
A Static Heap Analysis for Shape and Connectivity:
Unified Memory Analysis: The Base Framework

Mark Marrón, Deepak Kapur, Darko Stefanovic, and Manuel Hermenegildo

University of New México
Albuquerque, NM 87131, USA,

{marrón, k a p u r , d a r k o , hermej@cs.urati .edu

Abstract. Modeling the evolution of the state of program memory during pro-
gram execution is critical to many parallehzation techniques. Current memory
analysis techniques either provide very accurate information but run prohibitively
slowly or produce very conservative results. An approach based on abstract inter-
pretation is presented for analyzing programs at compile time, which can accu-
rately determine many important program properties such as aliasing, logical data
structures and shape. These properties are known to be critical for transforming
a single threaded program into a versión that can be run on múltiple execution
units in parallel. The analysis is shown to be of polynomial complexity in the size
of the memory heap. Experimental results for benchmarks in the Jolden suite are
given. These results show that in practice the analysis method is efflcient and is
capable of accurately determining shape information in programs that créate and
manipúlate complex data structures.

1 Introduction

Research on automatic thread level parallehzation techniques makes extensive use of
the shape [4,16] of data structures in memory. As an example, in [6] Ghiya used a
notion of shape to enable the extraction oíforeach thread-level parallelism from com-
mon heap-based data structures. The notion of shape and sharing can also be used to
enable the parallelization of recursive algorithms [15,8]. In many programs the avail-
ability of accurate shape information and the application of these two transforms en-
ables the extraction of a substantial portion of the available parallelism. Unfortunately,
the applicability of these parallelization techniques has been limited by the difflculty of
performing shape analysis with the required level of accuracy. The advent of commonly
available multi-processor systems, the slowing of improvements in single threaded pro-
cessor performance and the increasing use of object oriented languages (which make
extensive use of heap allocated memory and rich pointer structures) have renewed in-
terest in shape driven parallelization techniques.

This paper uses an abstract interpretation framework for performing static analysis
of programs and introduces a graph based abstract heap model that can represent all the
information on aliasing, shape and logical data structures [10] that are required to per-
form thread level parallelization transformations. Along with accurately representing
the required information on shape, aliasing and logically related regions, the frame­
work enables accurate simulation of the evolution of these properties through many

mailto:hermej@cs.urati.edu

important program idioms, e.g. sorting, copying, destructive reversal, and element in-
sertion/deletion. A theoretical analysis of the runtime and our experience running the
method on the Jolden benchmarks indicates that the technique is accurate, efflcient and
scalable.

A key factor in achieving these results is the use of a novel technique for undoing
the summarization of information (the analysis must use a bounded representation to
summarize unbounded recursive structures). For efflciency, it is important to make the
summary representations as compact as possible. However, this summarization may
lead to the loss information which is needed to accurately simúlate the effect of program
statements on the heap model. Seminal work on heap analysis [16] introduced the notion
of reflnement but the proposed technique results in an exponential runtime (due to the
desire to model the program with maximal precisión). This paper presents a technique
for reflnement that sacriflces some accuracy in less common cases to ensure that the
worst case exponential time is avoided and that the method is fast in practice.

1.1 Related Work

There are two research activities closely related to the work presented in this paper. One
is the research on shape analysis by Ghiya [4] and the second is the TVLA (3-valued
Logic Analysis) framework introduced by Reps, Sagiv and Wilhelm [16].

Ghiya's method is efflcient and is able to model simple structures in programs that
do not use destructive updates. In this work shapes are deflned on the entire portion
of the heap that is reachable from a variable. This implies that any extraneous sharing
of the heap (due to the use of the singleton design pattern or sharing of data that is
unrelated to the computation that is being parallelized) will result in very conservative
results. Further, the analysis is unable to strongly update heap based storage. Thus, the
analysis is unable to accurately handle situations where a section of the heap, through
destructive updates, temporarily takes on a more general shape and then returns to the
original shape (e.g. Tree —• DAG —• Tree).

The TVLA framework is very powerful and highly expressive in the sense that it can
be used to represent the shape and aliasing properties needed for extracting thread-level
parallelism. In addition to being expressive enough to model the relevant program prop­
erties, the TVLA framework is able to model the evolution of these properties through
destructive updates [17,12] and is able to model shape on a more localized basis. In the
TVLA framework destructive updates are handled by allowing the summary represen­
tations of recursive data structures to be reflned into a number of distinct objects which
can be strongly updated. Since there may be ambiguity about how to retine the summa­
rization TVLA enumerates all the possibilities. This results in a potentially exponential
runtime and in practice leads to large analysis times. There has been work on reducing
the cost of running TVLA or restricted variations of the method [20,7] but they do not
eliminate the exponential worst case time and have had mixed results in reducing the
execution time on various benchmarks.

To compare the proposed method with existing shape analysis techniques we look at
some simple examples with lists and with benchmarks from the Jolden suite. The list
benchmarks demónstrate that the proposed method handles simple heap based struc­
tures accurately and that in practice it is over an order of magnitude faster than existing

analysis techniques of similar precisión. The Jolden tests indicate that the proposed
analysis method can determine the correct shape for the majority of heap based data
structures even in programs that build and manipúlate relatively complex data struc-
tures while maintaining an acceptable analysis time.

2 Concrete Domain

Our analysis works on the strongly-statically typed, single-inheritance, thread-free,
exception-free, object-oriented imperative core of languages like Java or C#. Using this
simplifled language enables us to focus on the central issues of the analysis and allows
the analysis to be extended to a large class of source languages.

2.1 Concrete Language and Semantics

Our source language MIL (Mid-Level Intermedíate Language) is a structured interme­
díate representation. The language has function and method invocations, a conditional
construct (i f ... e l se i f ... e l se) and a looping construct with break statements
(do ... w h i l e and b reak) . The state modiflcation operations and expressions (load,
store and assign along with the standard collection of logical, arifhmetic and compari-
son operators) are in a standard three-address form [11,18].

