lessNodd3 
friendla 
friend2a 
friend3a 
friend4a 
friendlb 
friend2b 
friend3b 
friend4b 

average 

const. 
7440 
3330 
8140 
4600 
8950 

286779 
5100 
3520 

10550 
26350 
17400 
16700 
1150 

20930 
9020 
9910 

32379 
58980 

7750 
>3600000 

16150 
17630 

447200 
>3600000 

17350 
17650 
92500 

>3600000 

naf/delay 
780 

-
8 5 9 

1310 
1850 

-
730 
5 6 0 

1700 
D2240 
D1500 
D4510 

3 0 0 
-

1270 
-

8500 
4850 
1490 

-
2280 

< 1 
D4430 
D8750 

3020 
< 1 

D3060 
D6050 

ratio 
9.5 

-
9.4 

3.5 
4.8 

-
6.9 
6.2 

6.2 

11.7 
11.6 

3.7 

3.8 

-

7.1 

-

3.8 
12.1 

5.2 

-

7.0 
X 

100.9 
X 

5.74 
X 

30.2 
X 

13.0 

fin.const. 
2740 

1120 
2175 
1900 
2140 

-
1450 

900 

2700 
16460 
10580 
10120 

320 
9470 
2680 

2995 
12570 
17550 

2700 
-

-

-

-

-

-

-

-

-

ratio 
2.7 

2.9 

3.7 
2.4 

4.1 

-
3.5 

3.9 

3.9 

1.6 

1.6 

1.6 

3.5 
2.2 

3.3 

3.3 

2.5 

3.3 

2.8 

-
-
-
-
-
-
-
-

-

2.9 

intens. 
-
-

< 1 
-
-

25230 
140 

100 

280 

8570 
5420 

16070 
189 

2940 
170 

-

10 

1270 
-

1540 
39500 

10 

43200 
>3600000 

9 

10 

43200 
171290 

ratio 
-

-
X 

-

-

11.3 
36.4 
35.2 
37.6 

3.0 
3.2 

1.0 

6.0 

7.1 

53.0 
-

X 

46.4 
-

X 

0.4 

X 

10.3 
X 

X 

X 

2.1 

X 

18.3 

Table 1. Comparing different negation techniques 

— Using naf instead of const. results in speed-ups that range from 3.5 to 30.2. 
The average is more than 8. 

— The delay technique, when applicable, has a considerable impact, speeding 
programs up to 100 times. 

— The fin.const. technique is around 3 times faster than const.. 
— intens. has a more random behavior. Very significant speed-ups are inter-

leaved with more modest results and even some slow-down (friendla). 

The most surprising result is the erñciency of intensional negation. The trans-
formational approach seems the most adequate in those cases, provided that we 
restrict the use of the technique to the case where there are no universal quan-
tifications in the resulting program. On the other hand, it is possible that the 
intensional program may not be able to produce a result (wasting time) and its 
use is a dynamic decisión. Although these problems do not arise often in practice, 



they are a serious risk. As a result we modified the strategy to use intensional 
negation as the preferable technique, but only when it can be used safely. 

The overall conclusión is that, at least for the benchmarks studied, our strat
egy produces notable benefits. It preserves the completeness of general construc-
tive negation but typically at a fraction of the cost. 

3.3 Measuring the impact of abstract interpretation 

As mentioned above, the selection strategy and the program optimizations per-
formed make use of information from global program analysis. We have obtained 
the information and performed the transformations using the analyzers and spe-
cializers that are part of the Ciao system's preprocessor, CiaoPP [10]. In particu
lar, from the analysis point of view, the groundness analysis has been performed 
using the domain and algorithms described in [14]. In order to eliminate delays 
a technique is used which, given a program with delays, tries to identify those 
that are not needed, perhaps after some safe reordering of literals, as described 
in [9,17]. Finally, the upper bounds complexity and execution cost analysis 4 

has been used to determine finiteness in the number of solutions. 

The transformations have been implemented using the specializer in CiaoPP [18]. 
The source programs always make calis to a versión of the generic predicate simi
lar to the neg predicate presented in section 2. The specializer creates specialized 
versions of the generic predicate for each literal calling neg in which tests and 
clauses are eliminated as determined by the information available from the an
alyzers. For example, if the groundness test is proven true at compile-time, the 
specializer will eliminate the test and the rest of the clauses of neg and eventu-
ally even replace the literal calling neg with a direct cali to naf. This is done 
automatically by CiaoPP without having to write any additional code. 

