
Context-Sensitive Multivariant Assertion
Checking in Modular Programs

Pawel Pietrzak1 , Jesús Correas2 , Germán Puebla 1 , and
Manuel V. Hermenegildo1 '3

1 School of Computer Science, Technical University of Madrid (UPM)
2 School of Computer Science, Complutense University of Madrid

3 CS and ECE Departments, University of New México

Abstract. We propose a modular, assertion-based system for verifica-
tion and debugging of large logic programs, together with several in-
teresting models for checking assertions statically in modular programs,
each with different characteristics and representing different trade-offs.
Our proposal is a modular and multivariant extensión of our previously
proposed abstract assertion checking model and we also report on its im-
plementation in the CiaoPP system. In our approach, the specification of
the program, given by a set of assertions, may be partial, instead of the
complete specification required by traditional verification systems. Also,
the system can deal with properties which cannot always be determined
at compile-time. As a result, the proposed system needs to work with
safe approximations: all assertions proved correct are guaranteed to be
valid and all errors actual errors. The use of modular, context-sensitive
static analyzers also allows us to introduce a new distinction between
assertions checked in a particular context or checked in general.

1 Introduct ion

Splitting program code into modules is widely recognized as a useful technique
in the process of software development. In this paper we propose a framework
for static (i.e., compile-time) checking of assertions in modular logic programs,
based on information from global analysis. We assume a strict module system,
i.e., a system in which modules can only communicate via their interface. The
interface of a module contains the ñames of the exported predicates and the
ñames of the imported modules.

Within our framework, the programmer is expected to write a (partial) spec­
ification for a module (or a set of modules) being subject to the verification
process. The specification is writ ten in terms of (Ciao) assertions [13]. From the
programmer's viewpoint, these assertions resemble the type (and mode) dec-
larations used in strongly typed logic languages such as Mercury [16] and in
functional languages. However, when compared to the latter, note tha t in logic
programming arguments of procedures behave differently in the sense tha t argu-
ments might be either input or output , depending on the speciñc usage (i.e., the
context) of the procedure. For instance, the classical predicate append/3 can be

used for concatenating lists, for decomposing lists, for checking or ñnding a preñx
of a given list, etc. Therefore, our assertion language and the checking procedure
are designed to allow various usages of a predícate. Moreover, comparing to the
former, herein we are interested in supporting a general setting in which, on one
hand assertions can be of a quite general nature, including properties which are
undecidable, and, on the other hand, only a small number of assertions may be
present in the program, i.e., the assertions are optional.

Our approach is strongly motivated by the availability of powerful and mature
static analyzers for (constraint) logic programs (see, e.g., [8] and its references),
generally based on abstract interpretation [6]. Also, since we deal with modular
programs, context-sensitive static analyses that handle modules (see, e.g., [7]
and its references) provide us with suitable background. Especially relevant is
our recent work on context sensitive, multivariant modular analysis (see [15,
5] among others). These analysis systems can statically infer a wide range of
properties (from types to determinacy or termination) accurately and efficiently,
for realistic modular programs. We would like to take advantage of such program
analysis tools, rather than developing new abstract procedures, such as concrete
[10] or abstract [3,14] diagnosers and debuggers, or using traditional proof-based
methods, e.g., [1,9].

The work presented builds on [13] where the assertion language that we use
was introduced, and on [14] where a proposal for the formal treatment of asser­
tion checking, both at compile-time and at run-time, was presented. We extend
the above-mentioned work in four main directions. Most importantly, the solu-
tion of [14] is not modular. We show herein how to check assertions in modular
programs in a way that ensures the soundness of the approach. Also, the for-
malization is different to that of [14], the present one being based on generalized
AND trees. In addition, in this work we exploit multivariant information gener-
ated by the analysis. This essentially means that múltiple usages of a procedure
can result in múltiple descriptions in the analysis output. In consequence, this
enables us to verify the code in a more accurate way.

Modular veriñcation has also been studied within 0 0 programming (e.g.,
[11]) where the importance of contextual correctness, as in our paper, has been
recognized. Nevertheless this work differ from ours in several respects, the most
important one being that they are based on traditional Hoare-like based veriñ­
cation techniques and the full speciñcation is required, whereas our framework
is based on abstract interpretation and allows for partial speciñcations.

In the context of Logic Programming [4] shows how to perform abstract
diagnosis of incomplete logic programs. Our approach is similar to theirs, since
the correctness of a modular program is established in terms of the correctness
of its modules. However, in [4] the complete speciñcation is needed and, more
importantly, context-sensitive analysis information is not used, and therefore
there is no concept of correctness in context. We claim that this is an important
advantage of our approach, because it allows the validation of a module in a given
program even when it is not possible to validate it in a context-independent way.