MIL supports objects and arrays. We use a to denote the set of all user-deflned object
types. Each object type, vea, has a set of flelds Fv associated with it. The set of all
field offsets that are deflned in a program is F = \J{Fv\v e a}. MIL has the primitive
types p = { i n t , f l o a t , c h a r , b o o l } . Arrays can contain eimer primitive types, p, or
objects, a. The set of all legal array types for a program is OA = {v [] \v e p V v e a}.
The set of all types in the program is T = p U a U oA. We assume that the types of
all variables are explicitly declared. Since this paper is focused on the operation of the
abstract heap model and the local data flow analysis, we omit any description of how
function and method calis are handled.

2.2 Concrete Heap Definition

The concrete heap is modeled as a multi-graph with labeled edges where objects and
arrays are the vértices and the pointers are labeled directed edges in the graph. We use
the term cell to indicate either an object or an array on the heap and offset to indicate
the fleld or array index that a pointer is stored at in a cell. Thus, the set of edge labels
(offsets) is, L = F U N. Edges are modeled as a relation on the cells and the labels. Given
a set of cells C and the set of labels L the edge relation E C C xLxC. Variables are
modeled as a partial map from variable ñames to cells. Given a set of variables, V, the
variable map is a function, Vm:V t-^C. The set of all concrete heaps (which we define
as being the heap graph plus the program variable map) is, Hs = S^{C) x ¿P(E)x {Vm}
and the concrete domain H = ¿^{Hs).

2.3 Heap Properties of Interest

Points-to andPaths. Given cells a, b and offset o, (a, o) —>p b denotes a pointer p that
has the label o (is stored at offset o) a and points to b. We use a —>p b to indicate that 3

offset o s.t. (a, o) -^p b. Two cells can be connected by a path x¡/. We use (a, o) ~^>v b
to indicate the sequence of pointers (p\. ..p„) s.t. p\ has the label o, starts at cell a, p„
points to b and Vp¿,p¿+1 in the path p¡ ends at the same cell, c¿, that pi+\ begins at (3o'
s.t. pi+\ is stored at o' in a). Define a ~^w b to denote that 3o s.t. (a, o) ~^wb. We abuse
the notation 0 C P to denote that all the pointers in the path 0 are contained in the set
of pointers P.

Regions ofthe Heap. A región of memory 9Í is a subset of the cells in memory, all the
pointers that connect these cells and all the cross región pointers that start or end at a
cell in this región. Given C C {c | c is a cell in memory}, let P = {pointer p \3a,b £
C,a —>p bj.hetPc = {pointer p \3aeC,x^C,a -^px(&x^p a} Then a región is the
tupie (C,P,PC).

Connectivity. Connectivity within a región describes how cells in the región are con­
nected. For a región 9Í = (C,P,PC) and cells a,b e C, cells a and b are connected if
they are in the same weakly-connected component of the graph (C,P); cells a and b
are disjoint if they are in different weakly-connected components of the graph (C,P).
Figure 2 shows examples of connected and disjoint concrete heaps. In Figure 2(a) the
cells c, d are disjoint in the región Z, while in Figure 2(b) and Figure 2(c) the cells c, d
are connected in the región Z.

Structure Traversals. An important property for program transformations is the layout
of data structures in memory [4,5]. The idea is to track the layout of the heap as it
appears to a program traversing a data structure. Ghiya considered the shape of the
section of the heap that could be accessed starting from each variable.

Our heap analysis identifies logically related sections of the heap (regions). To im-
prove the accuracy of the shape information we define data structure layouts on these
logically related regions instead of the entire section of the heap reachable from a given
variable. Given a región 9Í = (C,P,PC), we can define several layout predicates on the
graph (C, P) to indicate what kinds of traversal patterns a program can use to navigate
through the data structures in the región. A región admits a traversal type if there is a
subregion that satisfies the corresponding layout predicate. Note that these traversals are
not mutually exclusive and that Tree traversal =>• List traversal =>• Singleton traversal.
In the following definitions, let a, b be cells and 0, \j/ be paths.

- Cycle Traversal iff 3 graph (C',P'),C C C,P' C P s.t. 3a e C, 0 C P' s.t. a - ^ a.
- MultiPath Traversal iff 3 graph (C',P'),C C C,P' C P s.t. 3a,b e C,fi/^CP' s.t.

(a^b)A((j)^ y) A (a ^ b) A {a ~^v b) A (C, P') does not admit a Cycle Layout.
- Tree Traversal iff 3 graph (C',P'),C C C,P' C P s.t. (3a e C',a has 2 or more

successors in C') A (C\P') does not admit a Cycle or Multipath Layout.
- List Traversal iff 3 graph (C',P'),C C C,P' C P s.t. (Va e C',a has one or zero

successors in C) A(3fe e C',b has one successor in C') A (C',P') does not admit a
Cycle or Multipath Layout.

- Singleton Traversal holds for all regions.

Figure 1 shows several concrete heaps; the cells are the circles labeled with letters
and the edges represent pointers. Since we are interested in the most general way a
program could traverse a región of the concrete heap we must assume that a program

variable could begin its traversal of the región at any of the cells in the región. Thus, the
figures omit the program variables. Figure l(a) shows a concrete heap with three cells
(a,b,c). Since there are no edges connecting these cells the only way a program can
traverse them is by individually referencing each cell. Figure 1 (b) shows a concrete heap
that admits a List traversal (both b —• a and c —• a). It also admits a Singleton traversal
since a program can always treat the cells as if they were disconnected. Figure l(c)
shows a concrete heap that admits a Tree traversal (b, a, d) as well as List and Singleton
traversals. Finally, Figure l(d) adds an edge, c —• b that changes the región to admit a
MultiPath traversal (c,b,a).

