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Abs t r ac t . Polyvariant specialization allows generating múltiple versions 
of a procedure, which can then be separately optimized for different uses. 
Since allowing a high degree of polyvariance often results in more opti­
mized code, polyvariant specializers, such as most partial evaluators, 
can genérate a large number of versions. This can produce unnecessarily 
large residual programs. Also, large programs can be slower due to cache 
miss effects. A possible solution to this problem is to introduce a min-
imization step which identifies sets of equivalent versions, and replace 
all occurrences of such versions by a single one. In this work we present 
a unifying view of the problem of superfluous polyvariance. It includes 
both partial deduction and abstract múltiple specialization. As regards 
partial deduction, we extend existing approaches in several ways. First, 
previous work has dealt with puré logic programs and a very limited 
class of builtins. Herein we propose an extensión to traditional char-
acteristic trees which can be used in the presence of calis to external 
predicates. This includes all builtins, librarles, other user modules, etc. 
Second, we propose the possibility of collapsing versions which are not 
strictly equivalent. This allows trading time for space and can be useful in 
the context of embedded and pervasive systems. This is done by residual-
izing certain computations for external predicates which would otherwise 
be performed at specialization time. Third, we provide an experimental 
evaluation of the potential gains achievable using minimization which 
leads to interesting conclusions. 

1 Introduction and Motivation 

Partial evaluation (PE) of logic programs [13,3] aims at obtaining code which is 
as optimized as possible by performing aggressive unfolding at the local control 
level, and by being as accurate as possible (generalize the least possible) at the 
global control level, as long as termination is guaranteed. We refer to [7] for a 
survey on control issues. In particular, given a ñxed local control rule, different 
global control rules will have different effects on the polyvariance level of partial 
evaluation, i.e., the number of versions produced for each procedure. In general, 
a common heuristic is to produce as many different versions as possible, as long 
as termination is not compromised, the idea being tha t by considering differ­
ent versions separately, further optimizations may be uncovered. This heuristic 
makes sense from the point of view of optimizing programs in terms of resolution 
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(1) main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0): 
write(C) , 
addlists([4,4|A] 
addlists([3,3|D] 
addlists([3,3|G] 
addlists([1,1 IJ] 
addlists([7,1|M] 

, [0 
, [ 1 
, [ 1 
, [ 3 
, [ 1 

3 | B] 
4 | E ] 
4 | H] 
6 | K] 
5 | W] 

, [4 
, [4 

I ) 
L) 
0 ) 

7 | C ] ) , 
7 | F ] ) , 

(2) addlists([] ,[],[]). 
(3) addlists([A|B],[C|D],[H|T]): 

H is A+C, 
addlists(B,D,T). 

Fig. 1. Adding pairs of lists. 

steps, but it can produce unnecessarily large results, and may even slow down 
programs due to cache miss effects. 

Example 1. Fig. 1 shows our running example. Predicate a d d l i s t s / 3 adds the 
contents of two lists, using the builtin i s / 2 . Clauses are numbered for later 
reference. A possible result of partial evaluation for the initial query main/15 is 
shown in Fig. 2. Unfolding of main/15 only performs one step since the leftmost 
literal wri te (C) has side-effects, and performing non-leftmost unfolding of any 
other literal may backpropagate bindings (as variables may be aliases) onto 
wri te (C). Note that one versión has been generated for each cali to a d d l i s t s / 3 
within the body of main/15, plus one versión for the general case. However, the 
four versions addlis ts_2 through addlis ts_5 are indeed equivalent and could 
be replaced by a single one, resulting in the program shown in Fig. 3. 

The problem of superfluous polyvariance has been studied both in the context 
of abstract múltiple specialization [18,16] and in the context of partial evaluation 
of normal logic programs [9]. The common idea is to identify sets of versions 
which are equivalent and replace all occurrences of such versions by a single, 
canonical, one. This poses two questions which we address in this work: under 
which conditions can we consider two given versions as equivalent? And, how 
can we efficiently check for equivalence? 

In this work, we provide a thorough analysis of these questions, comparing 
different approaches for controlling polyvariance, and we also extend previous 
approaches in two ways. First, we tackle in an accurate way the case in which 

main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(C), 
addlists_2([4,4|A] , [0,3|B] , [4,7|C]) , addlists_3([3,3|D] ,[1,4|E] 
addlists_4([3,3|G],[1,4|H],I), addlists_E([1,1|J],[3,6|K] 
addlists_6([7,1|M],[1,6|N],0). 

addlists_l ([],[],[]). 
a d d l i s t s _ l ( [ A | B ] , [ C | D ] , [ E | F ] ) : -

a d d l i s t s _ 2 ( [ 4 , 4 ] , [ 0 , 3 ] , [ 4 , 7 ] ) . 
a d d l i s t s _ 2 ( [ 4 , 4 , A | B ] , [ 0 , 3 , C | D ] 

a d d l i s t s _ 3 ( [ 3 , 3 ] , [ 1 , 4 ] , [ 4 , 7 ] ) . 
a d d l i s t s _ 3 ( [ 3 , 3 , A IB] , [ 1 , 4 , C | D ] 

a d d l i s t s _ 4 ( [ 3 , 3 ] , [ 1 , 4 ] , [ 4 , 7 ] ) . 
a d d l i s t s _ 4 ( [ 3 , 3 , A IB] , [ 1 , 4 , C | D ] 

a d d l i s t s _ E ( [ 1 , 1 ] , [ 3 , 6 ] , [ 4 , 7 ] ) . 
a d d l i s t s _ E ( [ 1 , 1 , A | B ] , [ 3 , 6 , C | D ] 

a d d l i s t s _ 6 ( [ 7 , 1 ] , [ 1 , 6 ] , [ 8 , 6 ] ) . 
a d d l i s t s _ 6 ( [ 7 , 1 , A | B ] , [ 1 , E , C | D ] 

[4,7,E|F]) 

[4,7,E|F]) 

[4,7,E|F]) 

[4,7,E|F]) 

[8,6,E|F]) 

is A+C, 

is A+C, 

is A+C, 

A+C, 

A+C, 

A+C, 

addli sts_1 

addlists_l 

addlists_l 

addlists_l 

addlists_l 

addlists_l 

,[4,7|F]), 
,L), 

(B,D,F). 

(B,D,F). 

(B,D,F). 

(B,D,F). 

(B,D,F). 

(B,D,F). 