2 Preliminaries

An atom has the form p(t\, ...,tn) where p is a predícate symbol and the í¿ are
terms. A predícate descriptor is an atom p(X\,... ,Xn) where X\,... ,Xn are
distinct variables. We shall use predicate descriptors t o refer to a certain form of
atoms, as well as to predicate symbols. A clause is of the form H:-B-¡_,... ,Bn

where H, the head, is an atom and B\,..., Bn, the body, is a possibly empty ñnite
conjunction of atoms. In the following we assume tha t all clause heads are nor-
malized, Le., H is of the form of a predicate descriptor. Furthermore, we require
tha t each clause deñning a predicate p has an identical sequence of variables
Xpi, ...,XPn in the head. We cali this the base form of p. This is not restrictive
since programs can always be normalized, and it will facilitate the presentation
of the algorithms later. However, bo th in the examples and in the implementa-
tion we handle non-normalized programs. A definite logic program, or program,
is a ñnite sequence of clauses. ren denotes a set of renaming substitutions over
variables in the program at hand.

The concrete semantics used for reasoning about programs will use the notion
of generalized AND trees, as they are described in [2]. Every node of a generalized
AND tree, denoted (0C, P, 0S), contains a cali to a predicate P, with a cali substi-
tut ion 0C and corresponding success subti tut ion 9S. The concrete semantics of a
program R for a given set of queries Q, [Ü J Q , is the set of generalized AND trees
tha t represent the execution of the queries in Q for the program R.A

Def in i t ion 1. callingjcontext(P, R, Q) of a predicate given by the predicate de­
scriptor P defined in R for a set of queries Q is the set {0C\3T G [-RJq s.t.
3(6'c, P',e's) in T A 3CT G ren s.t. P = P'aAdc = 6'ca}

successjcontext(P, R,Q) of a predicate given by the predicate descriptor P
defined, in R for a set of queries Q is the set of pairs {(6>c, 0S) \3T G [-RJq s.t.
3(6'c, P',e's) in T A 3CT G ren s.t. P = P'aAdc = 6'ca A 6>s = 6'sa}

Our basic tool for checking assertions is abstract interpretation [6]. Abstract
interpretation is a technique for static program analysis in which semantics of the
program is conservatively approximated using an abstract domain Da (equipped
with a partial order C) which is simpler than the actual, concrete domain D.
Abstract valúes and sets of concrete valúes are related via a pair of monotonic
mappings (0 , 7) : abstraction a : D —> Da, and concretization 7 : Da —> D.

Goal-dependent abstract interpretation takes as input a program R and a cali
pa t te rn 5 P:X, where P is an atom, and A is a restriction of the run-time bindings
of P expressed as an abstract substi tution in Da. Such an abstract interpretation
(denoted analysis(R, P:X)) computes an answer table (AT) whose entries are of
the form P¿:A° 1—> Af, where P¿ is an atom and A° and Af are, respectively, the
abstract cali and success substitutions. An analysis is said t o be multivariant (on

4 We find this formalization more suitable than the derivation-based one used in our
previous work [14] because it simplifies the presentation of the subsequent material.

6 Note that we shall use sets of cali patterns instead in the subsequent sections - the
extensión is trivial.

calis) if more than one entry P:Af i—> Af, . . . , P:A° i—> A^ n > 0 with A° 7̂ A° for
some i,j may be computed for the same predícate. As it is shown in this paper,
multivariant analyzers may provide valuable information for assertion checking
not obtainable otherwise. An abstract interpretation process is monotonic, in
the sense that the more speciñc the initial cali pattern is, the more precise the
results of the analysis are.

The abstract semantics of a program (or module) R for a set of queries Q,
{Rf\Q , can be represented as a set of abstract AND-OR trees [2]. A context-
sensitive, multivariant static analyzer such as that in CiaoPP [12] actually com­
putes this set of trees, and returns the set of nodes in such trees, kept in the
answer table AT.

3 Modular programs and modular analysis

We start by introducing some notation. We will use m and n to denote mod­
ules. Given a module rn, by imports(m) we denote the set of modules which m
imports. By depends (rn) we refer to the set generated by the transitive closure
of imports. Note that there may be circular dependencies among modules. The
program unit of a given module rn is the ñnite set of modules containing rn and
the modules on which rn depends: program,-unit(m) = {m} U depends(m).6 rn
is called the top-level module of its program unit. Finally, exported(m) is the
set of predícate ñames exported by module rn, and imported(m) is the set of
predícate ñames imported by rn. Given a program unit programjunit(m), we
can always obtain a single-module program that behaves like programjunit(m).
We will denote such program as flatten(m).

