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Abstract 
Precise modeling of the program heap is fundamental for under-
standing the behavior of a program, and is thus of signiflcant in-
terest for many optimization applications. One of the fundamental 
properties of the heap that can be used in a range of optimization 
techniques is the sharing relationships between the elements in an 
array or collection. If an analysis can determine that the memory 
locations pointed to by different entries of an array (or collection) 
are disjoint, then in many cases loops that traverse the array can be 
vectorized or transformed into a thread-parallel versión. This paper 
introduces several novel sharing properties over the concrete heap 
and corresponding abstractions to represent them. In conjunction 
with an existing shape analysis technique, these abstractions allow 
us to precisely resolve the sharing relations in a wide range of heap 
structures (arrays, collections, recursive data structures, composite 
heap structures) in a computationally efflcient manner. The effec-
tiveness of the approach is evaluated on a set of challenge problems 
from the JOlden and SPECjvm98 suites. Sharing information ob-
tained from the analysis is used to achieve substantial thread-level 
parallel speedups. 

Categories and Subject Descriptors F.3.2 [Logics and Meanings 
of Programs]: Semantics of Programming Languages (program 
analysis). 

General Terms Languages, Performance. 

Keywords Shape analysis, Shared structures, Parallelism. 

1. Introduction 
The transformation oíforeach style traversals on arrays/collections 
of scalars via vectorization and scheduling optimizations has had a 
major impact in improving the performance of optimized programs, 
and thread-level parallelization of these loops is becoming increas-
ingly important with the proliferation of multi-core processors. The 
ability to apply these transformations in modern object-oriented 
programs that make heavy use of pointer structures and where ar
rays/collections often contain references to other heap structures 
(instead of scalar valúes) is severely limited by the difflculty ofrea-
soning precisely about the structure of the program heap and the 
sharing relations between the pointers stored in these collections. 

Data[ ] AU = new Da ta [N] ; 
f o r ( i n t i = 0; i < N; ++i) 
AU[i ] = new Data ( i ) ; 

Da ta [ ] AS = new Da ta [N] ; 
f o r ( i n t i = 0; i < N; ++i) 
A S [ i ] = A U [ f ( i ) ] ; 

7 f o r ( i n t 
8 AU[ i ] 

9 f o r ( i n t 
10 A S [ i ] 

< N; ++i) 

< N; ++i) 
val 

Figure 1. Array initialization (left) and foreach processing (right) 

A signiflcant amount of work has been devoted to the problem 
of shape analysis, which strives to provide precise information 
about the connectivity/reachability properties of the heap. A major 
focus of this work has been on accurately modeling the construction 
and update of recursive data structures such as lists or trees [2, 6, 
11,15,16,18,19], while recent work explored how these recursive 
structures are connected to form composite heap structures [2,15], 
These results are important steps in the development of a general-
purpose heap analysis technique and allow for the parallelization 
of recursive data structure traversals, but they do not adequately 
capture the sharing (or lack thereof) between the entries in a given 
array or collection. 

Take the simple program segment shown in Figure 1, which ma-
nipulates arrays of Data objects, each containing a single integer 
fleld v a l . The flrst loop filis the array AU with a number of fresh 
Data objects, and thus there is no aliasing between the entries in 
the array. The second loop filis the array AS with objects selected 
from the flrst array via some indexing function f ( i ) , which we 
assume cannot be understood by the analysis (e.g., f is a complex 
non-linear transform or uses some form of randomization). There -
fore, each entry in AS may potentially alias with another entry in 
the array. 

Figure 2(a) shows one possible concrete heap after initializa
tion of AS (depending on the exact behavior of f). We see that 
there is sharing between elements of the array AS, since AU [ 0 ] 
is referenced by both AS [ 0 ] and AS [ 2 ] , but there is no sharing 
between elements of the original array AU. If we look at the re-
sulting heap abstraction using the classic storage shape graph [5] 
approach we get the model shown in Figure 2(b). In this figure we 
have associated a unique integer identifler with each node/edge in 
the model and we also show the type of objects abstracted by each 
node and the storage specifler for each edge location. We use the 
special storage specifler ? to represent all the storage locations in 
an array. Notice that in Figure 2(b) there is no information to distin-
guish between edge 2, which abstracts the pointers stored in array 
AU which we know do not alias, and edge 4, which abstracts the 
pointers stored in array AS which may alias with each other. Thus 
the optimizer must always conservatively assume that there may be 
sharing between the references stored in an array and cannot paral -
lelize/vectorize the update loops on lines 7-8 and 9-10 (even though 
in practice it is safe to transform the flrst loop). 
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[1,AU] 

(a) (b) 

Figure 2. A possible concrete state (a) and its abstraction (b). 

