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A b s t r a c t — Proof carrying code (PCC) is a general is originally a proof in ñrst-order logic of certain ver-
methodology for certifying that the execution of an un- ification conditions and the checking process involves 
trusted mobile code is safe. The baste idea is that the ensuring tha t the certifícate is indeed a valid ñrst-order 
code supplier attaches a certifícate to the mobile code proof. 
which the consumer checks in order to ensure that the The main practical difñculty of P C C techniques is in 
code is indeed safe. The potential benefit is that the generating safety certiñeates which at the same time: i) 
consumer's task is reduced from the level of proving to allow expressing interesting safety properties, ii) can be 
the level of checking. Recently, the abstract interpre- generated automatically and, iii) are easy and efficient 
tation techniques developed, in logic programming have to check. In [1], the abstract interpretation techniques 
been proposed as a basis for PCC. This extended ab- [5] developed in logic programming1 are proposed as 
stract reports on experiments which illustrate several is- a basis for P C C . They offer a number of advantages 
sues involved in abstract interpretation-based certifica- for dealing with the aforementioned issues. In particu-
tion. First, we describe the implementation of our sys- lar, the expressiveness of existing abstract domains will 
tem in the context of CiaoPP: the preprocessor of the be implicitly available in abstract interpretation-based 
Ciao multi-paradigm programming system. Then, by code certification to deñne a wide range of safety proper-
means of some experiments, we show how code certifi- ties. Furthermore, the approach inherits the automation 
catión is aided in the implementation of the framework. and inference power of the abstract interpretation en-
Finally, we discuss the application of our method within gines used in (Constraint) Logic Programming, (C)LP. 
the área, of pervasive systems. 

K e y w o r d s : Logic Programming, Abstract Interpreta­
tion, Mobile Safety, Proof-Carrying Code. 

1 The Framework 
Current approaches to mobile code safety, inspired by 

the technique of Proof-Carrying Code (PCC) [15], asso-
ciate safety information in the form of a certifícate to 
programs. The certifícate (or proof) is created by the 
code supplier at compile t ime, and packaged along with 
the untrusted code. The consumer who receives the 
code+certiñeate package can then run a checker which 
by a straightforward inspection of the code and the cer­
tifícate, can verify the validity of the certifícate and thus 
compliance with the safety policy. The key benefit of 
this approach is tha t the burden of ensuring compliance 
with the desired safety policy is shifted from the con­
sumer to the supplier. Indeed the (proof) checker per-
forms a task tha t should be much simpler, efficient, and 
automatic than generating the original certifícate. For 
instance, in the ñrst P C C system [15], the certifícate 

1.1 Certification in the Supplier 
In Fig. 1, we illustrate the certification process of 

[1] carried out to genérate a safety certifícate by the 
code supplier. It is based on the idea tha t a partic­
ular subset of the analysis results computed, by abstract 
interpretation-based, fixpoint algorithms can play the role 
of certifícate for attesting program safety [1]. The certi­
fication process consists in the next four steps. 

Safety Pol icy. A subset of the high-level assertion 
language of [16] is used to define the safety policy in 
the context of CLP programs. Assertions are syntac-
tic objeets which allow us to express "abstract"—i.e. 
symbolic—properties over different abstract domains. 
Examples are assertions which state information on en-
try points to a program module, assertions which de­
scribe properties of built-ins, assertions which provide 
some type declarations, cost bounds, etc. The certi­
fication process s tar ts from an initial program and an 

•̂We refer to [2, 6, 12], and their references, for more details on 
analysis techniques developed in logic programming. 
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Figure 1: Abstract Interpretation-based Mobile Code Certiñcation in CiaoPP 

abstract domain and obtains a set of safety assertions 
from the predeñned assertions for system predicates and 
those provided by the user. The Safety Pollcy consists 
in guaranteeing that safety assertions hold for the given 
program (and entries) in the context of the desired ab­
stract domain. 

Fixpoint Analyzer. A main idea in [1] is that the 
certiñcate is automatically generated by a ñxpoint ab­
stract interpretation-based analyzer. In particular, the 
goal dependent (a.k.a. goal oriented) analyzer of [12] 
plays the role of Fixpoint Analyzer. This analysis algo-
rithm receives as input, in addition to the program and 
the abstract domain, a set of calling patterns (or en­
tries) . A calling pattern is a description of the calling 
modes into the program. For simplicity, we assume that 
the program comes enhanced with its entries. Due to 
space limitations, and given that it is now well under-
stood, we do not describe here the ñxpoint algorithm 
(details can be found in, e.g., [2, 12]). An interesting 
point to note is that analysis results in [12] are repre-
sented by means of two data structures in the output: 
the answer table and the are dependeney table. In [1], we 
show that a particular subset of the analysis results— 
namely the answer table—is sufficient for mobile code 
certiñcation. 

