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Abstract. The Set-Sharing domain has been widely used to infer at compile-
time interesting properties of logic programs such as occurs-check reduction, 
automatic parallelization, and flnite-tree analysis. However, performing abstract 
uniflcation in this domain requires a closure operation that increases the number 
of sharing groups exponentially. Much attention has been given to mitigating this 
key inefflciency in this otherwise very useful domain. In this paper we present 
a novel approach to Set-Sharing: we define a new representation that leverages 
the complement (or negative) sharing relationships of the original sharing set, 
without loss of accuracy. Intuitively, given an abstract state sh\> over the finite 
set of variables of interest V, its negative representation is p(V) \ shy. Using 
this encoding during analysis dramatically reduces the number of elements that 
need to be represented in the abstract states and during abstract uniflcation as the 
cardinality of the original set grows toward 2 . To further compress the num­
ber of elements, we express the set-sharing relationships through a set of ternary 
strings that compacts the representation by eliminating redundancies among the 
sharing sets. Our experiments show that our approach can compress the number 
of relationships, reducing signiflcantly the memory usage and running time of all 
abstract operations, including abstract uniflcation. 

1 Introduction 

In abstract interpretation [11] of logic programs sharing analysis has received consid­
erable attention. Two or more variables in a logic program are said to share if in some 
execution of the program they are bound to terms that contain a common variable. A 
variable in a logic program is said to be ground if it is bound to a term that does not 
contain free variables in all possible executions of the program. Set-Sharing is an im-
portant type of combined sharing and groundness analysis. It was originally introduced 
by Jacobs and Langen [17,19] and its abstract valúes are sets of sets of variables that 
keep track in a compact way of the sharing patterns among variables. 



Example 1 (Set-Sharing abstraction). Let V = {X-¡_, X2, X3, X4} be a set of variables. 
The abstraction in Set-Sharing of a substitution 0 = {X\ i-s- f(Ui,U2,V1,V2,W1), 
X2 „ g(VuV2,W1),X3 » giWuW^Xi » a} will be {{XJ, {XUX2}, {Xu 

X2,X3}}. Sharing group {Xi} in the abstraction represents the occurrence of run-
time variables U\ and U2 in the concrete substitution, {X1,X2} represents V\ and V2, 
and {X\,X2, X3} represents W\. Note that X4 does not appear in the sharing groups 
because X4 is ground. Note also that the number of (occurrences of) shared run-time 
variables is abstracted away. 

Set-Sharing has been used to infer several interesting properties and perform opti-
mization and veriflcation of programs at compile-time, most notably but not limited to: 
occurs-check reduction (e.g., [27]), automatic parallelization (e.g., [25,6]), and finite-
tree analysis (e.g., [2]). The accuracy of Set-Sharing has been improved by extend-
ing it with other kinds of information, the most relevant being freeness and linearity 
information [24,17,25,9,15], and also information about term structure [25,18,3,23]. 
Sharing in combination with other abstract domains has also been studied [8,14,10]. 
The signiflcance of Set-Sharing is that it keeps track of sharing among sets of vari­
ables more accurately than other abstract domains such as e.g. Pair-Sharing [27] due 
to better groundness propagation and other factors that are relevant in some of its ap-
plications [5]. In addition, Set-Sharing has attracted much attention [7,10] because its 
algebraic properties allow elegant encodings into other efflcient implementations (e.g., 
ROBDDs [4]). In [25],the flrst comparatively efflcient algorithms were presented for the 
basic operations needed for set sharing-based analyses. 

However, Set-Sharing has a key computational disadvantage: the abstract uniflca-
tion (amgu, for short) implies potentially exponential growth in the number of sharing 
groups due to the up-closure (also called star-union) operation which is the heart of 
that operation. Considerable attention has been given in the literature to reducing the 
impact of the complexity of this operation. In [29], Zaffanella et al. extended the Set-
Sharing domain for inferring pair-sharing to support widening. Although signiflcant 
efflciency gains are achieved, this approach loses precisión with respect to the origi­
nal Set-Sharing. A similar approach is followed in [26] but for inferring set-sharing in a 
top-down framework. Other relevant work was presented in [21] in which the up-closure 
operation was delayed and full sharing information was recovered lazily. However, this 
interesting approach shares some of the disadvantages of Zaffanella's widening. There-
fore, the authors reflned the idea in [20] reformulating the amgu in terms of the closure 
under unión operation, collapsing those closures to reduce the total number of closures 
and applying them to smaller descriptions without loss of accuracy. In [10] the authors 
show that the Set-Sharing domain is isomorphic to the dual negative of Pos [1], de-
noted by coPos. This insight improved the understanding of Set-Sharing analysis, and 
led to an elegant expression of the combination with groundness dependency analysis 
based on the reduced product of Sharing and Pos. In addition, this work pointed out the 
possible implementation of coPos fhrough ROBDDs leading to more efflcient imple­
mentations of Set-Sharing analyses, although this point was not investigated further. 

