
Removing Superfluous Versions in
Polyvariant Specialization of Prolog Programs

Claudio Ochoa1 , Germán Puebla 1 , and Manuel Hermenegildo1 '2

1 School of Computer Science, Technical U. of Madrid ,
{cochoa,german,herme}@fi.upm.es

Depts. of Comp. Sci. and El. and Comp. Eng., U. of New México , herme@unm.edu

Abs t r ac t . Polyvariant specialization allows generating múltiple versions
of a procedure, which can then be separately optimized for different uses.
Since allowing a high degree of polyvariance often results in more opti­
mized code, polyvariant specializers, such as most partial evaluators,
can genérate a large number of versions. This can produce unnecessarily
large residual programs. Also, large programs can be slower due to cache
miss effects. A possible solution to this problem is to introduce a min-
imization step which identifies sets of equivalent versions, and replace
all occurrences of such versions by a single one. In this work we present
a unifying view of the problem of superfluous polyvariance. It includes
both partial deduction and abstract múltiple specialization. As regards
partial deduction, we extend existing approaches in several ways. First,
previous work has dealt with puré logic programs and a very limited
class of builtins. Herein we propose an extensión to traditional char-
acteristic trees which can be used in the presence of calis to external
predicates. This includes all builtins, librarles, other user modules, etc.
Second, we propose the possibility of collapsing versions which are not
strictly equivalent. This allows trading time for space and can be useful in
the context of embedded and pervasive systems. This is done by residual-
izing certain computations for external predicates which would otherwise
be performed at specialization time. Third, we provide an experimental
evaluation of the potential gains achievable using minimization which
leads to interesting conclusions.

1 Introduction and Motivation

Partial evaluation (PE) of logic programs [13,3] aims at obtaining code which is
as optimized as possible by performing aggressive unfolding at the local control
level, and by being as accurate as possible (generalize the least possible) at the
global control level, as long as termination is guaranteed. We refer to [7] for a
survey on control issues. In particular, given a ñxed local control rule, different
global control rules will have different effects on the polyvariance level of partial
evaluation, i.e., the number of versions produced for each procedure. In general,
a common heuristic is to produce as many different versions as possible, as long
as termination is not compromised, the idea being tha t by considering differ­
ent versions separately, further optimizations may be uncovered. This heuristic
makes sense from the point of view of optimizing programs in terms of resolution

mailto:herme@unm.edu

(1) main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0):
write(C) ,
addlists([4,4|A]
addlists([3,3|D]
addlists([3,3|G]
addlists([1,1 IJ]
addlists([7,1|M]

, [0
, [1
, [1
, [3
, [1

3 | B]
4 | E]
4 | H]
6 | K]
5 | W]

, [4
, [4

I)
L)
0)

7 | C]) ,
7 | F]) ,

(2) addlists([] ,[],[]).
(3) addlists([A|B],[C|D],[H|T]):

H is A+C,
addlists(B,D,T).

Fig. 1. Adding pairs of lists.

steps, but it can produce unnecessarily large results, and may even slow down
programs due to cache miss effects.

Example 1. Fig. 1 shows our running example. Predicate a d d l i s t s / 3 adds the
contents of two lists, using the builtin i s / 2 . Clauses are numbered for later
reference. A possible result of partial evaluation for the initial query main/15 is
shown in Fig. 2. Unfolding of main/15 only performs one step since the leftmost
literal wri te (C) has side-effects, and performing non-leftmost unfolding of any
other literal may backpropagate bindings (as variables may be aliases) onto
wri te (C). Note that one versión has been generated for each cali to a d d l i s t s / 3
within the body of main/15, plus one versión for the general case. However, the
four versions addlis ts_2 through addlis ts_5 are indeed equivalent and could
be replaced by a single one, resulting in the program shown in Fig. 3.

The problem of superfluous polyvariance has been studied both in the context
of abstract múltiple specialization [18,16] and in the context of partial evaluation
of normal logic programs [9]. The common idea is to identify sets of versions
which are equivalent and replace all occurrences of such versions by a single,
canonical, one. This poses two questions which we address in this work: under
which conditions can we consider two given versions as equivalent? And, how
can we efficiently check for equivalence?

In this work, we provide a thorough analysis of these questions, comparing
different approaches for controlling polyvariance, and we also extend previous
approaches in two ways. First, we tackle in an accurate way the case in which

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(C),
addlists_2([4,4|A] , [0,3|B] , [4,7|C]) , addlists_3([3,3|D] ,[1,4|E]
addlists_4([3,3|G],[1,4|H],I), addlists_E([1,1|J],[3,6|K]
addlists_6([7,1|M],[1,6|N],0).

addlists_l ([],[],[]).
a d d l i s t s _ l ([A | B] , [C | D] , [E | F]) : -

a d d l i s t s _ 2 ([4 , 4] , [0 , 3] , [4 , 7]) .
a d d l i s t s _ 2 ([4 , 4 , A | B] , [0 , 3 , C | D]

a d d l i s t s _ 3 ([3 , 3] , [1 , 4] , [4 , 7]) .
a d d l i s t s _ 3 ([3 , 3 , A IB] , [1 , 4 , C | D]

a d d l i s t s _ 4 ([3 , 3] , [1 , 4] , [4 , 7]) .
a d d l i s t s _ 4 ([3 , 3 , A IB] , [1 , 4 , C | D]

a d d l i s t s _ E ([1 , 1] , [3 , 6] , [4 , 7]) .
a d d l i s t s _ E ([1 , 1 , A | B] , [3 , 6 , C | D]

a d d l i s t s _ 6 ([7 , 1] , [1 , 6] , [8 , 6]) .
a d d l i s t s _ 6 ([7 , 1 , A | B] , [1 , E , C | D]

[4,7,E|F])

[4,7,E|F])

[4,7,E|F])

[4,7,E|F])

[8,6,E|F])

is A+C,

is A+C,

is A+C,

A+C,

A+C,

A+C,

addli sts_1

addlists_l

addlists_l

addlists_l

addlists_l

addlists_l

,[4,7|F]),
,L),

(B,D,F).

(B,D,F).

(B,D,F).

(B,D,F).

(B,D,F).

(B,D,F).

