
Negative Ternary Set-Sharing

Eric Trias,1'2' Jorge Navas,1 Elena S. Ackley,1 Stephanie Forrest1,
and M. Hermenegildo1'3

1 University of New México, USA
2 Air Forcé Institute of Technology, USA

3 Technical U. of Madrid (Spain) and IMDEA-Software

Abstract. The Set-Sharing domain has been widely used to infer at compile-
time interesting properties of logic programs such as occurs-check reduction,
automatic parallelization, and flnite-tree analysis. However, performing abstract
uniflcation in this domain requires a closure operation that increases the number
of sharing groups exponentially. Much attention has been given to mitigating this
key inefflciency in this otherwise very useful domain. In this paper we present
a novel approach to Set-Sharing: we define a new representation that leverages
the complement (or negative) sharing relationships of the original sharing set,
without loss of accuracy. Intuitively, given an abstract state sh\> over the finite
set of variables of interest V, its negative representation is p(V) \ shy. Using
this encoding during analysis dramatically reduces the number of elements that
need to be represented in the abstract states and during abstract uniflcation as the
cardinality of the original set grows toward 2 . To further compress the num­
ber of elements, we express the set-sharing relationships through a set of ternary
strings that compacts the representation by eliminating redundancies among the
sharing sets. Our experiments show that our approach can compress the number
of relationships, reducing signiflcantly the memory usage and running time of all
abstract operations, including abstract uniflcation.

1 Introduction

In abstract interpretation [11] of logic programs sharing analysis has received consid­
erable attention. Two or more variables in a logic program are said to share if in some
execution of the program they are bound to terms that contain a common variable. A
variable in a logic program is said to be ground if it is bound to a term that does not
contain free variables in all possible executions of the program. Set-Sharing is an im-
portant type of combined sharing and groundness analysis. It was originally introduced
by Jacobs and Langen [17,19] and its abstract valúes are sets of sets of variables that
keep track in a compact way of the sharing patterns among variables.

Example 1 (Set-Sharing abstraction). Let V = {X-¡_, X2, X3, X4} be a set of variables.
The abstraction in Set-Sharing of a substitution 0 = {X\ i-s- f(Ui,U2,V1,V2,W1),
X2 „ g(VuV2,W1),X3 » giWuW^Xi » a} will be {{XJ, {XUX2}, {Xu

X2,X3}}. Sharing group {Xi} in the abstraction represents the occurrence of run-
time variables U\ and U2 in the concrete substitution, {X1,X2} represents V\ and V2,
and {X\,X2, X3} represents W\. Note that X4 does not appear in the sharing groups
because X4 is ground. Note also that the number of (occurrences of) shared run-time
variables is abstracted away.

Set-Sharing has been used to infer several interesting properties and perform opti-
mization and veriflcation of programs at compile-time, most notably but not limited to:
occurs-check reduction (e.g., [27]), automatic parallelization (e.g., [25,6]), and finite-
tree analysis (e.g., [2]). The accuracy of Set-Sharing has been improved by extend-
ing it with other kinds of information, the most relevant being freeness and linearity
information [24,17,25,9,15], and also information about term structure [25,18,3,23].
Sharing in combination with other abstract domains has also been studied [8,14,10].
The signiflcance of Set-Sharing is that it keeps track of sharing among sets of vari­
ables more accurately than other abstract domains such as e.g. Pair-Sharing [27] due
to better groundness propagation and other factors that are relevant in some of its ap-
plications [5]. In addition, Set-Sharing has attracted much attention [7,10] because its
algebraic properties allow elegant encodings into other efflcient implementations (e.g.,
ROBDDs [4]). In [25],the flrst comparatively efflcient algorithms were presented for the
basic operations needed for set sharing-based analyses.

However, Set-Sharing has a key computational disadvantage: the abstract uniflca-
tion (amgu, for short) implies potentially exponential growth in the number of sharing
groups due to the up-closure (also called star-union) operation which is the heart of
that operation. Considerable attention has been given in the literature to reducing the
impact of the complexity of this operation. In [29], Zaffanella et al. extended the Set-
Sharing domain for inferring pair-sharing to support widening. Although signiflcant
efflciency gains are achieved, this approach loses precisión with respect to the origi­
nal Set-Sharing. A similar approach is followed in [26] but for inferring set-sharing in a
top-down framework. Other relevant work was presented in [21] in which the up-closure
operation was delayed and full sharing information was recovered lazily. However, this
interesting approach shares some of the disadvantages of Zaffanella's widening. There-
fore, the authors reflned the idea in [20] reformulating the amgu in terms of the closure
under unión operation, collapsing those closures to reduce the total number of closures
and applying them to smaller descriptions without loss of accuracy. In [10] the authors
show that the Set-Sharing domain is isomorphic to the dual negative of Pos [1], de-
noted by coPos. This insight improved the understanding of Set-Sharing analysis, and
led to an elegant expression of the combination with groundness dependency analysis
based on the reduced product of Sharing and Pos. In addition, this work pointed out the
possible implementation of coPos fhrough ROBDDs leading to more efflcient imple­
mentations of Set-Sharing analyses, although this point was not investigated further.