Fig. 2. Specialization of addlists/3 via partial evaluation. 



m a i n ( A , B , C , D , E , F , G , H , I , J , K , L , M , N , 0 ) : - w r i t e ( C ) , 
a d d l i s t s _ E ( [ 4 , 4 | A ] , [ O , 3 | B ] , [ 4 , 7 | C ] ) , a d d l i s t s _ E ( [ 3 , 3 | D ] , [ 1 , 4 | E ] , [ 4 , 7 | F ] ) , 
a d d l i s t s _ E ( [ 3 , 3 | G ] , [ 1 , 4 | H ] , I ) , a d d l i s t s _ E ( [ 1 , 1 I J ] , [ 3 , 6 IK] , L ) , 
a d d l i s t s _ 6 ( [ 7 , 1 | M ] , [ 1 , E | N ] , 0 ) . 

a d d l i s t s _ l ( [ ] , [ ] , [ ] ) . 
addlists_l([A|B] , [C|D] ,[E|F]) :- E is A+C, addlists_1(B,D,F) . 

addlists_E([A,A] ,[_1,_2] , [4,7]). 
addlists_E([A,A,B|C] , [_1,_2,D|E] , [4,7,F|G]) :- F is B+D, addlists_l(C,E,G) . 

addlists_6([7,1],[1,B],[8,6]). 
addlists_6([7,1,A|B] , [1,B,C|D] , [8,6,E|F]) :- E is A+C, addlists_l(B,D,F) . 

Fig. 3. Specialization of addlists/3 after minimization. 

programs contain external predicates, i.e., predicates whose code is not deñned in 
the program being specialized, and thus it is not available to the specializer. This 
includes predicates deñned in other user modules, library predicates, builtins, 
predicates implemented in other languages, etc. Note that external predicates 
may have impure features. The minimization shown in Figure 3 is not possible 
in previous works such as [9] as it involves calis to the builtin predicate i s / 2 , 
which is not safe in the sense that it may produce bindings during its execution. 

Second, previously proposed minimization techniques do not provide any 
degrees of freedom at the minimization stage. We propose the possibility of 
collapsing versions which are not strictly equivalent. This is achieved by resid-
ualizing certain computations for external predicates which would otherwise be 
performed at specialization time. This allows automatically trading time for 
space and can be of interest in the context of embedded and pervasive systems, 
where computing resources and storage are often limited. 

A completely different approach to that studied in this paper is to incorpórate 
within the global control certain heuristics which limit polyvariance based for 
example on characteristic trees [2,6,12]. Such approach has both advantages 
and disadvantages. The advantage is that there is no need to perform a post 
minimization phase, such as that discussed in this paper. On the other hand, 
the disadvantage of that approach is that it sometimes produces results which are 
suboptimal, since the fact that characteristic trees are equal not always means 
that the corresponding versions should be merged. 

We argüe that a minimization phase is important in specialization algorithms, 
since it allows using very accurate global control rules while limiting the risk of 
generating large residual code. Rather than deciding a priori the best global 
control possible, this technique allows using aggressive control strategies. We 
can minimize the program a posteriori and eliminate those specialized versions 
which are redundant. 

2 Background 

We assume some basic knowledge on the terminology of logic programming. See 
for example [14] for details. Very briefly, an atora A is a syntactic construction 
of the form p{t\,... ,tn), where p/n, with n > 0, is a predicate symbol and 
í i , . . . ,í„ are terms. The function pred applied to atom A, i.e., pred(A), returns 
the predicate symbol p/n for A. A clause is of the form H +— B where its head 



H is an atom and its body B is a conjunction of atoms. A definite program is a 
ñnite set of clauses. A goal (or query) is a conjunction of atoms. We denote by 
{X\ i—> ti,..., Xn i—> í „ } the substitution a with o~(Xj) = í¿ for all ¿ = 1 , . . . , n 
(with X; 7̂  Xj if ¿ 7̂  j ) and <r(X) = X for any other variable X, where í¿ are 
terms. We denote with e the empty substitution. Also, dom(a) denotes the set 
of variables affected by substitution a, i.e., dom({Xi i—> í i , . . . , X „ i—> í„}) = 
{ X i , . . . , X „ } . 

A term í is more general t han s (or s is an instance of í ) , in symbols t < s, 
if 3cr. ta = s. Two terms t and í ' are variants, denoted t « í ' , if there exists a 
renaming p such tha t tp = t!. A unifier of a p a i r of terms { t i , ¿2} is a substi tution 
a such tha t ti<r = Í2<r. A uniñer o~ is called most general unifier (mgu) if a < a' 
for every other uniñer a'. A generalization of a set of terms { í i , . . . , tn} is another 
term t such tha t 36>i,... ,0n with £¡ = í6>j, ¿ = 1 , . . . , n . A generalization í is the 
most specific generalization (msg) of { t i , . . . , t „ } if for every other term í' s.t. 
í ' is a generalization of { í i , . . . , í „ } , t! < t. Given a set of clauses {Cl\ = H\ <— 
Bi,..., Cln = Hn •<— B „ } , n > 0, we denote by instantiate({Cli,..., C7„}, A) 
the set of clauses { C 7 i # i , . . . , Cln6n} where each 6>¿ = mgu(Hi,A). 

2.1 B a s i c s of Part ia l Eva luat ion 

Traditional algorithms for on-line partial evaluation of logic programs (known 
as partial deduction (PD) [13,3]) usually include two control levéis: local control 
and global control [3]. Local control defines an unfolding rule. Given an atom 
A, an unfolding rule computes a set of finite SLD derivations D\,... ,Dn (i.e., 
a possibly incomplete SLD tree) of the form Di = A,...,Gi with computed 
answer substi tution 6>¿ for i = 1 , . . . , n. We use U(P, G) = r to denote the fact 
tha t the unfolding rule U when applied to goal G in program P returns the SLD 
tree T. The global control rule decides when and how to generalize atoms before 
applying the unfolding rule to them. Such generalization steps are necessary 
in order to guarantee tha t the number of atoms to which the unfolding rule is 
applied remains finite. We refer to [7] for a survey on both control issues. 

3 A General View of Polyvariance and Minimization 

We now present a very general description of a polyvariant specialization process 
which includes both partial evaluation [13,3,7] and abstract múltiple special­
ization [16]. Given a program P and a set of atoms Q = {Ai,... ,Am}, which 
describe the possible initial queries to P, polyvariant specialization performs the 
following three steps: 

1. Analysis. In this phase, we compute a set of cali pat terns {A\,..., An} D Q 
which cover all calis in the specialized program. We write Analysis(P, Q) = 
{Ai,..., An} t o denote tha t the result of analysis for P and Q is the set of 
cali pat terns {Ai,..., An}. 

2. Code Generation. The aim of this phase is, for each cali pa t te rn Ai <G 
Analysis{P,Q), to compute properly optimized residual code. We denote 
by code(Ai) the code (set of clauses) associated to A^. In partial evaluation, 
an unfolding rule U is used for generating code, i.e., code(Ai) = U(P,Ai). 