Fig. 2. Specialization of addlists/3 via partial evaluation.

m a i n (A , B , C , D , E , F , G , H , I , J , K , L , M , N , 0) : - w r i t e (C) ,
a d d l i s t s _ E ([4 , 4 | A] , [O , 3 | B] , [4 , 7 | C]) , a d d l i s t s _ E ([3 , 3 | D] , [1 , 4 | E] , [4 , 7 | F]) ,
a d d l i s t s _ E ([3 , 3 | G] , [1 , 4 | H] , I) , a d d l i s t s _ E ([1 , 1 I J] , [3 , 6 IK] , L) ,
a d d l i s t s _ 6 ([7 , 1 | M] , [1 , E | N] , 0) .

a d d l i s t s _ l ([] , [] , []) .
addlists_l([A|B] , [C|D] ,[E|F]) :- E is A+C, addlists_1(B,D,F) .

addlists_E([A,A] ,[_1,_2] , [4,7]).
addlists_E([A,A,B|C] , [_1,_2,D|E] , [4,7,F|G]) :- F is B+D, addlists_l(C,E,G) .

addlists_6([7,1],[1,B],[8,6]).
addlists_6([7,1,A|B] , [1,B,C|D] , [8,6,E|F]) :- E is A+C, addlists_l(B,D,F) .

Fig. 3. Specialization of addlists/3 after minimization.

programs contain external predicates, i.e., predicates whose code is not deñned in
the program being specialized, and thus it is not available to the specializer. This
includes predicates deñned in other user modules, library predicates, builtins,
predicates implemented in other languages, etc. Note that external predicates
may have impure features. The minimization shown in Figure 3 is not possible
in previous works such as [9] as it involves calis to the builtin predicate i s / 2 ,
which is not safe in the sense that it may produce bindings during its execution.

Second, previously proposed minimization techniques do not provide any
degrees of freedom at the minimization stage. We propose the possibility of
collapsing versions which are not strictly equivalent. This is achieved by resid-
ualizing certain computations for external predicates which would otherwise be
performed at specialization time. This allows automatically trading time for
space and can be of interest in the context of embedded and pervasive systems,
where computing resources and storage are often limited.

A completely different approach to that studied in this paper is to incorpórate
within the global control certain heuristics which limit polyvariance based for
example on characteristic trees [2,6,12]. Such approach has both advantages
and disadvantages. The advantage is that there is no need to perform a post
minimization phase, such as that discussed in this paper. On the other hand,
the disadvantage of that approach is that it sometimes produces results which are
suboptimal, since the fact that characteristic trees are equal not always means
that the corresponding versions should be merged.

We argüe that a minimization phase is important in specialization algorithms,
since it allows using very accurate global control rules while limiting the risk of
generating large residual code. Rather than deciding a priori the best global
control possible, this technique allows using aggressive control strategies. We
can minimize the program a posteriori and eliminate those specialized versions
which are redundant.

2 Background

We assume some basic knowledge on the terminology of logic programming. See
for example [14] for details. Very briefly, an atora A is a syntactic construction
of the form p{t\,... ,tn), where p/n, with n > 0, is a predicate symbol and
í i , . . . ,í„ are terms. The function pred applied to atom A, i.e., pred(A), returns
the predicate symbol p/n for A. A clause is of the form H +— B where its head

H is an atom and its body B is a conjunction of atoms. A definite program is a
ñnite set of clauses. A goal (or query) is a conjunction of atoms. We denote by
{X\ i—> ti,..., Xn i—> í „ } the substitution a with o~(Xj) = í¿ for all ¿ = 1 , . . . , n
(with X; 7̂ Xj if ¿ 7̂ j) and <r(X) = X for any other variable X, where í¿ are
terms. We denote with e the empty substitution. Also, dom(a) denotes the set
of variables affected by substitution a, i.e., dom({Xi i—> í i , . . . , X „ i—> í„}) =
{ X i , . . . , X „ } .

A term í is more general t han s (or s is an instance of í) , in symbols t < s,
if 3cr. ta = s. Two terms t and í ' are variants, denoted t « í ' , if there exists a
renaming p such tha t tp = t!. A unifier of a p a i r of terms { t i , ¿2} is a substi tution
a such tha t ti<r = Í2<r. A uniñer o~ is called most general unifier (mgu) if a < a'
for every other uniñer a'. A generalization of a set of terms { í i , . . . , tn} is another
term t such tha t 36>i,... ,0n with £¡ = í6>j, ¿ = 1 , . . . , n . A generalization í is the
most specific generalization (msg) of { t i , . . . , t „ } if for every other term í' s.t.
í ' is a generalization of { í i , . . . , í „ } , t! < t. Given a set of clauses {Cl\ = H\ <—
Bi,..., Cln = Hn •<— B „ } , n > 0, we denote by instantiate({Cli,..., C7„}, A)
the set of clauses { C 7 i # i , . . . , Cln6n} where each 6>¿ = mgu(Hi,A).

2.1 B a s i c s of Part ia l Eva luat ion

Traditional algorithms for on-line partial evaluation of logic programs (known
as partial deduction (PD) [13,3]) usually include two control levéis: local control
and global control [3]. Local control defines an unfolding rule. Given an atom
A, an unfolding rule computes a set of finite SLD derivations D\,... ,Dn (i.e.,
a possibly incomplete SLD tree) of the form Di = A,...,Gi with computed
answer substi tution 6>¿ for i = 1 , . . . , n. We use U(P, G) = r to denote the fact
tha t the unfolding rule U when applied to goal G in program P returns the SLD
tree T. The global control rule decides when and how to generalize atoms before
applying the unfolding rule to them. Such generalization steps are necessary
in order to guarantee tha t the number of atoms to which the unfolding rule is
applied remains finite. We refer to [7] for a survey on both control issues.

3 A General View of Polyvariance and Minimization

We now present a very general description of a polyvariant specialization process
which includes both partial evaluation [13,3,7] and abstract múltiple special­
ization [16]. Given a program P and a set of atoms Q = {Ai,... ,Am}, which
describe the possible initial queries to P, polyvariant specialization performs the
following three steps:

1. Analysis. In this phase, we compute a set of cali pat terns {A\,..., An} D Q
which cover all calis in the specialized program. We write Analysis(P, Q) =
{Ai,..., An} t o denote tha t the result of analysis for P and Q is the set of
cali pat terns {Ai,..., An}.

2. Code Generation. The aim of this phase is, for each cali pa t te rn Ai <G
Analysis{P,Q), to compute properly optimized residual code. We denote
by code(Ai) the code (set of clauses) associated to A^. In partial evaluation,
an unfolding rule U is used for generating code, i.e., code(Ai) = U(P,Ai).

3. Renaming. In this phase we assign a fresh predícate ñame to each atom in
{Ai,..., An}. Then, for each code(Ai), we perform appropriate renamings
in the head and body atoms so tha t each program point uses a correct (and
as optimized as possible) versión. Ren denotes the renaming function.

The polyvariant specialized program PQ is then deñned as:
Analysis{P:Q)

PQ= (J Ren{code{Ai))
A %

3.1 M i n i m i z i n g t h e R e s u l t s of Po lyvar iant Spec ia l i za t ion
The aim of minimization is t o group the cali pat terns (or versions) in {Ai,... ,An}
into equivalence classes, obtaining a minimal program tha t allows the same set
of optimizations, and tha t can be implemented without introducing run-time
tests to select amongst different versions of a predicate.

