
Poster Presentation: Abstract 
Interpretation-based Mobile Code Certification 

Elvira Albert1, Germán Puebla2, and Manuel Hermenegildo2'3 

1 SIP, Complutense University of Madrid, elvira@sip.ucm.es 
2 Fac. de Informática, Technical U. of Madrid, {german,herme}Qfi.upm.es 

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New México, herme@unm.edu 

Current approaches to mobile code safety—inspired by the technique of 
Proof-Carrying Code (PCC) [4]—associate safety information (in the form of 
a certifícate) to programs. The certifícate (or proof) is created by the code sup-
plier at compile time, and packaged along with the untrusted code. The consumer 
who receives the code+certiñcate package can then run a checker which, by a 
straightforward inspection of the code and the certifícate, is able to verify the 
validity of the certifícate and thus compliance with the safety policy. The main 
practical difficulty of PCC techniques is in generating safety certiñcates which 
at the same time: i) allow expressing interesting safety properties, ii) can be 
generated automatically and, iii) are easy and efficient to check. 

We propose an automatic approach to PCC which makes use of abstract in-
terpretation [2] techniques for dealing with the above issues. While our approach 
is general, we develop it for concreteness in the context of (Constraint) Logic 
Programming, (C)LP, because this paradigm offers a good number of advan-
tages, especially the maturity and sophistication of the analysis tools available. 
Assertions are used to define the safety policy. Such assertions are syntactic ob-
jects which allow expressing "abstract"—i.e. symbolic—properties over different 
abstract domains. The ñrst step in our method then involves automatically in-
ferring a set of safety assertions (corresponding to the analysis results), using 
abstract interpretation, and taking as a starting input the program, the pre-
deñned assertions available for library predicates, and any (optional) assertions 
provided by the user for user-deñned predicates. The safety policy consists in 
guaranteeing that the safety assertions hold for the given program in the context 
of the desired abstract domain. This is automatically provided by the inference 
process and its correctness ensured by the proved correctness of the process. 

The certification process—i.e., the generation of a safety certifícate by the 
code supplier which is as small as possible—is in turn based on the idea that only 
a particular subset of the analysis results computed by abstract interpretation-
based ñxpoint algorithms needs to be used to play the role of certifícate for 

mailto:elvira@sip.ucm.es
http://Qfi.upm.es
mailto:herme@unm.edu


attesting program safety. In our implementation, the high-level assertion lan-
guage of [5] is used and the certifícate is automatically generated from the results 
computed by the goal dependent ñxpoint abstract interpretation-based analyzer 
of [3]. These analysis results are represented by means of two da ta structures 
in the output: the answer table and the are dependency table. We show tha t a 
particular subset of the analysis results—namely the answer table—is sufficient 
for mobile code certiñcation. A veriñcation condition generator computes from 
the assertions and the answer table a verification condition in order to at test 
compliance of the program with respect to the safety policy. Intuitively, the ver­
iñcation condition is a conjunction of boolean expressions whose validity ensures 
the consistency of a set of assertions. The automatic validator a t tempts to check 
its validity. When the veriñcation condition is indeed checked, then the answer 
table is considered a valid certiñcate. 

In order to retain the safety guarantees, the consumer, after receiving the pro­
gram together with the certiñcate from the supplier, can t rust neither the code 
ñor the certiñcate. Thus, in the validation process, the consumer not only checks 
the validity of the answer table received but it also (re-)generates a trustworthy 
veriñcation condition, as it is done by the supplier. The crucial observation in 
our approach is tha t the validation process performed by the code consumer is 
similar to the above certiñcation process but replacing the ñxpoint analyzer by 
an analysis checker which does not need to compute a fixpoint It simply checks 
the analysis, using an algorithm which is a very simpliñed one-pass analyzer. 
Intuitively, since the certiñcation process already provides the ñxpoint result as 
certiñcate, an additional analysis pass over it cannot change the result. Thus, 
as long as the answer table is valid, a single cycle over the code validates the 
certiñcate. 

We believe tha t our proposal can bring the expressiveness and automation 
which is inherent to abstract interpretation-based techniques to the área of mo­
bile code safety. In particular, the expressiveness of existing abstract domains 
will be useful to deñne a wider range of safety properties. Furthermore, in the 
case of (C)LP the approach inherits the inference power and automation of the 
abstract interpretation engines developed for this paradigm. A complete descrip-
tion of the method (and related techniques) can be found in [1]. 

References 

1. E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-based 
Approach to Mobile Code Safety. TR CLIP8/2003.0, T. U. of Madrid, Nov. 2003. 

2. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static 
Analysis of Programs by Construction or Approximation of Fixpoints. POPL'77, 
pages 238-252, 1977. 

3. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of 
Constraint Logic Programs. ACM TOPLAS, 22(2):187-223, March 2000. 

4. G. Necula. Proof-Carrying Code. POPL'97, pages 106-119. ACM Press, 1997. 
5. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for CLP. 

In Analysis and Visualization Tools for Constraint Programming, pages 23-61. 
Springer LNCS 1870, 2000. 