Verification condition generator. Then, a veriñ­
cation condition generator, VCGen, computes from the 
assertions and the answer table a verification condition 
in order to attest compliance of the program with re-
spect to the safety policy. The formal deñnition of VC­
Gen is outside the scope of this paper (it can be found 
in [1]). Intuitively, the veriñcation condition is a con-
junction of boolean expressions whose validity ensures 
the consisteney of a set of assertions w.r.t. the answer 
table computed by the analyzer. 

Validator. The condition is sent to an automatic Val-
¡dator which attempts to check its validity w.r.t. the an­
swer table. This validation may yield three different 
possible status: i) the veriñcation condition is indeed 
checked and the answer table is considered a Valld Cer­

tifícate, ii) it is disproved, and thus the certiñcate is not 
valid and the code is deñnitely not safe to run (we should 
obviously correct the program before continuing the pro­
cess); iii) it cannot be proved ñor disproved, which may 
be due to several circumstances. For instance, it can 
happen that the analysis is not able to infer precise 
enough information to verify the conditions. The user 
can then provide a more reñned description of initial 
calling patterns or choose a different, ñner-grained, do­
main. Although, it is not showed in the picture, in both 
the ii) and iii) cases, the certiñcation process needs to be 
restarted until achieving a veriñcation condition which 
meets i). If it succeeds, the answer table constitutes 
a valid certiñcate and can be sent to the consumer to-
gether with the program. 

1.2 Validation in the Consumer 
The validation process of [1] performed by the code 

consumer is similar to the certiñcation process described 
in Fig. 1 by replacing the ñxpoint analyzer by an Anal­
ysis Checker. Indeed, the supplier sends the program 
together with the certiñcate to the consumer and, to re-
tain the safety guarantees, the consumer can trust nei-
ther the code ñor the certiñcate. Thus, in the validation 
process, a code consumer not only checks the validity of 
the answer table but it also (re-)generates a trustwor-
thy veriñcation condition, as it is done by the supplier 
in the above ñgure. 

The whole validation process is centered around the 
following observation: the checking algorithm can be de-
fined as a very simplified "one-pass" analyzer [1]. In­
tuitively since the certiñcation process already provides 
the ñxpoint result as certiñcate, an additional analysis 
pass over it cannot change the result. Thus, as long 
as the answer table is valid, one single execution of the 
abstract interpreter validates the certiñcate. The deñ­
nition of the checker can be found in [1]. 

2 Experiments in CiaoPP 
The above abstract interpretation-based code certiñ­

cation framework has been implemented in CiaoPP [11]: 
the preprocessor of the Ciao program development sys­
tem [3]. Ciao is a multi-paradigm programming system, 



allowing programming in logic, constraint, and func-
tional styles. At the heart of Ciao is an efficient logic 
programming-based kernel language. This allows the 
use of the very large body of approximation domains, in-
ference techniques and tools for abstract interpretation-
based semantic analysis which have been developed to 
a powerful and mature level in this área (see, e.g., 
[14, 4, 9, 12] and their references). These techniques and 
systems can approximate at compile-time, always safely, 
and with a significance degree of precisión, a wide range 
of properties which is much richer than , for example, 
traditional types. This includes da ta structure shape 
(including pointer sharing), independence, bounds on 
da ta structure sizes, and other operational variable in-
stantiation properties as well as procedure-level proper­
ties such as determinacy, termination, non-failure and 
bounds on resource consumption (time or space cost). 
The latter tasks are performed in an integrated fashion 
in CiaoPP. 

In the context of CiaoPP, the abstract interpretation-
based certification system is implemented in Ciao 
1.11#200 [3] with compilation to bytecode. In essence, 
we have used the efficient, highly optimized, state-of-
the-art analysis system of CiaoPP (which is part of a 
working compiler) as fixpoint analyzer for generating 
safety certificates. The checker has been implemented 
also simplification of such generic abstract inter-

preter. Our aim here is to present not the techniques 
used by CiaoPP for code certification (which are de-
scribed in [1]) but its main functionalities by means of 
some examples. 