In this paper we introduce a novel approach to Set-Sharing: we define a new repre-
sentation that leverages the complement (or negative) sharing relationships of the orig­
inal sharing set, without loss of accuracy. Intuitively, given an abstract state shy over 
the flnite set of variables of interest V, its negative representation is p{V) \ shy. Using 



this encoding during analysis dramatically reduces the number of elements that need 
to be represented in the abstract states and during abstract uniflcation as the cardinality 
of the original set grows toward 21v I. To further compress the number of elements, we 
express the set-sharing relationships through a set of ternary strings that compacts the 
representation by eliminating redundancies among the sharing sets. It is important to 
notice that our work is not based on [10]. Although they define the dual negated posi-
tive Boolean functions, coPos does not represent the entire complement of the positive 
set. Moreover, they do not use coPos as a means of compressing relationships but as 
a way of representing Sharing through Boolean functions. We also represent Sharing 
through Boolean functions, but that is where the similarity ends. 

2 Set-Sharing Encoded by Binary Strings 

The presentation here follows that of [29,10] since the notation used and the abstract uni­
flcation operation obtained are rather intuitive, but adapted for handling binary strings 
rather than sets of sets of variables. 

Therefore, unless otherwise stated, here and in the rest of paper we will represent 
the set-sharing domain using a set of strings rather than a set of sets of variables. An 
algorithm for this conversión and examples are presented in [28]. 

Definition 1 (Binary sharing domain, bSH). Let alphabet £ = {0,1}, V be a flxed 
and flnite set of variables of interest in arbitrary order, and Sl the flnite set of all strings 
over S with length /, 0 < / < |V|. Let bSH1 = p°(Sl) be theproperpower set (i.e., 
p{Sl) \ {0} ) that contains all possible combinations over S with length /. Then, the 
binary sharing domain is deflned as bSH = \J bSH1. g 

0<í<|V| 

Let T and V be sets of ranked (i.e., with a given arity) functors of interest; e.g., the 
function symbols and the predicate symbols of a program. We will use Term to denote 
the set of terms constructed from V and FuV. Although somehow unorthodox, this will 
allow us to simply write g G Term, whether g is a term or a predicate atom, since all 
our operations apply equally well to both classes of syntactic objects. We will denote by 
i the binary representation of the set of variables of t G Term, according to a particular 
order among variables. Since i will be always used by a bitwise operation with some 
string of length /, the length of i mustbe /. If not, i is adjusted with 0's in fhosepositions 
associated with variables represented in the string but not in t. 

Definition 2 (Binary relevant sharing rel(bsh, t), irrelevant sharing irrel(bsh, t)). 
Given t G Term, the set of binary strings in bsh G bSH1 of length / that are relevant 
with respect to t is obtained by a function rel{bsh, t) : bSH1 x Term —s- bSHl deflned 
aS: rel(bsh, t) = {s | s G bsh, (s A *) + °'} 

where f\ represents the bitwise AND operation and 0' is the all-zeros string of length /. 
Consequently, the set of binary strings in bsh G bSH1 that are irrelevant with respect 
to t is a function irrel{bsh,t) : bSH1 x Term —s- bSHl where irrel{bsh,t) is the 
complement ofrel(bsh, t), i.e., bsh \ rel{bsh, t). g 



Definition 3 (Binary cross-union, &i). Given bsh\, bsh<2 G bSH1, their cross-union is 
a function &i : bSH1 x fe^ií' —s- fe^ií' deflned as 

6s/ii \$bsh2 = {s | s = si V s2, «i G 6s/ii, S2 € bsh2} 

where V represents the bitwise OR operation. g 

Definition 4 (Binary up-closure, (.)*). Let / be the length of strings in bsh G bSH1, 
then the up-closure of 5s/i, denoted 5s/i* is a function (.)* : bSH1 —s- bSH1 that 
represents the smallest superset of bsh such that s\\J s2 G 6s/i* whenever si, S2 € 
bsh*: bsh* = {s\3n>\3tl,...,tnebsh,s = tl\J ...\Jtn} 

Definition 5 (Binary abstract unification, amgu). The abstract uniflcation is a func­
tion amgu : V x Term x bSHl —• 65*if' deflned as 

amgu{x,t,bsh) = irrel(bsh,x = t) U {rel(bsh,x)\$rel(bsh,t))* m 

The design of the analysis must be completed by deflning the following abstract oper-
ations that are required by an analysis engine: init (initial abstract state), equivalence 
(between two abstract substitutions), join (deflned as the unión), and project. In the 
interest of brevity, we define only the project operation because the other three opera-
tions are trivial. We refer the reader to [28] for the rest of operations. 