[1, AU, 1] [3, AS, 1] 

[ 1, Data[], 1, S] [ 3, Data[], 1, s) 

[2, ?, w í \ /\4, ?, UJ] 

[~2, Data, ÜJ, S ] 

(a) (b) 

Figure 3. Basic abstraction (a) and a possible concretization (b). 

The major contributions in this paper appear in Section 3, where 
we define a set of useful sharing properties in the concrete heap and 
where we demónstrate how these properties can be efficiently en-
coded in an abstract domain. In Section 4 we evalúate the extended 
analysis and the effectiveness of the sharing information by looking 
at a detailed case study from the JOlden [14] suite, the well known 
Barnes-Hutt benchmark (bh), which has not been successfully an-
alyzed by any other shape analysis technique. We show how the 
analysis results obtained for this benchmark can be used to achieve 
a 23% performance improvement in single-threaded execution, a 
37% reduction in heap use, and a factor of 3 parallel speedup on 
a quad-core machine. In Section 5 we evalúate the computational 
cost of the analysis and the impact of the sharing information in 
performing thread-level parallelization on our set of benchmarks. 

2. Base Heap Model 
To analyze a program we first transform the Java 1.4 source into 
a core sequential imperative language called MIL (Mid-level In
termedíate Language). The MIL language is statically typed, has 
method invocations, conditional constructs (if, swi tch) , excep-
tion handling ( t r y - t h r o w - c a t c h ) and the standard looping 
statements (for , do, whi le ) . The state modification and expres-
sions cover the standard range of program operations: load, store, 
and assignment along with logical, arithmetic, and comparison op-
erators. This mid-level language allows us to support the majority 
of the Java 1.4 language while substantially simplifying the analy
sis. During this transformation step we also load in our specialized 
standard library implementations, so we can analyze programs that 
use classes from j a v a . ú t i l , j a v a , l a n g or j a v a . i o. 

The semantics of the language is defined in the usual way, 
using an environment mapping variables into valúes, and a store, 
mapping addresses into valúes. We refer to the environment and 
the store together as the concrete heap. We model the concrete 
heap as a labeled, directed multi-graph (N,E) where each node 
n e N is an object in the store or a variable in the environment, and 
each labeled directed edge e e £ represents a reference (a pointer 
between objects or a variable reference). Each edge is given a label 
that is either an identifier from the program or an integer i e N (the 
integers label the pointers stored in the arrays/collections). For an 
edge (a,b) eE labeled with p, the notation a^b indicates that the 
object/variable a points to b via the field ñame or identifier p. 

A región of the heap 3Í is a subset of the objects, with all the 
pointers that connect these objects and all the cross-region pointers 
that start or end at an object in this región. Formally, let O C N be 
a subset of objects, and let P¡ = {p | 3o\ ,02 <EO,o\ —> 02} A and 

Pe = {p I 3o e 0,x £ 0,x —> o V o —> x} be respectively the set 
of internal and cross-region references for O. Then a región is the 
tupie (0,PÍ,PC). 

2.1 Basic Properties 

Our base abstract heap domain [15] is a directed graph in which 
each node represents a región of the heap or a variable, and each 
edge represents a set of pointers or a variable target. The nodes and 
edges are augmented with additional instrumentation properties: 
Types. Each non-variable node in the graph represents a región of 
the heap (which may contain objects of many types). To track the 
types of these objects we use a set of type ñames as part of the label 
of each node. This set contains the type of any object that may be 
in the región of the heap that is abstracted by the given node. 
Linearity. To model the number of objects abstracted by a given 
node (or pointers by an edge) we use a linearity property which 
has two possible valúes: 1, which indicates that the node (edge) 
concretizes to either O or 1 objects (pointers), and the valué co, 
which indicates that the node (edge) concretizes to any number of 
objects (pointers) in the range [0,°°). 
Abstract Layout. To approximate the shape of the región a 
node abstraets, the analysis uses the abstract layout properties 
{(S)ingleton, (L)ist, (T)ree, (M)ultiPath, (C)ycle}. The (S)ingleton 
property states that there are no pointers between any of the objects 
abstracted by the node. The (L)ist property states each object has 
at most one pointer to another object in the región. The other prop
erties correspond to the standard definitions for trees, DAGs, and 
eyeles. 

