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Phenomenal states are generally considered the ultimate sources of intrinsic motivation for

autonomous biological agents. In this article, we will address the issue of the necessity of
exploiting these states for the design and implementation of robust goal-directed arti¯cial sys-

tems. We will provide an analysis of consciousness in terms of a precise de¯nition of how an

agent \understands" the informational °ows entering the agent and its very own action possi-

bilities. This abstract model of consciousness and understanding will be based in the analysis and
evaluation of phenomenal states along potential future trajectories in the state space of the

agents. This implies that a potential strategy to follow in order to build autonomous but still

customer-useful systems is to embed them with the particular, ad hoc phenomenality that

captures the system-external requirements that de¯ne the system usefulness from a customer-
based, requirements-strict engineering viewpoint.

Keywords: Consciousness; meaning; phenomenology; arti¯cial systems; requirements-driven

engineering.

1. Introduction

Machine consciousness research is generally justi¯ed as a source of experimentation

possibilities with models of human consciousness in order to evaluate their expla-

natory value [Long and Kelley, 2009; Sun, 2008], but if consciousness has functional

value for animals, it is also justi¯able in terms of the potential increase of function-

ality that conscious machines would o®er [Sanz, 2007].

Even when there are old arguments against the possibility of machine con-

sciousness,1 several attempts at realizations of machine consciousness have been

made recently [Long and Kelley, 2009]. In some cases, these systems propose a

concrete theory of consciousness explicitly addressing arti¯cial agents [Haikonen,

1Paul Zi®, in 1959 said: \Ex hypothesi robots are mechanisms, not organisms, not living creatures. There

could be a broken-down robot but not a dead one. Only living creatures can literally have feelings."
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2003; Chella et al., 2008] but in other cases, the implementations follow psychological

or neural theories of human consciousness that were developed by their authors

without considering machines as potential targets for them. This is true, for example,

in the case of the many implementations of Baars' Global Workspace Theory

(GWT) of consciousness [Baars, 1997; Arrabales and Sanch��s, 2008; Franklin, 2000;

Shanahan, 2006].

The machine-based, model testing activities are very valuable e®orts that help

clarify the many issues surrounding natural consciousness and foster a movement

toward making more precise the sometimes too-philosophical terms used in this

domain. All these di®erent implementations ��� if accepted as conscious ��� may be

considered as exemplars in an attempt toward an ostensive de¯nition of conscious-

ness that includes humans and maybe also some animals [Barandiar�an and Ruiz-

Mirazo, 2008].

However as indicated by Sloman [2010], these multiple e®orts may miss the target

of a uni¯ed theory of consciousness:

\. . .pointing at several examples may help to eliminate some mis-

understandings by ruling out concepts that apply only to a subset of the

examples, but still does not identify a concept uniquely since any set of

objects will have more than one thing in common."

In a sense, the only possibility of real, sound advance in machine consciousness is

to propose and risk a background, fundamental theory of consciousness against which

experiments are done and evidence is raised. This is indeed the path followed by the

previously mentioned works of Chella, Haikonen, Franklin, Arrabales or Shanahan,

taking GWT as this background theory. However, the multifarious character of

consciousness is an obvious problem [Block, 1995], which most of the approaches

circumvent by focusing on just one aspect of it. Access consciousness seems to be the

main target, leaving phenomenality to further clari¯cations of the hard problem

[Chalmers, 1996].

Indeed, Sloman [2010] suggests that the main di±culty that we confront in

research on consciousness and machine consciousness is related to this very poly-

morphic nature of the consciousness concept. Sloman analysis may seem to imply

that trying to tackle several aspects of consciousness ��� access consciousness,

phenomenal consciousness, self-awareness, etc. ��� in one single shot, in a single

model and in a single robot, is hopeless. This program of addressing consciousness as

a whole is also hampered by the semantic °aws that some of the conceptions of

consciousness su®er when abstracted from speci¯c contexts. However, the general

consideration is that while all these consciousness traits may be di®erent aspects,

they are aspects of a single core phenomenon.