Definition 6 (Binary projection, bsh\t). The binary projection is a function bsh\t: 
bSH1 x Term —s- bSHk (k < l) that removes the i-th positions from all strings (of 
length l) in bsh e bSH1, if and only if the i-th positions of i (denoted by i[i]) is 0, and 
it is deflned as bsh\t = {s' \ s e bsh, s' = TT(S, Í ) } 

where ir(s, t) is the binary string projection deflned as 

Í
e, if s = e, the empty string 

Tr(s',t), if s = S'ÜÍ andt[i] = 0 
Tr(s',t)a,i, if s = S'ÜÍ andt[i] = 1 

and s'ai is the concatenation of character a to string s' at position i. | 
3 Ternary Set-Sharing 
In this section, we introduce a more efflcient representation for the Set-Sharing domain 
deflned in Sec. 2 to accommodate a larger number of variables for analysis. We ex-
tend the binary string encoding discussed above to the ternary alphabet £* = {0,1, *} , 
where the * symbol denotes both 0 and 1 bit valúes. This representation effectively com-
presses the number of elements in the set into fewer strings without changing what is 
represented (i.e., without loss of accuracy). To handle the ternary alphabet, we redeflne 
the binary operations covered in Sec. 2. 

Definition 7 (Ternary Sharing Domain, tSH). Let alphabet £* = {0,1, *} , V be a 
flxed and flnite set of variables of interest in an arbitrary order as in Def. 1, and S{ the 
flnite set of all strings over E* with length /, 0 < / < | V|. Then, tSH1 = p°{E[) and 
henee, the ternary sharing domain is deflned as tSH = \J tSH1. g 

0<í<|V| 



Prior to deflning how to transform the binary string representation into the correspond-
ing ternary string representation, we introduce two core deflnitions, Def. 8 and Def. 9, 
for comparing ternary strings. These operations are essential for the conversión and set 
operations. In addition, they are used to eliminate redundant strings within a set and to 
check for equivalence of two ternary sets containing different strings. 

Deflnition 8 (Match, M). Given two ternary strings, x,y e Si, of length l, match is a 
function M.: Si x Si ^ B, such that Vi 1 < i < l, 

xMy = ltme'Íf (xW = y^ V (xW = *) V (yW = ^ { false, otherwise 

Deflnition 9 (SubsumecLBy (2 and SubsumedJn ^ ) . Given two ternary strings s-¡_, 
«2 € Si, (2 : Si x Si —s- B is a function such that si (Is2 if and only if every string 
matchedby si is also matchedby s-2 (s\ ®S2 -<=> Vs e tSH1, if s\M.s then s2Ms). 
For convenience, we augment this deflnition to deal with sets of strings. Given a ternary 
string s e Sl

t and a ternary sharing set, tsh e tSH1, ^ : Si x tSH1 —s- ¿3 is a function 
such that s ^|ts/i if and only if there exists some element s' etsh such that s (Ss'. g 

Figure 1 gives the pseudo code for an algorithm which converts a set of binary strings 
into a set of ternary strings. The function Convert evaluates each string of the input and 
attempts to introduce * symbols using PatternGenerate, while eliminating redundant 
strings using ManagedGrowth. 

PatternGenerate evaluates the input string bit-by-bit to determine where the * sym-
bol can be introduced. The number of * symbols introduced depends on the sharing set 
represented and fe, the desired minimum number of specifled bits, where 0 < fe < l (the 
string length). For a given set of strings of length l, parameter fe controls the compres-
sion of the set. For fe = l (all bits specifled), there is no compression and tsh = bsh. 
For a non-empty bsh, fe = 1 introduces the máximum number of * symbols. For now, 
we will assume that fe = 1, and experimental results in Sec. 5 shows the best overall fe 
valué for a given l. The Specified function returns the number of specifled bits (0 or 1) 
in x. 

ManagedGrowth checks if the input string y subsumes other strings from tsh. If no 
redundant string exists, then y is appended to tsh only if y itself is not redundant to an 
existing string in tsh. Otherwise, y replaces all the redundant strings. 

Example 2 (Conversión from bSH to tSH). Assume the following sharing set of binary 
strings bsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string represen­
tation producedby applying Convert is tsh ={100*, 0010, 010*, *001}. 

Deflnition 10 (Ternary-or \J and Ternary-and / \ ) . Given two ternary strings, i , ¡ / e 
Si of length l, ternary-or and ternary-and are two bitwise-or functions deflned as 
\/, f\ : Si x Si ^ Si such that z = x\Jy and w = x f\y, V¿ 1 < i < l, where: 

* if (x[i] = * A y[i] = *) 
Oif (x[{\ =0Aj/[«j = 0 ) 
1 otherwise 

* if (x[i] = * A y[i] = *) 
1 if (x[{\ = lAy[«] = 1) 

V (x[i\ = ÍAy[i] = *) 
V (x[í\ = *Ay[í\ = 1) 

0 otherwise 



0 Convert(6s/i, k) 
1 tsh^0 
2 foreach s e bsh 
3 y <— PatternGenerate(ís/i, s, k) 
4 ís/i <— ManagedGrowth(ís/i,j/) 
5 return ís/i 
6 ManagedGrowth(ís/i,j/) 
7 5^ = {s | s e ís/i, s &/} 
8 if Sy = 0 then 
9 if Í /f ís/ i then 
10 append y to ís/i 
11 else 
12 remove Sy from tsh 
13 append y to tsh 
14 return ís/i 