Pictorially, we represent abstract heaps as labeled, directed 
multi-graphs. The variable nodes are labeled with the ñame of the 
variable they represent. Nodes abstracting concrete regions are de-
noted as [ id , t y p e , l i n e a r i t y , l a y o u t ] ; the first field ( id) 
contains a unique identifier, while the rest correspond to the predi-
cates described above. 

The abstract edges, which approximate sets of pointers, are rep-
resented in the figures as records [ id, o f f s e t , l i n e a r i t y ] . 
The offset component indicates the label of the references that are 
abstracted by the edge: a field identifier, a variable ñame when the 
edge conneets a variable and a node, or the special label ? denoting 
the summary field for all the elements in an array or a collection 
object such as L i s t or Se t . 

EXAMPLE 1: Figure 3(a) shows how our basic abstract domain 
represents the heap state after initializing the two array s of Figure 1. 
We can see that the analysis is able to represent a number of 
properties that are not present in the elassie storage shape graph 
in Figure 2(b). The figure represents two variables (AS and AU) 
pointing to two different arrays (nodes 1 and 3) through edges 1 
and 3, each with linearity 1 (since a variable can only refer to a 
single location). Each of the abstract arrays represents objects of 
type Data [ ] and the linearity of valué 1 indicates that each node 
abstraets at most one array. The (S)ingleton layout means there are 
no pointers between the objects in the región abstracted by the node 
(which in this case we already knew based on the type information). 

Each array may store múltiple pointers, which are abstracted by 
edges 2 and 4. The edge offset ? indicates that the pointers may be 
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Figure 4. Concrete Reference Relations 

(d) Unrelated 

stored in any array index, while the linearity valué of co indicates 
that there may be many pointers stored in the arrays. Since there 
are múltiple pointers in the arrays pointing into the same región 
of Data objects (node 2), sharing may occur between the two 
arrays. In particular, note that edges 2 and 4 have no information to 
distinguish the different sharing properties between the edge which 
abstracts the pointers stored in array AU (which do not alias) and 
the edge which abstracts the pointers stored in array AS (which may 
alias with each other). Based on this limited information, a possible 
concrete heap layout after the initialization of AU and AS is the one 
shown in Figure 3(b), even though this particular conflguration can 
never occur in practice. A consequence of this imprecisión is that 
elements of AU are conservatively assumed to potentially alias with 
each other and thus we cannot determine from the information in 
the model that the loop on lines 7-8 can be safely parallelized. D 

3. Extensions for Sharing 
In the base heap domain, each edge represents a set of pointers or a 
variable reference. These concrete references may point to several 
objects in the región of the heap abstracted by the node that an 
abstract edge (or edges) refer to. Since each región may contain 
many objects which may or may not be in the same data structure, 
a possible question we might ask is: do any of those references 
(pointers/variables) point to the same object or into the same data 
structure? The query can refer to references that are abstracted 
via different edges (e.g., may one of the pointers stored in array 
AU alias with one of the pointers stored in array AS), or about 
references that are abstracted by the same edge (e.g., may any of 
the pointers stored in array AU alias). To answer questions of this 
type, we flrst define three predicates that describe how concrete 
references are connected/share in the heap. Then we introduce the 
abstract predicates connectivity and interference, which model the 
concrete connected/share information. 

Given a concrete región of the heap 3Í = (0,P¡,Pc), and incom-
ing references r, r' e Pc pointing to objects o,o' e O respectively, 
we define the following relation predicates on the references: 

• alias(/,r',9í) is true iff o = o' in 3Í. 