However, Sloman also recognizes that \perhaps one day, after the richness of the

phenomena has been adequately documented, it will prove possible to model the

totality in a single working system with multiple interacting components". This is,

boldly, what we try to do inside our long-term Autonomous Systems (ASys) research
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program. ASys is a program based on general and arti¯cial autonomy. Machine

consciousness is just one step: in order to progress in the systematic engineering of

autonomous, robust agents, we will try to make them conscious. And will try to do so

by using a single, general and uni¯ed theory of consciousness.2

The approach taken in this e®ort directly attacks the polymorphic nature of the

concept. We will express general consciousness mechanisms in the form of archi-

tectural patterns that will be instantiated in the several forms that are necessary for

the speci¯c uses of a particular agent. This approach breaks up the unicity/variety

problem of consciousness, leveraging a single structure for di®erent uses.

2. The Reasons for Acting

Machines are always built with a purpose [Simon, 1996]. Airplanes are built to carry

people across long distances, borers are built to make holes and fans are built to

refrigerate. To ful¯l their missions in the real world, the machines must be robust.

This robustness must be not only physical but also behavioral. In complex machines

that perform complex tasks, robust behavior is achieved by means of control systems.

These control systems capture the teleological purpose of the machine and drive the

body to attain it.

The search for machine autonomy is motivated by several reasons but, in general,

responds to the need to make machines that are able to deal with uncertainty and

change without the need of human help. Autonomous machines are able to pursue

goals in the presence of disturbances [Åstr€om and Murray, 2008]. Machines become

autonomous agents pursuing goals.

However, the quest for control architectures for arti¯cial autonomous agents

confronts a problem concerning the relations between the goals of the agent and the

goals of the owner. What goals does an arti¯cial agent pursue? Does it run after its

own goals or those of its owner (see Fig. 1). This is very much connected with the

value systems of humans and how these drive their behavior [Pauen, 2006]. While

goals can be shared and/or transferred, agents can only pursue the goals that are

instantiated in their very architecture. The mapping from external goals, i.e., those of

the owner, to internal goals, i.e., those of the agent, may be simple but may be also a

very tricky issue. Consider all those machines that go berserk because they continue

doing what was speci¯ed, regardless of the circumstances (the pump that continues

pumping gasoline trough a broken pipe, the oven that continues heating the already

cooked chicken, etc.). Machines are sometimes too stubborn in the pursuing of their

mapped goals.

In this article, we examine phenomenality as the right context for the analysis of

motivated action. Phenomenological states are generally considered strong in°u-

ences or even sources of intrinsic motivation for autonomous biological agents. At

2Single, because we are going to propose only one; general because we intend it to be of applicability to any

kind of system, whether natural or arti¯cial; and uni¯ed because it shall address all the conceptual spec-

trum of consciousness (except bogus terms).
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the end of the day, what counts for an agent is the array of phenomenal experiences

it has had. Agents do what they do in order to experience the feelings that they

experience doing it. What is relevant for the agent is how the internal changes

concerning its perception of the world and of itself impacts its experiential state

[Carruthers, 2000]. In a sense, agent actions are just ways of controlling their per-

ceptions [Powers, 2005].

This valuation of phenomenality is not restricted to the agent experiential state in

the present but may incorporate extended periods of time in agents able to anticipate

experience. To be more precise, for us humans and other anticipatory animals, what

counts is the integral, i.e., an accumulated value, of the phenomenal states along the

(potentially) lived trajectories ��� past, present and future. This valuing of accu-

mulated experiences is the very foundation for acting ��� the reasons to act ��� and

the very grounding of ethics. We just care about feeling well and having the right

experiences. This may sound a bit sel¯sh but even altruistic behavior shall be grat-

ifying in some way (albeit if this is right, in a phenomenological sense).

This position will be clari¯ed in Sec. 5 in terms of what it means saying that the

phenomena are the source of all behavior. To do this, we must enter into an analysis

of the nature of meaning and consciousness. This can be done with the desired

generality in both natural and arti¯cial settings.

Following a general approach is necessary for the objective of the ASys program of

targeting a universal theory of consciousness ��� in terms of enabling the construction

of better autonomous systems ��� but it is also of maximal relevance when addressing

the construction of systems that interact with humans. In order to provide machines

suitable for interacting with humans' lives ��� and most machines are designed to do

so ��� it is necessary to understand this phenomenological grounding for action in

humans and also may be necessary to investigate the possibilities of such a phe-

nomenological stance concerning the realization of machines.