3. Renaming. In this phase we assign a fresh predícate ñame to each atom in 
{Ai,..., An}. Then, for each code(Ai), we perform appropriate renamings 
in the head and body atoms so tha t each program point uses a correct (and 
as optimized as possible) versión. Ren denotes the renaming function. 

The polyvariant specialized program PQ is then deñned as: 
Analysis{P:Q) 

PQ= ( J Ren{code{Ai)) 
A % 

3.1 M i n i m i z i n g t h e R e s u l t s of Po lyvar iant Spec ia l i za t ion 
The aim of minimization is t o group the cali pat terns (or versions) in {Ai,... ,An} 
into equivalence classes, obtaining a minimal program tha t allows the same set 
of optimizations, and tha t can be implemented without introducing run-time 
tests to select amongst different versions of a predicate. 

Deciding whether two versions Ai and Aj with pred(Ai) = pred(Aj) are 
equivalent is not straightforward, as we have to consider not only the code of 
Ai and Aj, but also the code of all other versions which are reachable from 
them. In the case of the main predicate in a program, we would have to take 
the code of all the specialized program into account. Thus, we will split the 
notion of equivalence into a local equivalence and a global equivalence level. Local 
equivalence concentrates on comparing the code for Ai and Aj only, without 
worrying about the other predicates which are reachable from them. Global 
equivalence will only hold if Ai and Aj are locally equivalent and all reachable 
versions for the corresponding program points are also locally equivalent. 

The minimization algorithm (called Minimize from now on) consists of two 
phases. In [17], the ñrst phase is called reunión and the second phase is called 
splitting. The reunión phase is concerned with local equivalence only and it 
places together all versions for the same predicate which are considered locally 
equivalent according to some criteria. The splitting phase is concerned with 
global equivalence. It splits sets of versions which are not globally equivalent 
until no more splitting is needed, i.e., until we have reached a parti t ion where all 
sets contain versions which are globally equivalent. This minimization process is 
isomorphic to the minimization of deterministic ñnite au tómata (DFA) [5], by 
considering each cali pa t te rn Ai as a state and each program point in code(Ai) 
as a symbol. 

A crucial point thus is, given a pair of atoms A and A', to decide whether they 
can be safely considered locally equivalent. The decisión criteria has to satisfy 
two properties: (1) it must produce correct results, and (2) it must be effective, 
i.e. it must be possible to efficiently decide whether A and A' are candidates for 
equivalence based on syntactic, local conditions. For this purpose, in this work 
we introduce structural equivalence. 

Def in i t ion 1 ( s tructural ly equiva lent ) . Let Ai and A2 be two cali patterns 
such that pred(Ai) = pred(A2). We say that Ai and A2 are structurally equiv­
alent iff C = msg(code(Ai),code(A2)) 

A instantiate(C, Ai) « code(Ai) 

A instantiate(C, A2) ~ code{A2) 



Clearly, if code(Ai) « code(Á2) then Ai and A2 are structurally equivalent. 
However the deñnition above allows also considering as structurally equivalent 
cali patterns whose code only differs in constants which are input arguments 
to the predicate but which do not play an important role for local optimiza-
tion. Note that structural equivalence is just a syntactic characterization which 
guarantees that two cali patterns are locally equivalent. In fact, there can be 
cali patterns which are locally equivalent in the sense that their behaviours un-
der the semantics of interest are identical but which our deñnition of structural 
equivalence would not capture. Also, structural equivalence in particular, and 
local equivalence in general do not guarantee global equivalence. It often hap-
pens that two cali patterns which are structurally equivalent end up in different 
equivalence classes after the splitting phase. Only after this phase terminates we 
can be sure that two cali patterns are globally equivalent. 

The polyvariant specialized program with minimization p^m is deñned as: 
Minimize(Analysis(P,Q)) 

P^m= (J Ren=(code(V¿) 
Vi 

where given a set of atoms {Ai,..., An}, we partition them in equivalence classes 
{Vi , . . . , 14}, k > n s.t. \/A, A' <G V¿ . A and A' are structurally equivalent. We 
use code({Ai,..., A¡}) to denote msg({code(Ai),..., code(Ai)}). Also, Ren= is 
a new renaming function which always uses the same (canonical) predicate ñame 
for any atom in {Ai,..., Ai}. 

Our deñnition of structural equivalence plays several roles. It underlies the 
notions of local equivalence used both in abstract múltiple specialization and 
partial deduction, thus allowing us to present a uniñed view of both minimiza­
tion processes. Furthermore, it can also be used in order to determine whether 
two versions are locally equivalent. Existing approaches to minimization do not 
compare the syntactic structure of the residual code directly (as this deñnition 
would require) but rather use the specialization history in order to decide local 
equivalence. In [16] two cali patterns are considered locally equivalent iff (1) 
they correspond to the same predicate in the original program and (2) the set 
of optimizations in both cali patterns is the same. In [9] two cali patterns are 
locally equivalent iff they have the same characteristic tree. 

4 Characteristic Trees with External Predicates 
A characteristic tree [2] is a data structure which encapsulates the evaluation 
behaviour of an atom, i.e., a trace of the unfolding process. The following deñ-
nitions are taken from [9], which in turn were derived from [2]. 

Definition 2 (characteristic path). Let GQ he a goal, and let P he a definite 
program whose clauses are numhered. Let GQ, ... ,Gn he the goals of a finite, 
possibly incomplete SLD-derivation D of P U {Go}- The characteristic path of 
the derivation D is the sequence (lo : co , . . . , ln-\ '• cn-i), where li is the position 
of the selected atom in Gi, and Ci is the numher of the clause chosen to resolve 
with Gi. 



Now tha t we have characterized derivations, we can characterize goals through 
the derivations in their associated SLD-trees. 

Def in i t ion 3 (character is t ic t r e e ) . Let G be a goal, P a definite program, and 
T a finite SLD-tree for PU {G}. Then the characteristic tree f of T is the set 
containing the characteristic paths of the nonfailing SLD-derivations associated 
with the branches of T . 
Let U be an unfolding rule such that U(P, G) = T. Then f is also called the char­
acteristic tree ofG (in P) via U. We introduce the notation ch_tree(G, P, U) = f. 

Although existing partial evaluation systems such as SP [1] and E C C E [10] 
perform some limited handling of builtins within characteristic trees, the existing 
formal deñnitions of characteristic trees do not contémplate the existence of 
builtins ñor of external predicates. We now extend the s tandard deñnitions in 
order to accurately include external predicates. 