In summary, the framework for modular analysis works as follows: given the
top-level module rn, analysis computes an intermodular ñxed point by iterating
through the modules in program_unit(m), and analyzing them one by one. When
the intermodular ñxed point has been reached, the analysis results for exported
predicates are stored in a Global Answer Table (GAT for short), in the form of
P : CP 1—> AP entries, where CP and AP are the cali and the answer patterns
of an exported predícate, respectively. In the rest of the paper we will use CP
and AP to refer to abstract substituions stored in the GAT, and A for other
abstract substitutions.

We will use the function GAT = modular jinalysis(m) to refer to the anal­
ysis of the program unit m, that returns as result the global answer table, and
LAT = analysis(m,E,AT) to indícate the analysis of module m, with cali
patterns for exported predicates E and success patterns of imported predicates
contained in AT, and returning the Local Answer Table (LAT), which con-
tains the results of analyzing rn. When computing the intermodular ñxed point,
analysis(n, E, AT) is invoked for each module n in the program unit, where E
is the set of calling patterns in GAT for predicates deñned in n which need to be
(re)analyzed, AT is the current state of the GAT, and the GAT is updated after

6 Library modules and builtins require special treatment in order to avoid reanalysis
of all used library predicates every time a user program is analyzed.

analysis with information from the resulting LAT. See [15] for details. We can
deñne a partial ordering on answer tables over a given module in the following
sense: ATX < AT2 iff V(P : CPX ^ APX) G ATU(3(P : CP2 ^ AP2) G AT2 s.t.
CPi E CP2 and V(P : CP^ ^ AP0 G AT2, if CPi E CP!¿ then APi E AP^).

The computation performed by analysis(m,E,AT) has the difficulty that,
from the point of view of analysis of a given module m, the code to be analyzed
is incomplete in the sense that the code for procedures imported from other
modules is not available to analysis. During the analysis of a module m there
may be calis P : CP such that the procedure P is not deñned in m but instead it is
imported from another module n. There are several alternatives for computing a
temporary answer pattern for P : CP, which are selected by means of the success
policy (SP for short). SP is needed because given a cali pattern P : CP it will
often be the case that no entry of exactly the form P : CP i—> AP exists in the
analysis results stored in the GAT for n (or there may be no entry at all). In
such case, the information already present may be of valué in order to obtain a
(temporary) answer pattern AP, and continué the analysis of module m.

Several success policies can be deñned which provide over- or under-approx-
imations of the "exact" answer pattern AP~ with different degrees of accuracy.
By this exact valué AP~ we refer to the one which would be computed for the
flattened program. As shown in [15], using over-approximating success policies
(named SP+) has the advantage that after analyzing any number of modules,
even when a ñxed point has not been reached yet, the information obtained for
each module is always a correct over-approximation. The drawback is that when
the ñxed point is reached it may not be the least ñxed point, i.e., information is
not as precise as it could be. In contrast, under-approximating (SP~) policies
obtain the least ñxed point (most precise information) but only produce correct
results when the ñxed point is reached. Therefore, SP~ policies are as accu-
rate as performing the analysis of the flattened program. We will denote with
analysissp(m, E, AT) the analysis of a module m with respect to the set of cali
patterns E and using a success policy SP applied to the answer table AT.

4 Assertions

We consider two fundamental kinds of (basic) assertions [13].7 The ñrst one is
success assertions, which are used to express properties which should hold on
termination of a successful computation of a given predicate (postconditions).
At the time of calling the predicate, the computation should satisfy a certain
precondition. success assertions can be expressed in our assertion language using
an expression of the form: success P : Pre =>• Post, where P is a predicate
descriptor, and Pre and Post are pre- and post-conditions respectively. Without
loss of generality, we will consider that Pre and Post correspond to abstract
substitutions (Xpre and Apost resp.) over vars(P). This kind of assertion should
be interpreted as "in any invocation of P if Pre holds in the calling state and

7 [13] presents other types of assertions, but they are outside the scope of this paper.

the computation succeeds, then Post should also hold in the success state."
The postcondition stated in a success assertion refers to all the success states
(possibly none). Note that success P : true =>• Post can be abbreviated as
success P =>• Post.

A second kind of assertions expresses properties which should hold in any
cali to a given predicate. These properties are similar in nature to the classi-
cal preconditions used in program veriñcation. These assertions have the form:
c a l i s P : Pre, and should be interpreted as "in all activations of P Pre should
hold in the calling state." More than one assertion may be written for each pred­
icate. That means that, in any invocation of P, at least one c a l i s assertion for
P should hold.

Finally, we write pred P : Pre =>• Post, as a shortcut for the two assertions:
c a l i s P : Pre and success P : Pre =>• Post. We claim that the pred form is
a natural way to describe a usage of the predicate. In what follows, we will use
c a l i s (resp. success) assertions when we want to refer to the calis part (resp.
success part) of a pred assertion. We will assume, for simplicity and with no
loss of generality, that all assertions referring to a predicate P deñned in module
rn are also provided in that module. We will denote with assertions(m) the set
of assertions appearing in module m, and assertions(P) refers to the assertions
for predicate P.