® © <§> © © © ©---©

(a) © (cñ (a) (cT} (a)

(a) Singleton (b) List (c) Tree (d) MultiPath

Fig. 1. Concrete Heaps, Admissible Traversals and Layout Types for the Regions

3 Abstract Domain

The abstract domain is based on an abstract heap graph model [2,19,9]. Each node rep­
resents a set of concrete cells and each edge represents a set of pointers. The model
provides a natural framework for representing connectivity, aliasing, and región iden-
tification information. This section introduces a number of instrumentation domains
that when added to the nodes and edges in the abstract heap graph allow aliasing and
connectivity to be tracked more accurately and enable the modeling of shape.

Numeric Quantities. The only requirement we place on the numeric abstraction is that
it differentiates the case where the valué is exactly one and the case where the valué is
in the range [0,°°]. This gives the binary domain 1 < # (unknown), where 1 represents
the interval [1,1] and # represents the interval [0, °°]. Given this domain, a Ua' = 1 if
a = a' = 1 and # ofherwise. In the later algorithms we also need an interpretation, +,
for +. This is given by, a+a' = #.

Types. Each node represents a set of cells and each cell is either an object (has type
v G a) or an array (v e OA). Since MIL has dynamic method invocation as well as type
casting it is important to model the types of cells that a given node might represent.
The domain for representing the types of each node is £?>{o U oA). As usual the join
operation U is U and the < relation is C.

Offsets. Each edge in the model represents a set of pointers and each pointer has an off­
set (label) associated with it. Since there are only a finite number of fields in a given pro­
gram the model can be completely sensitive with respect to field offsets (by construction
two pointers with different offsets are never represented by the same edge). However,
there may not be a bound on the size of arrays. So, we treat arrays as having a single
offset, ?, that contains a summary of all the elements that may be in the array. Thus, the
offsets that are used in the field sensitive parts of the analysis is the set F U { ? }.

Abstract Layout. Each node, n, in the graph represents a región, 9Í on the heap. To track
the traversals that may be admissible in the región 9Í that n represents we use a set of
layout types Layouts = {Singleton, List, Tree, MultiPath, Cycle}.

- if n has a Singleton Layout, then 9Í only admits Singleton traversals.
- if n has a List Layout, then 9Í only admits Singleton or List traversals.
- if n has a Tree Layout, then 9Í only admits Singleton, List or Tree traversals.
- if n has a MultiPath Layout, then 9Í only admits Singleton, List, Tree or MultiPath

traversals.
- if n has an Cycle Layout, then any traversal pattern may be admissible in 9i

This deflnition leads naturally to the order: Singleton < List < Tree < MultiPath <
Cycle. Then lUl' is max(l,l'). Examples are shown in Figure 1.

Connectivity. Given the concretization operator y and two edges e\, e^ that start or end
at the node n, the predicates that define connectivity in the abstract domain are:

- e\, e2 connected with respect to n if: 3pi e y{e\) A 3p2 e 7(^2) A 3a, fe G y(n) s.t.
(pi starts or ends at a) A (p2 starts or ends at fe)A (a, b connected).

- e\, e2 disjoint with respect to n if: V/?i G 7(^1) A V/?2 € 7(^2) A Va, b G 7(n)
(/?i starts or ends at a) A (p2 starts or ends at b) =>• a, fe are disjoint.

Edges ei, e2 are outConnected if: 3 n s.t. (ei,e2 are out edges from n) A (ei, e2 are
connected in n).

Edges e\, e2 are inConnected if: 3 n s.t. (ei,e2 are m edges to n) A (e\, e2 are
connected in n).

Figure 2 shows overlays of the abstract and concrete heaps. The concrete cells and
pointers are shown as dotted circles and lines while the abstract nodes and edges are
represented with solid boxes and lines. Edge E is an abstraction of pointer p, edge F is
an abstraction of pointer q. Node Z abstracts cells c,d,e. Nodes X, Y abstract cells a, fe
respectively. In Figure 2(a) we can see that the targets of p, q (cells c, d) are disjoint.
By the deflnition of the connectivity abstraction, edges E and F are also disjoint with
respect to Z. In Figure 2(b) there is an additional pointer which connects cells d, c. This
means that c, d are connected and in the abstraction, E, F are connected with respect to
Z and thus E, F are also inConnected. Finally, Figure 2(c) shows the case where cells
c,d are connected indirectly (but according to the deflnition they are still connected).
Thus E, F are also inConnected.

Interference. Each graph edge represents a set of inter-region pointers. When combin-
ing nodes, it is important to know if all the pointers that the edge represents point into
disjoint subregions or if there may exist a cell that two or more pointers may be able
to reach and thus they interfere. An edge e represents interfering pointers if there exist
pointers p,q e y(e) such that the cells that p,q point to are connected. We use a two-
element lattice, np < ip, np for edges with all non-interfering pointers and ip for edges
with potentially interfering pointers. This abstraction is a complement to the connectiv­
ity relation. The connectivity relation tracks reachability information between the start
or end cells of pointers represented by different edges while interference tracks reacha­
bility information between the end cells of pointers represented by the same edge.

(a)X Y (b)

p\ E F ,'q

\ " " /
<s> z ©

©

© X Y (b)

p\ E F ,'q

i " "i
©----<£)

©

© X Y (b)

p\ E F ,'q

i " "i ! -7 '

© ©
©*

(a) Disjoint in Z (b) Connected in Z (c) Connected in Z

Fig. 2. Concrete and Abstract Connectivity

In Figure 3, Edge E is an abstraction of pointers p and q, node Z abstracts cells c, d, e,
and X abstracts cells a and b. In Figure 3(a) the targets of p, q (cells c, d) are disjoint.
Thus, the pointers do not interfere and the edge, E, that abstracts them should be np. In
Figure 3(b) there is an additional pointer which connects cells d, c. This means that c
and d are connected and edge E should be ip. In Figure 3(c) the cells c, d are connected
indirectly. Thus, the edge E is again ip.