In order to estimate the advantages obtained by using this approach we 
now present some experimental results comparing the execution time of the 
programs that might be generated without the help of the analyzers and the 
versions produced automatically by the Ciao preprocessor. In the first case, the 
calis to neg always cali (a slightly modified versión of) the full versión of the neg 
predicate. Thus, for example, the groundness test is performed at execution time. 
The clause to check the finiteness of the goal and then cali cnegf is removed since 
such checking cannot be made safely at run-time. Moreover, the delay technique 
is not used because, in general, it has the risk of floundering. In contrast, the 
versión obtained with the help of the analyzers can remove the groundness check, 
use the reordering proposed by the elimination of delays, and use the information 
of the finiteness analysis to cali cnegf. 

Table 2 presents the results. We have also added for reference columns show-
ing the execution time of using naf directly and a secure versión of naf, Le., 
checking groundness before. Finally, we have also added the time taken by 
CiaoPP to perform the analysis and transformation. 

Note that an upper bound cost that is not infinity implies a finite number of solutions 
(an alternative is [3]. 



program 
disjointl 
jugs 
robot 
trie 
unión 1 
closurela 
closure2a 
closure3a 
includel 
flatten 
lessNoddl 
lessNodd2 
friendlb 
friendla 
average 

closurelb 
closure2b 
closure3b 
friend3a 
friend4a 
friend3b 
friend4b 
average 

disjoint2 
unión 2 
include2 
average 

average 

with pp. 
1020 
969 

1960 
1890 
300 
730 
570 

1710 
1099 
8859 
7310 
1780 
3220 
2820 

610 
570 

1800 
3100 
6210 
3100 
6210 

1125 
9590 
3070 

without pp. 
1700 
8419 
3100 
2450 

350 
2600 
1970 
5050 
1180 
9300 
8670 
1830 
3360 
2860 

8610 
5700 

16300 
43350 

>3600000 
43400 

171495 

3700 
21010 
10010 

ratio 
1.66 
8.68 
1.58 
1.29 
1.16 
3.56 
3.45 
2.95 
1.07 
1.04 
1.18 
1.02 
1.04 
1.01 
2.33 

14.11 
10.00 
9.05 

13.98 
X 

14.00 
27.61 
14.79 

3.28 
2.19 
3.26 
5.65 

2.37 

naf 
780 
859 

1310 
1850 

230 
730 
560 

1700 
1080 
8500 
4850 
1490 
3020 
2280 

-
-
-
-
-
-
-

-
-
-

ratio 
0.76 
0.88 
0.66 
0.97 
0.76 
1.00 
0.98 
0.99 
0.98 
0.95 
0.66 
0.83 
0.93 
0.80 
0.86 

-
-
-
-
-
-
-

-
-
-

0.86 

secure naf 
1469 
1690 
1800 
1900 
300 
900 
670 

2010 
1270 
8080 
6300 
1590 
3180 
2840 

-
-
-
-
-
-
-

-
-
-

ratio 
1.44 
1.74 
0.91 
1.00 
1.00 
1.23 
1.17 
1.17 
1.15 
0.91 
0.86 
0.89 
0.98 
1.00 
1.10 

-
-
-
-
-
-
-

-
-
-

1.10 

prep. 
78 

227 
700 
508 
119 
257 
257 
257 
178 
168 

58 
58 

198 
198 

257 
257 
257 
198 
198 
198 
198 

78 
119 
178 

Table 2. Impact of program analysis 

The table reveáis that the impact of abstract interpretation is significant 
enough to justify its use. For those examples where naf is applicable, the analyzer 
is able to detect groundness statically in all the cases, so the cali to neg is 
replaced by naf. It is worth mentioning that the implementation of the dynamic 
groundness test in Ciao is quite efncient (it is performed at a very low level, 
inherited from its &-Prolog origins). Even so, the speedup can reach a factor 
of over 8, and the average is 2.33. The impact of the elimination of delay is 
even better in general. Notice that if the delay technique is not used, intensional 
negation could be used instead, which in many cases is a very efficient approach. 
Even with this drawback, the use of abstract interpretation is helpful. When the 
nniteness analysis avoids the use of full constructive negation the speed-ups are 
greater than 3. The difference between the programs after preprocessing and the 
direct use of naf is negligible. The code produced by the preprocessor is better 
than the secure use of naf because of the elimination of groundness tests. 
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