Example 1. A possible set of c a l i s assertions for the traditional length/2 pred­
icate that relates a list to its length, might be:

:- calis length(L,N) : (var(L), int(N)). 7.(1)

:- calis length(L,N) : (list(L) , var(N)). 7.(2)

These assertions describe different modes for calling that predicate: either for
(1) generating a list of length N, or (2) to obtain the length of a list L.

Possible success assertions for that predicate are:

:- success length(L,N) : (var(L), int(N)) => list(L).

:- success length(L,N) : (var(N), list(L)) => int(N).

The following two assertions are equivalent to all the previous assertions for length/2:

:- pred length(L.N) : (var(L), int(N)) => l i s t (L) .
:- pred length(L.N) : (var(N), l ist(L)) => int(N).

We assign a status to each assertion. The status indicates whether the as­
sertion refers to intended or actual properties, and the relation between the
property and the program semantics. This section builds on [14], but it has been
adapted to our use of generalized AND trees.

We say that a c a l i s assertion A with predicate descriptor P is applicable
to a node N = (6C,P',6S) of the generalized AND tree if there is a <G ren (a
renaming substitution) s.t. P' = Pa and N is adorned on the left, i.e., the cali
substitution 9C of N has been already computed. A success assertion A with
predicate descriptor P is applicable to a node N if P' = Pa (where a <G ren)
and N is adorned on the right, i.e., the success substitution 9S of the cali at N

has been computed (the procedure exit has been completed). In what follows,
we will denote with p a suitable renaming substitution.

If an assertion holds within a ñxed set of queries Q then the assertion is
said to be checked with respect to Q. If this is proved, the assertion receives the
corresponding status checked.. Formally:

Definition 2 (Checked assertions). Let R be a program.

— An assertion A = ca l i s P : Pre in R is checked w.r.t. the set of queries Q
*ffV0c £ callingjcontext(P,R,Q), 6cp £ 7(Ap re).

— An assertion A = success P : Pre =>• Post in R is checked w.r.t. a set of
queries Q iff V(6>c,6>s) £ success-context(P, R,Q),6cp £ 7(Apre) —> 0sp £
j(Xpost)-

A calis or success assertion can also be false, whenever it is known that there
is at least one cali (or success) pattern in the concrete semantics that violates
the property in the assertion. If we can prove this, the assertion is given the
status fa lse . In addition, an error message will be issued by the preprocessor.

Definition 3 (False assertions). Let R be a program.

— An assertion A = ca l i s P : Pre in R is false w.r.t. the set of queries Q iff
30c £ calling jcontext(P, R,Q) s.t. 0cp (jz ^y(Xpre).

— An assertion A = success P : Pre =>• Post in R is false w.r.t. the calling
context Q iff 3(6c, 9S) £ success jcontext(P, R, Q) s.t. 0cp £ 7(Apre) A 0sp (j
l(Xpost)-

Finally, an assertion which expresses a property which holds for any initial
query is a true assertion. If it can be proven, independently on the calling context,
during compile-time checking, the assertion is rewritten with the status true.
Formally:

Definition 4 (True success assertion). An assertion A = success P :
Pre =>• Post in R is true iff for every set of queries Q, V(6C,6S) £
successjcontext(P,R,Q),6cp £ 7(Apre) —> 0sp £ 7(Apost).

Note that the difference between checked assertions and true ones, is that
the latter hold for any context. Thus, the fact that an assertion is true implies
that it is also checked.

Assertions are subject to compile-time checking. An assertion which is not
determined by compile-time checking to be given any of the above statuses is a
check assertion. This assertion expresses an intended property. It may hold or
not in the current versión of the program. This is the default status, i.e., if an
assertion has no explicitly written status, it is assumed that the status is check.
Before performing a compile-time checking procedure all assertions written by
the user have check status.

In our setting, checking assertions must be preceded by analysis, and basi-
cally it boils down to comparing assertions (whenever applicable) with the ab-
stract information obtained by analysis. Below we present sufficient conditions

for compile-time assertion checking in a program not structured in modules. The
following sections will deal with assertion checking of modules and modular pro-
grams. In the case of proving a calis assertion, we would like to ensure tha t all
concrete calis are included in the description Xpre. For disproving calis asser-
tions, i.e., turning them to false, we want to show tha t there is some concrete
cali which is not covered by Xpre.

Def in i t ion 5 (A b s t r a c t as ser t ion check ing) . Let R be a program, and Qa

an abstract description of queries to R.