Deciding whether two versions Ai and Aj with pred(Ai) = pred(Aj) are
equivalent is not straightforward, as we have to consider not only the code of
Ai and Aj, but also the code of all other versions which are reachable from
them. In the case of the main predicate in a program, we would have to take
the code of all the specialized program into account. Thus, we will split the
notion of equivalence into a local equivalence and a global equivalence level. Local
equivalence concentrates on comparing the code for Ai and Aj only, without
worrying about the other predicates which are reachable from them. Global
equivalence will only hold if Ai and Aj are locally equivalent and all reachable
versions for the corresponding program points are also locally equivalent.

The minimization algorithm (called Minimize from now on) consists of two
phases. In [17], the ñrst phase is called reunión and the second phase is called
splitting. The reunión phase is concerned with local equivalence only and it
places together all versions for the same predicate which are considered locally
equivalent according to some criteria. The splitting phase is concerned with
global equivalence. It splits sets of versions which are not globally equivalent
until no more splitting is needed, i.e., until we have reached a parti t ion where all
sets contain versions which are globally equivalent. This minimization process is
isomorphic to the minimization of deterministic ñnite au tómata (DFA) [5], by
considering each cali pa t te rn Ai as a state and each program point in code(Ai)
as a symbol.

A crucial point thus is, given a pair of atoms A and A', to decide whether they
can be safely considered locally equivalent. The decisión criteria has to satisfy
two properties: (1) it must produce correct results, and (2) it must be effective,
i.e. it must be possible to efficiently decide whether A and A' are candidates for
equivalence based on syntactic, local conditions. For this purpose, in this work
we introduce structural equivalence.

Def in i t ion 1 (s tructural ly equiva lent) . Let Ai and A2 be two cali patterns
such that pred(Ai) = pred(A2). We say that Ai and A2 are structurally equiv­
alent iff C = msg(code(Ai),code(A2))

A instantiate(C, Ai) « code(Ai)

A instantiate(C, A2) ~ code{A2)

Clearly, if code(Ai) « code(Á2) then Ai and A2 are structurally equivalent.
However the deñnition above allows also considering as structurally equivalent
cali patterns whose code only differs in constants which are input arguments
to the predicate but which do not play an important role for local optimiza-
tion. Note that structural equivalence is just a syntactic characterization which
guarantees that two cali patterns are locally equivalent. In fact, there can be
cali patterns which are locally equivalent in the sense that their behaviours un-
der the semantics of interest are identical but which our deñnition of structural
equivalence would not capture. Also, structural equivalence in particular, and
local equivalence in general do not guarantee global equivalence. It often hap-
pens that two cali patterns which are structurally equivalent end up in different
equivalence classes after the splitting phase. Only after this phase terminates we
can be sure that two cali patterns are globally equivalent.

The polyvariant specialized program with minimization p^m is deñned as:
Minimize(Analysis(P,Q))

P^m= (J Ren=(code(V¿)
Vi

where given a set of atoms {Ai,..., An}, we partition them in equivalence classes
{Vi , . . . , 14}, k > n s.t. \/A, A' <G V¿ . A and A' are structurally equivalent. We
use code({Ai,..., A¡}) to denote msg({code(Ai),..., code(Ai)}). Also, Ren= is
a new renaming function which always uses the same (canonical) predicate ñame
for any atom in {Ai,..., Ai}.

Our deñnition of structural equivalence plays several roles. It underlies the
notions of local equivalence used both in abstract múltiple specialization and
partial deduction, thus allowing us to present a uniñed view of both minimiza­
tion processes. Furthermore, it can also be used in order to determine whether
two versions are locally equivalent. Existing approaches to minimization do not
compare the syntactic structure of the residual code directly (as this deñnition
would require) but rather use the specialization history in order to decide local
equivalence. In [16] two cali patterns are considered locally equivalent iff (1)
they correspond to the same predicate in the original program and (2) the set
of optimizations in both cali patterns is the same. In [9] two cali patterns are
locally equivalent iff they have the same characteristic tree.

4 Characteristic Trees with External Predicates
A characteristic tree [2] is a data structure which encapsulates the evaluation
behaviour of an atom, i.e., a trace of the unfolding process. The following deñ-
nitions are taken from [9], which in turn were derived from [2].

Definition 2 (characteristic path). Let GQ he a goal, and let P he a definite
program whose clauses are numhered. Let GQ, ... ,Gn he the goals of a finite,
possibly incomplete SLD-derivation D of P U {Go}- The characteristic path of
the derivation D is the sequence (lo : co , . . . , ln-\ '• cn-i), where li is the position
of the selected atom in Gi, and Ci is the numher of the clause chosen to resolve
with Gi.

Now tha t we have characterized derivations, we can characterize goals through
the derivations in their associated SLD-trees.

Def in i t ion 3 (character is t ic t r e e) . Let G be a goal, P a definite program, and
T a finite SLD-tree for PU {G}. Then the characteristic tree f of T is the set
containing the characteristic paths of the nonfailing SLD-derivations associated
with the branches of T .
Let U be an unfolding rule such that U(P, G) = T. Then f is also called the char­
acteristic tree ofG (in P) via U. We introduce the notation ch_tree(G, P, U) = f.

Although existing partial evaluation systems such as SP [1] and E C C E [10]
perform some limited handling of builtins within characteristic trees, the existing
formal deñnitions of characteristic trees do not contémplate the existence of
builtins ñor of external predicates. We now extend the s tandard deñnitions in
order to accurately include external predicates.

Def in i t ion 4 (c h p a t h w i t h e x t e r n a l pred ica tes) . Let GQ be a goal, and let
P be a program whose clauses are numbered. Let GQ, ... , Gn be the goals of a
finite, possibly incomplete SLD-derivation D of P U {C?o}- Let A$,... ,An_i be
the selected atoras in D. The characteristic pa th with external predicates of the
derivation D is the sequence (lo : c o , . . . , ln-\ '• cn-i), where k is the position of
Ai in Gi, and Ci is defined as follows:

— if pred(Ai) is defined, in P, then Ci is the number of the clause in P chosen
to resolve with Gi¡

— if pred(Ai) is an external predícate, then let 0 be a computed answer gener-
ated when performing exec(Ai). Then, Ci is a pair (Ai, 6).

In the deñnition above, exec(Ai) represents the execution of Ai. For this, the
external cali Ai has to be evaluable [15], i.e., Ai is both well-moded and well-
typed, it does not produce any side-effect, and it universally terminates. Note
tha t exec(Ai) can succeed more than once and possibly with different computed
answers. Reconsidering characteristic paths , each pair (Z¿ : c¿) in a characteristic
path must uniquely identify: (1) the position of the selected atom Ai, (2) the
bindings introduced by this step on the current goal, and (3) the atoms which
must be introduced in the goal in place of the selected atom Ai. An important
obvious difference between external and regular predicates is tha t the code for
external predicates may not be available, so it is not possible, as done with
regular predicates, to assign clause numbers to them or to unfold them. Instead
of unfolding external predicates, we will fully execute them. As a result, no atoms
will be introduced in the current goal and, thus, (3) is not needed in this case.