World

Other agent

Body

Mind

World, Others
& Self Model 

Owner

Action and
sensing signals 

Virtual signals

Agent

Fig. 1. Agents interact with the world and with other agents. In the case of arti¯cial systems, they act in

order to ful¯l goals coming from an external owner. The models used by the agent drive its behavior.
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3. Abstract Architecture of a Conscious Machine

The ASys research program intends the development of universal technology for

autonomy. This means that the technology is not being built for a concrete appli-

cation niche ��� e.g., mobile robotics ��� but considers any potential kind of appli-

cation domain: from robots to mobile phones and from pacemakers to continent-wide

electrical networks.

A fundamental component of this technology is the capability of awareness that

shall be embedded into the machines to deal with changing worlds and with their own

internal mechanics. We intend machine consciousness to provide resilience against

external and internal perturbations. We use the tem self-x to refer to the capability of

a system to actively act upon itself in pursuit of some goals [Sanz et al., 2005]. This, in

general, requires both self-observation and self-action to implement inner control

loops of structural/functional nature [Sanz and L�opez, 2000]. Some technical

implementations of concrete self-x mechanisms for improving resilience are already

widely available, such as adaptive control, fault-tolerant control, autonomic com-

puting, etc. But all of them fall short when considering: (i) the general problem of

self-x and (ii) agent phenomenality.

Our strategy in the search for a general architecture for consciousness is based in

the identi¯cation of a set of architectural principles that will guide the de¯nition of

reusable design patterns [Buschmann et al., 1996]. Design patterns are design assets

that can be used constructively to generate a complete architecture for an agent. By

composing patterns, we can generate architectures that o®er the composed func-

tionality o®ered by each of the patterns.

The pattern-based strategy is rooted in a set of general design principles. An early

version of these principles was presented in Sanz et al. [2007]. These principles o®er

precise but general de¯nitions of some critical concepts in mind theory (like rep-

resentation, perception, action, value, consciousness, etc.) that are operational in the

de¯nition of agent control architectures.

The current set of design principles is the following:

(1) A cognitive system builds and exploits models of other systems in their

interaction with them:Thesemodels are, obviously, dynamical representations

of other systems.They sustain the realizationof amodel-based control architecture.

Models are made at multiple levels of resolution and may be aggregated to con-

stitute integrated representations. This principle is indeed the fundamental prin-

ciple behind the ASys vision: cognition is model-based control behavior.

(2) An embodied, situated, cognitive system is as good a performer as

its models are: The ideal condition for a model-based controller is the

achievement of isomorphism in a certain modeling space. It is important to note

that models are always abstractions, hence they always de¯ne a modeling space

that is inherently di®erent from that of the modeled system. There being an

isomorphism does not necessarily imply it has to be a complex one, i.e., always
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using a complex model. Simple models are usually most valuable — especially

when operating in real time — and simpli¯cation can go down even to the level

of having an immediate, direct coupling in the mode of behavior-based robotics.

(3) Maximal timely performance is achieved using predictive models:

Using predictive models agents can perform mental time-travel and evaluate

future and past states even from a phenomenological perspective. What counts

for an agent is the value got not only now, but from now on up to a maybe fuzzy

time horizon. The depth of the horizon will be dependent of the speci¯c aspect

that is anticipated.

(4) Models may be multiple, distributed and heterogeneous but shall

scale up and be integrable to obtain an e®ective, system-wide control:

While task-speci¯c isolated models may be useful, the long-term, multi-objec-

tive control needs of embodied agents force a drive for model integration and

model coherence. Model-based control loops drive not only external action but

also the inner control loops and the very model federation mechanics.

(5) Perception is the continuous update of the models used by the agent

by means of real-time sensorial information: Perceiving is hence much

more than sensing [L�opez, 2007]. Sensing is the mapping of the physical states of

the sensed entity into informational states inside the perceiving agent. Per-

ception involves a second stage that updates/creates models to exploit this

information. Note that models are necessarily based on a sustaining ontology.

This implies that perception may su®er model-related ontological blindness. We

can see only what we are prepared to see.