— An assertion A = s u c c e s s P : Pre =>• Post in R is abstractly t rue iff
3P':XC >-> Xs G analysis(R,{P : XPre}) s.t. 3a G ren, P' = Pa,Xc =
Xpre AAS C Xpost-

— An assertion A = succe s s P : Pre =>• Post in R is abstractly checked
w.r.t. Qa iff\/P':\c >-> Xs G analysis(R,Qa) s.t. 3a G ren, P' = Pa,Xc E
Xpre —> As E Xpost-

— An assertion A = c a l i s P : Pre in R is abstractly checked w.r.t. Qa iff
yP':Xc i-> Xs G analysis(R,Qa) s.t. 3a G ren, P' = Pa,Xc E XPre.

— An assertion A = succe s s P : Pre =>• Post in R is abstractly false w.r.t.
Qa «ffVP':Ac >-• Xs G analysis(R,Qa) s.t. 3a G ren, P' = Pa,Xc E
Xpre A (As l~l Ap o s t = A.) .

— An assertion A = c a l i s P : Pre in R is abstractly false w.r.t. Qa iff
yP':Xc !->• As G analysis(R, Qa) s.t. 3a G ren, P' = Pa, Xc n XPre = ±.

In this deñnition analysis(R, Qa) is a generic analysis computation, and
therefore the deñnition is parametric with respect to the analysis actually per-
formed for checking the assertions, as will be shown below. The sufficient condi-
tions are the following:

P r o p o s i t i o n 1 (Check ing a cal is a s ser t ion) . Let A = check c a l i s P : Pre
be an assertion.

— If A is abstractly checked, w.r.t. Qa, then A is checked, w.r.t. 7 (Q a) .
— If A is abstractly false w.r.t. Qa, then A is false w.r.t. 7 (Q a) .
— otherwise, nothing can be deduced about A considered atomically (and, it is

left in check status).

Soundness of the above statements can be derived directly from the correctness
of abstract interpretation. In the case of checked assertions, we make sure tha t all
cali pat terns tha t can appear at run-time belong to 7 (Ap r e) . The "false" cases are
a bit more involved. Due to the approximating nature of abstract interpretation,
there is no guarantee tha t a given abstract cali description Ac corresponds to any
cali pa t te rn tha t can appear at run-time. Thus, it is possible tha t the assertion
is never applicable, but if it is, it will be invalid. Wha t is known is tha t every
run-time cali pat tern is described by one or more entries for P in AT. Thus,
in order to ensure tha t no cali pa t te rn will satisfy Xpre, all Ac's for P must be
taken into account.

Finally, if a c a l i s assertion is not abstractly checked ñor abstractly false, we
cannot deduce anything about A when it is considered atomically. However, we
could still split it, and apply the same process to the parts .

P r o p o s i t i o n 2 (Check ing a success as ser t ion) . Let A = check succes s P :
Pre =>• Post be an assertion.

— If A is abstractly trae, then A is true.
— If A is abstractly chechea w.r.t. Qa, then A is chechea w.r.t. 7 (Q a) .
— If A is abstractly false w.r.t. Qa, then A is false w.r.t. 7 (Q a) .
— otherwise, nothing can be deduced about A considered atomically (and it is

left in check status).

In the same way as before, a succe s s assertion remains atomically check when
it is not abstractly checked ñor abstractly false. We can however simplify the
assertion when part of the assertion can be proved to hold, like in a c a l i s
assertion. Note tha t the more precise analysis results are, the more assertions
get s tatus t rue , checked and f a l s e .

5 Checking assertions in a single module

The modular analysis framework described in Section 3 is independent from the
assertion language. Nevertheless, assertions may contain relevant information for
the analyzer. To this end when analysis(m, E, AT) is computed for a module m,
the parameters E and AT can also refer to information gathered directly from
assertions, rather than from other analysis steps. This yields additional entry
and success policies:

— E can be extracted from the cali par ts of pred assertions for exported
predicates in m. Such set will be denoted as CV^st = {P : XPre \ P £
exported(m) A pred P : Pre =4> Post £ assertions(m)} U {P : T | P £
exported(m) A assertions(P) = 0}.

— AT can also be extracted from pred (or success) assertions found in the
imported modules. Given a module m, the answer table generated from the
assertions for imported modules is denoted as AT°st = I \„^m„^talm\({P :
Xpre i—> Xp0st I P S exported(n) A pred P : Pre =>• Post £ assertions(n)}U
{P : T i—> T | P £ exported(n) A assertions(P) = 0}).

Note tha t we assume the topmost pat terns if no assertions are present.
When checking assertions of modular programs, a given module can be con­

sidered either in the context of a program unit or separately, taking into account
only the imported predicates. When t reated in the context of a program unit,
the calling context of a module m is called the set of initial queries Qm. We say
tha t the set of initial queries Qm t o a module m is valid iff for every imported
predicate p all the calis assertions related to p are checked w.r.t. Qm.