Def in i t ion 4 ( c h p a t h w i t h e x t e r n a l pred ica tes ) . Let GQ be a goal, and let 
P be a program whose clauses are numbered. Let GQ, ... , Gn be the goals of a 
finite, possibly incomplete SLD-derivation D of P U {C?o}- Let A$,... ,An_i be 
the selected atoras in D. The characteristic pa th with external predicates of the 
derivation D is the sequence (lo : c o , . . . , ln-\ '• cn-i), where k is the position of 
Ai in Gi, and Ci is defined as follows: 

— if pred(Ai) is defined, in P, then Ci is the number of the clause in P chosen 
to resolve with Gi¡ 

— if pred(Ai) is an external predícate, then let 0 be a computed answer gener-
ated when performing exec(Ai). Then, Ci is a pair (Ai, 6). 

In the deñnition above, exec(Ai) represents the execution of Ai. For this, the 
external cali Ai has to be evaluable [15], i.e., Ai is both well-moded and well-
typed, it does not produce any side-effect, and it universally terminates. Note 
tha t exec(Ai) can succeed more than once and possibly with different computed 
answers. Reconsidering characteristic paths , each pair (Z¿ : c¿) in a characteristic 
path must uniquely identify: (1) the position of the selected atom Ai, (2) the 
bindings introduced by this step on the current goal, and (3) the atoms which 
must be introduced in the goal in place of the selected atom Ai. An important 
obvious difference between external and regular predicates is tha t the code for 
external predicates may not be available, so it is not possible, as done with 
regular predicates, to assign clause numbers to them or to unfold them. Instead 
of unfolding external predicates, we will fully execute them. As a result, no atoms 
will be introduced in the current goal and, thus, (3) is not needed in this case. 

In the case of external predicates, we introduce in the characteristic tree an 
external success, i.e., a pair (Ai, 9) containing the cali pa t te rn Ai and the bind­
ings 9 generated during evaluation for each external predicate. Note tha t , in 
contrast to the handling of builtins within characteristic trees in SP and ECCE, 
this makes it possible to reconstruct the residual code for an atom without 
the need for (re-)evaluating external predicates, even if the external predicates 
succeed several times with (possibly) different computed answers. The notion 
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Fig. 4. Characteristic trees for addlists/3 versions. 

of characteristic paths with external predicates is indeed consistent with tradi-
tional characteristic paths . In the case of regular predicates, the same implicit 
representation as in traditional characteristic paths is used. This representation 
is efficient in space since rather than introducing (an instantiated versión of) 
the clause chosen for resolving the selected atom directly in the characteristic 
tree, only the number of the clause used for unfolding is stored. This suffices 
since the actual instantiation can be performed later if needed using the ac­
tual clause. In the case of external predicates, this implicit representation is no 
longer possible, since the clauses are not available. Instead, the cali pa t te rn and 
the corresponding bindings are explicitly stored. 

Characteristic trees are extended to handle external predicates by simply con-
sidering characteristic paths with external predicates. Fig. 4 shows the character­
istic trees with external predicates T2, T ¡ , T4, T$ and TQ for versions a d d l i s t s _ 2 / 3 , 
a d d l i s t s _ 3 / 3 , a d d l i s t s _ 4 / 3 , a d d l i s t s _ 5 / 3 , and a d d l i s t s _ 6 / 3 , respectively. 

5 Isomorphic Characteristic Trees 

In this section we deñne the notion of isomorphic characteristic trees with ex­
ternal predicates, which guarantees tha t the corresponding code is structurally 
equivalent. We assume tha t predicate ñames cannot be numbers, as is the case 
in most existing logic programming systems. Also, number(X) succeeds iff X is 
a number. 

First, we introduce the concept of quasi-isomorphic characteristic trees, for 
identifying characteristic trees which only (possibly) differ in the input and/or 
output valúes of arguments in calis to external predicates: 

Def in i t ion 5 (quas i - i somorphic character i s t ic t r e e s ) . Two characteristic 
paths S1 = (lo : C Q , . . . , Z T O : c^) and S2 = (lo : C Q , . . . , Z T O : c^) are quasi-

isomorphic and we denote it S1 « q S2 iff^i £ { l . .m} . nwmber(c\) =4> c\ = c2. 
Two characteristic trees Ti and T2 are quasi-isomorphic, denoted T\ « q T2, iff 
Vá1 G n . 3Ó2 G T2 s.t. ó1 faq ó2 and Vá2 G T2 . 3Ó1 G n s.t. ó2 « g ó1. 

Note tha t quasi-isomorphic characteristic paths must have the same length and 
the selected atom must be in the same position in each resolution step. Further-
more, if the atom is not for an external predicate, then the atom must have been 
resolved against the same clause. In Fig. 4, T2 « q T¡ « q T4 « q T5 « q TQ. 

Now we deñne some relationships among external successes, after some aux-
iliary deñnitions. A position uniquely determines a subterm within a term. 



Def in i t ion 6 (Pos i t i on ) . A position LO is either the empty position e, or n.u>', 
where n is a natural number and LO' is a position. 

Def in i t ion 7 (getval , P o s , a n d A l l p o s ) . Let A = f(tn) be a term. Let LO be 
a position. Let X be a variable s.t. X G vars(A). Let 0 be a substitution. 

— We define getval(ui, Á) as A if LO = e and as getval(u>',ti) if LO = Í.LÜ'. 
— We define Pos(A, X) as {LO \ getval(u>, Á) = X}. 
— We define Allpos(A,0) as ^>xedomie)^}i s-t- <¿> S Pos(A,X). 

Example 2. getval(2.1.e, f(a,g(b, c))) = b, and Pos(f(a,g(b,Y)),Y) = {2.2.e}. 
If A is not linear, then for some X, the set Pos(A, X) may have more than one el-
ement. E.g., Pos(f(Z,g(Z)),Z) = { l .e ,2 .1 .e} . In such case, any ui G Pos(A,X) 
can be used for our purposes. Also Allpos(A is 3 + 1, {A i—> 4}) = { l . e} . 

Def in i t ion 8 ( i somorphic e x t e r n a l successes ) . Let c = (A, 6) and c' = 
(A1, 9') be external successes. Then c and c' are isomorphic external successes, 
denoted by c ~ c', iff' Vw G Allpos(A,0) U Allpos(A',0') . getval(uj,AO) = 
getval(uj,A'0'). 