E x a m p l e 2 .1 ( s h a r i n g + f r e e n e s s ) The next program 
mmul t ip ly multiplies two matrices by using two auxil-
iary predicates: m u l t i p l y which performs the multipli-
cation of a matrix and an array and vmul which com­
putes the vectorial product of two arrays (by multiplying 
all their elements): 

mmul t ip ly ( [ ] , _ , [ ] ) . 
mmultiply([VO|Rest], VI, [Result|Others]):-

mmultiply(Rest, VI, Others), 

multiply(Vl,VO,Result). 

multiply([],_, []). 

multiply([VO|Rest], VI, [Result|Others]):-

multiply(Rest, VI, Others), 

vmuKVO,VI,Result) . 

v m u l ( [ ] , [ ] , 0 ) . 
v m u l ( [ H l | T I ] , [H2 |T2] , R e s u l t ) : -

v m u l ( T l , T 2 , N e w r e s u l t ) , 
P roduc t i s H1*H2, 
R e s u l t i s P roduc t+Newresu l t . 

One of the distinguishing features of logic program­
ming is that arguments to procedures can be uninstanti-
ated variables. This, together with the search execution 

mechanism available (generally backtracking) mates it 
possible to have multi-directional procedures. Le., rather 
than having fixed input and output arguments, execu­
tion can be "reversed". Thus, we may compute the "in­
put" arguments from known "output" arguments. How-
ever, predícate i s / 2 (used as an infix binary operator) 
is mono-directional. Lt computes the arithmetic valué of 
its second (right) argument and unifies it with its first 
(left) argument. The execution of i s with an uninstan-
tiation rightmost argument results in a run-time error. 
Therefore, a safety issue in this example is to ensure 
that calis to the built-in predícate i s are performed with 
ground data in the right argument. 

We can infer this safety information by analyzing 
the above program in CiaoPP using a mode and inde­
pendence analysis ("sharing+freeness"). La the "shar­
ing+freeness" domain, var denotes variables that do not 
point yet to any data structure, mshare denotes pointer 
sharing patterns between variables and ground variables 
which point to data structures which contain no point-
ers. The analysis is performed with the following entry 
assertion which allows specifying a restricted class of 
calis to the predicóte. 

: - e n t r y m m u l t i p l y ( X , Y , Z ) : ( v a r ( Z ) , g round(X) , 
ground(Y) ) . 

Lt denotes that calis to mmul t ip ly will be performed with 
ground terms in the first two arguments and a free vari­
able in the last one. 

For the above entry, the output of CiaoPP yields, 
among others, the following set of assertions which con-
stitute our safety certifícate: 

: - t r u e p r e d A i s B+C 
: ( m s h a r e ( [ [ A ] ] ) , v a r ( A ) , g r o u n d ( [ B , C ] ) ) 

=> ( g round( [A ,B ,C] ) ) . 
: - t r u e p r e d A i s B*C 

: ( m s h a r e ( [ [ A ] ] ) , v a r ( A ) , g r o u n d ( [ B , C ] ) ) 
=> ( g round( [A ,B ,C] ) ) . 

The "true pred" assertions above specify in a combined 
way properties of both: ": " the entry (i.e., upon call-
ing) and "=>" the exit (i.e., upon success) points of all 
calis to the predícate. These assertions for predícate i s 
express that the leftmost argument is a free unaliased 
variable while the rightmost arguments are input valúes 
(i.e., ground on cali) when i s is called (:). Upon suc­
cess, all three arguments will get instantiated. Given 
this information, we can verify that the safety condition 
is accomplished and thus the code is safe to run. Thus, 
the above analysis output can be used as a certifícate to 
attest a safe use of predicóte i s . 

The above experiment has been performed using a shar­
ing+freeness domain. However, the whole method is 
domain-independent. This allows plugging in different 
abstract domains, provided suitable interfacing func-
tions are defined. From the user point of view, it is 



sufficient to specify the particular abstract domain de-
sired. For instance, CiaoPP can also infer (parametric) 
types for programs both at the predícate level and at 
the literal level [9, 10, 18]. Clearly, type information is 
very useful for program certiñcation, veriñcation, opti-
mization, debugging (see, e.g., [11]). 

E x a m p l e 2.2 ( e t erms) Our next experiment uses the 
regular type domain eterms [18] to analyze the same 
program of Ex. 2.1. We use in our examples term as 
the most general type (i.e., it corresponds to all possible 
terms), l i s t to represent lists and num for numbers. 
We also allow parametric types such as l i s t ( T ) which 
denotes lists whose elements are all of type T. Type l i s t 
is clearly equivalent to l i s t (term). 

The program is analyzed w.r.t. the following entry as­
sertion which specifies that calis to mmultiply are per-
formed with matrices in the first two arguments: 

: - e n t r y mmul t ip ly (X ,Y ,Z) : ( v a r ( Z ) , 
l i s t ( X , l i s t ( n u m ) ) , l i s t ( Y , l i s t ( n u m ) ) ) . 