Def in i t ion 6 (Part ia l ly correct in c o n t e x t m o d u l e) . A module m is par-
tially correct in context with respect to a set of initial queries Qm iff (1) every
calis assertion in m is checked, w.r.t. Qm, and (2) every success assertion in m is
true, or checked, w.r.t. Qm, and, (3) every calis assertion for a predicate imported
by m is checked, with respect to Qm.

Def in i t ion 7 (Part ia l ly correct m o d u l e) . A module m is partially correct
iffm is partially correct in context w.r.t. any valid set of initial queries.

Assertions are checked, as explained above, w.r.t. all analysis information
available for a given (cali or success of a) predicate after executing the analysis
of the code. Such analysis information is multivariant, and covers all the pro-
gram points in the analyzed code where a given predicate is called and how it
succeeds. If available, a GAT table can be used to improve the analysis results
with information from previous analyses of imported modules.

In our system, when checking a module, c a l i s assertions for imported pred-
icates are visible, and can therefore also be checked. This enables verifying
whether a particular cali pa t te rn to an imported predicate satisñes its asser­
tions. Of course, a c a l i s assertion cannot be given status t rue or cliecked.,
as in general not all cali pat terns for the imported predicate occur in the call-
ing module. Nevertheless, a warning or error is issued whenever the assertion is
violated and/or cannot be shown to hold.

P r o p o s i t i o n 3. Let m be a module, and LAT = analysisSP+
where AT is an over-approximating answer table for (some modules in)
imports(m).

The module m is partially correct if all success assertions are abstractly true
w.r.t. LAT and all calis assertions for predicates in m and imported(m) are
abstractly checked, w.r.t. LAT.

This proposition considers correctness of a single module regardless of the
calling context of the module, since the start ing point of the analysis is the set
of preconditions in pred assertions. Note tha t LAT must be computed using an
over-approximating success policy, in order to obtain correct results (provided
tha t AT is correct). The answer table AT used for the analysis may be incom-
plete, or even an empty set: this approach allows us t o check the assertions of
a given module even when there is no information available from the imported
modules. However, the more accurate AT is, the more assertions get s tatus t rue
or checked. This proposition is especially useful during the development of a
modular program (i.e., the "edit-check cycle"), when different programmers de-
velop different modules of the program. A programmer can check the assertions
of his/her module as soon as it is syntactically correct. If other programmers in
the team have analyzed their modules already, a shared GAT can be used to
genérate the answer table AT for checking the module more accurately.

Unfortunately, if the modules imported by m are not implemented yet, there
is no possibility to analyze them in order t o provide more accurate information to
the analyzer. In order to overeóme tha t , we can use the assertion information for
the exported predicates in imported modules to obtain a more precise LAT. In
this case, correctness of the module cannot be guaranteed, but a weaker notion
of correctness, conditional partial correctness, may be proved. Note tha t in this
case the analysis relies on possibly unveriñed assertions writ ten by the user.

P r o p o s i t i o n 4. Letra be a module, and LAT = analysis SP+

The module m is conditionally partially corred if all success assertions are
abstradly true, and all calis assertions for predicates in m and imported(m) are
abstradly checked w.r.t. LAT.

This conditional partial correctness turns into partial correctness when the
program unit is taken as a whole, as we will see in Section 6.

Example 2. Consider the s tandard f u n c t o r / 3 predicate. The ISO standard for
Prolog states tha t f u n c t o r / 3 can only be invoked using two possible calling
modes, and any other mode will raise a run-time error. The ñrst mode allows
obtaining the functor ñame and arity of a structure, while the second calling
mode builds up a structure given its functor ñame and arity.

Our assertion checking system is able t o statically detect such calling pat terns
because several assertions are allowed for a given predicate, and the underlying
analyzer captures context-sensitive, multivariant abstract information. They can
be expressed by means of the following assertions:

: - pred functor(+T,Ñame,Arity) => (atomic(Name), n a t (A r i t y)) .
: - pred functor(T,+Name,+Arity) : (atomic(Name), na t (Ar i ty)) => nonvar(T).

In these assertions, the plus sign before an argument has the usual meaning of a
Prolog mode, i.e., t ha t the argument cannot be a free variable on calis. The calis
par ts of these assertions will be used when analyzing and checking any module
tha t uses this library predicate, in order to check the calling modes to it.

6 Checking assertions in a program unit

Checking assertions in a program unit consisting of several modules differs from
checking assertions in a single module in some ways. First of all, the most accu-
rate initial queries to a given module m are provided by the calis to m made by
other modules in the program unit (except the top-level one). Secondly, the suc­
cess pat terns of imported predicates may also be more accurate if we consider a
given program unit. This leads us to the notion of correctness for program units.
Note tha t the following deñnition concerns the concrete semantics.