In this paper we introduce a novel approach to Set-Sharing: we define a new repre-
sentation that leverages the complement (or negative) sharing relationships of the orig­
inal sharing set, without loss of accuracy. Intuitively, given an abstract state shy over
the flnite set of variables of interest V, its negative representation is p{V) \ shy. Using

this encoding during analysis dramatically reduces the number of elements that need
to be represented in the abstract states and during abstract uniflcation as the cardinality
of the original set grows toward 21v I. To further compress the number of elements, we
express the set-sharing relationships through a set of ternary strings that compacts the
representation by eliminating redundancies among the sharing sets. It is important to
notice that our work is not based on [10]. Although they define the dual negated posi-
tive Boolean functions, coPos does not represent the entire complement of the positive
set. Moreover, they do not use coPos as a means of compressing relationships but as
a way of representing Sharing through Boolean functions. We also represent Sharing
through Boolean functions, but that is where the similarity ends.

2 Set-Sharing Encoded by Binary Strings

The presentation here follows that of [29,10] since the notation used and the abstract uni­
flcation operation obtained are rather intuitive, but adapted for handling binary strings
rather than sets of sets of variables.

Therefore, unless otherwise stated, here and in the rest of paper we will represent
the set-sharing domain using a set of strings rather than a set of sets of variables. An
algorithm for this conversión and examples are presented in [28].

Definition 1 (Binary sharing domain, bSH). Let alphabet £ = {0,1}, V be a flxed
and flnite set of variables of interest in arbitrary order, and Sl the flnite set of all strings
over S with length /, 0 < / < |V|. Let bSH1 = p°(Sl) be theproperpower set (i.e.,
p{Sl) \ {0}) that contains all possible combinations over S with length /. Then, the
binary sharing domain is deflned as bSH = \J bSH1. g

0<í<|V|

Let T and V be sets of ranked (i.e., with a given arity) functors of interest; e.g., the
function symbols and the predicate symbols of a program. We will use Term to denote
the set of terms constructed from V and FuV. Although somehow unorthodox, this will
allow us to simply write g G Term, whether g is a term or a predicate atom, since all
our operations apply equally well to both classes of syntactic objects. We will denote by
i the binary representation of the set of variables of t G Term, according to a particular
order among variables. Since i will be always used by a bitwise operation with some
string of length /, the length of i mustbe /. If not, i is adjusted with 0's in fhosepositions
associated with variables represented in the string but not in t.

Definition 2 (Binary relevant sharing rel(bsh, t), irrelevant sharing irrel(bsh, t)).
Given t G Term, the set of binary strings in bsh G bSH1 of length / that are relevant
with respect to t is obtained by a function rel{bsh, t) : bSH1 x Term —s- bSHl deflned
aS: rel(bsh, t) = {s | s G bsh, (s A *) + °'}

where f\ represents the bitwise AND operation and 0' is the all-zeros string of length /.
Consequently, the set of binary strings in bsh G bSH1 that are irrelevant with respect
to t is a function irrel{bsh,t) : bSH1 x Term —s- bSHl where irrel{bsh,t) is the
complement ofrel(bsh, t), i.e., bsh \ rel{bsh, t). g

Definition 3 (Binary cross-union, &i). Given bsh\, bsh<2 G bSH1, their cross-union is
a function &i : bSH1 x fe^ií' —s- fe^ií' deflned as

6s/ii \$bsh2 = {s | s = si V s2, «i G 6s/ii, S2 € bsh2}

where V represents the bitwise OR operation. g

Definition 4 (Binary up-closure, (.)*). Let / be the length of strings in bsh G bSH1,
then the up-closure of 5s/i, denoted 5s/i* is a function (.)* : bSH1 —s- bSH1 that
represents the smallest superset of bsh such that s\\J s2 G 6s/i* whenever si, S2 €
bsh*: bsh* = {s\3n>\3tl,...,tnebsh,s = tl\J ...\Jtn}

Definition 5 (Binary abstract unification, amgu). The abstract uniflcation is a func­
tion amgu : V x Term x bSHl —• 65*if' deflned as

amgu{x,t,bsh) = irrel(bsh,x = t) U {rel(bsh,x)\$rel(bsh,t))* m

The design of the analysis must be completed by deflning the following abstract oper-
ations that are required by an analysis engine: init (initial abstract state), equivalence
(between two abstract substitutions), join (deflned as the unión), and project. In the
interest of brevity, we define only the project operation because the other three opera-
tions are trivial. We refer the reader to [28] for the rest of operations.

Definition 6 (Binary projection, bsh\t). The binary projection is a function bsh\t:
bSH1 x Term —s- bSHk (k < l) that removes the i-th positions from all strings (of
length l) in bsh e bSH1, if and only if the i-th positions of i (denoted by i[i]) is 0, and
it is deflned as bsh\t = {s' \ s e bsh, s' = TT(S, Í) }

where ir(s, t) is the binary string projection deflned as

Í
e, if s = e, the empty string

Tr(s',t), if s = S'ÜÍ andt[i] = 0
Tr(s',t)a,i, if s = S'ÜÍ andt[i] = 1

and s'ai is the concatenation of character a to string s' at position i. |
3 Ternary Set-Sharing
In this section, we introduce a more efflcient representation for the Set-Sharing domain
deflned in Sec. 2 to accommodate a larger number of variables for analysis. We ex-
tend the binary string encoding discussed above to the ternary alphabet £* = {0,1, *} ,
where the * symbol denotes both 0 and 1 bit valúes. This representation effectively com-
presses the number of elements in the set into fewer strings without changing what is
represented (i.e., without loss of accuracy). To handle the ternary alphabet, we redeflne
the binary operations covered in Sec. 2.