© x <S)
P E q

<s> z ©
©

© x <S)
¡P E q|

• "7 X
©----•©

'"©

© x (B)

¡P E q

i
• -7 *

CE) @

(a) Non-interfering (b) Interfering (c) Interfering

Fig. 3. Concrete Connectivity and Abstract Interference

Nodes. The types of the concrete cells that a node represent are stored in a set called
types. To track the total number of cells that may be in the región represented by this
node we use the size property. The internal layout of a node is represented by the layout
component. Finally, we introduce a binary relation connR C E x E to track the connec­
tivity of the edges that are incidentto this node. If {e\, e^) € connR thenei,e2 are con­
nected with respect to this node otherwise ei,e2 are disjoint with respect to this node.
The abstract domain for the nodes, N = &{a U OA) X Layouts x {!,#}, x 3?{E x E)
and each node in the graph is represented as a record of the form [t y p e s l a y o u t
s i z e] . For clarity we omit a representation of the connR relation, as the inclusión of
this information complicates the figures substantially. In the cases where the connectiv­
ity relation is of interest we will mention it in the description of the figure.

Edges. As in the case of the nodes, we combine several component abstractions to
créate the edge abstraction. The offset component indicates the offsets (labels) of the
pointers that are abstracted by the edge. The number of pointers that this edge may
represent is tracked with the maxCut property. The interfere property tracks the pos-
sibility that the edge represents pointers that interfere. The domain of the edges is,

E = (FU {?}) x {!,#} x {np,ip}, and each edge is represented as a record { o f f s e t
maxCut i n t e r f e r e } .

Graph. The domain for the abstract heap graphs is the set G C &{N) x 3g(E)x {V„} x
{Me}. The function V„ : V i-s- N is a partial map from variable ñames to nodes in the
heap graph, which represents the targets of the variables. The function Me: E —s- N x N
defines the structure of the graph by mapping edges e to the pair of nodes (ns, ne) such
that e begins at ns and ends at ne. We use the notation Me(e) = (*, n) or Me(e) = («,*)
in the case were we do not care about the identity of the start/end node of the edge.

We restrict the abstract domain by defining a normal form for heap graphs. This
normal form simplifies the structure of the abstract domain and it has several properties
that improve the accuracy of the analysis.

First, we define what it means for two nodes to to be recursive (for this work we
assume single level recursion but the definitions can be generalized [3]). This definition
is used to make the abstract heap domain finite for a given program. If we limit the
máximum size of the graph structure then, since the domains for the nodes and the edges
are finite, the number of graphs is finite. This is done by forcing recursive structures to
haveboundedrepresentations. Define two nodes n,n' eN to be recursive if:

- 3e e E s.t Me(e) = (n,nr).
- n.typesHn''.types^Q>.
- fi variable v s.t. V„(v) =nVV„(v) =n'.

Another useful concept is that of ambiguous edges. We would like to be able to
assume that given an offset and a node there is a unique outgoing edge that is incident
to this node with that offset. Define a node n as having an ambiguous offset if: 3e, e' e
E s.t. e^ e' AMe(e) = (n,*)AMe(e') = (n,*) Ae.offset = e'.offset.

A graph g=(N,E,Vn,Me)is in normal form if:

- It has no unreachable nodes: Vn e N, 3 variable v s.t. V„(v) = n V (V„(v) = n' A 3
path 0 s.t. n' ^ n).

- It has no recursive nodes: finí, «2 € N s.t. m, «2 are recursive.
- It has no ambiguous edges: fineN s.t. n has an ambiguous offset.
- No refinement rules can be applied, See Section 5.

4 Example: Building a List

We use two examples to demónstrate our analysis, Figure 4. The first is a loop that
constructs a linked list. The second example copies a linked list (and is the subject
of Section 7). We assume that the datatypes L i s tNode and DataNode have been
defined. In an actual program the data elements in the list might be other data structures
(lists, trees, arrays, etc) or composite user defined objects. However, the exact nature
of the data components of the list does not fundamentally alter the behavior of the
algorithm on our examples. Thus, for simplicity we use DataNode as a dummy type
to represent whatever data is of interest. L i s tNode has a n e x t field which points to
the next node in the list and a d a t a field which points to a DataNode.

Build a List Copy a List (in reverse, for simplicity)

ListNode p, q ListNode q, x, t
p = nuil x = p
for(int i = 0; i < M; ++i) q = nuil

q = new ListNode() while(x != nuil)
q.data = new DataNode t = q
q.next = p q = new ListNode()
p = q q.next = t

q.data = x.data
x = x.next

Fig.4. List Example Code

Figure 5(a) shows the state of the abstractheap after allocating the L i s tNode (ab-
breviated LN). The variable q points to a node of type L i s tNode and since we just
allocated the object that this node represents we know that the node represents exactly
one cell and has a Singleton layout (abbreviated s). Figure 5(b) shows the state of the
heap after allocating and assigning the data object, a cell of type DataNode (DN). The
data node is also a node of size one with a Singleton layout. The connecting edge is
stored at the d a t a offset and since it was just created it must represent a single pointer
and be np. Figure 5(c) shows the heap at the end of the flrst loop iteration: p points to
the newly created list entry and q is nullifled since it is dead.