15 PatternGenerate(ís/i,a;,fc) 
16 m <— Specified(a;) 
1 7 ¿ ^ 0 
18 a;' < - a; 
19 l <— lengthix) 
20 while m > k and ¿ < Z 
21 Let 6¿ be the valué of a;' at position i 
22 if 6¿ = 0 or bi = 1 then 
23 x' <— a;' with position ¿ replaced by 6¿ 
24 ifa;'? ís/i then 
25 a;' <— a;' with position ¿ replaced by * 
26 else 
27 x' <— a;' with position ¿ replaced by 6¿ 
28 m <- Specified(a;') 
29 i <- i + 1 
30 return a;' 

Fig. 1. A deterministic algorithm for converting a set of binary strings bsh into a set of ternary 
strings tsh, where k is the desired minimum number of specifled bits (non-*) to remain 

Definition 11 (Ternary set intersection, n ) . Given tsh\, tsh-2 G tSH1, n : tSH1 x 

tSH1 -^ tSH1 is deflned as 
tshi n tsh2 = {r\r = sí f\ s2, slMs2, si G tshí, s2 G tsh2} | 

For convenience, we define two binary patterns, 0-mask and 1 -mask, in order to sim-
plify further operations. The former takes an Z-length binary string s and returns a set 
with a single string having a 0 where s[i] = 1 and *'s elsewhere, V¿ 1 < i < l. The latter 
also takes an Z-length binary string s, but returns a set of strings with a 1 where s [i] = 1 
and *'s elsewhere, V¿ 1 < i < l. For instance, O-mask(OllO) and 1 -mask(OHO) return 
{*00*} and {*1 * *, * * 1*}, respectively. 

Definition 12 (TernaryrelevantsharingreZ(ts/i, t),irrelevantsharing¿rreZ(ts/i, t)). 
Given t G Term with length l and tsh G tSH1 with strings of length l, the set of 
strings in tsh that are relevant with respect to t is obtained by a function rel(tsh, t) : 
tSH1 x Term -*• tSH1 defined as 

rel(tsh,t) =tsh D 1-mask(í) 

In addition, irrel{tsh,t) is defined as 

irrel{tsh,t) = (tsh n 1-mask(í)) nO-mask(í) • 
Ternary cross-union, KI, and ternary up-closure, (.)*, operations are as defined in Def. 3 
and in Def. 4, respectively, except the binary versión of the bitwise OR operator is 
replaced with its ternary counterpart defined in Def. 10 in order to account for the * 
symbol. In addition, the ternary abstract unification (amgu) is defined exactly as the 
binary versión, Def.5, using the corresponding ternary definitions. 

Example 3 (Ternary abstract unification). Let tsh = {100*, 010*, 0010, *001} as in 
Example 2. Consider again the analysis of X\ = / (X 2 , X3), the result is: 



A = rel{tsh,X-i) ={100*} 
B = rel(tsh,f(X2,X3)) = {010*, 0010} 
A®B ={110*, 101*} 
(AtsB)* = {110*, 101*, 111*} 
C = irrel(tsh,X1=f(X2,X3)) ={0001} 
amgu(Xí, f(X2,X3),tsh) = C U (AwB)* = {0001,110*, 101*, 111*} 

Here briefly, we describe the ternary projection. The other ternary operations required 
by any analysis framework can be be found in [28]. The ternary projection, tsh\t, 
is deflned similarly as binary projection, see Def. 6. However, the projection domain 
and range is extended to accommodate the * symbol. For example, let tsh = {100*, 
010*, 0010, *001} as in Example 2. Then, the projection of tsh over the term t = 
/ ( X i , X 2 , X 3 ) is tsh\t = {100, 010, 001}. Note that since all zeros is meaningless in 
a set-sharing representation, it is not included here. 

4 Negative Ternary Set-Sharing 

In this section, we extend the use of the ternary representation discussed in the previous 
section.1 In certain cases, a more compact representation of sharing relationships among 
variables can be captured equivalently by working with the complement (or negative) 
set of the original sharing set. A ternary string t can either be in or not in the set tsh e 
tSH. This mutual exclusivity together with the flniteness of V allows for checking í's 
membership in tsh by asking if t is in tsh, or, equivalently, if t is not in its complement, 
tsh. The same reasoning is applicable to binary strings (Le., bSH). Given a set of l-
bit binary strings, its complement or negative set contains all the /-bit ternary strings 
not in the original set. Therefore, if the cardinality of a set is greater than half of the 
máximum size (Le., 2lvl~1), then the size of its complement will not be greater than 
2lv l_ 1 . It is this size differential that we exploit. In Set-Sharing analysis, as we consider 
programs with larger numbers of variables of interest, the potential number of sharing 
groups grows exponentially toward 2^, whereas the number of sharing groups not in 
the sharing set decreases toward 0. 

The idea of a negative set representation and its associated algorithms extends the 
work by Esponda et al. in [12,13]. In that work, a negative set is generated from the 
original set in a similar manner to the conversión algorithms shown in Figs. 1 and 2. 
However, they produce a negative set with unspecifled bits in random positions and with 
less emphasis on managing the growth of the resulting set. The technique was originally 
introduced as a means of generating Boolean satisflability (SAT) formulas where, by 
leveraging the difflculty of flnding solutions to hard SAT instances, the contents of 
the original set are obscured without using encryption [12]. In addition, these hard-
to-reverse negative sets are still able to answer membership queries efflciently while 
remaining intractable to reverse (Le., to obtain the contents of the original set). In this 
paper, we are not interested in this security property, but use the negative approach 
simply to address the efflciency issues faced by traditional Set-Sharing domain. 