• related(r, r',3í) is true iff o / o' and o,o' are in the same 
weakly-connected component of the subgraph (0,P¡). 

• unrelated(r,/,3Í) is true iff o,o' are in different weakly-
connected components of (0,P¡). Stated in a different way, 
unrelated(/,/,9í)<^ (^alias(/,/,9í)) A (^related(/,/,9í))). 

EXAMPLE 2: Figure 4 contains several examples of the relation 
predicates. Each figure shows a región of the concrete heap, were 
O = {01,02,03,04} and P¡ = {o\ —> 02,01 —> 03}. In Figure 4(a), 
variables v\ and V2 point to the same object (Pc = {vi —> 01, V2 —> 
01}), so they alias. In Figure 4(b) v\ and V2 point to different objects 
{Pc = {vi —> 01, V2 —> 03}), but there is a path from 01 to 03, thus 
they are in the same weakly-connected component of the región 
and are related. Figure 4(c) shows a sample concrete heap where the 

two variables refer to the same structure (Pc = {v\ —> 02, V2 —> 03 }). 
Since they belong to the same weakly-connected component they 
are related according to the above definition, even though there is 
no path between them. Finally, Figure 4(d) shows an example of a 
región where v\ and V2 are unrelated because they refer to disjoint 
data structures (Pc = {vi —> 01, V2 —> 04}). D 

3.1 Abstract Sharing 

To model the concrete properties just defined, we introduce two in-
strumentation predicates, one to track relations between references 
which are abstracted by different edges in the model (connectivity), 
and one to track the relations between references which are ab
stracted by the same edge in the model (interference). 

Connectivity. Given the relation predicates in the concrete regions 
we can define a series of connectivity properties, connectivity = 
{share,connected,disjoint}, on the edges in the abstract domain. 
The concrete región 3Í and the sets of references R, R' are a valid 
concretization of the edges e and e' if: 

• if disjoint(e,e') is true, then $r e í , r ' e R' s.t. alias(r,r',3í) or 
related(r,/,3í). 

• if connected(e,e') is true, then $r e ñ / ' e R' s.t. alias(r,r',3í). 

• if share(e,e') is true, then any of the relation predicates holds 
for the references r e R, r1 e R'. 

To represent the connectivity property in the figures we extend 
the label of every edge e with a list of the identifiers of the other 
edges in the graph that it has a share or connected relation with. 
If an edge identifier e' in this list is prefixed with a "!" then 
share(e,e') holds, while if there is no prefix then they are related 
by the connected predicate; if an edge identifier e' does not appear 
in the list, we will assume that disjoint(e,e') is true. 

Interference. The interference property is closely related to the 
concept of connectivity. While the latter tracks relation predi-
cates between references that are abstracted by different graph 
edges, the interference property tracks relation predicates between 
references that are abstracted by the same graph edge. Given 
the definitions for the relation predicates in the concrete regions 
we can define a series of interference predicates, interference = 
{aliasing(ap),interfering(ip),non-interfering(np)}, on the edges in 
the abstract domain. The concrete región 9Í and the set of refer
ences R are a valid concretization of edge e if: 

• if non-interfering(e) is true, then 
alias(r,r',3í) or related(r,r',3í). 

Ír,r' e R,r / / s.t. 

• if interfering(e) is true, then $r,r' <ER,r ^r' s.t. alias(r,r',3í). 

• if share(e) is true, then any of the related predicates holds for 
the references r, r' e R. 

To represent the interference property in the figures each edge 
label is extended with one of the predicates {ap, ip, np}. 



[1, AU, 1, np, {)] [3, AS, 1, np, 0] 
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Figure 5. Graph Model With Sharing 
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Figure 6. Abstract initialization of AU. 