Definition 7 (Ternary Sharing Domain, tSH). Let alphabet £* = {0,1, *} , V be a
flxed and flnite set of variables of interest in an arbitrary order as in Def. 1, and S{ the
flnite set of all strings over E* with length /, 0 < / < | V|. Then, tSH1 = p°{E[) and
henee, the ternary sharing domain is deflned as tSH = \J tSH1. g

0<í<|V|

Prior to deflning how to transform the binary string representation into the correspond-
ing ternary string representation, we introduce two core deflnitions, Def. 8 and Def. 9,
for comparing ternary strings. These operations are essential for the conversión and set
operations. In addition, they are used to eliminate redundant strings within a set and to
check for equivalence of two ternary sets containing different strings.

Deflnition 8 (Match, M). Given two ternary strings, x,y e Si, of length l, match is a
function M.: Si x Si ^ B, such that Vi 1 < i < l,

xMy = ltme'Íf (xW = y^ V (xW = *) V (yW = ^ { false, otherwise

Deflnition 9 (SubsumecLBy (2 and SubsumedJn ^) . Given two ternary strings s-¡_,
«2 € Si, (2 : Si x Si —s- B is a function such that si (Is2 if and only if every string
matchedby si is also matchedby s-2 (s\ ®S2 -<=> Vs e tSH1, if s\M.s then s2Ms).
For convenience, we augment this deflnition to deal with sets of strings. Given a ternary
string s e Sl

t and a ternary sharing set, tsh e tSH1, ^ : Si x tSH1 —s- ¿3 is a function
such that s ^|ts/i if and only if there exists some element s' etsh such that s (Ss'. g

Figure 1 gives the pseudo code for an algorithm which converts a set of binary strings
into a set of ternary strings. The function Convert evaluates each string of the input and
attempts to introduce * symbols using PatternGenerate, while eliminating redundant
strings using ManagedGrowth.

PatternGenerate evaluates the input string bit-by-bit to determine where the * sym-
bol can be introduced. The number of * symbols introduced depends on the sharing set
represented and fe, the desired minimum number of specifled bits, where 0 < fe < l (the
string length). For a given set of strings of length l, parameter fe controls the compres-
sion of the set. For fe = l (all bits specifled), there is no compression and tsh = bsh.
For a non-empty bsh, fe = 1 introduces the máximum number of * symbols. For now,
we will assume that fe = 1, and experimental results in Sec. 5 shows the best overall fe
valué for a given l. The Specified function returns the number of specifled bits (0 or 1)
in x.

ManagedGrowth checks if the input string y subsumes other strings from tsh. If no
redundant string exists, then y is appended to tsh only if y itself is not redundant to an
existing string in tsh. Otherwise, y replaces all the redundant strings.

Example 2 (Conversión from bSH to tSH). Assume the following sharing set of binary
strings bsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string represen­
tation producedby applying Convert is tsh ={100*, 0010, 010*, *001}.

Deflnition 10 (Ternary-or \J and Ternary-and / \) . Given two ternary strings, i , ¡ / e
Si of length l, ternary-or and ternary-and are two bitwise-or functions deflned as
\/, f\ : Si x Si ^ Si such that z = x\Jy and w = x f\y, V¿ 1 < i < l, where:

* if (x[i] = * A y[i] = *)
Oif (x[{\ =0Aj/[«j = 0)
1 otherwise

* if (x[i] = * A y[i] = *)
1 if (x[{\ = lAy[«] = 1)

V (x[i\ = ÍAy[i] = *)
V (x[í\ = *Ay[í\ = 1)

0 otherwise

0 Convert(6s/i, k)
1 tsh^0
2 foreach s e bsh
3 y <— PatternGenerate(ís/i, s, k)
4 ís/i <— ManagedGrowth(ís/i,j/)
5 return ís/i
6 ManagedGrowth(ís/i,j/)
7 5^ = {s | s e ís/i, s &/}
8 if Sy = 0 then
9 if Í /f ís/ i then
10 append y to ís/i
11 else
12 remove Sy from tsh
13 append y to tsh
14 return ís/i

15 PatternGenerate(ís/i,a;,fc)
16 m <— Specified(a;)
1 7 ¿ ^ 0
18 a;' < - a;
19 l <— lengthix)
20 while m > k and ¿ < Z
21 Let 6¿ be the valué of a;' at position i
22 if 6¿ = 0 or bi = 1 then
23 x' <— a;' with position ¿ replaced by 6¿
24 ifa;'? ís/i then
25 a;' <— a;' with position ¿ replaced by *
26 else
27 x' <— a;' with position ¿ replaced by 6¿
28 m <- Specified(a;')
29 i <- i + 1
30 return a;'

