
Experiments in Abstract Interpretation-based
Code Certification for Pervasive Systems

Elvira Albert1 Germán Puebla2, Manuel Hermenegildo2'3

1 Complutense University of Madrid 2Technical University of Madrid
elvira@sip.ucm.es 3University of New México (UNM)

{german,herme}@fi.upm.es

A b s t r a c t — Proof carrying code (PCC) is a general is originally a proof in ñrst-order logic of certain ver-
methodology for certifying that the execution of an un- ification conditions and the checking process involves
trusted mobile code is safe. The baste idea is that the ensuring tha t the certifícate is indeed a valid ñrst-order
code supplier attaches a certifícate to the mobile code proof.
which the consumer checks in order to ensure that the The main practical difñculty of P C C techniques is in
code is indeed safe. The potential benefit is that the generating safety certiñeates which at the same time: i)
consumer's task is reduced from the level of proving to allow expressing interesting safety properties, ii) can be
the level of checking. Recently, the abstract interpre- generated automatically and, iii) are easy and efficient
tation techniques developed, in logic programming have to check. In [1], the abstract interpretation techniques
been proposed as a basis for PCC. This extended ab- [5] developed in logic programming1 are proposed as
stract reports on experiments which illustrate several is- a basis for P C C . They offer a number of advantages
sues involved in abstract interpretation-based certifica- for dealing with the aforementioned issues. In particu-
tion. First, we describe the implementation of our sys- lar, the expressiveness of existing abstract domains will
tem in the context of CiaoPP: the preprocessor of the be implicitly available in abstract interpretation-based
Ciao multi-paradigm programming system. Then, by code certification to deñne a wide range of safety proper-
means of some experiments, we show how code certifi- ties. Furthermore, the approach inherits the automation
catión is aided in the implementation of the framework. and inference power of the abstract interpretation en-
Finally, we discuss the application of our method within gines used in (Constraint) Logic Programming, (C)LP.
the área, of pervasive systems.

K e y w o r d s : Logic Programming, Abstract Interpreta­
tion, Mobile Safety, Proof-Carrying Code.

1 The Framework
Current approaches to mobile code safety, inspired by

the technique of Proof-Carrying Code (PCC) [15], asso-
ciate safety information in the form of a certifícate to
programs. The certifícate (or proof) is created by the
code supplier at compile t ime, and packaged along with
the untrusted code. The consumer who receives the
code+certiñeate package can then run a checker which
by a straightforward inspection of the code and the cer­
tifícate, can verify the validity of the certifícate and thus
compliance with the safety policy. The key benefit of
this approach is tha t the burden of ensuring compliance
with the desired safety policy is shifted from the con­
sumer to the supplier. Indeed the (proof) checker per-
forms a task tha t should be much simpler, efficient, and
automatic than generating the original certifícate. For
instance, in the ñrst P C C system [15], the certifícate

1.1 Certification in the Supplier
In Fig. 1, we illustrate the certification process of

[1] carried out to genérate a safety certifícate by the
code supplier. It is based on the idea tha t a partic­
ular subset of the analysis results computed, by abstract
interpretation-based, fixpoint algorithms can play the role
of certifícate for attesting program safety [1]. The certi­
fication process consists in the next four steps.

Safety Pol icy. A subset of the high-level assertion
language of [16] is used to define the safety policy in
the context of CLP programs. Assertions are syntac-
tic objeets which allow us to express "abstract"—i.e.
symbolic—properties over different abstract domains.
Examples are assertions which state information on en-
try points to a program module, assertions which de­
scribe properties of built-ins, assertions which provide
some type declarations, cost bounds, etc. The certi­
fication process s tar ts from an initial program and an

•̂We refer to [2, 6, 12], and their references, for more details on
analysis techniques developed in logic programming.

mailto:elvira@sip.ucm.es
http://upm.es

Domain
s.

> oatety
Pollcy

N. rf

saiety
Assertions

X"
X

Program
with entries

Hxpomt
Analyzer

•>-

VCGen |

r
Answer
Table

•>-
Veriñcation
Condition

CODE
SUPPLIER

-* vanciatoi ->
Valld

Certifícate

Figure 1: Abstract Interpretation-based Mobile Code Certiñcation in CiaoPP

abstract domain and obtains a set of safety assertions
from the predeñned assertions for system predicates and
those provided by the user. The Safety Pollcy consists
in guaranteeing that safety assertions hold for the given
program (and entries) in the context of the desired ab­
stract domain.