Figure 5(d) shows the abstract heap at the end of the second loop iteration. New
nodes represent the L i s tNode and DataNode cells allocated in this iteration. The
newly allocated list entry has been put at the head of the list and the oíd list (shown
dotted) is linked in with an edge stored at the n e x t offset. If we were to continué, the
heap abstraction would grow in an unbounded manner. To prevent this, we normalize
the abstract heap. This is described in detail in Section 6 but for this example the im-
portant point is that we merge the two L i s tNode nodes into a single summary node
that represents the combined information from these two nodes and the edge between
them. By looking at the edge connecting the two nodes and the internal layouts we can
determine that the internal layout of the summary node is List (abbreviated L) since we
have two Singleton regions connected by an edge of size one. Since each región is of
size one the summary región must be of size larger than one, represented by # in our
abstract domain. Finally, we update the internal connectivity information for the sum­
mary node. In particular, the two edges are outConnected. The state of the heap after
this merge is shown in Figure 5(e).

After combining the list nodes we have ambiguous targets (two out edges from the
same node with the same label, d a t a) This ambiguity is removed by merging the po-
tential targets into a single summary node and by combining the edges that refer to these
targets into a single summary edge. Merging these nodes is similar to the merge of the
list nodes except that the two incoming edges are disjoint. After merging the nodes we
merge the two edges. Since the summary edge represents two pointers its maxCut is #.
To determine the valué of the interfere property we check if either edge is ip or if the
targets of the edges are inConnected. Because the edges pointed to disjoint nodes they

are not inConnected and therefore cannot interfere. Thus, the interference property of
the summary edge is np. The result is shown in Figure 5(f), which is also the fixed point
for the analysis of the loop.

5 Refinement

During the data flow analysis portions of the abstract heap graph are summarized into
single nodes to improve efficiency and to eliminate unboundedrecursive data structures.
This summarization can cause a substantial loss of accuracy if it is too aggressive. We
define a method that (for the most common cases encountered) allows us to undo the
summarization by transforming a summary node into a number of nodes (and edges)
so that relationships between variables and regions of the heap can be more accurately
modeled.

There are three layout types that we refine. The first is a node that represents several
disjoint regions of the concrete heap. In this case we expand each sub-region into a
sepárate node in the abstract graph. The second is a list node with a single incoming
edge. In this case we make explicit the unique memory location that the variable must
refer to in the list structure. The third is a tree with a single incoming edge. This case is
analogous to the list so we do not discuss it separately.

Disjoint Región Separation. It is possible for a single summary node to represent sev­
eral entirely disjoint regions. If this is the case then there is a partition of incoming edges
(from variables or pointers) based on the inConnected relationship. Using this partition
we transform the node into a number of new nodes, each new node representing a single
element from partition of edges in the original node. An important special case is when
a node has a Singleton layout and there is a single incoming edge of maxCut 1. If a node
has these properties we can safely assume that the node represents a single cell, which
enables strong updates in later analysis steps.

I [LN,S, 1]

®

[LN, S, 1]

| [DN, S, 1] |

[LN,S, 1]

| [DN, S, 1]|

(a) Allocated list node

©
{next, 1, np}

| [I .N, S, 1] | " " - / / \ S /,

| [DN, S, 1] |

(data, !, np} ',

,_i
l>\ S ; '

(b) Allocated data object (c) End of first iteration

® ©

> O)<ne,<t}

|P-N,L,#] K

® ©

| [LN, L, #] y

I [DN, S, #] I

(d) End of second iteration (e) First normalization step (f) Finished

Fig. 5. Building a linked list

[LN,S, #]

[DN, S,#]

[LN, S, 1]

{data, 1, np] (data, 1,np] {data, 1, np)

[LN, S, 1]

{data, 1, np)

[DN, S, 1] [DN.S.1]

(a) Summarized Singleton (b) Partition Pointers (c) Partition pointer edges

Fig. 6. Refinement of a región with disjoint sub-regions

I [LN, u#ry [LN S, 1] p- ^| [LN L,#]

{data, #, np) {data, 1, np)

[DN,S,#]
_L

[DN, S, 1]

{data, #, np)

[DN, S, #]

(a) Summarized List (b) Refined List

Fig. 7. Refinement of a node with a list layout

Consider the case in Figure 6(a) where the variables p and q point to the same node,
and assume that the edges from p and q are not inConnected. Partitioning results in Fig­
ure 6(b) where the summary node has been partitioned based on the inConnected relation
from the variables. Since the edge that was split contained all non-interfering pointers the
two edges incident to the node representing the DataNode cells cannot be inConnected.
This now allows us to apply refinement again—the results are shown in Figure 6(c).

Refinement on Lists. Refinement on lists is more complex than refinement of disjoint
regions. Since disjoint región refinement is applied before list or tree refinement we
know that all the incoming edges to the given list node may be connected. Further, if
there are múltiple incoming edges we cannot determine an ordering for them in the list,
so we only consider lists with a single incoming edge with a maxCut of 1.

Figure 7(a) shows a list with one incoming variable. Figure 7(b) shows the most
general way in which a list can be referred to by a single program variable; there is
a single cell that the variable points to and a section of the list after this cell. We can
safely ignore the section of the list before the cell that the variable refers to since it is
unreachable and therefore cannot affect the program in any way. Since the data edge
contains all non-interfering pointers we apply the disjoint región separation rule to the
data components of the list.

6 Dataflow Operators

This section describes the principal algorithms used in the analysis. We first address
merging nodes and edges. Then we define the normalization routines for nodes and

graphs. Finally, we use these operations to build the heap graph upper bound and com-
parison operations. Detailed descriptions of some algorithms and proofs for the required
safety properties are omitted; see [13] for more details.