EXAMPLE 3: Figure 5 shows the abstract heap of Figure 3(a) 
extended with the interference and connectivity information. Ev-
ery edge is now of the form [ id , o f f s e t , l i n e a r i t y , 
i n t e r f e r e n c e , c o n n e c t i v i t y ] . The abstract references 1 
and 3 represent at most one concrete pointer -either from variable 
AU to node 1, or from variable AS to node 3-, and by deflnition can-
not interfere (thus edges 1 and 3 both have the np interference prop-
erty), and are disjoint from any other edge in the model, as indi-
cated by their empty connectivity lists. More interesting is the shar
ing information that the extended abstract domain captures about 
the relation between the arrays and the elements they contain. The 
node representing array AU (node 1) may contain many pointers to 
Data objects (abstracted by node 2), which are known not to inter
fere, and thus edge 2 is tagged as np. However, pointers abstracted 
by edge 4 might refer to the same object, since the edge is labeled 
ap. This information represents a fundamental addition to what is 
inferred by the base domain, since we now know that the pointers 
stored in AU do not alias and therefore we can safely parallelize the 
loop in lines 7 and 8 of Figure 1. Finally, the connectivity informa
tion indicates that the set of pointers abstracted by edge 2 might 
alias objects also referred to by pointers abstracted by edge 4. D 

3.2 Sharing and Abstract Semantics 

For brevity, we illustrate how the analysis simulates the effects 
of the program statements and control flow structures used in the 
motivating example and refer the reader to [1, 15] for detailed 
descriptions of the operations. The running example covers a range 
of basic operations including object allocation, storing a reference 
into memory (the versión without strong updating), memory loads 
and -since we are analyzing loops- the use of the normalization (or 
widening) operation. 

Figure 6 shows the state of the abstract heap at several key 
points during the analysis of the flrst loop (lines 2-3). During the 
flrst analysis pass through the loop body we need to model the 
allocation of the new Data object, which will be stored in the 
array AU. To accomplish this we créate a new node to represent 
this object, node 2 in Figure 7(a). Since this node abstracts a single 
object it has linearity 1, and a (S)ingleton layout. To simúlate the 
effects of the store of a reference to this object into array AU we 
créate a new edge (edge 2), which connects nodes 1 and 2. Since 
this edge represents a single pointer it is given linearity 1. Because 
by deflnition a single reference cannot interfere with itself the edge 
is labeled non-interfering (np), and since there are no other edges 
incident to node 2 we know that edge 2 is disjoint from all other 
edges. These operations result in the model shown in Figure 7(a), 
which is the approximation returned by the analysis after a flrst pass 
over the loop body. 

A second pass through the loop body results in an array of two 
distinct elements. The abstract state representing this is shown in 
Figure 6(b). The model explicitly represents the two pointers stored 
in the array with edges 2 and 3 respectively. If we continué adding 
edges in this fashion we get an infinite graph. For that reason, after 
the second analysis pass of the loop body we apply the normaliza

tion operator. Based on the determination that the sections of the 
heap graph that edges 2, 3 refer to represent similar heap structures 
(see [1,15]), the normalization operation merges nodes 2 and 3 into 
a single summary node and edges 2, 3 into a single summary edge 
shown in Figure 6(c). In this summarization, since the two edges 
end at nodes that do not have an edge between them (and thus rep
resent disjoint sections of the heap), we know that the summary 
edge represents pointers that refer to disjoint sections of the heap 
and thus abstracts unrelated pointers. Therefore, the resulting sum
mary edge is labeled np. 

Figure 6(c) shows the heap model that abstracts the program 
state at the exit of the loop. According to this model, there is a 
variable AU which points to an array of Data objects. This array, 
represented by node 2, may have many pointers stored in it, all of 
which are represented by edge 2. However, since the edge is labeled 
with the interfere property np we know that all of these pointers 
must refer to unique Data objects (i.e., they do not alias). 

We now describe how the construction of array AS, a shallow 
copy of AU, is modeled in our domain. Figure 7(a) shows the state 
of the abstract heap after the flrst analysis pass of the loop body, line 
6. The new array node pointed to by AS has a single edge (4) rep
resenting the pointer that was stored into it on line 6. Based on the 
assignment statement we know that this edge represents a pointer 
to a Data object that is also referred to by a pointer abstracted by 
edge 2. To capture this information, the analyzer updates the con
nectivity properties to indicate that a pointer abstracted by edge 4 
may alias with the pointer abstracted by edge 2 (in the concrete 
heap the share predicate may be satisfled). This information is in-
dicated in the figure with the !4 tag in the label for edge 2, and the 
!2 tag in the label for edge 4. The analyzer is able to infer that the 
store into AS[0] does not affect pointers stored in AU, thus the np 
property is not altered and since edge 4 currently abstracts a single 
pointer, it also has the np property. 