Fixpoint Analyzer. A main idea in [1] is that the
certiñcate is automatically generated by a ñxpoint ab­
stract interpretation-based analyzer. In particular, the
goal dependent (a.k.a. goal oriented) analyzer of [12]
plays the role of Fixpoint Analyzer. This analysis algo-
rithm receives as input, in addition to the program and
the abstract domain, a set of calling patterns (or en­
tries) . A calling pattern is a description of the calling
modes into the program. For simplicity, we assume that
the program comes enhanced with its entries. Due to
space limitations, and given that it is now well under-
stood, we do not describe here the ñxpoint algorithm
(details can be found in, e.g., [2, 12]). An interesting
point to note is that analysis results in [12] are repre-
sented by means of two data structures in the output:
the answer table and the are dependeney table. In [1], we
show that a particular subset of the analysis results—
namely the answer table—is sufficient for mobile code
certiñcation.

Verification condition generator. Then, a veriñ­
cation condition generator, VCGen, computes from the
assertions and the answer table a verification condition
in order to attest compliance of the program with re-
spect to the safety policy. The formal deñnition of VC­
Gen is outside the scope of this paper (it can be found
in [1]). Intuitively, the veriñcation condition is a con-
junction of boolean expressions whose validity ensures
the consisteney of a set of assertions w.r.t. the answer
table computed by the analyzer.

Validator. The condition is sent to an automatic Val-
¡dator which attempts to check its validity w.r.t. the an­
swer table. This validation may yield three different
possible status: i) the veriñcation condition is indeed
checked and the answer table is considered a Valld Cer­

tifícate, ii) it is disproved, and thus the certiñcate is not
valid and the code is deñnitely not safe to run (we should
obviously correct the program before continuing the pro­
cess); iii) it cannot be proved ñor disproved, which may
be due to several circumstances. For instance, it can
happen that the analysis is not able to infer precise
enough information to verify the conditions. The user
can then provide a more reñned description of initial
calling patterns or choose a different, ñner-grained, do­
main. Although, it is not showed in the picture, in both
the ii) and iii) cases, the certiñcation process needs to be
restarted until achieving a veriñcation condition which
meets i). If it succeeds, the answer table constitutes
a valid certiñcate and can be sent to the consumer to-
gether with the program.

1.2 Validation in the Consumer
The validation process of [1] performed by the code

consumer is similar to the certiñcation process described
in Fig. 1 by replacing the ñxpoint analyzer by an Anal­
ysis Checker. Indeed, the supplier sends the program
together with the certiñcate to the consumer and, to re-
tain the safety guarantees, the consumer can trust nei-
ther the code ñor the certiñcate. Thus, in the validation
process, a code consumer not only checks the validity of
the answer table but it also (re-)generates a trustwor-
thy veriñcation condition, as it is done by the supplier
in the above ñgure.

The whole validation process is centered around the
following observation: the checking algorithm can be de-
fined as a very simplified "one-pass" analyzer [1]. In­
tuitively since the certiñcation process already provides
the ñxpoint result as certiñcate, an additional analysis
pass over it cannot change the result. Thus, as long
as the answer table is valid, one single execution of the
abstract interpreter validates the certiñcate. The deñ­
nition of the checker can be found in [1].

2 Experiments in CiaoPP
The above abstract interpretation-based code certiñ­

cation framework has been implemented in CiaoPP [11]:
the preprocessor of the Ciao program development sys­
tem [3]. Ciao is a multi-paradigm programming system,

allowing programming in logic, constraint, and func-
tional styles. At the heart of Ciao is an efficient logic
programming-based kernel language. This allows the
use of the very large body of approximation domains, in-
ference techniques and tools for abstract interpretation-
based semantic analysis which have been developed to
a powerful and mature level in this área (see, e.g.,
[14, 4, 9, 12] and their references). These techniques and
systems can approximate at compile-time, always safely,
and with a significance degree of precisión, a wide range
of properties which is much richer than , for example,
traditional types. This includes da ta structure shape
(including pointer sharing), independence, bounds on
da ta structure sizes, and other operational variable in-
stantiation properties as well as procedure-level proper­
ties such as determinacy, termination, non-failure and
bounds on resource consumption (time or space cost).
The latter tasks are performed in an integrated fashion
in CiaoPP.