Edge Join (Algorithm 1). The edge join method is only well deflned when two edges
start at the same offset in the same node and end at the same node. The method checks
the end connectivity information to determine how the component abstraction should
be combined. If the edges are inConnected then the pointers that these edges represent
may interfere and we set the summary edge as ip, otherwise we take the join of the
interfere types of the edges. For the rest of the components that are used to represent
an edge, we can simply combine them component-wise with respect to the possibility
that these edges originated in sepárate graphs. That is, when we join two heap graphs
that are from sepárate flow paths in the program we know that there can be no in-
teraction between edges from different control contexts. The edge join algorithm uses
the function updateInternalConnInfoEdgeJoin(ns, ne, ea, &b) to update the internal con­
nectivity info in ns and ne to represent the fact that ea now represents pointers from
ea andefc.

Algorithm 1. Join Edges (Ue)
input : g the heap graph, ea, e¡, edges, ns,ne the nodes, ea,e¿ start and end at
if (ea, e^from the same context) then ea.maxCut <— ea.maxCut + e^.maxCut;
else ea.maxCut <— ea.maxCut U ea.maxCut;
if ea,eb are inConnected then ea.interfere <— ip:
else ea.interfere <— ea.interfere U¡nterfere e¡,.interfere;
updateInternalConnInfoEdgeJoin(ws, ne, ea, e¿);
deleteEdge(s>, e¿);

Node Join and Combine. When summarizing two nodes, na and n^, there are three
possibilities. The flrst is neither node can reach the other. In this case wejoin them. If
there are only edges in one direction between nodes, from na to n¡, or nfc to na, then we
combine them. If there are edges from na to n¡, and from nfc to na, then we replace na, n\,
with a single node nc that is a safe approximation of na, n¡,.

Figures 5(e) and 5(f) show that the node join is a purely component-wise opera-
tion. The combine operation on a pair of nodes that have a connecting edge is more
complicated, as it can be seen in Figures 5(d) and 5(e), where the two nodes with type
L i s tNode are combined into a single summary node. In particular we need to account
for the fact that the edge(s) connecting nodes na and n¡, will affect the layout and the
internal connectivity in the new summary node.

The algorithm combineLayout(la,lb,sbt), is based on a case analysis of the internal
layout that results from the possible combinations of layouts for na, n¡, along with the
total number of pointers represented by ebt and the potential that any pointers in the
edges represented by ebt interfere. We enumérate the possible combinations of the ebt
edges and the layout types. Then for each case we use the semantics of the edge and
layout properties to determine the most general layout type that may result from this
particular case.

Algorithm 2. Combine Nodes (+node)
input : graph g,na,ni, nodes, ebt set of edges from na to n¿
íia.type <- «a.type^U «fc.type;
fia.size <— wa.size + %.size;
rca.layout <— combineLayout(«a .layout, «¿.layout, ebt):
«a.connR <— combineConnR(«a .connR, «¿.connR, efe);
remap all edges incident to n¡, to be incident to na:
deleteNode(s>, n¡,);

Algorithm 3. combineLayout
input : la,lb layout types, ebt set of edges from na to n¿
output: the layout of the combined node
maylnterfere <— V{e £ efe|e.interfere = /p};
totalCut <— X{e £ ebt e.maxCut };
notSingletons <— ía ^ Singleton A s j / Singleton;
isDAGgraph <— totalCut > 1 A notSingletons:
h < 'a Uiayout '¿) r

case (maylnterfere V isDAGgraph) return lA^iayout MultiPath;
case (7a = Zisí) return lrYAiayoutTree;
case (7a = Z¡, = Singleton) return lrYAiayoutList;
otherwise return /r;

The combineConnR function updates the internal connectivity information in na to
reflect that it now represents the combined regions for na and n\,. This involves com-
puting the binary connectivity relation for all the edges that are incident to the new
summary node based on the connectivity information in the argument nodes na, rib, and
the edges that connect the argument nodes, ebt.

Normalization/Join Operators. To normalize a node we check if there are two edges
that start at this node and have the same offset. If they exist and they end at different
nodes, we merge the target nodes and then join the edges. If they already end at the
same node, we just join the edges.

To normalize a heap graph we normalize all the nodes, then apply the reflnement
rules to all the nodes that they can be applied to and flnally we compress all the recursive
nodes in the graph. This process is repeated until the heap graph is no longer changing.

To compute the upper approximation for two heaps, we flrst normalize both heaps
and mark which graph each edge and node belonged to originally. Then we take vari­
ables with the same ñame and unión their targets. Once this is done the resulting graph
is normalized.

Heap Graph Equivalence. Deflning equivalence on the heap graphs is simple if we
require that they are in normal form. This implies that each abstract storage location
has a unique edge and we can compare the graphs for structural equality and equality
of the data in the nodes and edges.

Algorithm 4. Normalize Node
input : node n, graph g,n<E g
output: None
while 3 offset o with more than 1 edge do

el >e2 *— tw° edges with offset o:
ni <— endpoint of e\;
«2 <— endpoint of e21
if wj ^ «2 then

if 3 edges from n\ to «2 and «2 to wj then
replace n\,ti2 with the T from the lattice of nodes;

else if 3 edges from n\ to «2 then
combine^, n\, «2)1

else if 3 edges from «2 to n\ then
combine^, «2> n\)\

else
join(g, ni,n2);

Je(<?l,<?2,g);

Algorithm 5. Normalize Graph
input : graph g
output: None
Remo ve all unreachable nodes from g:
while g is changing do

while 3 node n s.t. n can be normalized do
normalize(w, g)\

while 3 node n s.t. n can be refined do
apply the applicable reflnement rule to n:

while 3 nodes n, n' that are recursive do
combineNodes(s>, n, «');

Algorithm 6. Heap Graph Upper Bound, Ü
input : graph ga,gb

output: None
gen <- normalize(ga);
set all nodes/edg es in gan as context cv.
gbn <- normalize(gfc);
set all nodes/edges in g^ as context b:
gres i—gan^gbn;
normalizeGraphf^res);

7 Example: Copying a List

During the copy operation (Figure 4) there are several attributes that we want to pre­
serve: the source list should be unaffected, the copy should be a list, and, if the source
list contained all independent data elements so should the copy. For simplicity assume
that we know that the source list is already pointed to by p. Figure 8(a) shows the list at
the start of the copy. Figure 8(b) shows the results at the end of the flrst loop iteration.
The head of the list has been copied; t is nullifled and x has been indexed down the
list. Note that in indexing down the list we reflned the list on the n e x t edge so that the
node that x refers to is made explicit (the node is a singleton of size 1). We show the
newly materialized list and data node using dotted lines.