In the case of external predicates, we introduce in the characteristic tree an
external success, i.e., a pair (Ai, 9) containing the cali pa t te rn Ai and the bind­
ings 9 generated during evaluation for each external predicate. Note tha t , in
contrast to the handling of builtins within characteristic trees in SP and ECCE,
this makes it possible to reconstruct the residual code for an atom without
the need for (re-)evaluating external predicates, even if the external predicates
succeed several times with (possibly) different computed answers. The notion

T2

T 3

T4

T5

T6

= {<1
<1

= {<1
<1

= {<1
<1

= {<1
<1

= {<1
<1

3,1
3,1
3,1
3,1
3,1
3,1
3,1
3,1
3,1
3,1

(4 is 4 + 0, e) , l
: (4 is 4 + 0 , e) , l

(4 is 3 + l , e) , l
: (4 is 3 + l , e) , l
(A is 3 + 1,{A ^-
(C is 3 + 1,{C H

(E is 1 + 3,{_E H

(G is 1 + 3, {G H

(í ¡ « r + i , { / >->
(L is 7 + 1,{L i-

3,1 : (7 is 4 + 3 , e) , l : 2),
3,1 : (7 is 4 + 3 , e) , l : 3)} ,
3,1 : (7 is 3 + 4 , e) , l : 2),
3,1 : (7 is 3 + 4 , e) , l : 3)} ,

->4}) ,1 : 3,1 : (B is 3 + 4, {B
-+ 4}) ,1 : 3, 1 : (D is 3 + 4, {£>
->4}) ,1 : 3,1 : (F is 1 + 6, { F
-+ 4}) ,1 : 3, 1 : (if is 1 + 6, {if

8}) ,1 : 3 , 1 : (J ¡ S 1 + 5 , { J H
+ 8}) ,1 : 3,1 : (M ¿s 1 + 5, \M

- 7 }) , 1
- 7 }) , 1
- 7 }) , 1
- 7 }) , 1
6 }) , 1 : 2
~ 6 }) , 1

2),
3 » ,
2),
3)}

>,
: 3 »

Fig. 4. Characteristic trees for addlists/3 versions.

of characteristic paths with external predicates is indeed consistent with tradi-
tional characteristic paths . In the case of regular predicates, the same implicit
representation as in traditional characteristic paths is used. This representation
is efficient in space since rather than introducing (an instantiated versión of)
the clause chosen for resolving the selected atom directly in the characteristic
tree, only the number of the clause used for unfolding is stored. This suffices
since the actual instantiation can be performed later if needed using the ac­
tual clause. In the case of external predicates, this implicit representation is no
longer possible, since the clauses are not available. Instead, the cali pa t te rn and
the corresponding bindings are explicitly stored.

Characteristic trees are extended to handle external predicates by simply con-
sidering characteristic paths with external predicates. Fig. 4 shows the character­
istic trees with external predicates T2, T ¡ , T4, T$ and TQ for versions a d d l i s t s _ 2 / 3 ,
a d d l i s t s _ 3 / 3 , a d d l i s t s _ 4 / 3 , a d d l i s t s _ 5 / 3 , and a d d l i s t s _ 6 / 3 , respectively.

5 Isomorphic Characteristic Trees

In this section we deñne the notion of isomorphic characteristic trees with ex­
ternal predicates, which guarantees tha t the corresponding code is structurally
equivalent. We assume tha t predicate ñames cannot be numbers, as is the case
in most existing logic programming systems. Also, number(X) succeeds iff X is
a number.

First, we introduce the concept of quasi-isomorphic characteristic trees, for
identifying characteristic trees which only (possibly) differ in the input and/or
output valúes of arguments in calis to external predicates:

Def in i t ion 5 (quas i - i somorphic character i s t ic t r e e s) . Two characteristic
paths S1 = (lo : C Q , . . . , Z T O : c^) and S2 = (lo : C Q , . . . , Z T O : c^) are quasi-

isomorphic and we denote it S1 « q S2 iff^i £ { l . .m} . nwmber(c\) =4> c\ = c2.
Two characteristic trees Ti and T2 are quasi-isomorphic, denoted T\ « q T2, iff
Vá1 G n . 3Ó2 G T2 s.t. ó1 faq ó2 and Vá2 G T2 . 3Ó1 G n s.t. ó2 « g ó1.

Note tha t quasi-isomorphic characteristic paths must have the same length and
the selected atom must be in the same position in each resolution step. Further-
more, if the atom is not for an external predicate, then the atom must have been
resolved against the same clause. In Fig. 4, T2 « q T¡ « q T4 « q T5 « q TQ.

Now we deñne some relationships among external successes, after some aux-
iliary deñnitions. A position uniquely determines a subterm within a term.

Def in i t ion 6 (Pos i t i on) . A position LO is either the empty position e, or n.u>',
where n is a natural number and LO' is a position.

Def in i t ion 7 (getval , P o s , a n d A l l p o s) . Let A = f(tn) be a term. Let LO be
a position. Let X be a variable s.t. X G vars(A). Let 0 be a substitution.

— We define getval(ui, Á) as A if LO = e and as getval(u>',ti) if LO = Í.LÜ'.
— We define Pos(A, X) as {LO \ getval(u>, Á) = X}.
— We define Allpos(A,0) as ^>xedomie)^}i s-t- <¿> S Pos(A,X).

Example 2. getval(2.1.e, f(a,g(b, c))) = b, and Pos(f(a,g(b,Y)),Y) = {2.2.e}.
If A is not linear, then for some X, the set Pos(A, X) may have more than one el-
ement. E.g., Pos(f(Z,g(Z)),Z) = { l .e ,2 .1 .e} . In such case, any ui G Pos(A,X)
can be used for our purposes. Also Allpos(A is 3 + 1, {A i—> 4}) = { l . e} .

Def in i t ion 8 (i somorphic e x t e r n a l successes) . Let c = (A, 6) and c' =
(A1, 9') be external successes. Then c and c' are isomorphic external successes,
denoted by c ~ c', iff' Vw G Allpos(A,0) U Allpos(A',0') . getval(uj,AO) =
getval(uj,A'0').