(6) Agents perceive and act based on uni¯ed model of task, environment

and self:Model-based control is the core mechanism for action generation. This

enables a search for global performance maximization (obviously bounded by

what is known/modeled). Model and action integration may happen at multiple

scales but they always address the agent and its environment as targets and

mediators of its task [Sanz et al. 2000].

(7) An aware system is continuously perceiving and computing meaning

from the continuously updated models: Perception — as model inte-

gration — is not su±cient for awareness. Understanding what was perceived is

also necessary. Agents shall compute the meaning of what they perceive to be

aware and this computation is based on the state of the agent. Meaning is

de¯ned as the partitioning of state-space trajectories in terms of the value they

have for the agent. What is di®erent in this proposal for a concept of meaning

is that it considers not only the current state of a®airs but the potential future

values for the agent.

(8) Models are exploited by engines and may be collapsed with them into

simpler subsystems: Model exploitation — usually model execution —

leverages models in the obtainment of many classes of data of relevance to the

agent: actions, states, causes, means, etc. Model execution is hence necessarily
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continuous, multiple— forward, backward, means-ends, etc.— and concurrent.

In some cases, models and engines may be collapsed into simple, more e±cient

components. Model-engine collapses are e±ciency-exploitability trade-o®s.

Collapsed models sacri¯ce the explicitness that enables multiple uses to gain

e®ectiveness — in time and in space.

(9) Attentional mechanisms allocate both physical and cognitive resources

for system perceptive and modeling processes so as to maximize task-

orientedperformance:The bandwidth of the sensory system is enormous and the

perceptual task isnot easy.Theamountof sensed information thatmaybe integrated

in the mental models of the agent is bounded by the availability of the processing

resources.Theallocationof resources to subsets of sensed information is doneusing

cognitive conscious and unconscious control and also immediate anticipatory

valuation (signi¯cance feedback) [Herrera et al., 2012]. Note that this implies a

primary form of perception before the conscious level [Hern�andez et al., 2008].

(10) The agent recon¯gures its functional organization for context-perti-

nent behavior using value-driven anticipatory metasignals: This is the

role played by (some) emotional mechanisms [Sanz et al., 2010; Sanz, 2011;

Herrera and Sanz, 2013; S�anchez-Escribano and Sanz, 2012].

(11) A self-aware system is continuously generating meanings from con-

tinuously updated self-models: The agent perceives and controls itself as it

perceives and controls the world. Interoceptive and proprioceptive signals are

Fig. 2. The basic building blocks for a design and realization of a conscious machine are polymorphic

patterns. The ¯gure shows two of the basic patterns used in the de¯nition of the cognitive architecture of

reference for general consciousness: EPISTEMIC-CONTROL-LOOP and META-CONTROL.
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injected into self-models of the agent. \The self" is the control-closure of the

executing self-model [Hern�andez and Sanz, 2012].

These principles are being rei¯ed in the form of design patterns (see Fig. 2) and

implemented using state-of-the-art object-oriented software technologies. An

example pattern is the EPISTEMIC CONTROL LOOP. This loop captures the ¯rst ASys

principle in the form of a model-based control loop. Knowledge is equated to models

and used to drive agent actions.

4. From Abstractions to Real Systems

The ASys pattern-based approach to the engineering of autonomous systems enables

the formerly stated vision of having: (i) a general approach and (ii) the concrete

implementations necessary for the diversity of tasks that an agent must address.

In this line of work, Hern�andez et al. [2009] have proposed the Operative Mind

(OM) as an architectural framework for development of bespoke systems. This class

of architectural reference model ��� in the line of RCS [Albus, 1991] or CogA®

[Sloman and Chrisley, 2003] ��� can be used for engineering systems which

implement, as we claim, functional capabilities that are analogous to those reported

��� top-down causality, °exible control, integration, informational access, and

Fig. 3. The Higgs robot is the experimental platform used for the deployment of the OM Cognitive

Architecture. The OM meta-control subsystem perceives the functional state-of-the-mobile robot's control

system, and adapts it through recon¯guration if its structure is not rendering the required behavior. The
OM metacontroller rei¯es the OM architecture making use of the EPISTEMIC-CONTROL-LOOP and META-

CONTROL patterns.