Example 3. This definition tries to consider as isomorphic as many pairs of ex­
ternal successes as possible. A particular subcase of this definition corresponds 
to the case where the calis to external predicates genérate no bindings. For ex­
ample, the pair (4 is 4+0 , e) and (4 is 3 + 1 , e) is isomorphic, whereas the notion of 
equivalence in [9] cannot capture this since the builtin predicate i s / 2 potentially 
generates bindings, though in this case it does not. Note tha t (4¿s4 + 0, e) and 
(8¿s2 * 4, e) are also considered as isomorphic although their syntactic structure is 
very different. Another interesting subcase is when the external successes have 
different levéis of instantiation but on success they are variants. This happens 
with ( A Í S 3 + 1 , { A H > 4 } ) and ( 4 ¿ s 3 + 1, e). Furthermore, it allows considering as 
isomorphic external successes which have the same valúes in all positions which 
are instantiated in either external success. For example (A is 3 + 1, {A H^ 4}) 
and (4 is 4 + 0, e) are considered isomorphic since Allpos(A Í S 3 + 1 , { A H 4 } ) = 
{í.e}AAllpos(4 is 4+0, e}) = ®Agetval(l.e, 4 is 3+1) = getval(í.e, 4 is 4+0) = 4. How-
ever, (E is 1+3, {E ^ 4}) gk (I is 7+1 , {I ^ 8}), since Allpos(E is 1+3, {E ^ 4}) = 
Allpos (I is 7 + 1,/) = {l .e}, but getval(í.e,4is 1 + 3) = 4 ^ getval(í.e,8is 7+1) = 8. 

Def in i t ion 9 ( i somorphic character i s t ic t r e e s ) . Two characteristic paths 
S1 = (lo : C Q , . . . , Z T O : c^) and S2 = (lo : C Q , . . . , Z T O : c^) are isomorphic 

and we denote it 51 « 52 iff 51 « q 52 A V¿ G {l . . ra} . c\ = (A\,0\) => c2 = 
(A2,62) A c\ — c2. Two characteristic trees T\ and T2 are isomorphic, denoted 
n « T2, iffV5l G n . 3Ó2 G T2 s.t. ó1 « ó2 and Vá2 G T2 . 3Ó1 G n s.t. ó2 « ó1. 

The following proposition provides the basis for our minimization approach. 

P r o p o s i t i o n 1 ( s tructura l equ iva lence ) . Let P be a program with external 
predicates, let U be an unfolding rule, let Ai and A2 be two cali patterns such 
that Ti = ch_tree(Ai, P,U) and T2 = chJbree(A2,P,U). If T\ « T2 then Ai and 
A2 are structurally equivalent. 



A difficulty with our notion « of isomorphic characteristic trees and its usage 
as a condition for local equivalence is tha t though the « relation is reflexive and 
symmetric, it is not transitive. This means tha t (T\ « T2 A T2 P¿ T¡) -/-> T\ K, T ¡ . 
As a result, in order t o be able to state tha t all characteristic trees in a set 
{TI , . . . , T „ } are isomorphic we have to check tha t VT, T' <G {T-¡_ , . . . , T „ } .T P¿ T' . 

Example 4- Let us consider again the characteristic trees in Fig. 4. We have 
already noticed tha t all of them are quasi-isomorphic. If we take the quasi-
isomorphic paths of TI, T ¡ , T4 and T5, and extract their external successes, we 
can see tha t they are isomorphic. For example, if we take C21 = (4 is 4 + 0, e), 
c31 = (Ais 3 + l , e ) , c4i = (A is 3 + 1, {A ^ 4 } ) and c 5 i = (C ¿s 1 + 3, {C i-> 4}), 
we can compute yjiesx2...rJ}Allpos(cn) = { l .e} . Since getval(l.e,4 is 4 + 0) = 
getval(l.e,4 ¿s 3 + 1) = getval(l.e,4 ¿s 1 + 3) = 4, we can conlude tha t they are 
isomorphic. 

Finally, note tha t even though T5 ̂ q Te, they are not (fully) isomorphic since, 
for instance, (E is 1 + 3, {E i-» 4}) cé (I is 7 + l, {I <-^ 8}). Indeed, a d d l i s t s _ 5 / 3 
and a d d l i s t s _ 6 / 3 are not structurally equivalent. As a result, the sets which 
are identiñed as locally equivalent during the reunión phase are: { {main /15} , 
{addl ists_l /3} ,{addl istsJ2/3 ,addl ists_3/3 ,addl ists_4/3 ,addl ists_5/3} , 
{ a d d l i s t s _ 6 / 3 } } . This is also the ñnal parti t ion after applying the splitting 
phase. This produces the minimized program which was shown in Fig. 3. 

6 Minimization via Residualization of External Calis 

There are situations in which even the minimized program is too large and/or 
where we would like to t rade space for t ime efficiency. This would mean achiev-
ing programs which are smaller, but at the cost of introducing some efficiency 
penalty. In cases like this, we propose as candidates for minimization, cali pat-
terns with quasi-isomorphic characteristic trees. An important observation is 
tha t if S1 « q S2 then the associated resultants have the same structure. How-
ever, this is not a sufficient condition for structural equivalence. This is because 
part of the bindings needed for structural equivalence cannot be achieved by the 
operation instantiate, as in Def. 1, but rather they originate from the execution 
of calis to external predicates. Thus, the second important observation is tha t 
if the calis to external predicates involved succeed only once, i.e. they are de-
terministic, such missing bindings can be recovered at run-time by residualizing 
(part of the) calis t o external predicates which had in principie taken place dur­
ing specialization t ime. Note tha t for detecting determinacy, no static analysis 
is actually required. We can simply check whether the calis which are to be 
residualized succeed just once by directly executing the calis as they appear in 
the different characteristic trees, i.e., before applying the msg to them. After the 
required external predicates have been residualized, the corresponding versions 
will be structurally equivalent. 

The strategy we propose is the following: for any pair of versions Ai and A2 
with T\ = ch.tree(A\, P, U) and T2 = ch_tree(A2,P, U) s.t. T\ « q T2 we 
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/ {addlists([4, 4] 
f {addlists([3, 3] 

ms3\ {addlists([3, 3] 
\ { a d d í i s t s ( [ l , 1] 

{addlists{{X,X\, 

[0,3], [4, 7])., 
[1,4], [4, 7])., 
[1,4], [4, 7])., 
[3, 6], [4, 7])., 
Y,Z\,[4,7\). 