Example 3. This definition tries to consider as isomorphic as many pairs of ex­
ternal successes as possible. A particular subcase of this definition corresponds
to the case where the calis to external predicates genérate no bindings. For ex­
ample, the pair (4 is 4+0 , e) and (4 is 3 + 1 , e) is isomorphic, whereas the notion of
equivalence in [9] cannot capture this since the builtin predicate i s / 2 potentially
generates bindings, though in this case it does not. Note tha t (4¿s4 + 0, e) and
(8¿s2 * 4, e) are also considered as isomorphic although their syntactic structure is
very different. Another interesting subcase is when the external successes have
different levéis of instantiation but on success they are variants. This happens
with (A Í S 3 + 1 , { A H > 4 }) and (4 ¿ s 3 + 1, e). Furthermore, it allows considering as
isomorphic external successes which have the same valúes in all positions which
are instantiated in either external success. For example (A is 3 + 1, {A H^ 4})
and (4 is 4 + 0, e) are considered isomorphic since Allpos(A Í S 3 + 1 , { A H 4 }) =
{í.e}AAllpos(4 is 4+0, e}) = ®Agetval(l.e, 4 is 3+1) = getval(í.e, 4 is 4+0) = 4. How-
ever, (E is 1+3, {E ^ 4}) gk (I is 7+1 , {I ^ 8}), since Allpos(E is 1+3, {E ^ 4}) =
Allpos (I is 7 + 1,/) = {l .e}, but getval(í.e,4is 1 + 3) = 4 ^ getval(í.e,8is 7+1) = 8.

Def in i t ion 9 (i somorphic character i s t ic t r e e s) . Two characteristic paths
S1 = (lo : C Q , . . . , Z T O : c^) and S2 = (lo : C Q , . . . , Z T O : c^) are isomorphic

and we denote it 51 « 52 iff 51 « q 52 A V¿ G {l . . ra} . c\ = (A\,0\) => c2 =
(A2,62) A c\ — c2. Two characteristic trees T\ and T2 are isomorphic, denoted
n « T2, iffV5l G n . 3Ó2 G T2 s.t. ó1 « ó2 and Vá2 G T2 . 3Ó1 G n s.t. ó2 « ó1.

The following proposition provides the basis for our minimization approach.

P r o p o s i t i o n 1 (s tructura l equ iva lence) . Let P be a program with external
predicates, let U be an unfolding rule, let Ai and A2 be two cali patterns such
that Ti = ch_tree(Ai, P,U) and T2 = chJbree(A2,P,U). If T\ « T2 then Ai and
A2 are structurally equivalent.

A difficulty with our notion « of isomorphic characteristic trees and its usage
as a condition for local equivalence is tha t though the « relation is reflexive and
symmetric, it is not transitive. This means tha t (T\ « T2 A T2 P¿ T¡) -/-> T\ K, T ¡ .
As a result, in order t o be able to state tha t all characteristic trees in a set
{TI , . . . , T „ } are isomorphic we have to check tha t VT, T' <G {T-¡_ , . . . , T „ } .T P¿ T' .

Example 4- Let us consider again the characteristic trees in Fig. 4. We have
already noticed tha t all of them are quasi-isomorphic. If we take the quasi-
isomorphic paths of TI, T ¡ , T4 and T5, and extract their external successes, we
can see tha t they are isomorphic. For example, if we take C21 = (4 is 4 + 0, e),
c31 = (Ais 3 + l , e) , c4i = (A is 3 + 1, {A ^ 4 }) and c 5 i = (C ¿s 1 + 3, {C i-> 4}),
we can compute yjiesx2...rJ}Allpos(cn) = { l .e} . Since getval(l.e,4 is 4 + 0) =
getval(l.e,4 ¿s 3 + 1) = getval(l.e,4 ¿s 1 + 3) = 4, we can conlude tha t they are
isomorphic.

Finally, note tha t even though T5 ̂ q Te, they are not (fully) isomorphic since,
for instance, (E is 1 + 3, {E i-» 4}) cé (I is 7 + l, {I <-^ 8}). Indeed, a d d l i s t s _ 5 / 3
and a d d l i s t s _ 6 / 3 are not structurally equivalent. As a result, the sets which
are identiñed as locally equivalent during the reunión phase are: { {main /15} ,
{addl ists_l /3} ,{addl istsJ2/3 ,addl ists_3/3 ,addl ists_4/3 ,addl ists_5/3} ,
{ a d d l i s t s _ 6 / 3 } } . This is also the ñnal parti t ion after applying the splitting
phase. This produces the minimized program which was shown in Fig. 3.

6 Minimization via Residualization of External Calis

There are situations in which even the minimized program is too large and/or
where we would like to t rade space for t ime efficiency. This would mean achiev-
ing programs which are smaller, but at the cost of introducing some efficiency
penalty. In cases like this, we propose as candidates for minimization, cali pat-
terns with quasi-isomorphic characteristic trees. An important observation is
tha t if S1 « q S2 then the associated resultants have the same structure. How-
ever, this is not a sufficient condition for structural equivalence. This is because
part of the bindings needed for structural equivalence cannot be achieved by the
operation instantiate, as in Def. 1, but rather they originate from the execution
of calis to external predicates. Thus, the second important observation is tha t
if the calis to external predicates involved succeed only once, i.e. they are de-
terministic, such missing bindings can be recovered at run-time by residualizing
(part of the) calis t o external predicates which had in principie taken place dur­
ing specialization t ime. Note tha t for detecting determinacy, no static analysis
is actually required. We can simply check whether the calis which are to be
residualized succeed just once by directly executing the calis as they appear in
the different characteristic trees, i.e., before applying the msg to them. After the
required external predicates have been residualized, the corresponding versions
will be structurally equivalent.

The strategy we propose is the following: for any pair of versions Ai and A2
with T\ = ch.tree(A\, P, U) and T2 = ch_tree(A2,P, U) s.t. T\ « q T2 we

http://ch.tr

/ {addlists([4, 4]
f {addlists([3, 3]

ms3\ {addlists([3, 3]
\ { a d d í i s t s ([l , 1]

{addlists{{X,X\,

[0,3], [4, 7]).,
[1,4], [4, 7]).,
[1,4], [4, 7]).,
[3, 6], [4, 7]).,
Y,Z\,[4,7\).