Fig. 1. A deterministic algorithm for converting a set of binary strings bsh into a set of ternary
strings tsh, where k is the desired minimum number of specifled bits (non-*) to remain

Definition 11 (Ternary set intersection, n) . Given tsh\, tsh-2 G tSH1, n : tSH1 x

tSH1 -^ tSH1 is deflned as
tshi n tsh2 = {r\r = sí f\ s2, slMs2, si G tshí, s2 G tsh2} |

For convenience, we define two binary patterns, 0-mask and 1 -mask, in order to sim-
plify further operations. The former takes an Z-length binary string s and returns a set
with a single string having a 0 where s[i] = 1 and *'s elsewhere, V¿ 1 < i < l. The latter
also takes an Z-length binary string s, but returns a set of strings with a 1 where s [i] = 1
and *'s elsewhere, V¿ 1 < i < l. For instance, O-mask(OllO) and 1 -mask(OHO) return
{*00*} and {*1 * *, * * 1*}, respectively.

Definition 12 (TernaryrelevantsharingreZ(ts/i, t),irrelevantsharing¿rreZ(ts/i, t)).
Given t G Term with length l and tsh G tSH1 with strings of length l, the set of
strings in tsh that are relevant with respect to t is obtained by a function rel(tsh, t) :
tSH1 x Term -*• tSH1 defined as

rel(tsh,t) =tsh D 1-mask(í)

In addition, irrel{tsh,t) is defined as

irrel{tsh,t) = (tsh n 1-mask(í)) nO-mask(í) •
Ternary cross-union, KI, and ternary up-closure, (.)*, operations are as defined in Def. 3
and in Def. 4, respectively, except the binary versión of the bitwise OR operator is
replaced with its ternary counterpart defined in Def. 10 in order to account for the *
symbol. In addition, the ternary abstract unification (amgu) is defined exactly as the
binary versión, Def.5, using the corresponding ternary definitions.

Example 3 (Ternary abstract unification). Let tsh = {100*, 010*, 0010, *001} as in
Example 2. Consider again the analysis of X\ = / (X 2 , X3), the result is:

A = rel{tsh,X-i) ={100*}
B = rel(tsh,f(X2,X3)) = {010*, 0010}
A®B ={110*, 101*}
(AtsB)* = {110*, 101*, 111*}
C = irrel(tsh,X1=f(X2,X3)) ={0001}
amgu(Xí, f(X2,X3),tsh) = C U (AwB)* = {0001,110*, 101*, 111*}

Here briefly, we describe the ternary projection. The other ternary operations required
by any analysis framework can be be found in [28]. The ternary projection, tsh\t,
is deflned similarly as binary projection, see Def. 6. However, the projection domain
and range is extended to accommodate the * symbol. For example, let tsh = {100*,
010*, 0010, *001} as in Example 2. Then, the projection of tsh over the term t =
/ (X i , X 2 , X 3) is tsh\t = {100, 010, 001}. Note that since all zeros is meaningless in
a set-sharing representation, it is not included here.

4 Negative Ternary Set-Sharing

In this section, we extend the use of the ternary representation discussed in the previous
section.1 In certain cases, a more compact representation of sharing relationships among
variables can be captured equivalently by working with the complement (or negative)
set of the original sharing set. A ternary string t can either be in or not in the set tsh e
tSH. This mutual exclusivity together with the flniteness of V allows for checking í's
membership in tsh by asking if t is in tsh, or, equivalently, if t is not in its complement,
tsh. The same reasoning is applicable to binary strings (Le., bSH). Given a set of l-
bit binary strings, its complement or negative set contains all the /-bit ternary strings
not in the original set. Therefore, if the cardinality of a set is greater than half of the
máximum size (Le., 2lvl~1), then the size of its complement will not be greater than
2lv l_ 1 . It is this size differential that we exploit. In Set-Sharing analysis, as we consider
programs with larger numbers of variables of interest, the potential number of sharing
groups grows exponentially toward 2^, whereas the number of sharing groups not in
the sharing set decreases toward 0.

The idea of a negative set representation and its associated algorithms extends the
work by Esponda et al. in [12,13]. In that work, a negative set is generated from the
original set in a similar manner to the conversión algorithms shown in Figs. 1 and 2.
However, they produce a negative set with unspecifled bits in random positions and with
less emphasis on managing the growth of the resulting set. The technique was originally
introduced as a means of generating Boolean satisflability (SAT) formulas where, by
leveraging the difflculty of flnding solutions to hard SAT instances, the contents of
the original set are obscured without using encryption [12]. In addition, these hard-
to-reverse negative sets are still able to answer membership queries efflciently while
remaining intractable to reverse (Le., to obtain the contents of the original set). In this
paper, we are not interested in this security property, but use the negative approach
simply to address the efflciency issues faced by traditional Set-Sharing domain.

1 Note that we could have also used the binary representation described in Sec. 2 but we chose
the ternary encoding in order to achieve more compactness.