In the context of CiaoPP, the abstract interpretation-
based certification system is implemented in Ciao
1.11#200 [3] with compilation to bytecode. In essence,
we have used the efficient, highly optimized, state-of-
the-art analysis system of CiaoPP (which is part of a
working compiler) as fixpoint analyzer for generating
safety certificates. The checker has been implemented
also simplification of such generic abstract inter-

preter. Our aim here is to present not the techniques
used by CiaoPP for code certification (which are de-
scribed in [1]) but its main functionalities by means of
some examples.

E x a m p l e 2 .1 (s h a r i n g + f r e e n e s s) The next program
mmul t ip ly multiplies two matrices by using two auxil-
iary predicates: m u l t i p l y which performs the multipli-
cation of a matrix and an array and vmul which com­
putes the vectorial product of two arrays (by multiplying
all their elements):

mmul t ip ly ([] , _ , []) .
mmultiply([VO|Rest], VI, [Result|Others]):-

mmultiply(Rest, VI, Others),

multiply(Vl,VO,Result).

multiply([],_, []).

multiply([VO|Rest], VI, [Result|Others]):-

multiply(Rest, VI, Others),

vmuKVO,VI,Result) .

v m u l ([] , [] , 0) .
v m u l ([H l | T I] , [H2 |T2] , R e s u l t) : -

v m u l (T l , T 2 , N e w r e s u l t) ,
P roduc t i s H1*H2,
R e s u l t i s P roduc t+Newresu l t .

One of the distinguishing features of logic program­
ming is that arguments to procedures can be uninstanti-
ated variables. This, together with the search execution

mechanism available (generally backtracking) mates it
possible to have multi-directional procedures. Le., rather
than having fixed input and output arguments, execu­
tion can be "reversed". Thus, we may compute the "in­
put" arguments from known "output" arguments. How-
ever, predícate i s / 2 (used as an infix binary operator)
is mono-directional. Lt computes the arithmetic valué of
its second (right) argument and unifies it with its first
(left) argument. The execution of i s with an uninstan-
tiation rightmost argument results in a run-time error.
Therefore, a safety issue in this example is to ensure
that calis to the built-in predícate i s are performed with
ground data in the right argument.

We can infer this safety information by analyzing
the above program in CiaoPP using a mode and inde­
pendence analysis ("sharing+freeness"). La the "shar­
ing+freeness" domain, var denotes variables that do not
point yet to any data structure, mshare denotes pointer
sharing patterns between variables and ground variables
which point to data structures which contain no point-
ers. The analysis is performed with the following entry
assertion which allows specifying a restricted class of
calis to the predicóte.

: - e n t r y m m u l t i p l y (X , Y , Z) : (v a r (Z) , g round(X) ,
ground(Y)) .

Lt denotes that calis to mmul t ip ly will be performed with
ground terms in the first two arguments and a free vari­
able in the last one.

For the above entry, the output of CiaoPP yields,
among others, the following set of assertions which con-
stitute our safety certifícate:

: - t r u e p r e d A i s B+C
: (m s h a r e ([[A]]) , v a r (A) , g r o u n d ([B , C]))

=> (g round([A ,B ,C])) .
: - t r u e p r e d A i s B*C

: (m s h a r e ([[A]]) , v a r (A) , g r o u n d ([B , C]))
=> (g round([A ,B ,C])) .

The "true pred" assertions above specify in a combined
way properties of both: ": " the entry (i.e., upon call-
ing) and "=>" the exit (i.e., upon success) points of all
calis to the predícate. These assertions for predícate i s
express that the leftmost argument is a free unaliased
variable while the rightmost arguments are input valúes
(i.e., ground on cali) when i s is called (:). Upon suc­
cess, all three arguments will get instantiated. Given
this information, we can verify that the safety condition
is accomplished and thus the code is safe to run. Thus,
the above analysis output can be used as a certifícate to
attest a safe use of predicóte i s .

The above experiment has been performed using a shar­
ing+freeness domain. However, the whole method is
domain-independent. This allows plugging in different
abstract domains, provided suitable interfacing func-
tions are defined. From the user point of view, it is

sufficient to specify the particular abstract domain de-
sired. For instance, CiaoPP can also infer (parametric)
types for programs both at the predícate level and at
the literal level [9, 10, 18]. Clearly, type information is
very useful for program certiñcation, veriñcation, opti-
mization, debugging (see, e.g., [11]).

E x a m p l e 2.2 (e t erms) Our next experiment uses the
regular type domain eterms [18] to analyze the same
program of Ex. 2.1. We use in our examples term as
the most general type (i.e., it corresponds to all possible
terms), l i s t to represent lists and num for numbers.
We also allow parametric types such as l i s t (T) which
denotes lists whose elements are all of type T. Type l i s t
is clearly equivalent to l i s t (term).