Figure 8(c) shows the heap during the second iteration of the loop after creating the
new list node and assigning it to point to the next data node in the source list. At the end
of the loop 8(d) we have again indexed the variable x. We now have recursive nodes
(for simplicity assume that we know that keeping p, q reflned does not matter—if we
keep them reflned the result is the same, it just takes an extra loop iteration and results
in a larger graph). Thus, we compress them during normalization. The resulting graph
shown in Figure 8(e). This is the flxed point of the loop and if we interpret the exit
condition we see that the result of the copy loop is the heap graph in Figure 8(f).

8 Performance

Theoretical Performance. In order to analyze a program, the model presented in this
paper can plugged into any dataflow analysis framework. The total cost of analyzing the
program is affected by the cost of the model operations and the runtime of the dataflow
framework that is chosen. In this paper we do not assume a speciflc framework so our
runtime analysis only looks at the cost of the model operations.

We assume that the number of nodes in the abstract heap graph is n, that each node
has at most k edges and there are t user deflned types. The most expensive part of
running the heap model is the graph normalization step, so we only present the analysis
for this and the node combine operation, which is the dominant cost of the normalization
algorithm.

The execution of Combine Nodes (Algorithm 2), requires combining the type sets,
0(t), remapping the incident edges, 0{k), calling combineLayout (which computes the
shape of the combined nodes), 0{k) and calling the computeConnR method (which
computes the transitive closure of the two connectivity relations), 0(k3). Thus, The
total time is 0(t + k + k + k3). If we assume that í is a small constant, the time to
normalize a node is 0(k3).

The graph normalization step requires:

- Removing all the unreachable sections of the heap graph, O(nk).
- Normalizing each node, visit each edge of each node and potentially combine

edges, 0({nk)k3).
- Reflning all possible nodes, visit each node and potentially retine it, O(nk).
- Removing all recursive nodes, visit each node and potentially combine two nodes,

0((nk)k3).

® ©
I (next, 1, np) £-\{next}

| [LN,S, 1] Y^j [LN, L, #]~K
{data, 1,np} {data, #, np}

| [DN, S, 1] |

© ©

| [DN, S, #] |

{next, 1, np) _ \ _ (n e x t ' 1 ' n p l / - M n e x t }

| [LN, S, 1] h ~ ~ ^ Í ^] ^ X 7 r r ~ * 1 [LN, L, #] K
{data, 1, np} ! fdaía, /, np} | {data, #, np)

J L
I [DN, S, 1] |

I [LN, S, 1]

© (a

l/OJV.S y | [DN, S, #] |

(a) Start of the method (b) First loop iteration

{next, 1 np} { n ¡

| [LN, S, 1] | ^ ~ ^ [LN, S, 1]T~*1 [LN, L, #] Y
{data, 1, np) {data, 1, np} {data, #, np}

[DN,S,#]

[LN, s, 1] h—SILN, S, 1] Y^JmJipJ™*-1< "">

(c) Créate copy node in the second iteration

Y~\ i (ne>

S ¡LN, L, #]~|^~^ [LN, S, 1] r ~ T Í L N , L, #]
{data, 1, np]

| [DN, S, #] |

A [LN, L, #]

© (a

| [DN, S, 1] | [DN, S, #] |

(d) End of second loop iteration

® ©
{next} I

N[LN,L,#] |

| [DN, S, #] |

A [LN, L, #]

© (a

(e) Normalization (f) Finished

Fig. 8. Copying a linked list (in reverse order)

These operations need to be done un til none can be applied. Since the refine operation
can only be applied to a node twice and the combine operation replaces two nodes by
a single node (which cannot be refined), the algorithm cannot continué for more than
0(n) iterations. Thus the total time for the normalization routine is 0(n) * 0{{nk)ki) =
0(n2k4).

Benchmarks. In this section we compare the runtime cost of the UM A (Unihed Memory
Analysis) method with TVLA (tvla-2-alpha) and a simple flow-sensitive equality-based

points-to method (which is not capable of shape analysis but provides a performance
baseline). Then, we examine the accuracy and utility of the information that the UMA
analysis method provides. All measurements were made on a Pentium M 1.5 GHz lap-
topwith 1GB ofRAM.

We use two sets of benchmarks. The flrst is a number of simple list manipulation
methods that are useful for validating that the information computed by this analysis is
accurate. These benchmarks include list insertion, deletion, flnd and copy operations.
The goal is to ensure that the listness and data independence properties are preserved
through all of these operations. The flrst entry in Figure 9 shows the runtime for TVLA,
the points-to and the UMA analysis. In all of the simple list tests, our analysis is able to
determine that the result of each list operation is a región with the List shape.