1 Note that we could have also used the binary representation described in Sec. 2 but we chose 
the ternary encoding in order to achieve more compactness. 



0 NegConvert(s/i, k) 
1 tnsh <— li 
2 foreach í € s / i 
3 tnsh <— De\e\e(tnsh, t, k) 
4 return tnsh 

0 NegConvertMissing(6s/i,fc) 
1 tnsh <- 0 
2 6ns/i <— W \ 6s/i 
3 foreach í e bnsh 
4 íns/ i <— lnsert(íns/i, t, k) 
5 return íns/i 

10 De\eXe(tnsh,x,k) 
11 Dx<-Vt e tnsh,xMt 
12 tnsh' <— íns/i with P^ removed 
13 foreach y e Pz 
14 foreach unspecifled bit position q¿ of y 
15 
16 
17 íns/i' 
18 return tnsh' 

if 6¿ (the íth bit of a;) is specifled, then 
y' <— Í/ with position q¿ replaced by 6¿ 

lnsert(íns/i',í/',fc) 

20 lnsert(íns/i,a;,fc) 
21 m <— Specified(a;) 
22 if m < k then 
23 P <— select (fc — m) unspecifled bit positions in x 
24 Vp <— every possible bit assignment of length \P\ 
25 foreach v e Vp 
26 Í/ <— a; with positions P replaced by v 
27 íns/i' <— ManagedGrowth(íns/i,j/) 
28 else 
29 3/ <— PatternGenerate(íns/i,a;,fc) 
30 tnsh' <— ManagedGrowth(íns/i,j/) 
31 return tnsh' 

Fig.2. NegConvert, NegConvertMissing, Delete and Insert algorithms used to transformpos-
itive to negative representation; k is the desired number of specifled bits (non-*'s) to remain 

The conversión to the negative set can be accomplished using the two algorithms 
shown in Figure 2. NegConvert uses the Delete operation to remove input strings of 
the set sh íromlA, the set of all /-bit strings U = {*'}, and then, the Insert operation 
to return U\ sh which represents all strings not in the original input. Alternatively, 
NegConvertMissing uses the Insert operation directly to append each string missing 
from the input set to an empty set resulting in a representation of all strings not in the 
original input. Although as shown in Table 1 both algorithms have similar complexities, 
depending on the size of the original input it may be more efflcient to flnd all the strings 
missing from the input and transform them with NegConvertMissing, rather than ap-
plying NegConvert to the input directly. Note that the resulting negative set will use 
the same ternary alphabet described in Def. 7. For clarity, we will denote it by tNSH 
such that tNSH = tSH. 

For simplicity, we describe only NegConvert since NegConvertMissing uses the 
same machinery. Assume a transformation from bsh to tnsh calling NegConvert with 
k = 1. We begin with tnsh = IÁ = {****} (line 1), then incrementally Delete each 
element of bsh from tnsh (line 2-3). Delete removes all strings matched by x from 



Table 1. Summary of conversions: /-length strings; a = \Result\ • l; if m < k then 6 = k — m 
else 5 = 0, where m = minimum specifled bits in entire set, k = number of specifled bits 
desired; bnsh = U\ bsh; (3 = O (2 ) time to flnd bnsh 

Transformation 
bSH - • tSH 
bSH/tSH - • tNSH 
tNSH - • tSH 
bSH -+ tNSH 

Time Complexity 
0(\bsh\al) 
0(\bsh\a(a2* +1) ) 
o(\tnsh\a(a2" +1) ) 
0(f3+\bnsh\(a2* + 1)) 

Size Complexity 
0(\bsh\) 
0(\tnsh\(l - 171)2") 
0(\tsh\(l - m)2b) 
0(\bnsh\2") 

tnsh (line 11-12). If the set of matched strings, Dx, contains unspecifled bit valúes (* 
symbols), then all string combinations not matching x must be re-inserted back into 
tnsh (line 13-17). Each string y' not matching x is found by setting the unspecifled 
bit to the opposite bit valué found in x[i] (line 16). Then, Insert ensures string y' has 
at least k specifled bits (line 22-26). This is done by specifying k — m unspecifled 
bits (line 23) and appending each to the result using ManagedGrowth (line 24-26). If 
string x already has at least k specifled bits, then the algorithm attempts to introduce 
more * symbols using PatternGenerate (line 28) and appends it while removing any 
redundancy in the resulting set using ManagedGrowth (line 29). 

Example 4 (Conversión from bSH to tNSH). Consider the same sharing set as in Ex-
ample 2: bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative ternary string rep-
resentation is generated by applying the NegConvert algorithm to obtain {0000,11**, 
1*1*, *11*, **11}. Since a string of all 0's is meaningless in a set-sharing representa-
tion, it is removed from the set. Thus, tnsh = {11**, 1*1*, *11*, **11}. 