390 R. Sanz, C. Hern�andez & M. G. S�anchez-Escribano



intrinsic motivation ��� of biological consciousness. This enables, as a result,

improved autonomy and robustness.

OM proposes that machine consciousness could be implemented as a set of

infrastructural services, in an operating system fashion, based on deep modeling of

the control system's own architecture [Holland and Goodman, 2003], which are

provided by a meta-control subsystem that supervises the adequacy of the system's

structure to the current objectives in the given environment [L�opez, 2007] triggering

and managing adaptivity mechanisms. This system is being implemented in the

control system of an autonomous mobile robot (see Fig. 3).

5. Model-Based Predictive Control and Phenomenology

The architectural model proposed in the above principles is consonant with the

model-based control strategies used in technical environments ��� industrial plants,

aircraft, etc. [Camacho and Bordons, 2007]. For example, in model-based predictive

control (MBPC), the controller produces the next instantaneous action by:

(i) First, projecting a desired trajectory of targets optimized for the system goals;

(ii) Then, predicting the future consequences of the actions needed to follow that

trajectory to obtain precisely an optimised plan of actions, and, ¯nally;

(iii) Executing only the ¯rst action in the plan; then the cycle starts over again.

Notice that for step (i), a cost function is used, which is both a model of the task

and an evaluation procedure (a way of addressing the goal mapping problem men-

tioned before), and for (ii) a model of the plant ��� i.e., system (body) and

environment ��� is employed.

So far, control systems based on advanced techniques such as MBPC contain

informational structures and processes that our framework could easily ascribe to

access consciousness: they exploit updated models of the plant and evaluate them in

the view of the predicted future. But insofar as the model does not include the system

itself ��� i.e., the controller ��� the system is not self-conscious.

This analysis implies also that if there is no self-model, then there are no

phenomenal states concerning the agent itself involved in the perception and

decision-making process (cf. Metzinger's [2003] phenomenal self-model). Note that

the reverse implication does not hold: a non-self-conscious agent can still have a

model of itself when the lack of consciousness is due to the failure of the model

exploitation engine.

Now let us suppose that the system/controller includes a model of itself, so it

evaluates not only the future environment states given its possible actions but also its

very own possible future states. Then we will have a system that, from sensory

information °ow, would generate informational structures containing an evaluation

of its processing, not only current, but as predicted in the future according to its past.

It is important to note that the evaluation is to be realized in terms of the value

obtained by the agent ��� past, present and, more importantly, future. In the case of
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arti¯cial control systems, these values are imposed by externally grounded utility

functions. In the case of biological systems, these utility functions are internal and

expressed in terms of what is good and bad for the agent: i.e., its experience.3 The

meta-perception of the agent as perceiver sustains the valuation of goodness of states.

This may constitute the very substrate of phenomenology: the system, by virtue of

the described process, would be experiencing that sensory input.

The grounding of experience on model-based meta-perception provides an oper-

ational understanding of the \what is it like to be" question [Nagel, 1974]. To know

what is it like to be a bat would require not only the echo location sensory system but

the full perceptual pipeline and the meta-perceptual pipeline ��� including the world

and self-models and meaning generation systems. We cannot experience being a bat if

we do not meet these requirements, but, however, we can have a deep theory of what

it is like to be a bat and hence know \what is it like to be it".

Note that the action part of the meta-loop shown in Fig. 4 shows actions mod-

ifying the workings of the lower, world-situated loop. The meta-control competences

enabled by self-perception constitute the active part of emotional mechanisms [Sanz

et al., 2010]. In a sense, consciousness, meaning and emotion are stepping-stones in

the same road [Alexandrov and Sams, 2005].

Fig. 4. Meta-control is a self-perception, self-con¯guration control loop that shares the patterned structure

of the EPISTEMIC-CONTROL-LOOP. The meta-level gathers information about the functional organization of
the lower epistemic control loop and acts to change it. The observed/controlled world of the meta-loop is a

functioning cognitive agent.

3This is shaped evolutionarily in biological systems hence implying goodness and badness also for the

species as a whole, not only for the individuals.
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This meta-layered approach is convergent with several other theoretical models of

consciousness, including higher-order theories and supramodular interaction theory.