Def in i t ion 8 (Part ia l ly correct p r o g r a m un i t) . Letmtop be a module defin-
ing a program unit U = program-unit(mtop). U is partially correct iff mt0p is
partially correct andera £ depends(mtop), m is partially correct in context w.r.t.
the sets of initial queries induced by the initial queries to mtop.

Verifying a p r o g r a m unit w i t h no in termodular ana lys i s in format ion

As explained in the previous section, every assertion A of the form check c a l i s P :
Xpre S assertions(m) where P <G exported(m) is veriñed in every module tha t
imports P from m. If such calis assertions are abstractly t rue in all importing
modules (i.e., for every cali pat tern CP found in a module importing P we have
tha t CP IZ Xpre), then tha t means tha t Xpre approximates all possible calling

A l g o r i t h m 1 Checking assertions without modular analysis

Input: top-level module mtop
Output: Warning/Error messages, new status in the assertions in prograrri-unit (mtop)

for all m G program.unit(mtop) do
LATm := analysisSP+(m,CVtaat,ATtaat)
check-assertions(m, LATm)

end for

pat terns to P from outside m. Therefore, the c a l i s assertions can be used as
start ing points for analyzing every module in the program unit for checking the
assertions. This leads us t o a scenario for checking assertions, shown in Algo­
ri thm 1, where no prior intermodular analysis is required, and which aims at
proving every module to be conditionally correct rather than correct in context.

Observe tha t Algorithm 1 does not use the modular analysis results as in­
put . Instead, pred assertions of exported predicates are taken as input to the
single-module analysis phase, CVrn

ssi'. A similar policy is applied when collecting
success pat terns of imported predicates.

This scenario can be viewed as proving conditional correctness of each module
m <G programju,nit{mtop), where the conditions are the corresponding pred as­
sertions from imported modules, as s tated in Proposition 4. On the other hand,
since we check all the modules in the program unit, and the program unit is
self-contained, the pred assertions from imported modules are also the subject
of checking. Assume tha t after checking all the modules in program _unit(mt0p)
all the pred assertions get s tatus checked or t rue . 8 This means tha t for every
exported/ imported predicate P, the analysis information P : CP i—> AP gen-
erated when analyzing individual modules satisñes the checking conditions of
Propositions 1 and 2. Thus, the following result holds:

P r o p o s i t i o n 5. Let mtop be a module defining a program unit U =
program-unit(mt0p) • If each module m £ U is conditionally partially correct,
and mtop is partially correct, then U is partially correct.

If the assertions get t rue or checked using Algorithm 1, it is easy to see
tha t they would also get t rue or checked if the (full) modular analysis were
used, as modular analysis computes the least ñxed point, Le., it returns the
most accurate analysis information. Consequently, if the c a l i s assertions receive
s tatus checked and the succe s s assertions receive s ta tus t rue when checking
with Algorithm 1, there is no need to run a costly modular analysis.

Inter leaving analys i s and checking

Algorithm 1 may not be able t o determine tha t a program unit is partially correct
if the user has provided either too few assertions for exported predicates or they

8 In this case the c a l i s part originated from the pred assertion receives status
checked, and the success part status t rue .

A l g o r i t h m 2 Interleaving analysis and checking

Input: top module mtop

Output: GAT, Warning/Error messages, new status in the assertions in prograrri-unit
(mtop)

Set initial GAT with marked entries for cali patterns from CV^"^
while there are modules with marked entries in GAT do

1 select module m
LATm := analysissp(m,C'P'ÜAT, GAT)
check-assertions(m, LATm)
if an error is detected in m then

STOP
end if

2 update GAT with LATm

end while

are not accurate enough. In this case we have to replace information from the
missing assertions and to incorpórate a certain degree of automatic propagation
of call/success pat terns among modules during the checking process. The basic
idea is t o interleave analysis and compile-time checking during modular analysis.
The main advantage of this approach is tha t errors will be detected as soon
as possible, without computing an expensive intermodular ñxpoint, yet having
cali and success pat terns being propagated among modules. The whole process
terminates as soon as an error is detected or when the modular analysis ñxed
point has been reached, as shown in Algorithm 2. Concrete procedures in steps
1 and 2 depend on a speciñc intermodular analysis algorithm, success and entry
policies, etc. Note tha t in Algorithm 2 every module is analyzed for CVm , the
set of all cali pat terns for a module m in the GAT.9

If an SP+ success policy is used in Algorithm 2, then LAT^ >z LAT^ >z • • • >z
LAT™, where LAT™ coincides with the analysis results of module m when the
intermodular ñxed point has been reached, and each of the LAT^ corresponds to
the s ta tus of the analysis answer table for m at every iteration of the algorithm
tha t schedules m for analysis.

P r o p o s i t i o n 6. Let LATm be an answer table for module m. If an assertion is
abstractly checked (resp. abstractly true or abstractly false) w.r.t. LATm it will
also be abstractly checked, (resp. abstractly true or abstractly false) w.r.t. any
answer table LAT'm s.t. LAT'm < LATm.