NegConvertMissing would return the same result for Example 4, and, in general, an 
equivalent negative representation. Table 1 illustrates the different transformation func-
tions and their complexities for a given input. Transformation bSH —• tSH can be per-
formed by the Convert algorithm described in Fig. 1. Transformations bSH/tSH —• 
tNSH and bSH —s- tNSH are done by NegConvert and NegConvertMissing, re-
spectively. Both transformations show that we can convert a positive representation into 
negative with corresponding difference in time and memory complexity. Depending on 
the size of the original input we may prefer one transformation over another. If the input 
size is relatively small, less than 50% of the máximum size, then NegConvert is of-
ten more efflcient than NegConvertMissing. Otherwise, we may prefer to insert those 
strings missing in the input set. In our implementation, we continuously track the size 
of the relationships to choose the most efflcient transformation. Finally, transformation 
tNSH —s- tSH is performed by NegConvert to revert back to the ternary positive 
from a negative representation. 

Consider now the same set of variables and order among them as in Example 4 but 
with a slightly different set of sharing groups encoded as bsh = {1000, 1100, 1110} 
or tsh = {1*00, 1110}. Then, a negative ternary string representation produced by 
NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01*}. This example shows 
that the number of elements, or size, of the negative result can be greater than the pos­
itive, \tnsh\ = 6 > \bsh\ = 3 and \tsh\ = 2, unlike Example 4 where \bsh\ = 6, 



and \tnsh\ = 4 < \bsh\. As the size of \bsh\ increases, the complement set that the 
negative must represent (2lvl - \bsh\) decreases. This illustrates how selecting the ap-
propriate set-sharing representation affects the size of the converted result. Thus, the 
size of the original sharing set at speciflc program points will be used by the analysis 
to produce the most compact working set. The negative sharing set representation al-
lows us to represent more variables of interest enabling larger problem instances to be 
evaluated. 

We now define the negative abstract unification operations, along with key ancillary 
operations required by our engine to use the negative representation. 

Definition 13 (Negative relevant sharing and irrelevant sharing). Given t G Term 
and tnsh e tNSH1 with strings of length /, the set of strings in tnsh that are negative 
relevant with respect to t is obtained by a function rel{tnsh, t) : tNSH1 x Term —s-
tNSH1 defined as: 

rel(tnsh,t) = tnshC\ O-mask(í), 
In addition, irrel{tnsh, t) is defined as: 

irrel(tnsh,t) = tnshC\ l -mask(í) . 
where ñ = U and defined in [13]. • 

Because the negative representation is the complement, it is not only more compact for 
large positive set-sharing instances, but also, and perhaps more importantly, it enables 
us to use inverse operations that are more memory- and computationally efficient than 
in the positive representation. However, the negative representation does have its lim-
itations. Certain operations that are straightforward in the positive representation are 
A/7>-Hard in the negative representation [12,13]. 

A key observation given in [12] is that there is a mapping from Boolean formulas 
to the negative set-sharing domain such that finding which strings are not represented 
is equivalent to finding satisfying assignments to the corresponding Boolean formula. 
This is known to be an A/"P-Hard problem. As mentioned before, this fact is exploited 
in [12] for privacy enhancing applications. In [28] we show that negative cross-union, 
«, is A/7>-Complete. 

Due to the interdependent nature of the relationship between the elements of a neg­
ative set, it is unclear how a precise negative cross-union can be accomplished without 
going through a positive representation. Therefore, we accomplish the negative cross-
union by first identifying the represented positive strings and then applying cross-union 
accordingly. Rather than iterating through all possible strings in U and performing 
cross-union on strings not in tnsh, we achieve a more efficient negative cross-union, &, 
by converting tnsh to tsh first, i.e., using NegConvert from Table 1 and performing 
ternary cross-union on strings t e tsh. In this way, the ternary representation continúes 
to provide a compressed representation of the sharing set. Note that the negative up-
closure operation, *, suffers the same drawback as cross-union. Therefore, it is handled 
the same way as negative cross-union. 

Definition 14 (Negative unión, U). Given two negative sets with same length strings, 
tnsh\ and tnsh2, the Negative Union returns a negative set representing the set unión 
oítnshi Ütnsh2, and is defined in [13] as: 
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tnshi U tnshi = {z\(xJVÍy) => z = x f\y,x G tnsh\, y G tnsh^} 

where /\ is the ternary AND operator. g 

Definition 15 (Negative abstract unification, amgu). The negative abstract unifica-
tion is a function amgu : V x Term x tNSH1 —s- tNSH1 deflned as 

amgu{x,t,tnsh) = irrel(tnsh,x = t) U (rel(tnsh,x) \$ rel(tnsh,t)) , 

Example5 (Negative abstract unification). Let tnsh = {11**, 1*1*, *11*, **l l}be 
the same sharing set as inExample4. Considerthe analysis of X\ = / (X 2 ,X 3 ) : 

A = rd(tnsh,Xi) 
B = rd(tnsh,f(X2,X3)) 
AEB 
(AEBf 
C = irrel {tnsh, Xx = f(X2,X3)) 