In particular, this last one is specially relevant due its architectural nature, proposing

that phenomenal states play an essential role in \permitting interactions among

supramodular response systems���agentic, independent, multimodal, information-

processing structures de¯ned by their concerns" [Morsella, 2005].

6. Meaning and the Future

In this article, we intended to provide an analysis of \consciousness" in terms of a

precise de¯nition of how an agent \understands" the informational °ows entering

that agent [Kuipers, 2005]. This de¯nition of understanding is based in the analysis

and evaluation of phenomenal states along alternative trajectories in the state space

of the agents.

We propose a rigorous de¯nition of \meaning" in terms of the separation of state-

space agent trajectories in di®erent value classes ��� consider that the information

°ows are a critical resource for trajectory enaction and separation. The values to be

computed will not be in the particular space of magnitudes of an external, third-

person observer but in the magnitudes of relevance to the agent: i.e., the phenomenal

ones. This computation requires from the agent an intrinsic capacity for anticipa-

tion ��� including anticipation of phenomenal states. The predictive capability a®ects

the current decision-making but does not fully shape the future, because the pre-

diction-decision process will continue in the immediate future. In a sense, the future is

always open to change and only the present is determined by the con°uence of the

current state and the anticipation.

We should be aware, however, that in this context \phenomenal" is not restricted

to a limited interpretation in terms of qualia, but in the broader sense of phenomenal

structure [van Gulick, 2004]:

\. . .the phenomenal structure of experience is richly intentional and

involves not only sensory ideas and qualities but complex representations

[our models] of time, space, cause, body, self, world and the organized

structure of the lived reality."

For the reasons stated before, this model of meaning and consciousness shall be of

applicability both to humans and robots, hence implying a rigorous analysis and

de¯nition of phenomenological states, because rigor is necessary if this is going to be

built into the robots and not just predicated from some externally observed behavior.

Clarifying these issues is not only of relevance for robot construction but also for

advancing into a general theory of consciousness both operational in the techno-

logical side and explanatory in the biological one ��� e.g., being useful to create safer

machines [Sanz et al., 2007] or being able to explain the nature of pain asymbolia

[Grahek, 2007].

Consider the situation of a system at certain time (now, t0) where the system must

decide what to do based on a certain information it has received (see Fig. 5). The
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system is following a certain trajectory xðtÞ in its state space but the future is still

open concerning the di®erent possibilities for acting (Aa, Ab, Ac).
4

The concrete future trajectory of the agent will depend on the concrete action

selection done at t0, but will also depend on the concrete state of the world and the

agent at t0. The agent anticipates the future based on the knowledge that its models

possess.

The meaning of any piece of information, about the world or about the agent

itself, is the way it partitions the set of possible future trajectories in terms of

anticipated phenomenological states. When the agent receives the information, it is

integrated into the models used to anticipate the future and used to evaluate it. This

is in close relation to Gibsonian a®ordances, where the agent perceives things in terms

of interaction and what can happen with them.

In summary, meaning is enacted by integration of the information received into the

model that the agent uses to predict the future and by executing this model in forward

time. In a sense, grasping the meaning of some information is leveraging this infor-

mation in enhancing the prediction of how reality is going to behave.

This interpretation of meaning and consciousness is indeed not new. As Wood-

bridge [1908] said in relation to the possibility of precise de¯nitions of consciousness

by Bode [1908]:

\Professor Bode states the general problem tersely, it seems to me, when

he asks, ‘When an object becomes known, what is present that was not

present the moment before?' I have attempted to answer that question in

one word ��� ‘meaning.'"

Fig. 5. Understanding sensory °ows and the derived emotional processes are strongly related to the

anticipatory capabilities of the agents. Action decisions (Aa;Ab;Ac) to be taken at present time (t0) are

in°uenced by the phenomenal anticipation along potential future trajectories of the system.

4Note that this does not mean that we endorse a free will theory of agent behavior. This model is fully

deterministic, but given the scope of the analysis (just the agent) not all causes are taken into account and

hence alternative trajectories may be considered.
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Phenomenology goes beyond the experiential qualities of sensed information.

Haikonen [2009] argues that qualia are the primary way in which sensory information

manifests itself in mind but in our model this qualitative manifestation is not

necessarily primary but may be produced in downstream stages of the perceptual

pipeline. What is important for the model presented here is not just the qualities of

the sensed but the experience of their meaning. As Sloman and Chrisley [2003] say,

\an experience is constituted partly by the collection of implicitly understood possi-

bilities for change inherent in that experience."