0 NegConvert(s/i, k)
1 tnsh <— li
2 foreach í € s / i
3 tnsh <— De\e\e(tnsh, t, k)
4 return tnsh

0 NegConvertMissing(6s/i,fc)
1 tnsh <- 0
2 6ns/i <— W \ 6s/i
3 foreach í e bnsh
4 íns/ i <— lnsert(íns/i, t, k)
5 return íns/i

10 De\eXe(tnsh,x,k)
11 Dx<-Vt e tnsh,xMt
12 tnsh' <— íns/i with P^ removed
13 foreach y e Pz
14 foreach unspecifled bit position q¿ of y
15
16
17 íns/i'
18 return tnsh'

if 6¿ (the íth bit of a;) is specifled, then
y' <— Í/ with position q¿ replaced by 6¿

lnsert(íns/i',í/',fc)

20 lnsert(íns/i,a;,fc)
21 m <— Specified(a;)
22 if m < k then
23 P <— select (fc — m) unspecifled bit positions in x
24 Vp <— every possible bit assignment of length \P\
25 foreach v e Vp
26 Í/ <— a; with positions P replaced by v
27 íns/i' <— ManagedGrowth(íns/i,j/)
28 else
29 3/ <— PatternGenerate(íns/i,a;,fc)
30 tnsh' <— ManagedGrowth(íns/i,j/)
31 return tnsh'

Fig.2. NegConvert, NegConvertMissing, Delete and Insert algorithms used to transformpos-
itive to negative representation; k is the desired number of specifled bits (non-*'s) to remain

The conversión to the negative set can be accomplished using the two algorithms
shown in Figure 2. NegConvert uses the Delete operation to remove input strings of
the set sh íromlA, the set of all /-bit strings U = {*'}, and then, the Insert operation
to return U\ sh which represents all strings not in the original input. Alternatively,
NegConvertMissing uses the Insert operation directly to append each string missing
from the input set to an empty set resulting in a representation of all strings not in the
original input. Although as shown in Table 1 both algorithms have similar complexities,
depending on the size of the original input it may be more efflcient to flnd all the strings
missing from the input and transform them with NegConvertMissing, rather than ap-
plying NegConvert to the input directly. Note that the resulting negative set will use
the same ternary alphabet described in Def. 7. For clarity, we will denote it by tNSH
such that tNSH = tSH.

For simplicity, we describe only NegConvert since NegConvertMissing uses the
same machinery. Assume a transformation from bsh to tnsh calling NegConvert with
k = 1. We begin with tnsh = IÁ = {****} (line 1), then incrementally Delete each
element of bsh from tnsh (line 2-3). Delete removes all strings matched by x from

Table 1. Summary of conversions: /-length strings; a = \Result\ • l; if m < k then 6 = k — m
else 5 = 0, where m = minimum specifled bits in entire set, k = number of specifled bits
desired; bnsh = U\ bsh; (3 = O (2) time to flnd bnsh

Transformation
bSH - • tSH
bSH/tSH - • tNSH
tNSH - • tSH
bSH -+ tNSH

Time Complexity
0(\bsh\al)
0(\bsh\a(a2* +1))
o(\tnsh\a(a2" +1))
0(f3+\bnsh\(a2* + 1))

Size Complexity
0(\bsh\)
0(\tnsh\(l - 171)2")
0(\tsh\(l - m)2b)
0(\bnsh\2")

tnsh (line 11-12). If the set of matched strings, Dx, contains unspecifled bit valúes (*
symbols), then all string combinations not matching x must be re-inserted back into
tnsh (line 13-17). Each string y' not matching x is found by setting the unspecifled
bit to the opposite bit valué found in x[i] (line 16). Then, Insert ensures string y' has
at least k specifled bits (line 22-26). This is done by specifying k — m unspecifled
bits (line 23) and appending each to the result using ManagedGrowth (line 24-26). If
string x already has at least k specifled bits, then the algorithm attempts to introduce
more * symbols using PatternGenerate (line 28) and appends it while removing any
redundancy in the resulting set using ManagedGrowth (line 29).

Example 4 (Conversión from bSH to tNSH). Consider the same sharing set as in Ex-
ample 2: bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative ternary string rep-
resentation is generated by applying the NegConvert algorithm to obtain {0000,11**,
1*1*, *11*, **11}. Since a string of all 0's is meaningless in a set-sharing representa-
tion, it is removed from the set. Thus, tnsh = {11**, 1*1*, *11*, **11}.

NegConvertMissing would return the same result for Example 4, and, in general, an
equivalent negative representation. Table 1 illustrates the different transformation func-
tions and their complexities for a given input. Transformation bSH —• tSH can be per-
formed by the Convert algorithm described in Fig. 1. Transformations bSH/tSH —•
tNSH and bSH —s- tNSH are done by NegConvert and NegConvertMissing, re-
spectively. Both transformations show that we can convert a positive representation into
negative with corresponding difference in time and memory complexity. Depending on
the size of the original input we may prefer one transformation over another. If the input
size is relatively small, less than 50% of the máximum size, then NegConvert is of-
ten more efflcient than NegConvertMissing. Otherwise, we may prefer to insert those
strings missing in the input set. In our implementation, we continuously track the size
of the relationships to choose the most efflcient transformation. Finally, transformation
tNSH —s- tSH is performed by NegConvert to revert back to the ternary positive
from a negative representation.