= {11**,1*1*,*11*,**11,0***} 
= {11 * *, 1 * 1*, *11*, * * 11, *00*} 
= {00 * *, 01 * *, 0 * 0*, *00*} 
= {01 **,0* 1*,100*} 
= {11 * *, 1 * 1*, *11*, * * 11,1 * **, 

*1 * *, * * 1*} 
= {1 * **, *1 * *, * * 1*} 

amguiXx,f(X2,X3), tnsh) = CD(AgB) ' = {01 * *, 0 * 1*, 0 * *0,100*} 

Here, we define the negative projection and refer the reader to [28] for the remaining 
operations: 

Definition 16 (Negative projection, tnsh\t). The negative projection is a function 
tnsh\t: tNSH1 x Term —s- tNSHk (k < l) that selects elements oítnsh projected 
onto the binary representation of t e Term, and is defined as 

tnsh\t = W(tnsh, Tt), 

Tt = positions where i[i] = 1, Vil < i < l and Negative Project W as defined in [13]. • 

We find that the resulting negative set will contain strings that have a bit valué projected 
in column(s) specified by T if and only if all possible binary combination of all strings 
created with the projected column(s) appear in the negative set. For example, given 
tnsh = {000, 011, 10*, n*},ÜiQWr=i,2(tnsh) = {10, 11}. 

5 Experimental Resulte 

We developed a proof-of-concept implementation to measure experimentally the rela-
tive efficiency in terms of running time and memory usage obtained with the two new 
representations, tSH and tNSH. Our first objective is to study the implications of 
the conversions in the representation for analysis. Note that although both tSH and 
tNSH do not imply a loss of precisión, the sizes of the resulting representations and 
their conversión times can vary significantly from one to another. An essential issue is 
to determine experimentally the best overall k parameter for the conversión algorithms. 
Second, we study the core abstract operation of the traditional set-sharing, amgu, under 
two different metrics. One is the running time to perform the abstract unification. The 
other metric expresses the memory usage through the size of the representation in terms 
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Fig.3. Compression level after conversions from bSH to tSH and tNSH for k = 1, 4, 7 & 10 

of number of strings during key steps in the uniflcation. All experiments have been con-
ducted on an Intelfi Core™ Dúo CPU T2350 at 1.86GHz with 1GB of RAM running 
Ubuntu 7.04, and were performed with 12-bit strings since we consider this valué large 
enough to show all the relevant features of our approach. In general, within some upper 
bound, the more variables considered the better the expected efflciency. 

The flrst experiment determines the best k valué suitable for the conversión algo-
rithms, shown in Figs. 1 and 2. We submit a set of 12-bit strings in random order using 
different k valúes. We evalúate size of the output (see Fig. 3) for a given k valué. As 
expected, bSH (x = y line) results in no compression; tSH slowly increases with in-
creasing input size, remaining below bSH (for k = 7 and k = 10) due to the compres­
sion provided by the * symbol and by having little redundancy; tNSH, the complement 
set, starts larger than bSH but quickly tapers off as the input size increases past 50% 
of \U\. Since the k parameter helps determine the minimum number of specifled bits in 
the set, there is a direct relationship between the k parameter and the size of the output 
due to compression by the * symbol. A smaller k valué, Le., k = 1, introduces the máx­
imum number of * symbols in the set. However, for a given input, a small k valué does 
not necessarily result in the best compression factor (see k = 1 of Fig. 3). This result 
may be counter-intuitive, but it is due to the potentially larger number of unmatched 
strings that must be re-inserted back into the set determined by all the strings that must 
be represented by the converted result, see line 13-17 of Fig. 2. In addition, a small k 
valué results in a set with more ternary strings than the number of binary strings repre­
sented. This occurs when múltiple ternary strings, none of which subsumes any other, 
represent the same binary string. This redundancy in the ternary representation is not 
prevented by ManagedGrowth, and is apparent in Fig. 3 when \tSH\ and \tNSH\ ex-
ceed the máximum size of binary sharing relationships (Le., 4096). One way to reduce 
the number of redundant strings is to sort the binary input by Hamming distance before 
conversión. In the subsequent tests, sorting was performed to maximize compression. 
We have found empirically that a k setting near (or slightly larger than) 1/2 is the best 



Fig.4. Memory usage (avg. # of strings) and time normalized for conversions with k = 7 

overall valué considering both the result size and time complexity. We use k = 7 in 
the following experiments. It is interesting to note that a k valué of ¿ogr2(0 results in 
polynomial time conversión of the input (see the Complexity column of Table 1) but it 
may not result in the máximum compression of the set (see k = 4 of Fig. 3). Therefore, 
k may be adjusted to produce results based on acceptable performance level depending 
on which parameter is more important to the user, the level of compression (memory 
constraints) or execution time. 