Figure 7(b) shows the model representing the abstract heap after 
the second analysis pass over the loop body. We have added edge 
5 to represent the pointer that was created by the store operation. 
The analysis has determined that there is possible sharing between 
all the edges (2, 4, 5) that point to node 2. Although taken pairwise 
these edges abstract potentially aliasing pointers, each edge indi-
vidually abstracts a set of pointers that all refer to disjoint sections 
ofthe heap. 

The normalization of this model replaces edges 4 and 5 in 
Figure 7(b) with the single summary edge 4 in Figure 7(b). Based 
on the information that edges 4 and 5 satisfy the share predicate 
-which means that there may be a pointer abstracted by edge 4 and 
a pointer abstracted by edge 5 that alias-, the analysis must assume 
that the resulting summary edge 4 in Figure 7(c) may represent 
aliasing pointers and thus is given the ap property. 

The model shown in Figure 7(c) is identifled as a safe abstrae -
tion of the program at the loop exit. The model shows that variables 
AU and AS refer to distinct arrays, each of which contains some 
number of pointers. Additionally, the model is now able to distin-
guish between the aliasing properties of the pointers stored in array 



[1, AU, 1, np, 01 [1, AU, 1, np, 0] [3, AS, 1, np, 0] [l,AU,l,np,{>] 

[ l , Data[], 1, S] 13, DataD, 1, S 

[4, ?, 1, np, {!2, 

[2, ?, ü), np, {!4,15)]" 

[ 2, Data, u), 

(b) 

np, (!2, !4)] 

Figure 7. Abstract copy of AU into AS. 

AU, all of which are known to be un-aliased with any other pointers 
in the array (edge 2 has the np label), and the pointers stored in the 
array AS, which may alias with the other pointers in the array (edge 
4 has the ap label). This allows an optimizing compiler to determine 
that the loop in lines 7-8 may be safely parallelized. Although not 
needed for parallelization, the analysis is able to determine that the 
two arrays may contain references to the same object (or objects), 
as indicated by the !2 and !4 tags in the connectivity lists. 

4. Extended Case Study: Barnes-Hutt 
In this section we look in some detail at the analysis results for the 
bh program, from the JOlden suite [3], We examine the types of 
structural and sharing information that the analysis can extract and 
how this information can be used to optimize this program. 

The bh program performs a fast-multipole algorithm on the 
gravitational interaction between a set of bodies (the Body objects) 
and uses a space decomposition tree of C e l l objects each of 
which has a V e c t o r containing references to other C e l l objects 
or references to the Body objects. The program also keeps two 
vectors for accessing the bodies, bodyTab and bodyTabRev. 
The majority of the computation in bh is done by iterating over 
each Body object and walking the space decomposition tree (the 
r o o t fleld) to determine a new acceleration valué for the Body 
object, which is then stored in the newAcc fleld: 

I t e r a t o r b = r o o t . b o d y T a b R e v . i t e r a t o r ( ) ; 
while (b . hasNext ( ) ) 

((Body) b . next ( ) ) . h ackGrav i t y ( r s i z e , r o o t ) ; 

Figure 8 shows the state of the heap model after the loop body. 
For clarity, we omit those attributes with default valúes: in the case 
of nodes, layout = (S)ingleton and linearity = 1, and in the case of 
edges, linearity = 1 and interference = np. 

Our analysis is not able to precisely resolve the construction of 
the space decomposition tree and conservatively assumes it may 
be a cyclic structure, as indicated by the (C)ycle layout valué of 
node 17, which represents the C e l l objects. However, the analysis 
is able to determine that the C e l l objects and the Body objects 
represent distinct regions in the program. The analysis is also able 
to determine a number of useful sharing properties with respect 
to how the Body objects (node 14) are stored in the two vectors 
(bodyTab and bodyTabRev) and the space decomposition tree. 
In particular, ithas assumed that the pointer from the C e l l objects 
in the space decomposition tree may have aliasing pointers (the ap 
entry in edge 18, marked in red if color is available) while there are 
no aliasing pointers in the vectors bodyTab and bodyTabRev. 
This is indicated by the omitted default interference attribute (np) of 
edges 3 and 11 abstracting these pointers. The analysis is also able 
to determine that the two vectors and the space decomposition tree 
may all point to some of the same Body objects (the (!18, !21) in 
edge 3, (!3, !18) in edge 21, and (!3, !21) in edge 18, respectively; 
these connectivity relations are marked in blue if color is available). 