<1
<1
<1
<1
<1

(4 is 4 + 0) , l : (7 is 4 + 3)) } \
(4 is 3 + 1) ,1 : (7 is 3 + 4))} |
(4 is 3 + 1) ,1 : (7 is 3 + 4))}
(4 is 1 + 3) ,1 : (7 is 1 + 6)) } /
(4 is X + y) , 1 : (7 is X + Z))\

msg

/ {addlists([4, 4, A |B] , [0, 3, C\D],[4, 7, E\F]) : -_E ¿s A + C,addlists(B, D, F).,\
(1 : (4 ¿s 4 + 0) , l : (7 ¿s 4 + 3))}

{add¡¿sts([3, 3, A |B] , [1, 4, C |D] , [4 , 7, _E|F]) : -E is A + C,addlists(B, D, F).,
(1 : (4 is 3 + 1) ,1 : (7 ¿s 3 + 4))}

{add¡¿sts([3, 3, A |B] , [1, 4, C\D],[4, 7, _E|F]) : -_E is A + C,addlists(B, D, F).,
<1 : (4 ¿s 3 + 1) ,1 : (7 ¿s 3 + 4))}

{addlists([l,l,A\B],[3,6,C\D],[4,7,E\F]) : - £ ¿s A + C,addlists(B, D, F).,
(1 : (4 is 1 + 3) ,1 : (7 is 1 + 6)) } /

{addlists([X,X, R\S], [Y, Z,T\U], [4,7, V\W]) : - V is R + T,addlists(S,U,W).,
<1 : (4 ¿s X + y) , 1 : (7 is X + Z)) }

Fig. 5. msg of versions addlists_2, addlists_3, addlists_4 and addlists_5.

1. Compute (C,T) = msg((code(Ai),Ti),(code(A2),T2)), where V¿ € {1..2}.T¿

is obtained from T¿ by evaluating all external successes, i.e., \/(B,6) we re-
place it by B9.

2. If V¿ € {1--2} . instantiate(C, Ai) « code(Ai)
— then Ai and A2 are structurally equivalent. No need to residualize.
— else if for every evaluated external success c £ T such that c is no

longer sufficiently instantiated to be executed we can determine that its
corresponding c\ <G T\ and C2 <G T2 are both deterministic,

• then residualize all c G T being no longer sufficiently instantiated.
• otherwise we cannot collapse Ai and A2.

Note that without such residualization, the code generated by the msg is not
directly usable, since there are bindings in the original versions which are lost if
we apply the code produced by the msg.
Example 5. As we have already mentioned, all characteristic trees in Fig. 4 are
quasi-isomorphic. Therefore, they can be collapsed into one versión. In Fig. 5
we show the msg of both the code and the characteristic trees for versions
addlists_2, addlists_3, addlists_4 and addlists_5. In this figure, the scope
of variables is local to each clause. Since T2 « T¡ « T4 « T5, the msg does not
produce any information loss. This can be easily verified by instantiating back
the msg with any of the cali patterns. For instance, if we take addl ists ([X, X] ,
[Y,Z] , [4,7]) and instantiate it with addl ists ([3,31 G] , [1,4|H] ,1) we ob-
tain the original clause (eighth clause of Fig. 2).

Example 6. Now, let us now compute the msg of the generalized code and char­
acteristic tree obtained in Example 5 with addlists_6.

f {addlists([X,X], [Y, Z], [4, 7])., (1 : (4 is X + Y), 1 : (7 is X + Z))} \
msB\y {addlists([7, 1], [1,5], [8,6])., (1 : (8 is 7 + 1) , 1 : (6 is 1 + 5))}^)

{addlists([A,B],[C, D],[E, F]).,{1 : (E is A + C) , 1 : (F is B + £>))}

/{addlists([X,X,R\S], [Y,Z,T\U], [4,7,V\W]) : -V is R + T, addlists(S,U,W).,s

| (1 : (4 is X + Y), 1 : (7 is X + Z))}
' {addlists([7, 1, R\S], [1, 5, T\U], [8, 6, V\W]) : -V is R + T, addlists(S,U,W).,
_V (1 : (8 is 7 + 1) ,1 : (6 is 1 + 5)) } ,

{addlists([A, B,G\H], [C,D,I\J], [E,F,K\L]) : -K is G + I, addlists (H, J, L).,
(1 : (E is A + C), 1 : (F is B + £>))}

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(A),
addlists_6([4,4|A] , [O,3|B] , [4 , 7|C]) , addlists_6([3,3|D],[1,4|E],[4,7|F]),
addlists_6([3,3|G],[1,4|H],I), addlists_6([1,1|J],[3,6|K],L),
addlists_6([7,1|M] , [1,BIN] ,0) .

addlists_l ([],[],[]).
a d d l i s t s _ l ([A | B] , [C | D] , [E | F]) : - E i s A+C, a d d l i s t s _ l (B , D , F) .

a d d l i s t s _ 6 ([A , B] , [C , D] , [E , F]) : - E i s A+C, F i s B+D.
a d d l i s t s _ 6 ([A , B , G | H] , [C , D , I I J] , [E , F , K | L]) : - E i s A+C, F i s B+D ,

K i s G + I , a d d l i s t s _ l (H , J , L) .

Fig. 6. Specialization of addlists/3 after minimization with residualization.

Since addlists_6 is not (fully) isomorphic with the other versions, the msg
introduces some information loss through the variables E and F in the new heads
addlists([A, B], [C,D], [E,F]) and addlists([A, B,G\H], [C,D,I\J], [E,F,K\L]). This
information loss cannot be recovered by instantiate, since, for example, when
instantiating the msg addl is ts ([A,B] , [C,D] , [E,F]) with the cali pattern
addl i s t s ([3 ,3 |G] , [1 ,4 |H] ,1) we obtain addl i s t sC[3 ,3] , [1 ,4] , [E ,F]) , in
which E and F are unbound variables. If we take the external successes which
correspond to E i s A+C and F i s B+D we can verify that the original external
successes were deterministic (indeed, all calis to i s / 2 are deterministic). Thus,
it is possible to collapse by residualization. As both external calis are no longer
sufficiently instantiated, they are residualized. Residualized atoms are always
placed before any other atom in the generalized clause, guaranteeing that after
execution of such residual atoms at run-time, the clause as a whole is actually a
variant of the original deñnition of the clause. The resulting minimized program
is shown in Fig. 6. Residual atoms are underlined to distinguish them from the
rest of atoms in body clauses.

7 Experimental Results
In this section we assess experimentally the impact of our proposed minimiza­
tion. Most of the benchmarks considered contain calis to builtins which possibly
genérate bindings, such as i s / 2 , and thus the existing partial evaluators which
perform minimization [10,11] would not be able to minimize them optimally.

In our experiments we use an unfolding rule based on homeomorphic em-
bedding (see, e.g., [7]) and which performs leftmost unfolding steps only. This
guarantees the correctness of the partial evaluation process even in the presence
of impure predicates. Note that the issue of redundant polyvariance may occur
for any unfolding rule. The global control rule is based on homeomorphic em-
bedding and global trees [8]. All benchmarks have been run on an Intel Pentium
4, 3.4 GHz processor, with 512 Mb of RAM, and running a 2.6 Linux kernel.