The program is analyzed w.r.t. the following entry as­
sertion which specifies that calis to mmultiply are per-
formed with matrices in the first two arguments:

: - e n t r y mmul t ip ly (X ,Y ,Z) : (v a r (Z) ,
l i s t (X , l i s t (n u m)) , l i s t (Y , l i s t (n u m))) .

CiaoPP output yields, among other, the following as-
sertions for the built-in predícate i s :

: - t r u e p r e d A i s B+C
: (term(A),num(B),num(C))

=> (num(A),num(B),num(C)) .

: - t r u e p r e d A i s B*C
: (term(A),num(B),num(C))

=> (num(A),num(B),num(C)) .

They indícate that calis to i s will be performed with
numbers in the rightmost argument (thus, ground terms)
and will return, upon success, a number in the first ar­
gument. Therefore, they also constitute a valid (and
more precise) certifícate for the safety issue described in
Ex. 2.1.

3 Applications in Pervasive
Computing

Pervasive computing platforms are becoming ever
smaller and more powerful, and are embedded every-
where, even in living organisms. They can contain so-
phisticated models of our personal environment tha t
help us to make everyday decisions; they have the power
to do mathematical and logical reasoning in order to
perform intelligent tasks. As a result, veriñcation and
validation techniques have to keep pace with the huge
requirements for intelligent, user-oriented applications
tha t must run on devices with a minimum of comput­
ing resources. In this context, there is a large number of
computing devices which may range from personal com-
puters to PDAs, mobile phones, dedicated processors,
smart cards, wearable computers and such like. Such
devices are often characterized by having a relatively

small amount of computing resources [19]. As a result,
t ime efficiency is an issue since often these devices have
to opérate on real-time tasks. Also, and possibly more
importantly, memory efficiency is an issue. If either the
software used is too large to fit in the device or needs
too much memory to run, then it is simply not possible
to use such software.

Abstract interpretation-based techniques are able t o
reason about computational properties which can be
useful for controlling efficiency issues in the context of
pervasive computing systems. For instance, CiaoPP can
infer lower and upper bounds on the sizes of terms and
the computational cost of predicates [7, 8]. Cost bounds
are expressed as functions on the sizes of the input argu­
ments and yield the number of resolution steps. Various
measures can be used for the "size" of the input, such
as list-length, term-size, term-depth, integer-value, etc.
The idea is tha t the system can disregard code which
makes requirement tha t are too large in terms of com­
puting resources (in t ime and/or space). Let us see an
example.

E x a m p l e 3.1 The following program i n c _ a l l incre-
ments all elements of a list by adding one to each of
them.

i n c _ a l l ([] , []) .
i n c _ a l l ([H | T] , [N H I N T]) : -

NH i s H+l,
i n c _ a l l (T , N T) .

The following assertions have been added by the user of
the pervasive computing system:

: - e n t r y i n c _ a l l (A , B) : (l i s t (A , n u m) , v a r (B)) .
: - check c a l i s i n c _ a l l (A , B)

: l i s t (A , n u m) .
: - check s u c c e s s i n c _ a l l (A , B)

=> l i s t (B , n u m) .
: - check comp i n c _ a l l (A , B)

: (l i s t (A , n u m) , va r (B))
+ s t e p s _ u b (l e n g t h (A) + l) .

The entry assertion specifies that calis to i n c _ a l l must
be performed with a list of numbers in the first argument
while the second one must be a free variable. The next
three check assertions express the intended semantics
of the program. The third one intends to check that,
upon success, the second argument of calis to i n c _ a l l
will be a list of numbers. Finally, the last computational
(comp^ assertion tries to verify that the upper bound of
the predícate is the sum of the length of the first list and
one. The idea, is that the code will be accepted provided
all assertions can be checked.

The cost analysis available in CiaoPP infers, among
others, the following assertions for the above program
and entries:

:- checked calis inc_all(A,B)

: list(A,num).
:- checked success inc_all(A,B)

=> list(B,num).
:- checked comp inc_all(A,B)

: (list(A,num), var(B))
+ steps_ub(inc_all(A,B),length(A)+l).

:- true pred inc_all(A,B)

: (list(A,num), var(B))
=> (list(A,num), list(B,num))
+ (not_fails, is_det,

steps_ub(length(A)+l)).