Our second experiment shows the comparison in terms of memory usage (Fig. 4, 
left) and running time (Fig. 4, right) of the conversión algorithms for transforming an 
initial set of binary strings, bSH, into its corresponding set of ternary strings, tSH, or 
its complement (negative), tNSH. We generated random sets of binary strings (over 
30 runs) using k = 7 and we converted the set of binary strings using the Convert 
algorifhm described in Fig. 1 for tSH, and NegConvertMissing in Fig. 2 for tNSH. 
The plot on the left shows that the number of positive ternary strings,|íS'ií|, used for 
encoding the input binary strings always remains below \bSH\, and this number ul­
ereases slowly with increasing input size. It important to notice that for large valúes of 
\bSH\, tSH compaets worse than expected and the compression factor is lower. The 
main cause is the use of the parameter k = 7 that implies only the use of 5 or less 
* symbols for compression. Conversely, the number of negative sharing relationships, 
\tNSH\, is greater than \bSH\ and \tSH\ up to between 40% and 50%, respectively. 
However, when the load exceeds fhose fhresholds tNSH compresses much better than 
its alternatives. For instance, for the máximum number of binary sharing relationships, 
tNSH compresses them to only one negative string. On the other hand, the rightmost 
plot shows the average time consumed over 30 runs for both conversión algorithms. 
Again, tNSH scales better than the positive ternary solution, tSH, after a threshold 
established around 50% of the máximum number of binary sharing relationships. Our 
proof-of-concept implementation is not really optimized, since our objective is to study 
the relative performance between the fhree representations, and thus times are normal­
ized to the range [0,1]. We argüe that comparisons that we report between representa­
tions are fair since the three cases have been implemented with similar efflciency, and 
useful since the absolute performance of the base representation is well understood. 

Finally, our third experiment shows the efflciency in terms of the memory usage (in 
Fig. 5, left) and running time (in Fig. 5, right) when performing the abstract unifleation 
for k = 7. Several characteristics of the abstract unifleation influence the memory us­
age and its performance. Given an arbitrary set of variables of interest V (|V| = 12), 



Fig. 5. Memory usage (avg. # of strings) and time normalized for amgu over 30 runs with k = 7 

we constructed x e V by selecting one variable and t e Term, as a term consisting 
of a subset of the remaining variables, Le., V \ {x}. We tested with different valúes 
of t. Another important aspect is the input sharing set, bSH. Again, we reduced the 
influence of this factor by generating randomly 30 different sets. In the leftmost plot, 
the x-axis illustrates the number of input binary strings considered during the amgu. 
In the case of the positive and negative ternary amgu, the input binary strings were 
flrst converted to their corresponding compressed representations. The y-axis shows the 
number of strings after the uniflcation. The plot shows that exceeding a threshold lower 
than 500 in the number of input binary sharing relationships, both tSH and tNSH 
yield a signiflcant smaller number of strings than the binary solution after uniflcation. 
Moreover, when the number of the input binary strings is smaller than 50% of its máx­
imum valué, tSH compresses more efflciently than tNSH. However, if this valué is 
exceeded then this trend is reversed: the negative encoding yields a better compression 
as the cardinality of the original set grows toward 2lvL The rightmost plot shows the 
size of the random binary input sets in the x-axis, and the average time consumed for 
performing the abstract uniflcation in its y-axis, normalized again from 0 to 1. This 
graph shows that the execution times behave similarly to the memory usage during ab­
stract uniflcation. Both tSH and tNSH run much faster than bSH. The differences are 
signiflcant (a factor of 10) for most x-values, reaching a factor of 1000 for large valúes 
of \bSH\. When the load exceeds a 50 - 60%-fhreshold, tNSH scales better than tSH 
by a factor of 10. The main difference with respect to the memory usage depicted in the 
leftmost plot is that for a smaller load, tSH runs as fast as tNSH during uniflcation. 
The main reason is that the ternary relevant and irrelevant sharing operations are less 
efflcient than their negative counterparts, Le., intersection is an expensive operation in 
the positive whereas negative intersection is very efflcient (positive unión). 

6 Conclusions 

We have presented a novel approach to Set-Sharing that leverages the complement (neg­
ative) sharing relationships of the original sharing set, without any loss of accuracy. In 
this work, we based the negative representation on ternary strings. We also showed 
that the same ternary representation can be used as a positive encoding to efflciently 
compact the original binary sharing set. This provides the user the option of work-
ing with whichever set sharing representation is more efflcient for a given problem 
instance. 



The capabilities of our negative approach to compress sharing relationships are or-
thogonal to the use of the ternary representation. Henee, the negative relationships may 
be encoded using other representations such as BDDs [16]. Concretely, Zero-suppressed 
BDDs [16] are particularly interesting because they were designed to represent sets of 
combinations (Le., sets of sets). In addition, ZBDDs may be also applicable to similar 
sharing-related analyses in object-oriented languages (e.g., [22]). 

Our experimental evaluation has shown that our approach can reduce signiflcantly 
the memory usage of the sharing relationships and the running time of the abstract 
operations, including the abstract unifleation. Our experiments also show how to set 
up key parameters in our algorithms in order to control the desired compression and 
time complexities. We have shown that we can obtain a reasonable compression in 
polynomial time by tuning appropriately those parameters. Thus, we believe our results 
can contribute to the practical, scalable application of Set-Sharing. 
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