Consider now the same set of variables and order among them as in Example 4 but
with a slightly different set of sharing groups encoded as bsh = {1000, 1100, 1110}
or tsh = {1*00, 1110}. Then, a negative ternary string representation produced by
NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01*}. This example shows
that the number of elements, or size, of the negative result can be greater than the pos­
itive, \tnsh\ = 6 > \bsh\ = 3 and \tsh\ = 2, unlike Example 4 where \bsh\ = 6,

and \tnsh\ = 4 < \bsh\. As the size of \bsh\ increases, the complement set that the
negative must represent (2lvl - \bsh\) decreases. This illustrates how selecting the ap-
propriate set-sharing representation affects the size of the converted result. Thus, the
size of the original sharing set at speciflc program points will be used by the analysis
to produce the most compact working set. The negative sharing set representation al-
lows us to represent more variables of interest enabling larger problem instances to be
evaluated.

We now define the negative abstract unification operations, along with key ancillary
operations required by our engine to use the negative representation.

Definition 13 (Negative relevant sharing and irrelevant sharing). Given t G Term
and tnsh e tNSH1 with strings of length /, the set of strings in tnsh that are negative
relevant with respect to t is obtained by a function rel{tnsh, t) : tNSH1 x Term —s-
tNSH1 defined as:

rel(tnsh,t) = tnshC\ O-mask(í),
In addition, irrel{tnsh, t) is defined as:

irrel(tnsh,t) = tnshC\ l -mask(í) .
where ñ = U and defined in [13]. •

Because the negative representation is the complement, it is not only more compact for
large positive set-sharing instances, but also, and perhaps more importantly, it enables
us to use inverse operations that are more memory- and computationally efficient than
in the positive representation. However, the negative representation does have its lim-
itations. Certain operations that are straightforward in the positive representation are
A/7>-Hard in the negative representation [12,13].

A key observation given in [12] is that there is a mapping from Boolean formulas
to the negative set-sharing domain such that finding which strings are not represented
is equivalent to finding satisfying assignments to the corresponding Boolean formula.
This is known to be an A/"P-Hard problem. As mentioned before, this fact is exploited
in [12] for privacy enhancing applications. In [28] we show that negative cross-union,
«, is A/7>-Complete.

Due to the interdependent nature of the relationship between the elements of a neg­
ative set, it is unclear how a precise negative cross-union can be accomplished without
going through a positive representation. Therefore, we accomplish the negative cross-
union by first identifying the represented positive strings and then applying cross-union
accordingly. Rather than iterating through all possible strings in U and performing
cross-union on strings not in tnsh, we achieve a more efficient negative cross-union, &,
by converting tnsh to tsh first, i.e., using NegConvert from Table 1 and performing
ternary cross-union on strings t e tsh. In this way, the ternary representation continúes
to provide a compressed representation of the sharing set. Note that the negative up-
closure operation, *, suffers the same drawback as cross-union. Therefore, it is handled
the same way as negative cross-union.

Definition 14 (Negative unión, U). Given two negative sets with same length strings,
tnsh\ and tnsh2, the Negative Union returns a negative set representing the set unión
oítnshi Ütnsh2, and is defined in [13] as:

Neg ative Ternary S et- S haring 311

tnshi U tnshi = {z\(xJVÍy) => z = x f\y,x G tnsh\, y G tnsh^}

where /\ is the ternary AND operator. g

Definition 15 (Negative abstract unification, amgu). The negative abstract unifica-
tion is a function amgu : V x Term x tNSH1 —s- tNSH1 deflned as

amgu{x,t,tnsh) = irrel(tnsh,x = t) U (rel(tnsh,x) \$ rel(tnsh,t)) ,

Example5 (Negative abstract unification). Let tnsh = {11**, 1*1*, *11*, **l l}be
the same sharing set as inExample4. Considerthe analysis of X\ = / (X 2 ,X 3) :

A = rd(tnsh,Xi)
B = rd(tnsh,f(X2,X3))
AEB
(AEBf
C = irrel {tnsh, Xx = f(X2,X3))

= {11**,1*1*,*11*,**11,0***}
= {11 * *, 1 * 1*, *11*, * * 11, *00*}
= {00 * *, 01 * *, 0 * 0*, *00*}
= {01 **,0* 1*,100*}
= {11 * *, 1 * 1*, *11*, * * 11,1 * **,

*1 * *, * * 1*}
= {1 * **, *1 * *, * * 1*}

amguiXx,f(X2,X3), tnsh) = CD(AgB) ' = {01 * *, 0 * 1*, 0 * *0,100*}

Here, we define the negative projection and refer the reader to [28] for the remaining
operations:

Definition 16 (Negative projection, tnsh\t). The negative projection is a function
tnsh\t: tNSH1 x Term —s- tNSHk (k < l) that selects elements oítnsh projected
onto the binary representation of t e Term, and is defined as

tnsh\t = W(tnsh, Tt),

Tt = positions where i[i] = 1, Vil < i < l and Negative Project W as defined in [13]. •

We find that the resulting negative set will contain strings that have a bit valué projected
in column(s) specified by T if and only if all possible binary combination of all strings
created with the projected column(s) appear in the negative set. For example, given
tnsh = {000, 011, 10*, n*},ÜiQWr=i,2(tnsh) = {10, 11}.