Therefore, the status of the last three check assertions
has become checked, which means that they have been
validated and thus the program is safe to run (accord-
ing to the intended meaning). The last procedure-level
assertion merges them all and, additionally, indicates
that calis to the predícate do not fail and their execution
is deterministic by combining information available for
other abstract domains.

Apart from expressing relevant properties, when devel-
oping software for deployment on Smart Cards (and sim­
ilar ambient computing devices), two more important
issues arise: 1) Pervasive computing is characterized by
having a relatively large number of untrusted computing
devices which interact. Thus, when modeling such a sys-
tem, it is not realistic to consider one device in isolation:
it will receive plenty of mobile da ta from the environ-
ment. In this context, the safety of the deployed soft­
ware is crucial, as the cost of recalling unñt devices can
be prohibitive. 2) It is essential to simplify the (safety)
veriñcation process and reduce its resource usage. In-
deed, Smart Cards typically provide less than 4Kb of
RAM while it is possible to use only up to 128Kb for
storing the application and static data. Such resource
considerations tend to dominate the development pro­
cess for pervasive systems, forcing developers to write
low-level code from scratch, as mobile system develop­
ers have found in their own experience.

P C C techniques—based on certiñcates which are
computed outside the device—constitute a good sce-
nario for the certiñcation of software deployed in perva­
sive systems. They compute tamper-proof certiñcates
which simplify code veriñcation and pass them along
with the code. In our abstract interpretation-based con­
text , although global analysis is now routinely used as
a practical tool, it is still unacceptable to run the whole
analyzer to validate the certifícate as it involves consid­
erable cost. One of the main reasons is tha t the ñx-
point algorithm is an iterative process which often com­
putes answers (repeatedly) for the same cali due to pos­
sible updates introduced by further computations. At
each iteration, the algorithm has to manipúlate rather
complex da ta structures—which involve performing up­
dates, lookups, etc.—until the ñxpoint is reached. Luck-

ily, in abstract interpretation-based code certiñcation,
the burden on the consumer side is reduced by using a
simple one-traversal checker, which is a very simpliñed
and efficient abstract interpreter which does not need
to compute a ñxpoint. The benchmark results in [1]
show tha t the speedup achieved by the checking is ap-
proximately 1.63 in just analysis t ime which, we believe,
makes our approach practically applicable in pervasive
contexts.

A similar proposal is presented in [17] to split the
type-based bytecode veriñcation of the KVM (an em-
bedded variant of the JVM) in two phases, where the
producer ñrst computes the certiñcate by means of a
type-based dataflow analyzer and then the consumer
simply checks tha t the types provided in the code cer­
t iñcate are valid. This approach is extended in [13] t o
real world Java Software. As in our case, the valida-
tion can be done in a single, linear pass over the byte­
code. However, these approaches are designed limited
to types, whereas our approach supports a very rich set
of domains especially well-suited for this purpose, in-
cluding complex properties such as computational and
memory cost, non-failure, determinacy, etc. (as we have
seen in the examples in this section) and possibly even
combining several of them.

4 Conclusions
Abstract interpretation-based veriñcation forms the

córner stone of the safety model of CiaoPP: the pre-
processor of the Ciao multi-paradigm programming sys­
tem. It ensures the integrity of the runtime environment
even in the presence of untrusted code. The framework
uses modular, incremental, abstract interpretation as a
fundamental tool to infer information about programs.
This information is used to certify and validate pro­
grams, to detect bugs with respect to partial speciñca-
tions writ ten using program assertions, to genérate and
simplify run-time tests and to perform high-level opti-
mizations such as múltiple abstract specialization, par-
allelization, and resource usage control. Among these
applications, we herein focus on the use of abstract
interpretation-based veriñcation for the purpose of mo­
bile code safety by following the s tandard P C C method-
ology. We report on some experiments in CiaoPP at
work which illustrate how the actual process of pro­
gram certiñcation is aided in an implementation of this
framework. We also discuss the application of abstract
interpretation-based code certiñcation to the of

pervasive computing systems, which may lack comput­
ing resources to perform static analysis. We point out
tha t computational properties inferred by CiaoPP can
be useful for controlling resource usage and ñltering out
mobile code which does not meet certain cost require-
ments. Also, the fact tha t our approach follows P C C
techniques—in which the certiñcate is generated out­
side the device—makes it potentially applicable in this

pervasive context. However, controlling it in a perfect
way proves far from obvious, and a range of challeng-
ing open problems remain as topics for further research.
For instance, we plan to s tudy a more precise model of
the memory requirements of small devices. The size of
certificates needs to be minimized as much as possible
to fit in such limited systems. We believe tha t they can
be further reduced by omitting the information which
has to be necessarily re-computed by the checker. This
is the subject of ongoing research.