<1 
<1 
<1 
<1 
<1 

(4 is 4 + 0 ) , l : (7 is 4 + 3 ) ) } \ 
(4 is 3 + 1) ,1 : (7 is 3 + 4))} | 
(4 is 3 + 1) ,1 : (7 is 3 + 4))} 
(4 is 1 + 3 ) ,1 : (7 is 1 + 6 ) ) } / 
(4 is X + y ) , 1 : (7 is X + Z))\ 

msg 

/ {addlists([4, 4, A |B] , [0, 3, C\D],[4, 7, E\F]) : -_E ¿s A + C,addlists(B, D, F).,\ 
(1 : (4 ¿s 4 + 0 ) , l : (7 ¿s 4 + 3))} 

{add¡¿sts([3, 3, A |B] , [1, 4, C |D] , [4 , 7, _E|F]) : -E is A + C,addlists(B, D, F)., 
(1 : (4 is 3 + 1) ,1 : (7 ¿s 3 + 4))} 

{add¡¿sts([3, 3, A |B] , [1, 4, C\D],[4, 7, _E|F]) : -_E is A + C,addlists(B, D, F)., 
<1 : (4 ¿s 3 + 1) ,1 : (7 ¿s 3 + 4))} 

{addlists([l,l,A\B],[3,6,C\D],[4,7,E\F]) : - £ ¿s A + C,addlists(B, D, F)., 
(1 : (4 is 1 + 3 ) ,1 : (7 is 1 + 6 ) ) } / 

{addlists([X,X, R\S], [Y, Z,T\U], [4,7, V\W]) : - V is R + T,addlists(S,U,W)., 
<1 : (4 ¿s X + y ) , 1 : (7 is X + Z ) ) } 

Fig. 5. msg of versions addlists_2, addlists_3, addlists_4 and addlists_5. 

1. Compute (C,T) = msg((code(Ai),Ti),(code(A2),T2)), where V¿ € {1..2}.T¿ 

is obtained from T¿ by evaluating all external successes, i.e., \/(B,6) we re-
place it by B9. 

2. If V¿ € {1--2} . instantiate(C, Ai) « code(Ai) 
— then Ai and A2 are structurally equivalent. No need to residualize. 
— else if for every evaluated external success c £ T such that c is no 

longer sufficiently instantiated to be executed we can determine that its 
corresponding c\ <G T\ and C2 <G T2 are both deterministic, 

• then residualize all c G T being no longer sufficiently instantiated. 
• otherwise we cannot collapse Ai and A2. 

Note that without such residualization, the code generated by the msg is not 
directly usable, since there are bindings in the original versions which are lost if 
we apply the code produced by the msg. 
Example 5. As we have already mentioned, all characteristic trees in Fig. 4 are 
quasi-isomorphic. Therefore, they can be collapsed into one versión. In Fig. 5 
we show the msg of both the code and the characteristic trees for versions 
addlists_2, addlists_3, addlists_4 and addlists_5. In this figure, the scope 
of variables is local to each clause. Since T2 « T¡ « T4 « T5, the msg does not 
produce any information loss. This can be easily verified by instantiating back 
the msg with any of the cali patterns. For instance, if we take addl ists ([X, X] , 
[Y,Z] , [4,7]) and instantiate it with addl ists ([3,31 G] , [1,4|H] ,1) we ob-
tain the original clause (eighth clause of Fig. 2). 

Example 6. Now, let us now compute the msg of the generalized code and char­
acteristic tree obtained in Example 5 with addlists_6. 

f {addlists([X,X], [Y, Z], [4, 7])., (1 : (4 is X + Y), 1 : (7 is X + Z))} \ 
msB\y {addlists( [7, 1], [ 1,5], [8,6])., (1 : (8 is 7 + 1 ) , 1 : ( 6 is 1 + 5))}^) 

{addlists([A,B],[C, D],[E, F]).,{1 : (E is A + C ) , 1 : (F is B + £>))} 

/{addlists([X,X,R\S], [Y,Z,T\U], [4,7,V\W]) : -V is R + T, addlists(S,U,W).,s 

| (1 : (4 is X + Y), 1 : (7 is X + Z))} 
' {addlists([7, 1, R\S], [ 1, 5, T\U], [8, 6, V\W]) : -V is R + T, addlists(S,U,W)., 
_V (1 : (8 is 7 + 1) ,1 : (6 is 1 + 5 ) ) } , 

{addlists([A, B,G\H], [C,D,I\J], [E,F,K\L]) : -K is G + I, addlists (H, J, L)., 
(1 : (E is A + C), 1 : (F is B + £>))} 



main(A,B,C,D,E,F,G,H,I,J,K,L,M,N,0) :- write(A), 
addlists_6([4,4|A] , [O,3|B] , [4 , 7|C]) , addlists_6([3,3|D],[1,4|E],[4,7|F]), 
addlists_6([3,3|G],[1,4|H],I), addlists_6([1,1|J],[3,6|K],L), 
addlists_6([7,1|M] , [1,BIN] ,0) . 

addlists_l ([],[],[]). 
a d d l i s t s _ l ( [ A | B ] , [ C | D ] , [ E | F ] ) : - E i s A+C, a d d l i s t s _ l ( B , D , F ) . 

a d d l i s t s _ 6 ( [ A , B ] , [ C , D ] , [ E , F ] ) : - E i s A+C, F i s B+D. 
a d d l i s t s _ 6 ( [ A , B , G | H ] , [ C , D , I I J ] , [ E , F , K | L ] ) : - E i s A+C, F i s B+D , 

K i s G + I , a d d l i s t s _ l ( H , J , L ) . 

Fig. 6. Specialization of addlists/3 after minimization with residualization. 

Since addlists_6 is not (fully) isomorphic with the other versions, the msg 
introduces some information loss through the variables E and F in the new heads 
addlists([A, B], [C,D], [E,F]) and addlists([A, B,G\H], [C,D,I\J], [E,F,K\L]). This 
information loss cannot be recovered by instantiate, since, for example, when 
instantiating the msg addl is ts ( [A,B] , [C,D] , [E,F]) with the cali pattern 
addl i s t s ( [3 ,3 |G] , [1 ,4 |H] ,1 ) we obtain addl i s t sC[3 ,3 ] , [1 ,4 ] , [E ,F] ) , in 
which E and F are unbound variables. If we take the external successes which 
correspond to E i s A+C and F i s B+D we can verify that the original external 
successes were deterministic (indeed, all calis to i s / 2 are deterministic). Thus, 
it is possible to collapse by residualization. As both external calis are no longer 
sufficiently instantiated, they are residualized. Residualized atoms are always 
placed before any other atom in the generalized clause, guaranteeing that after 
execution of such residual atoms at run-time, the clause as a whole is actually a 
variant of the original deñnition of the clause. The resulting minimized program 
is shown in Fig. 6. Residual atoms are underlined to distinguish them from the 
rest of atoms in body clauses. 

7 Experimental Results 
In this section we assess experimentally the impact of our proposed minimiza­
tion. Most of the benchmarks considered contain calis to builtins which possibly 
genérate bindings, such as i s / 2 , and thus the existing partial evaluators which 
perform minimization [10,11] would not be able to minimize them optimally. 