5 Experimental Resulte

We developed a proof-of-concept implementation to measure experimentally the rela-
tive efficiency in terms of running time and memory usage obtained with the two new
representations, tSH and tNSH. Our first objective is to study the implications of
the conversions in the representation for analysis. Note that although both tSH and
tNSH do not imply a loss of precisión, the sizes of the resulting representations and
their conversión times can vary significantly from one to another. An essential issue is
to determine experimentally the best overall k parameter for the conversión algorithms.
Second, we study the core abstract operation of the traditional set-sharing, amgu, under
two different metrics. One is the running time to perform the abstract unification. The
other metric expresses the memory usage through the size of the representation in terms

Number of Binary Slrings (InputJ Number of Binary Sirings (InputJ

Fig.3. Compression level after conversions from bSH to tSH and tNSH for k = 1, 4, 7 & 10

of number of strings during key steps in the uniflcation. All experiments have been con-
ducted on an Intelfi Core™ Dúo CPU T2350 at 1.86GHz with 1GB of RAM running
Ubuntu 7.04, and were performed with 12-bit strings since we consider this valué large
enough to show all the relevant features of our approach. In general, within some upper
bound, the more variables considered the better the expected efflciency.

The flrst experiment determines the best k valué suitable for the conversión algo-
rithms, shown in Figs. 1 and 2. We submit a set of 12-bit strings in random order using
different k valúes. We evalúate size of the output (see Fig. 3) for a given k valué. As
expected, bSH (x = y line) results in no compression; tSH slowly increases with in-
creasing input size, remaining below bSH (for k = 7 and k = 10) due to the compres­
sion provided by the * symbol and by having little redundancy; tNSH, the complement
set, starts larger than bSH but quickly tapers off as the input size increases past 50%
of \U\. Since the k parameter helps determine the minimum number of specifled bits in
the set, there is a direct relationship between the k parameter and the size of the output
due to compression by the * symbol. A smaller k valué, Le., k = 1, introduces the máx­
imum number of * symbols in the set. However, for a given input, a small k valué does
not necessarily result in the best compression factor (see k = 1 of Fig. 3). This result
may be counter-intuitive, but it is due to the potentially larger number of unmatched
strings that must be re-inserted back into the set determined by all the strings that must
be represented by the converted result, see line 13-17 of Fig. 2. In addition, a small k
valué results in a set with more ternary strings than the number of binary strings repre­
sented. This occurs when múltiple ternary strings, none of which subsumes any other,
represent the same binary string. This redundancy in the ternary representation is not
prevented by ManagedGrowth, and is apparent in Fig. 3 when \tSH\ and \tNSH\ ex-
ceed the máximum size of binary sharing relationships (Le., 4096). One way to reduce
the number of redundant strings is to sort the binary input by Hamming distance before
conversión. In the subsequent tests, sorting was performed to maximize compression.
We have found empirically that a k setting near (or slightly larger than) 1/2 is the best

Fig.4. Memory usage (avg. # of strings) and time normalized for conversions with k = 7

overall valué considering both the result size and time complexity. We use k = 7 in
the following experiments. It is interesting to note that a k valué of ¿ogr2(0 results in
polynomial time conversión of the input (see the Complexity column of Table 1) but it
may not result in the máximum compression of the set (see k = 4 of Fig. 3). Therefore,
k may be adjusted to produce results based on acceptable performance level depending
on which parameter is more important to the user, the level of compression (memory
constraints) or execution time.

Our second experiment shows the comparison in terms of memory usage (Fig. 4,
left) and running time (Fig. 4, right) of the conversión algorithms for transforming an
initial set of binary strings, bSH, into its corresponding set of ternary strings, tSH, or
its complement (negative), tNSH. We generated random sets of binary strings (over
30 runs) using k = 7 and we converted the set of binary strings using the Convert
algorifhm described in Fig. 1 for tSH, and NegConvertMissing in Fig. 2 for tNSH.
The plot on the left shows that the number of positive ternary strings,|íS'ií|, used for
encoding the input binary strings always remains below \bSH\, and this number ul­
ereases slowly with increasing input size. It important to notice that for large valúes of
\bSH\, tSH compaets worse than expected and the compression factor is lower. The
main cause is the use of the parameter k = 7 that implies only the use of 5 or less
* symbols for compression. Conversely, the number of negative sharing relationships,
\tNSH\, is greater than \bSH\ and \tSH\ up to between 40% and 50%, respectively.
However, when the load exceeds fhose fhresholds tNSH compresses much better than
its alternatives. For instance, for the máximum number of binary sharing relationships,
tNSH compresses them to only one negative string. On the other hand, the rightmost
plot shows the average time consumed over 30 runs for both conversión algorithms.
Again, tNSH scales better than the positive ternary solution, tSH, after a threshold
established around 50% of the máximum number of binary sharing relationships. Our
proof-of-concept implementation is not really optimized, since our objective is to study
the relative performance between the fhree representations, and thus times are normal­
ized to the range [0,1]. We argüe that comparisons that we report between representa­
tions are fair since the three cases have been implemented with similar efflciency, and
useful since the absolute performance of the base representation is well understood.