The sharing information about the pointers stored in each vec
tor, combined with the observation that the space decomposition 

tree is only read in the loop body and that the only part of the heap 
which is modifled is never read (the newAcc fleld) is sufflcient to 
ensure that there is no heap-carried dependence in this loop. Thus, 
we can safely thread-parallelize the loop body, achieving a factor 
of 3.09 speedup on our quad-core test machine. 

Of interest from a memory management and code scheduling 
standpoint is the behavior of the MathVector objects, which 
are used to represent k-dimensional vectors (using an array of k 
doubles where fe is a small s t a t i c f i n a l i n t known at compile 
time). Examining the heap through the en tire program shows that 
each array is owned by a single MathVector at any time, the 
edges from the MathVector objects to the arrays are always 
non-interfering (np) (the omitted default valué), and the array nodes 
never have múltiple incoming edges from different MathVector 
nodes. This information allows us to safely inline the elements in 
the arrays directly into flelds in the MathVector objects. This 
has the beneflcial effect of increasing the data locality, removing 
many redundant loads and allowing aggressive loop scheduling, 
resulting in a 23% reduction in the runtime of the single threaded 
program, as well as reducing the size of the MathVector/Array 
composite structure object by a pointer (and the overhead of an 
array), resulting in a 37% reduction in memory usage. 

5. Benchmarks 
We have implemented a shape analyzer based on the shape pred-
icates and sharing properties presented in this paper, and evalu-
ated the effectiveness and efflciency of the analysis on programs 
from SPECjvm98 [17] and the entire non-trivial JOlden suite. The 
JOlden suite contains pointer-intensive kernels (derived from the 
Olden benchmarks [4]) that make use of recursive procedures, in-
heritance, and virtual methods. We modifled the suite to use mod-
ern Java programming idioms and addressed major concerns in the 
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Figure 9. Analysis times (in seconds) and speedups obtained us-
ing the extended, simple, and base domains. LOC is of the MIL 
program including required library stubs. 

literature [20], The benchmarks raytrace (modifled to be single-
threaded) and db are taken from SPECjvm98. 

The analyzer is written in C++ and compiled using MSVC 8.0. 
The analysis, as well as the parallelization benchmarks, were run on 
a 2.6 GHz Intel quad-core machine with 4 GB of RAM (although 
memory consumption never exceeded 160 MB). Both the analyzer 
and the benchmarks in use are publicly available [1], 

The sharing information inferred by the analysis permits identi-
fying loops and recursive calis that read from/write to disjoint sec-
tions of the heap. This allowed us to parallelize the benchmarks 
to use múltiple threads in loops and calis [9,12] to exploit the four 
cores of the test machine. The SUe column in Figure 9 shows the re-
sulting speedups by using the information of the extended domain 
described in Section 3. Two of the benchmarks (mst and db) do not 
use any algorithms that can be parallelized using the paralleliza
tion approaches in [9,12]; we mark these with NA. In all but one 
of the remaining benchmarks we are able to achieve a signiflcant 
performance improvement (up to 3.25 x on power). 

To isolate the impact that sharing has on these results, we ran 
the analysis with two alternative, simpler abstract domains: one in 
which sharing is tracked in a coarser manner [15], since there is 
no distinction between the alias and the interfere predicates, and 
one in which no sharing information is approximated. Columns 
SUS and SU¡,, respectively, show the speedups obtained by using 
the information inferred by these approaches. Run times for the 
SUS and SU¡, analysis are omitted as they were within 10% of 
the valúes for the analysis with sharing which are shown in the t 
column. The results show that the concept of sharing is critical to 
achieve results that can be used to effectively perform thread level 
parallelism transformations. Without sharing information (column 
SU¡,) a large number of the benchmarks cannot be parallelized. 
The simple sharing properties of [15] are capable of providing the 
information needed to parallelize several of the other benchmarks, 
but are unable to provide the information needed to parallelize two 
of the more complex benchmarks (bh and raytrace). 