7.1 The Benefits of Minimization
Table 1 shows the size reduction introduced by the minimization step after par­
tial evaluation. Each benchmark program is evaluated using ñve different mini­
mization criteria, as shown in the Min Crit column. Specialization history is used
in puré, nobinds, and bindings, in order to consider two versions as locally equiv-
alent, while codemsg directly applies the deñnition of structural equivalence for

Benchmark

datetime

flattrees

freeof

mmatrix_2

nrev_38

qsort_33

sublists

Min
Crit

puré
nobinds
bindings
codemsg
residual
puré
nobinds
bindings
codemsg
residual
puré
nobinds
bindings
codemsg
residual
puré
nobinds
bindings
codemsg
residual
puré
nobinds
bindings
codemsg
residual
puré
nobinds
bindings
codemsg
residual
puré
nobinds
bindings
codemsg
residual

Orig
Preds

15

2

3

3

2

3

4

Minimization
Versions

P E

56/31

33/16

93/8

70/11

41/3

168/50

29/19

Overall

Min
36/36
36/36
34/35
34/35
31/33
22/22
22/22
22/22
17/19
16/18
35/35
35/35
32/35
18/35
8/35

18/34
18/34
18/34
18/34
11/30

3/3
3/3
3/3
3/3
3/3

68/68
50/50
50/50
50/50
50/50
27/27
27/27
19/19
19/19
19/19

Ratio
1.78
1.78
1.83
1.83
1.94
1.50
1.50
1.50
1.74
1.83
2.66
2.66
2.66
2.66
2.66
2.06
2.06
2.06
2.06
2.33

13.67
13.67
13.67
13.67
13.67
2.47
3.36
3.36
3.36
3.36
1.11
1.11
1.58
1.58
1.58

2.88 / 2.96

Size (bytes)
P E

131377

226390

292642

58323

25115

232079

101969

Min
102651
102836
102331
102295
100976
223320
223435
223389
221513
220796
245262
245442
245370
245334
245370

37061
37236
37166
37131
31781

5261
5281
5273
5269
5273

166288
131650
131548
131497
131548
99986

100121
95815
95795
95815

Ratio
1.28
1.28
1.28
1.28
1.30
1.01
1.01
1.01
1.02
1.03
1.19
1.19
1.19
1.19
1.19
1.57
1.57
1.57
1.57
1.84
4.77
4.76
4.76
4.77
4.76
1.40
1.76
1.76
1.76
1.76
1.02
1.02
1.06
1.06
1.06

1.32 / 1.33

Table 1. Benchmarks (Minimization Ratios)

the same purpose. In particular, puré considers two versions as locally equivalent
when their characteristic trees are identical. Of course, if external successes are
included, these must be identical too. The criteria nobinds and bindings check
for isomorphism of external successes instead. Nobinds only considers two exter­
nal successes c and c' as isomorphic when they genérate no bindings, i.e., when
AUpos(c) = AUpos(c) = 0, while bindings applies the full power of Def. 8. Fi-
nally, residual considers two versions as candidates for minimization when their
characteristic trees are quasi-isomorphic, possibly residualizing calis to external
predicates in the resulting program.

The number of predicates in the original program is shown in the column Orig
Preds. The number of predicates in the specialized programs are shown under
the column Versions. PE shows both the number of versions which are generated
after partial evaluation (Le., the effects of polyvariance) and the number of sets of
predicates with quasi-isomorphic characteristic trees. The latter provides a lower
bound on the number of predicates which the minimized program may have. Min
shows the number of elements in the partition generated by the reunión phase of
the minimization algorithm (local equivalence) and the number of elements in the
partition after the splitting phase (global equivalence). Finally, Ratio shows the
reduction ratio for each criteria compared to the number of versions produced by
partial evaluation. The column Size compares the sizes of the compiled bytecode
of programs minimized using the different criteria.

The last row, Overall, shows the weighted geometric mean (wgm) for ratios
in terms of number of versions and size. Weights are number of versions and
size of the PE column, respectively. In both cases, under the column Min we
ñnd the wgm of the codemsg criterion, which achieves the best results while still
producing programs of maximal optimization. Under the column Ratio we ñnd
the wgm of the residual criterion, which achieves highest ratio.

As can be seen in the table, in most of the benchmarks considered, minimiza­
tion is capable of considerably reducing the specialized program, both in terms
of number of versions and of bytecode size. As it is to be expected, out of the four
criteria which are guaranteed to produce programs of maximal optimization, Le.,
puré, bindings, nobinds, and codemsg, the one which produces the best results is
the latter. Among the three of them which take the minimization history into
account—and which are more efficient in terms of specialization time—, the best
is bindings, but it sometimes does not produce as good results as codemsg. The
effects of the splitting phase are clear in many benchmarks, showing that, in ef-
fect, local equivalence does not imply global equivalence. Finally, for datetime,
f la t trees and mmatrix_2, residual is able to further reduce code size.

7.2 The Cost of Minimization
In Table 2 we can observe the cost, in terms of specialization time, introduced
by minimization, expressed in milliseconds. The (Total) time of the whole spe­
cialization process is shown, including the time taken by the partial evaluation
(Analysis), minimization (Minim), and code generation (Codegen) steps. A new
minimization criteria is introduced, nomin, showing the time employed by par­
tial evaluation without minimization. The Slowdown column shows the cost of
performing this minimization post-processing.

Interestingly, the table shows that when minimization is employed, the code
generation phase takes less time in most cases, since fewer versions need to be
generated. This lowers the burden introduced by minimization post-processing.
However, even in the worst case the slowdown introduced is reasonable (1.85).
As expected, using specialization history makes minimization faster than just
applying the deñnition of structural equivalence. Given the fact that employing
structural equivalence generates fewer versions than other criteria based on the
specialization history, the codemsg criterion emerges as a very interesting one.

B e n c h m a r k

datetime

flattrees

freeof

mmatrix_2

nrev_38

qsort_33

sublists

Minimization
Criteria

nomin
puré
nobinds
bindings
codemsg
residual
nomin
puré
nobinds
bindings
codemsg
residual
nomin
puré
nobinds
bindings
codemsg
residual
nomin
puré
nobinds
bindings
codemsg
residual
nomin
puré
nobinds
bindings
codemsg
residual
nomin
puré
nobinds
bindings
codemsg
residual
nomin
puré
nobinds
bindings
codemsg
residual

Minimization Times (msec)
Total
556.52
632.90
634.30
640.10
642.30
687.30
299.55
395.14
396.34
400.19
412.74
424.94

5732.93
5833.11
5844.11
5858.31
5948.90
6113.47

316.15
356.55
367.14
364.34
373.34
435.53
898.26
886.67
901.86
898.86
903.86
916.26

9983.68
10267.64
10303.83
10339.03
10401.82
11241.69

401.94
647.70
651.90
679.50
681.30
744.09

Analysis

475.33
486.13
476.13
479.93
478.13
479.93
232.56
230.97
231.57
230.21
231.36
231.36