CiaoPP output yields, among other, the following as-
sertions for the built-in predícate i s : 

: - t r u e p r e d A i s B+C 
: ( term(A),num(B),num(C) ) 

=> ( num(A),num(B),num(C) ) . 

: - t r u e p r e d A i s B*C 
: ( term(A),num(B),num(C) ) 

=> ( num(A),num(B),num(C) ) . 

They indícate that calis to i s will be performed with 
numbers in the rightmost argument (thus, ground terms) 
and will return, upon success, a number in the first ar­
gument. Therefore, they also constitute a valid (and 
more precise) certifícate for the safety issue described in 
Ex. 2.1. 

3 Applications in Pervasive 
Computing 

Pervasive computing platforms are becoming ever 
smaller and more powerful, and are embedded every-
where, even in living organisms. They can contain so-
phisticated models of our personal environment tha t 
help us to make everyday decisions; they have the power 
to do mathematical and logical reasoning in order to 
perform intelligent tasks. As a result, veriñcation and 
validation techniques have to keep pace with the huge 
requirements for intelligent, user-oriented applications 
tha t must run on devices with a minimum of comput­
ing resources. In this context, there is a large number of 
computing devices which may range from personal com-
puters to PDAs, mobile phones, dedicated processors, 
smart cards, wearable computers and such like. Such 
devices are often characterized by having a relatively 

small amount of computing resources [19]. As a result, 
t ime efficiency is an issue since often these devices have 
to opérate on real-time tasks. Also, and possibly more 
importantly, memory efficiency is an issue. If either the 
software used is too large to fit in the device or needs 
too much memory to run, then it is simply not possible 
to use such software. 

Abstract interpretation-based techniques are able t o 
reason about computational properties which can be 
useful for controlling efficiency issues in the context of 
pervasive computing systems. For instance, CiaoPP can 
infer lower and upper bounds on the sizes of terms and 
the computational cost of predicates [7, 8]. Cost bounds 
are expressed as functions on the sizes of the input argu­
ments and yield the number of resolution steps. Various 
measures can be used for the "size" of the input, such 
as list-length, term-size, term-depth, integer-value, etc. 
The idea is tha t the system can disregard code which 
makes requirement tha t are too large in terms of com­
puting resources (in t ime and/or space). Let us see an 
example. 

E x a m p l e 3.1 The following program i n c _ a l l incre-
ments all elements of a list by adding one to each of 
them. 

i n c _ a l l ( [ ] , [ ] ) . 
i n c _ a l l ( [ H | T ] , [ N H I N T ] ) : -

NH i s H+l, 
i n c _ a l l ( T , N T ) . 

The following assertions have been added by the user of 
the pervasive computing system: 

: - e n t r y i n c _ a l l ( A , B ) : ( l i s t ( A , n u m ) , v a r ( B ) ) . 
: - check c a l i s i n c _ a l l ( A , B ) 

: l i s t ( A , n u m ) . 
: - check s u c c e s s i n c _ a l l ( A , B ) 

=> l i s t ( B , n u m ) . 
: - check comp i n c _ a l l ( A , B ) 

: ( l i s t ( A , n u m ) , va r (B) ) 
+ s t e p s _ u b ( l e n g t h ( A ) + l ) . 

The entry assertion specifies that calis to i n c _ a l l must 
be performed with a list of numbers in the first argument 
while the second one must be a free variable. The next 
three check assertions express the intended semantics 
of the program. The third one intends to check that, 
upon success, the second argument of calis to i n c _ a l l 
will be a list of numbers. Finally, the last computational 
(comp^ assertion tries to verify that the upper bound of 
the predícate is the sum of the length of the first list and 
one. The idea, is that the code will be accepted provided 
all assertions can be checked. 

The cost analysis available in CiaoPP infers, among 
others, the following assertions for the above program 
and entries: 



:- checked calis inc_all(A,B) 

: list(A,num). 
:- checked success inc_all(A,B) 

=> list(B,num). 
:- checked comp inc_all(A,B) 

: ( list(A,num), var(B) ) 
+ steps_ub(inc_all(A,B),length(A)+l). 

:- true pred inc_all(A,B) 

: ( list(A,num), var(B) ) 
=> ( list(A,num), list(B,num) ) 
+ ( not_fails, is_det, 

steps_ub(length(A)+l) ). 

Therefore, the status of the last three check assertions 
has become checked, which means that they have been 
validated and thus the program is safe to run (accord-
ing to the intended meaning). The last procedure-level 
assertion merges them all and, additionally, indicates 
that calis to the predícate do not fail and their execution 
is deterministic by combining information available for 
other abstract domains. 