These results are quite encouraging as many of the programs 
that we have analyzed here are well known (have been available for 
a number of years in commonly used benchmark suites) and have 
not, to the best of our knowledge, been successfully analyzed prior 
to this work. The Olden benchmark suite was introduced in 1995 
as a challenge problem to assess the effectiveness of parallelizing 
compilers and parallel architectures on programs that make exten-
sive use of dynamically allocated data structures. Our survey of the 
literature indicates that the system used in this paper is the only 
heap analysis that can identify the connectivity and sharing prop
erties needed to parallelize a number of the benchmarks (em3d, 
voronoi, bh). Similarly, the raytrace and db benchmarks included 
in SPECjvm98 have not been successfully analyzed by any other 
shape analysis technique, despite the widespread use of the suite. 

6. Related work 
A number of techniques have been developed to analyze the con
nectivity properties of the program heap. Early work on access path 
or graph based approaches with interference and reachability infor
mation [5,7,8,13] can be used to successfully analyze simple shar
ing as in the array example in this paper, but are severely limited in 
their ability to deal with recursive data structures (particularly up-
dates in these structures) and sharing properties in composite struc
tures such as those found in bh. 

More recent work has focused on the ability to precisely model 
the shapes of recursive data structures and destructive updates to 
them [2,11,19], The focus has been mostly on sharing that occurs 
internally in recursive heap structures (recursive trees of list-type 
structures). This work assumes that more complex sharing, such 
as the sharing between the two different arrays of our motivating 
example, does not occur in the program. Thus, these techniques 
cannot be applied to the program in Figure 1, even to produce 
a conservative approximation, since they lack the expressivity to 
capture this type of sharing and always assume that the objects in 
arrays/lists are unshared. 

A recent approach [10], which can analyze programs with shar
ing of objects in arrays/lists, extends the access path model in [7] 
with limited quantiflcation over the index variables in access paths. 
This technique models sharing in shallow data structures in a more 
precise manner than our domain. However, as it is based on quan
tiflcation over access paths and given the performance of the anal
ysis in the preliminary results the ability to scale the approach to 
larger programs with signiflcant amounts of sharing is uncertain. 

In [15] we introduced the base domain of Section 2, augmented 
with simple support for sharing that is able to differentiate purely 
unshared sections of the heap sections which may have some shar
ing. This is sufflcient for many simple types of heap structures, 
such as those built in em3d or tsp, but cannot precisely capture 
more complex sharing properties between the various heap struc
tures built by programs like bh or voronoi. 

7. Conclusión 
This paper focuses on modeling the sharing of data elements in 
container constructs: arrays, library collections, and recursive data 
structures. The ability to precisely represent these sharing proper
ties is critical to the precise modeling of the heap and to supporting 
a wide range of program optimization techniques. 

In this paper we showed how sharing information can be char-
acterized in the concrete heap and how this characterization can 
be used to extend an abstract heap model to precisely model these 
properties. We demonstrated the effectiveness of this approach us
ing as a case study the Barnes-Hutt (bh) benchmark, which cannot 
be analyzed with other existing heap analysis techniques. With the 
sharing (and shape) information provided by our analysis, we are 
able to achieve a 23% performance improvement in single threaded 
execution, a 37% reduction in heap usage, and a factor of 3 paral
lel speedup on a quad-core machine. We also used this informa
tion to successfully thread-level parallelize a range of well-known 
benchmark programs. In addition to providing the accurate shape 
and sharing information required to parallelize these programs, the 
analysis presented in this paper is computationally efflcient: each 
small benchmark is analyzed in less than 2s, while raytrace at 5809 
LOC takes only 37s. 

Based on these results, and the fact that the analysis (in conjunc-
tion with a simple compiler front end) is able to deal with nearly all 
the features in the Java 1.4 language, the analysis described in this 
paper is robust enough to be generally useful in the optimization 
of real-world small/medium size Java programs. We plan to con
tinué work on scaling the analysis to handle larger programs with 
the same level of precisión. 
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