In our experiments we use an unfolding rule based on homeomorphic em-
bedding (see, e.g., [7]) and which performs leftmost unfolding steps only. This 
guarantees the correctness of the partial evaluation process even in the presence 
of impure predicates. Note that the issue of redundant polyvariance may occur 
for any unfolding rule. The global control rule is based on homeomorphic em-
bedding and global trees [8]. All benchmarks have been run on an Intel Pentium 
4, 3.4 GHz processor, with 512 Mb of RAM, and running a 2.6 Linux kernel. 

7.1 The Benefits of Minimization 
Table 1 shows the size reduction introduced by the minimization step after par­
tial evaluation. Each benchmark program is evaluated using ñve different mini­
mization criteria, as shown in the Min Crit column. Specialization history is used 
in puré, nobinds, and bindings, in order to consider two versions as locally equiv-
alent, while codemsg directly applies the deñnition of structural equivalence for 



Benchmark 

datetime 

flattrees 

freeof 

mmatrix_2 

nrev_38 

qsort_33 

sublists 

Min 
Crit 

puré 
nobinds 
bindings 
codemsg 
residual 
puré 
nobinds 
bindings 
codemsg 
residual 
puré 
nobinds 
bindings 
codemsg 
residual 
puré 
nobinds 
bindings 
codemsg 
residual 
puré 
nobinds 
bindings 
codemsg 
residual 
puré 
nobinds 
bindings 
codemsg 
residual 
puré 
nobinds 
bindings 
codemsg 
residual 

Orig 
Preds 

15 

2 

3 

3 

2 

3 

4 

Minimization 
Versions 

P E 

56/31 

33/16 

93/8 

70/11 

41/3 

168/50 

29/19 

Overall 

Min 
36/36 
36/36 
34/35 
34/35 
31/33 
22/22 
22/22 
22/22 
17/19 
16/18 
35/35 
35/35 
32/35 
18/35 
8/35 

18/34 
18/34 
18/34 
18/34 
11/30 

3/3 
3/3 
3/3 
3/3 
3/3 

68/68 
50/50 
50/50 
50/50 
50/50 
27/27 
27/27 
19/19 
19/19 
19/19 

Ratio 
1.78 
1.78 
1.83 
1.83 
1.94 
1.50 
1.50 
1.50 
1.74 
1.83 
2.66 
2.66 
2.66 
2.66 
2.66 
2.06 
2.06 
2.06 
2.06 
2.33 

13.67 
13.67 
13.67 
13.67 
13.67 
2.47 
3.36 
3.36 
3.36 
3.36 
1.11 
1.11 
1.58 
1.58 
1.58 

2.88 / 2.96 

Size (bytes) 
P E 

131377 

226390 

292642 

58323 

25115 

232079 

101969 

Min 
102651 
102836 
102331 
102295 
100976 
223320 
223435 
223389 
221513 
220796 
245262 
245442 
245370 
245334 
245370 

37061 
37236 
37166 
37131 
31781 

5261 
5281 
5273 
5269 
5273 

166288 
131650 
131548 
131497 
131548 
99986 

100121 
95815 
95795 
95815 

Ratio 
1.28 
1.28 
1.28 
1.28 
1.30 
1.01 
1.01 
1.01 
1.02 
1.03 
1.19 
1.19 
1.19 
1.19 
1.19 
1.57 
1.57 
1.57 
1.57 
1.84 
4.77 
4.76 
4.76 
4.77 
4.76 
1.40 
1.76 
1.76 
1.76 
1.76 
1.02 
1.02 
1.06 
1.06 
1.06 

1.32 / 1.33 

Table 1. Benchmarks (Minimization Ratios) 

the same purpose. In particular, puré considers two versions as locally equivalent 
when their characteristic trees are identical. Of course, if external successes are 
included, these must be identical too. The criteria nobinds and bindings check 
for isomorphism of external successes instead. Nobinds only considers two exter­
nal successes c and c' as isomorphic when they genérate no bindings, i.e., when 
AUpos(c) = AUpos(c) = 0, while bindings applies the full power of Def. 8. Fi-
nally, residual considers two versions as candidates for minimization when their 
characteristic trees are quasi-isomorphic, possibly residualizing calis to external 
predicates in the resulting program. 



The number of predicates in the original program is shown in the column Orig 
Preds. The number of predicates in the specialized programs are shown under 
the column Versions. PE shows both the number of versions which are generated 
after partial evaluation (Le., the effects of polyvariance) and the number of sets of 
predicates with quasi-isomorphic characteristic trees. The latter provides a lower 
bound on the number of predicates which the minimized program may have. Min 
shows the number of elements in the partition generated by the reunión phase of 
the minimization algorithm (local equivalence) and the number of elements in the 
partition after the splitting phase (global equivalence). Finally, Ratio shows the 
reduction ratio for each criteria compared to the number of versions produced by 
partial evaluation. The column Size compares the sizes of the compiled bytecode 
of programs minimized using the different criteria. 

The last row, Overall, shows the weighted geometric mean (wgm) for ratios 
in terms of number of versions and size. Weights are number of versions and 
size of the PE column, respectively. In both cases, under the column Min we 
ñnd the wgm of the codemsg criterion, which achieves the best results while still 
producing programs of maximal optimization. Under the column Ratio we ñnd 
the wgm of the residual criterion, which achieves highest ratio. 

As can be seen in the table, in most of the benchmarks considered, minimiza­
tion is capable of considerably reducing the specialized program, both in terms 
of number of versions and of bytecode size. As it is to be expected, out of the four 
criteria which are guaranteed to produce programs of maximal optimization, Le., 
puré, bindings, nobinds, and codemsg, the one which produces the best results is 
the latter. Among the three of them which take the minimization history into 
account—and which are more efficient in terms of specialization time—, the best 
is bindings, but it sometimes does not produce as good results as codemsg. The 
effects of the splitting phase are clear in many benchmarks, showing that, in ef-
fect, local equivalence does not imply global equivalence. Finally, for datetime, 
f la t trees and mmatrix_2, residual is able to further reduce code size. 

7.2 The Cost of Minimization 
In Table 2 we can observe the cost, in terms of specialization time, introduced 
by minimization, expressed in milliseconds. The (Total) time of the whole spe­
cialization process is shown, including the time taken by the partial evaluation 
(Analysis), minimization (Minim), and code generation (Codegen) steps. A new 
minimization criteria is introduced, nomin, showing the time employed by par­
tial evaluation without minimization. The Slowdown column shows the cost of 
performing this minimization post-processing. 

Interestingly, the table shows that when minimization is employed, the code 
generation phase takes less time in most cases, since fewer versions need to be 
generated. This lowers the burden introduced by minimization post-processing. 
However, even in the worst case the slowdown introduced is reasonable (1.85). 
As expected, using specialization history makes minimization faster than just 
applying the deñnition of structural equivalence. Given the fact that employing 
structural equivalence generates fewer versions than other criteria based on the 
specialization history, the codemsg criterion emerges as a very interesting one. 