5583.15
5589.95
5589.15
5573.35
5595.15
5613.95

271.76
272.76
274.56
272.76
274.96
270.76
877.07
861.27
872.67
870.27
874.67
873.87

9745.12
9778.91
9768.12
9771.91
9764.92
9732.72

293.56
295.35
297.75
295.56
297.56
296.95

Minim
0

61.19
72.79
73.99
79.19
77.59

0
107.78
108.58
113.48
125.98
125.78

0
118.98
131.38
160.38
230.97
221.97

0
48.39
57.39
55.99
63.19
60.79

0
13.20
16.80
16.40
17.20
17.20

0
282.96
337.75
368.94
441.73
371.14

0
278.56
281.36
280.16
278.76
284.56

Codegen
81.19
85.59
85.39
86.19
84.99

129.78
66.99
56.39
56.19
56.49
55.39
67.79

149.78
124.18
123.58
124.58
122.78
277.56

44.39
35.39
35.19
35.59
35.19

103.98
21.20
12.20
12.40
12.20
12.00
25.20

238.56
205.77
197.97
198.17
195.17

1137.83
108.38
73.79
72.79

103.78
104.98
162.57

Slowdown
1

1.14
1.14
1.15
1.15
1.23

1
1.32
1.32
1.34
1.38
1.42

1
1.02
1.02
1.02
1.04
1.07

1
1.13
1.16
1.15
1.18
1.38

1
0.99
1.00
1.00
1.01
1.02

1
1.03
1.03
1.04
1.04
1.13

1
1.61
1.62
1.69
1.70
1.85

Table 2. Benchmarks (Minimization Times)

Also, for the residual minimization criterion, the time spent in code generation
is greater than for the rest of criteria, since it requires deciding which external
successes need to be residualized.

Benchmark

datetime*
flattrees*
freeof
mmatrix_2*
nrev_38
qsort_33
sublists

P E
Time

167.77
81.39

246.96
1920.11

141.38
457.33

15501.44

Speedup
Puré

1.01
1.03
1.04
1.02
1.20
1.05
1.00

No Binds
1.02
1.01
1.04
1.02
1.18
1.04
1.00

Bindings

1.01
1.01
1.05
1.02
1.18
1.04
1.00

CodeMsg

1.01
1.03
1.04
1.02
1.19
1.05
1.00

Residual

1.01
1.01
1.05
1.00
1.19
1.04
1.00

Table 3. Benchmarks (Speedup)

7.3 Benefits of Minimization in Runtime
Table 3 shows how specialized programs behave in terms of runtime. Benchmark
programs having residualized external predicates (for the residual minimization
criterion) are marked with * in the table. Column PE Time shows the absolute
run-time for the partially evaluated program. The rest of the columns show the
speedup achieved for the minimized programs (for each different minimization
criteria) w.r.t. PE Time. As can be seen in the table, in most benchmarks a
small speedup is achieved (1.00 - 1.20), and no slowdown is produced in any
case. As expected, in the case of programs with residualized external predicates,
the speedup achieved is usually smaller than for the other minimization criteria.

8 Discussion and Related Work
The problem of superfluous polyvariance has been tackled in the context of ab-
stract múltiple specialization in [18,16], and in the context of partial evaluation
of normal logic programs in [9]. This work presents a unifying view under which
the minimization problems in both contexts are isomorphic.

The work in [9], reflected in the ECCE [10] partial evaluator, uses an inter-
nal table of safe builtins which basically correspond to instantiation and type
tests and which are guaranteed (1) not to genérate any bindings, and (2) to
be deterministic. The minimization phase then would only allow collapsing two
predicates in the same versión if their characteristic trees are quasi-isomorphic
and all the builtins executed are listed in the table of puré predicates.

The approach presented herein, and implemented in the Ciao system prepro-
cesor, CiaoPP [4], can handle any external predicate, including non-safe builtins,
and the notion of isomorphic external predicates can be satisñed for builtins
which genérate bindings and which are non-deterministic. Also, there is no need
for a static table of builtins. Additionally, the technique automatically applies
to any external predicates, for example other modules written by the user.

To the best of our knowledge, this work presents the ñrst experimental evalua­
tion of the beneñts of post-minimization in partial deduction. We have compared
several criteria, with different cost and potential beneñt. We have also applied
directly the deñnition of structural equivalence and discovered that it is also ap-
plicable in practice, in addition to the other criteria based on the specialization
history. Finally, we have proposed a criteria which allows residualizing external
calis. The experiments show that it is also applicable in practice and provides
some further program reduction.

References

1. J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,
University of Bristol, November 1991.

2. J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program
specialisation. New Generation Computing, 9(1991):305-333, 1991.

3. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of PEPM'93,
pages 88-98. ACM Press, 1993.

4. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 ICLP,
pages 52-66. MIT Press, Nov 1999.

5. J. E. Hopcroft and J. D. Ullman. Introduction to Autómata Theory, Languages
and Computation. Addison-Wesley, 1979.

6. M. Leuschel. Ecological partial deduction: Preserving characteristic trees without
constraints. In Proc. of LOPSTR'95, LNCS 1048, pages 1-16. Springer, 1995.

7. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. TPLP, 2(4 & 5):461-515, July & September 2002.

8. M. Leuschel and B. Martens. Global control for partial deduction through charac­
teristic atoms and global trees. In 1996 Dagstuhl Seminar on Partial Evaluation,
LNCS 1110, pages 263-283, Schlofi Dagstuhl, 1996.

9. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM TOPLAS, 20(1):208-
258, 1998.

10. Michael Leuschel. The ECCE partial deduction system and the DPPD library of
benchmarks. Obtainable via http: / /www.ecs.soton.ac.uk/~mal, 1996-2002.

11. Michael Leuschel. Advanced Techniques for Logic Program Specialisation. PhD
thesis, K.U. Leuven, May 1997.

12. Michael Leuschel and Danny De Schreye. Constrained partial deduction and the
preservation of characteristic trees. New Generation Computing, 16:283-342, 1998.

13. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11:217-242, 1991.

14. J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext. Ed., 1987.
15. G. Puebla, E. Albert, and M. Hermenegildo. Efñcient Local Unfolding with An-

cestor Stacks for Full Prolog. In Proc. of LOPSTR'04, pages 149-165. Springer
LNCS 3573, 2005.

16. G. Puebla and M. Hermenegildo. Implementation of Múltiple Specialization in
Logic Programs. In Proc. of PEPM'95, pages 77-87. ACM Press, June 1995.

17. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Appli­
cation to Program Parallelization. JLP, 41(2&3):279-316, November 1999.

18. W. Winsborough. Múltiple Specialization using Minimal-Function Graph Seman-
tics. Journal of Logic Programming, 13(2 and 3):259-290, July 1992.

http://www.ecs.soton.ac.uk/~mal