Apart from expressing relevant properties, when devel-
oping software for deployment on Smart Cards (and sim­
ilar ambient computing devices), two more important 
issues arise: 1) Pervasive computing is characterized by 
having a relatively large number of untrusted computing 
devices which interact. Thus, when modeling such a sys-
tem, it is not realistic to consider one device in isolation: 
it will receive plenty of mobile da ta from the environ-
ment. In this context, the safety of the deployed soft­
ware is crucial, as the cost of recalling unñt devices can 
be prohibitive. 2) It is essential to simplify the (safety) 
veriñcation process and reduce its resource usage. In-
deed, Smart Cards typically provide less than 4Kb of 
RAM while it is possible to use only up to 128Kb for 
storing the application and static data. Such resource 
considerations tend to dominate the development pro­
cess for pervasive systems, forcing developers to write 
low-level code from scratch, as mobile system develop­
ers have found in their own experience. 

P C C techniques—based on certiñcates which are 
computed outside the device—constitute a good sce-
nario for the certiñcation of software deployed in perva­
sive systems. They compute tamper-proof certiñcates 
which simplify code veriñcation and pass them along 
with the code. In our abstract interpretation-based con­
text , although global analysis is now routinely used as 
a practical tool, it is still unacceptable to run the whole 
analyzer to validate the certifícate as it involves consid­
erable cost. One of the main reasons is tha t the ñx-
point algorithm is an iterative process which often com­
putes answers (repeatedly) for the same cali due to pos­
sible updates introduced by further computations. At 
each iteration, the algorithm has to manipúlate rather 
complex da ta structures—which involve performing up­
dates, lookups, etc.—until the ñxpoint is reached. Luck-

ily, in abstract interpretation-based code certiñcation, 
the burden on the consumer side is reduced by using a 
simple one-traversal checker, which is a very simpliñed 
and efficient abstract interpreter which does not need 
to compute a ñxpoint. The benchmark results in [1] 
show tha t the speedup achieved by the checking is ap-
proximately 1.63 in just analysis t ime which, we believe, 
makes our approach practically applicable in pervasive 
contexts. 

A similar proposal is presented in [17] to split the 
type-based bytecode veriñcation of the KVM (an em-
bedded variant of the JVM) in two phases, where the 
producer ñrst computes the certiñcate by means of a 
type-based dataflow analyzer and then the consumer 
simply checks tha t the types provided in the code cer­
t iñcate are valid. This approach is extended in [13] t o 
real world Java Software. As in our case, the valida-
tion can be done in a single, linear pass over the byte­
code. However, these approaches are designed limited 
to types, whereas our approach supports a very rich set 
of domains especially well-suited for this purpose, in-
cluding complex properties such as computational and 
memory cost, non-failure, determinacy, etc. (as we have 
seen in the examples in this section) and possibly even 
combining several of them. 

4 Conclusions 
Abstract interpretation-based veriñcation forms the 

córner stone of the safety model of CiaoPP: the pre-
processor of the Ciao multi-paradigm programming sys­
tem. It ensures the integrity of the runtime environment 
even in the presence of untrusted code. The framework 
uses modular, incremental, abstract interpretation as a 
fundamental tool to infer information about programs. 
This information is used to certify and validate pro­
grams, to detect bugs with respect to partial speciñca-
tions writ ten using program assertions, to genérate and 
simplify run-time tests and to perform high-level opti-
mizations such as múltiple abstract specialization, par-
allelization, and resource usage control. Among these 
applications, we herein focus on the use of abstract 
interpretation-based veriñcation for the purpose of mo­
bile code safety by following the s tandard P C C method-
ology. We report on some experiments in CiaoPP at 
work which illustrate how the actual process of pro­
gram certiñcation is aided in an implementation of this 
framework. We also discuss the application of abstract 
interpretation-based code certiñcation to the of 

pervasive computing systems, which may lack comput­
ing resources to perform static analysis. We point out 
tha t computational properties inferred by CiaoPP can 
be useful for controlling resource usage and ñltering out 
mobile code which does not meet certain cost require-
ments. Also, the fact tha t our approach follows P C C 
techniques—in which the certiñcate is generated out­
side the device—makes it potentially applicable in this 



pervasive context. However, controlling it in a perfect 
way proves far from obvious, and a range of challeng-
ing open problems remain as topics for further research. 
For instance, we plan to s tudy a more precise model of 
the memory requirements of small devices. The size of 
certificates needs to be minimized as much as possible 
to fit in such limited systems. We believe tha t they can 
be further reduced by omitting the information which 
has to be necessarily re-computed by the checker. This 
is the subject of ongoing research. 
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