B e n c h m a r k 

datetime 

flattrees 

freeof 

mmatrix_2 

nrev_38 

qsort_33 

sublists 

Minimization 
Criteria 

nomin 
puré 
nobinds 
bindings 
codemsg 
residual 
nomin 
puré 
nobinds 
bindings 
codemsg 
residual 
nomin 
puré 
nobinds 
bindings 
codemsg 
residual 
nomin 
puré 
nobinds 
bindings 
codemsg 
residual 
nomin 
puré 
nobinds 
bindings 
codemsg 
residual 
nomin 
puré 
nobinds 
bindings 
codemsg 
residual 
nomin 
puré 
nobinds 
bindings 
codemsg 
residual 

Minimization Times (msec) 
Total 
556.52 
632.90 
634.30 
640.10 
642.30 
687.30 
299.55 
395.14 
396.34 
400.19 
412.74 
424.94 

5732.93 
5833.11 
5844.11 
5858.31 
5948.90 
6113.47 

316.15 
356.55 
367.14 
364.34 
373.34 
435.53 
898.26 
886.67 
901.86 
898.86 
903.86 
916.26 

9983.68 
10267.64 
10303.83 
10339.03 
10401.82 
11241.69 

401.94 
647.70 
651.90 
679.50 
681.30 
744.09 

Analysis 

475.33 
486.13 
476.13 
479.93 
478.13 
479.93 
232.56 
230.97 
231.57 
230.21 
231.36 
231.36 

5583.15 
5589.95 
5589.15 
5573.35 
5595.15 
5613.95 

271.76 
272.76 
274.56 
272.76 
274.96 
270.76 
877.07 
861.27 
872.67 
870.27 
874.67 
873.87 

9745.12 
9778.91 
9768.12 
9771.91 
9764.92 
9732.72 

293.56 
295.35 
297.75 
295.56 
297.56 
296.95 

Minim 
0 

61.19 
72.79 
73.99 
79.19 
77.59 

0 
107.78 
108.58 
113.48 
125.98 
125.78 

0 
118.98 
131.38 
160.38 
230.97 
221.97 

0 
48.39 
57.39 
55.99 
63.19 
60.79 

0 
13.20 
16.80 
16.40 
17.20 
17.20 

0 
282.96 
337.75 
368.94 
441.73 
371.14 

0 
278.56 
281.36 
280.16 
278.76 
284.56 

Codegen 
81.19 
85.59 
85.39 
86.19 
84.99 

129.78 
66.99 
56.39 
56.19 
56.49 
55.39 
67.79 

149.78 
124.18 
123.58 
124.58 
122.78 
277.56 

44.39 
35.39 
35.19 
35.59 
35.19 

103.98 
21.20 
12.20 
12.40 
12.20 
12.00 
25.20 

238.56 
205.77 
197.97 
198.17 
195.17 

1137.83 
108.38 
73.79 
72.79 

103.78 
104.98 
162.57 

Slowdown 
1 

1.14 
1.14 
1.15 
1.15 
1.23 

1 
1.32 
1.32 
1.34 
1.38 
1.42 

1 
1.02 
1.02 
1.02 
1.04 
1.07 

1 
1.13 
1.16 
1.15 
1.18 
1.38 

1 
0.99 
1.00 
1.00 
1.01 
1.02 

1 
1.03 
1.03 
1.04 
1.04 
1.13 

1 
1.61 
1.62 
1.69 
1.70 
1.85 

Table 2. Benchmarks (Minimization Times) 

Also, for the residual minimization criterion, the time spent in code generation 
is greater than for the rest of criteria, since it requires deciding which external 
successes need to be residualized. 



Benchmark 

datetime* 
flattrees* 
freeof 
mmatrix_2* 
nrev_38 
qsort_33 
sublists 

P E 
Time 

167.77 
81.39 

246.96 
1920.11 

141.38 
457.33 

15501.44 

Speedup 
Puré 

1.01 
1.03 
1.04 
1.02 
1.20 
1.05 
1.00 

No Binds 
1.02 
1.01 
1.04 
1.02 
1.18 
1.04 
1.00 

Bindings 

1.01 
1.01 
1.05 
1.02 
1.18 
1.04 
1.00 

CodeMsg 

1.01 
1.03 
1.04 
1.02 
1.19 
1.05 
1.00 

Residual 

1.01 
1.01 
1.05 
1.00 
1.19 
1.04 
1.00 

Table 3. Benchmarks (Speedup) 

7.3 Benefits of Minimization in Runtime 
Table 3 shows how specialized programs behave in terms of runtime. Benchmark 
programs having residualized external predicates (for the residual minimization 
criterion) are marked with * in the table. Column PE Time shows the absolute 
run-time for the partially evaluated program. The rest of the columns show the 
speedup achieved for the minimized programs (for each different minimization 
criteria) w.r.t. PE Time. As can be seen in the table, in most benchmarks a 
small speedup is achieved (1.00 - 1.20), and no slowdown is produced in any 
case. As expected, in the case of programs with residualized external predicates, 
the speedup achieved is usually smaller than for the other minimization criteria. 

8 Discussion and Related Work 
The problem of superfluous polyvariance has been tackled in the context of ab-
stract múltiple specialization in [18,16], and in the context of partial evaluation 
of normal logic programs in [9]. This work presents a unifying view under which 
the minimization problems in both contexts are isomorphic. 

The work in [9], reflected in the ECCE [10] partial evaluator, uses an inter-
nal table of safe builtins which basically correspond to instantiation and type 
tests and which are guaranteed (1) not to genérate any bindings, and (2) to 
be deterministic. The minimization phase then would only allow collapsing two 
predicates in the same versión if their characteristic trees are quasi-isomorphic 
and all the builtins executed are listed in the table of puré predicates. 

The approach presented herein, and implemented in the Ciao system prepro-
cesor, CiaoPP [4], can handle any external predicate, including non-safe builtins, 
and the notion of isomorphic external predicates can be satisñed for builtins 
which genérate bindings and which are non-deterministic. Also, there is no need 
for a static table of builtins. Additionally, the technique automatically applies 
to any external predicates, for example other modules written by the user. 

To the best of our knowledge, this work presents the ñrst experimental evalua­
tion of the beneñts of post-minimization in partial deduction. We have compared 
several criteria, with different cost and potential beneñt. We have also applied 
directly the deñnition of structural equivalence and discovered that it is also ap-
plicable in practice, in addition to the other criteria based on the specialization 
history. Finally, we have proposed a criteria which allows residualizing external 
calis. The experiments show that it is also applicable in practice and provides 
some further program reduction. 
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