Thus, the conclusions drawn about the assertions are sound in the following
sense: if an assertion is detected to be checked or false in an intermedíate step,
it will surely remain checked or false at the end of the process. If the assertion
is not yet proved not disproved, its s tatus might change in the subsequent steps
as the analysis information might be more accurate in future iterations.

9 CPm is used for simplicity of the presentation. In the actual implementation the
modules are analyzed just for the marked entries, and only the assertions related to
those entries are checked.

Algorithm 2 can be adapted to apply the SP~ success policy. The sequence
of answer tables generated during the analysis using tha t policy is now LAT^ <
LAT^ ;< • • • < LAT^, where only LAT^, i.e. the one corresponding with the
global ñxpoint, is guaranteed to safely approximate the module's semantics.

P r o p o s i t i o n 7. Let LATm be an answer table for module m. If an assertion A
is not abstractly checked, w.r.t. LATm, then *ÍLAT'm s.t. LATm •< LAT'm, A will
not be abstractly checked w.r.t. LAT'm.

Therefore, in this case the following conclusions can be made about the ñnal
s ta tus of assertions: if at any intermediate step the s tatus of an assertion remains
as check or becomes f a l s e , it will at most be check at the end of the whole
process. Therefore, Algorithm 2 must stop and issue an error as soon as f a l s e
or check assertions are detected (instead of stopping only when there are f a l s e
assertions, as above).

Sufficient condition for partial correctness follows:

P r o p o s i t i o n 8. Let mtop be a module defining a program unit U =
program-unit(mtop) • If Algorithm 2 terminotes without issuing error messages,
then (1) if SP+ is used and Algorithm 2 decides that an assertion A is abstractly
true (resp. checked), then A is true (resp. checked); and (2) if SP~ is used then
all assertions in U are checked,.

7 Conclusions

Algorithms 1 and 2 have different levéis of accuracy, computing cost, and ver-
iñcation power. The advantages of Algorithm 2 are tha t it is potentially more
accurate and it does not impose any burden on the user, since no assertions
are compulsory. On the other hand, Algorithm 1 has low computing cost, since
modules only need to be analyzed once and it can be applied to incomplete pro-
grams. All this at the price of a development policy where module interfaces are
accurately described using assertions.

Comparing this paper with related work, the scenario described in Section 6
can be seen as an instance of the analysis with user-provided interface of [7].
Our goal is however different than theirs: instead of computing the most precise
analysis information we t ry to prove or disprove assertions, which makes this
method more related in fact to the one of [4], focused on program veriñcation.
Nevertheless, unlike [4] we do not require the user to provide a complete spec-
iñcation, specially in Algorithm 2 - t h e missing parts are either described by
topmost valúes or infered by the interleaved analysis algorithm.

References

1. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes
through types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994.

2. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. JLP, 10:91-124, 1991.

3. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. JLP, 39(1-
3):43-93, 1999.

4. M. Comini, G. Levi, and G. Vitiello. Modular abstract diagnosis. In APPIA-
GULP-PRODE'98, pages 409-420, 1998.

5. J. Correas, G. Puebla, M. Hermenegildo, and F. Bueno. Experiments in Context-
Sensitive Analysis of Modular Programs. In LOPSTR'05, LNCS. Springer-Verlag,
September 2006.

6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL'77, pages 238-252, 1977.

7. P. Cousot and R. Cousot. Modular Static Program Analysis, invited paper. In CC
2002, number 2304 in LNCS, pages 159-178. Springer, 2002.

8. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Trans. on Programming Languages and Systems, 18(5):564-615, 1996.

9. P. Deransart. Proof methods of declarative properties of definite programs. Theo-
retical Computer Science, 118:99-166, 1993.

10. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with
assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming in Logic
Programming, pages 501-522. MIT Press, 1989.

11. K. R. M. Leino and P. Müller. Modular verification of static class invariants. In
J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Formal Methods (FM), volume
3582 of LNCS, pages 26-42. Springer-Verlag, 2005.

12. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation. JLP, 13(2/3):315-347, July 1992.

13. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23-61. Springer LNCS 1870, 2000.

14. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In LOPSTR'99, num­
ber 1817 in LNCS, pages 273-292. Springer-Verlag, March 2000.

15. G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. García de la Banda, K. Mar­
riott, and P. J. Stuckey. A Generic Framework for Context-Sensitive Analysis of
Modular Programs. In M. Bruynooghe and K. Lau, editors, Program Development
in Computational Logic, A Decade of Research Advances in Logic-Based Program
Development, number 3049 in LNCS, pages 234-261. Springer-Verlag, 2004.

16. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. JLP, 29(1-3), October
1996.