It must be noted that the model proposed is concurrent. This implies that the

perceptual pipeline is operating in several percepts at the same time. But due to the

integrated nature of the models principle 4, these pipelines shall eventually converge

(in non-pathological cases) to a common multiobjective control strategy [S�anchez-

Escribano and Sanz, 2012]. This may imply a reduction of the focus of inner attention

to a single percept or a simple percept bundle. This is in line with Dennett's [1991]

multiple drafts theory of consciousness.

The perceptual processes are also happening concurrently and concurrently with

the action ones, and all of them may happen at di®erent abstraction and meta-levels.

This produces a complex tangle of activities that make di±cult the analysis of agent

behavior in terms of simple mechanisms (see Fig. 6).

Integrate

Integrate the collected
information into the

run-time models of the
agent.

Collect

Collect information
from the different

sensors according to
sense policies.   

Anticipate

Determine the impact
of the present percept

by temporal projection. 

Decide

Select the curse of
action based on

phenomenal value
and constraints.

Act

Transfer the action
decision into the

effectors. Environment

Fig. 6. The activities performed by the epistemic control loop include action selection ��� the Decide
box ��� that shall be based on the analysis of future phenomenal states. For arti¯cial agents, i.e., agents

built with a purpose, the phenomenal value to be computed shall be that of the owner; this has complex

implications for arti¯cial agent architecture.
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7. Conclusions: Is Heterophenomenology a Need?

Going back to the analysis done at the very beginning of the article on the con-

struction of autonomous systems, and after describing the architectural picture of the

ASys model of autonomy and consciousness presented before, we reach the conclusion

that synthetic heterophenomenology is necessary [Chrisley, 2008].

However, heterophenomenology (phenomenology of others di®erent from oneself)

must be understood rather di®erently from the initial usage of the term by Dennett

[2003] of using verbal reports (and other types of acts) as objective, third-person

observations that provide the observer with partial information about the agent's

beliefs regarding its own conscious experience.

In this context, i.e., building autonomousmachines that provide certain services to

owners, the problem of engineering the right phenomenic mechanism for them is

hence absolutely crucial because it will be the origin of the intrinsic motivations of the

agents. Autonomy requires a strong focus on machine phenomenality. We must

adopt an heterophenomenological engineering approach in the sense of being able to

engineer phenomenalities into machines to match our very own needs [Chrisley,

2009]. These will not necessarily be human phenomenalities but the phenomenalities

that when deployed will make the agents pursue our satisfaction. Machines shall

make their decisions based on predictions of what will be our experiences and, due to

the intrinsic motivational mechanics of autonomous agents, these shall be mapped

into theirs: arti¯cial ��� in Simon's sense ��� autonomous machines shall feel pleasure

based on a projection of ours.

There is a problem, however, concerning the practical realization of the

phenomenal engines of machines. The appearance of phenomenality in animals may

be a non-localized, emergent phenomenon a®ecting a large number of brain sub-

systems without a clear neural correlate of consciousness [Koch, 2004; Metzinger,

2000; Morsella et al., 2010]. Robot phenomenality may be created by replicating the

functional organization of brains and associated systems. This may require an

enormous e®ort ��� consider for example those proposed large-scale brain replication

projects5 ��� but can eventually produce a machine with its own phenomenality.

But for useful arti¯cial systems that pursue owner-centric objectives, there is a need

of anticipating not the agent experiences but the owner ones. If phenomenality is not

modularized but emergent, this may require the replication of the whole mental

architecture of the owner inside the machine. This may be indeed what happens in

biological agents and what is being addressed in the theory and the simulation theories

ofmind [Michlmayr, 2002].Machinesmay require deep theories ofmind of their owners.

But for all this, we need not only a better understanding of the nature of the

arti¯cial [Simon, 1996] but of our very own consciousness. This happening, phe-

nomenology will render a solid scienti¯c foundation to improve autonomous

machines' design and better tailor them to human needs.

5See, for example, the Human Brain Project: http://www.humanbrainproject.eu/.
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