List Analysis Times Tolden Analysis Times and Shape Results
Benchmark

TVLA
Points-to
UMA

Copy

NA
0.05s
0.25s

Find

0.91s
0.03s
O.lOs

Insert

1.52s
0.04s
0.15s

Delete

8.00s
0.06s
0.19s

Reverse

3.01s
0.03s

0.13s

Benchmark

Points-to
UMA
Accurate

bisort

2.10s
12.30s
Partial

em3d

1.48s
6.90s

Yes

health

12.20s
40.90s
Partial

mst

0.54s
5.70s

Yes

power

0.42s
4.20s

Yes

treeadd

0.16s
1.80s

Yes

tsp

0.70s
5.08s

Yes

Fig. 9. Benchmark Results

The second set of benchmarks is from the Jolden suite [1] (we have not flnished
implementing the virtual method dispatch analysis, so bh, perimeter and voronoi are
omitted from the table). This set of benchmarks is designed to test how well the analy­
sis method scales to non-trivial code sizes and as a flrst test for the ability of the heap
analysis method to provide useful shape information for parallelization transforms. Cur-
rent work on interprocedural versions of TVLA indicate that even simple programs take
upwards of 30s to analyze [14] and no results for programs as complex as the Jolden
suite have been published so we omit the TVLA analysis from the table. The second
entry in Figure 9 shows the time to run the analysis on each of the benchmarks and
indicates if the analysis was able to correctly determine the shape information required
to perform basic thread level foreach and recursive tree parallelization. In the table we
have two categories for the accuracy of the shape analysis. Yes is used when the shape
analysis was able to provide the correct shape information for all of the relevant heap
structures in the program. Partial indicates that the analysis was able to determine the
correct shape for some of the heap data structures but that some important properties
were missed.

There were no cases where the analysis failed to produce a non-trivial amount of
useful information on data structure shapes. In the cases where the UMA algorithm is
unable to provide completely accurate information for parallelization the causes can be
traced back to the simple modeling of arrays (health) or the crude technique we are
currently using for interprocedural analysis in recursive functions (bisort and health).

9 Conclusión and Future Work

This paper presented a graph-based heap model that can be used with a standard data
flow framework to analyze the evolution of the heap during program execution. The

model is shown to be capable of representing heap properties (aliasing, shape and logi-
cal data structure identiflcation) that are needed to extract thread level parallelism from
single threaded programs. The paper then outlined the model operations required to
perform the program analysis. A key component of the operations was the use of a re-
finement operator that enables the accurate simulation of important program operations
(copying, reversing, destructive updates, etc.). Unlike Ghiya's work where extremely
conservative approximations must be made in the presence of destructive updates, the
proposed model is able to retain enough information to provide meaningful shape infor-
mation even when destructive updates are being performed. Theoretical analysis shows
that all the program operations on the model are 0(k4) and the upper bound/equality
operations are 0(n2k4) where n is the number of nodes in the heap graph and k is the
number of edges incident to a node. This polynomial runtime is due to our conserva­
tive reflnement operator (which only reflnes unambiguous cases) which is in contrast to
the TVLA reflnement operator (which resolves ambiguity by enumerating all possible
cases).

The method has been implemented and run on several benchmarks. The flrst set
of benchmarks is designed to test the ability of the analysis method to model funda­
mental list operations. The method analyzed this set quickly while discovering all the
relevant list properties. Next, we analyzed several codes from the Jolden benchmark
suite. Analysis times on these benchmarks scaled acceptably given that a simplistic and
fully context-sensitive interprocedural analysis method was used. The method correctly
identifled the shapes (Singleton, List, Tree, MultiPath, Cycle) for almost all of the data
structures in the programs.

These results are a critical step toward the goal of transforming modern single thre­
aded programs that make extensive use of pointer rich, heap based structures into multi-
threaded parallel programs. Our future work is focused on improving the accuracy, per­
formance and scope of this analysis technique. We identifled recursive procedures that
rely on destructive updates as a major issue in accurately modeling shape and handling
these cases is the next step in our research. The method is local in the sense that all
abstract program operations only refer to and modify small portions of the heap, we
plan to utilize this to enable memoization and localization of procedure calis, both of
which are crucial to improving scalability. Since modern programming languages make
extensive use of built in collection librarles (hashtables, trees with parent pointers, iter-
ators, etc.) we are working on how to model these important data structures and generic
programming concepts.

References

B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data
structures in Java. In PACT, 2001.
D. R. Chase, M. N. Wegman, and R K. Zadeck. Analysis of pointers and structures. In PLDI,
1990.
A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond Mimiting. In PLDI,
1994.
R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A shape analysis for
heap-directed pointers in C. In POPL, 1996.

5. R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In POPL, 1998.
6. R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in C programs with recursive

darta structures. In CC, 1998.
B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In POPL,
2005.
L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEEE
TPDS, 1(1), 1990.
N. D. Jones and S. S. Muchnick. Flow analysis and optimization of lisp-like structures. In
POPL, 1979.

10. C. Lattner and V. Adve. Data Structure Analysis: An Efflcient Context-Sensitive Heap Anal­
ysis. Tech. Report UIUCDCS-R-2003-2340, Computer Science Dept, Univ. of Illinois at
Urbana-Champaign, Apr 2003.

11. C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In CGO, 2004.

12. T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. In SAS, 2000.
13. M. Marrón, D. Kapur, D. Stefanovic, and M. Hermenegildo. Unifled memory analy­

sis. Tech. Rep. TR-CS-2006-06, University of New México, Apr. 2006. Available at
"http://www.es. unm.edu/^treport/tr/06-04/uma.pdf.

14. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free pro­
grams. In SAS, 2005.

15. R. Rugina and M. C. Rinard. Automatic parallelization of divide and conquer algorithms. In
PPOPP, 1999.

16. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with
destructive updating. In POPL, 1996.

17. S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In
POPL, 1999.

18. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java
optimization framework. In CASCON, 1999.

19. R. P. Wilson and M. S. Lam. Efflcient context-sensitive pointer analysis for C programs. In
PLDI, 1995.

20. E. Yahav and G. Ramalingam. Verifying safety properties using separation and heteroge-
neous abstractions. In PLDI, 2004.

http://www.es
http://unm.edu/