References
[1] E. Albert, G. Puebla, and M. Hermenegildo. An

Abstract Interpretation-based Approach to Mo­
tóle Code Safety. Technical Report CLIP8/2003.0,
Technical University of Madrid, School of Com­
puter Science, UPM, November 2003.

[2] M. Bruynooghe. A Practical Framework for the
Abstract Interpretation of Logic Programs. Journal
of Logic Programming, 10:91-124, 1991.

[3] F . Bueno, D. Cabeza, M. Carro, M. Hermenegildo,
P. López-García, and G. Puebla. The Ciao
Prolog System. Reference Manual (vi .8) . Tech­
nical Report CLIP4/2002.1, School of Com­
puter Science, UPM, 2002. Available at
h t t p : / / c l i p . d i a . f i . u p m . e s / S o f t w a r e / C i a o / .

[4] B. Le Charlier and P. Van Hentenryck. Experimen­
tal Evaluation of a Generic Abstract Interpretation
Algorithm for Prolog. ACM Transactions on Pro­
gramming Languages and Systems, 16(1):35-101,
1994.

[5] P. Cousot and R. Cousot. Abstract Interpretation:
a Unified Lattice Model for Static Analysis of Pro­
grams by Construction or Approximation of Fix-
points. In Proc. of POPL'77, pages 238-252, 1977.

[6] Patrick Cousot and Radhia Cousot. Abstract inter­
pretation and application to logic programs. The
Journal of Logic Programming, 13(2 and 3):103—
179, 1992.

[7] S.K. Debray, P. López-García, M. Hermenegildo,
and N.-W. Lin. Estimating the Computational

Cost of Logic Programs. In Proc. of SAS'94, num-
ber 864 in LNCS, pages 255-265. Springer-Verlag,
1994. Invited Talk.

[8] S.K. Debray, P. López-García, M. Hermenegildo,
and N.-W. Lin. Lower Bound Cost Estimation for
Logic Programs. In Proc. of ILPS'97, pages 2 9 1 -
305. MIT Press, Cambridge, MA, 1997.

[9] J. Gallagher and D. de Waal. Fast and Precise Reg­
ular Approximations of Logic Programs. In Proc.
ofICLP'94, pages 599-613. MIT Press, 1994.

[10] J. Gallagher and G. Puebla. Abstract Interpreta­
tion over Non-Deterministic Finite Tree Autómata
for Set-Based Analysis of Logic Programs. In Proc.
of PADL'02, LNCS, pages 243-261, 2002.

[11] M. Hermenegildo, G. Puebla, F . Bueno, and
P. López-García. Program Development Using Ab­
stract Interpretation (and The Ciao System Pre-
processor). In Proc. of SAS'03, pages 127-152.
Springer LNCS 2694, 2003.

[12] M. Hermenegildo, G. Puebla, K. Marriott , and
P. Stuckey. Incremental Analysis of Constraint
Logic Programs. ACM Transactions on Pro­
gramming Languages and Systems, 22(2):187-223,
March 2000.

[13] K. Klohs and U. Kastens. Memory Requirements
of Java Bytecode Verification on Limited Devices.
In Proc. of Compiler Optimization meets Compiler
Verification (COCV'04), 2004.

[14] K. Muthukumar and M. Hermenegildo. Compile-
time Derivation of Variable Dependency Using Ab­
stract Interpretation. Journal of Logic Program­
ming, 13(1, 2, 3 and 4):315-347, 1992.

[15] G. Necula. Proof-Carrying Code. In Proc. of
POPL'97, pages 106-119. ACM Press, 1997.

[16] G. Puebla, F . Bueno, and M. Hermenegildo. An
Assertion Language for Constraint Logic Programs.
In Analysis and Visualization Tools for Constraint
Programming, pages 23-61. Springer LNCS 1870,
2000.

[17] K. Rose, E. Rose. Lightweight bytecode verifica­
tion. In OOPSALA Workshop on Formal Under-
pinnings of Java, 1998.

[18] C. Vaucheret and F . Bueno. More precise yet effi-
cient type inferen ce for logic programs. In Proc. of
SAS'02, pages 102-116. Springer LNCS 2477, 2002.

[19] M. Weiser. The computer for the twenty-first cen-
tury. Scientific American, 3(265):94-104, Septem-
ber 1991.

http://clip.dia.fi.upm.es/Software/Ciao/