Finally, our third experiment shows the efflciency in terms of the memory usage (in
Fig. 5, left) and running time (in Fig. 5, right) when performing the abstract unifleation
for k = 7. Several characteristics of the abstract unifleation influence the memory us­
age and its performance. Given an arbitrary set of variables of interest V (|V| = 12),

Fig. 5. Memory usage (avg. # of strings) and time normalized for amgu over 30 runs with k = 7

we constructed x e V by selecting one variable and t e Term, as a term consisting
of a subset of the remaining variables, Le., V \ {x}. We tested with different valúes
of t. Another important aspect is the input sharing set, bSH. Again, we reduced the
influence of this factor by generating randomly 30 different sets. In the leftmost plot,
the x-axis illustrates the number of input binary strings considered during the amgu.
In the case of the positive and negative ternary amgu, the input binary strings were
flrst converted to their corresponding compressed representations. The y-axis shows the
number of strings after the uniflcation. The plot shows that exceeding a threshold lower
than 500 in the number of input binary sharing relationships, both tSH and tNSH
yield a signiflcant smaller number of strings than the binary solution after uniflcation.
Moreover, when the number of the input binary strings is smaller than 50% of its máx­
imum valué, tSH compresses more efflciently than tNSH. However, if this valué is
exceeded then this trend is reversed: the negative encoding yields a better compression
as the cardinality of the original set grows toward 2lvL The rightmost plot shows the
size of the random binary input sets in the x-axis, and the average time consumed for
performing the abstract uniflcation in its y-axis, normalized again from 0 to 1. This
graph shows that the execution times behave similarly to the memory usage during ab­
stract uniflcation. Both tSH and tNSH run much faster than bSH. The differences are
signiflcant (a factor of 10) for most x-values, reaching a factor of 1000 for large valúes
of \bSH\. When the load exceeds a 50 - 60%-fhreshold, tNSH scales better than tSH
by a factor of 10. The main difference with respect to the memory usage depicted in the
leftmost plot is that for a smaller load, tSH runs as fast as tNSH during uniflcation.
The main reason is that the ternary relevant and irrelevant sharing operations are less
efflcient than their negative counterparts, Le., intersection is an expensive operation in
the positive whereas negative intersection is very efflcient (positive unión).

6 Conclusions

We have presented a novel approach to Set-Sharing that leverages the complement (neg­
ative) sharing relationships of the original sharing set, without any loss of accuracy. In
this work, we based the negative representation on ternary strings. We also showed
that the same ternary representation can be used as a positive encoding to efflciently
compact the original binary sharing set. This provides the user the option of work-
ing with whichever set sharing representation is more efflcient for a given problem
instance.

The capabilities of our negative approach to compress sharing relationships are or-
thogonal to the use of the ternary representation. Henee, the negative relationships may
be encoded using other representations such as BDDs [16]. Concretely, Zero-suppressed
BDDs [16] are particularly interesting because they were designed to represent sets of
combinations (Le., sets of sets). In addition, ZBDDs may be also applicable to similar
sharing-related analyses in object-oriented languages (e.g., [22]).

Our experimental evaluation has shown that our approach can reduce signiflcantly
the memory usage of the sharing relationships and the running time of the abstract
operations, including the abstract unifleation. Our experiments also show how to set
up key parameters in our algorithms in order to control the desired compression and
time complexities. We have shown that we can obtain a reasonable compression in
polynomial time by tuning appropriately those parameters. Thus, we believe our results
can contribute to the practical, scalable application of Set-Sharing.

References

1. Armstrong, T., Marriott, K., Schachte, R, S0ndergaard, H.: Boolean functions for depen-
deney analysis: Algebraic properties and efficient representation. In: LeCharlier, B. (ed.)
SAS 1994. LNCS, vol. 864. Springer, Heidelberg (1994)

2. Bagnara, R., Gori, R., Hill, P.M., Zaffanella, E.: Finite-tree analysis for constraint logic-based
languages. Information and Computation 193(2), 84-116 (2004)

3. Bruynooghe, M., Codish, M., Mulkers, A.: Abstract unifleation for a composite domain de-
riving sharing and freeness properties of program variables. Veriflcation and Analysis of
Logic Languages (1994)

4. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Comput. Surv. 24(3), 293-318 (1992)

5. Bueno, E, García de la Banda, M.: Set-Sharing is not always redundant for Pair-Sharing.
In: Kameyama, Y., Stuckey, PJ. (eds.) FLOPS 2004. LNCS, vol. 2998. Springer, Heidelberg
(2004)

6. Bueno, E, García de la Banda, M., Hermenegildo, M.: Effectiveness of Global Analysis in
Strictlndependence-Based Automatic Program Parallelization. In: 1994 Intl. Symposium on
Logic Programming (1994)

7. Codish, M., Lagoon, V., Bueno, E: An algebraic approach to sharing analysis of logic pro-
grams. In: Proc. of the Fourth Intl. Static Analysis Symposium (1997)

8. Codish, M., Mulkers, A., Bruynooghe, M., García de la Banda, M., Hermenegildo, M.: Im-
proving Abstract Interpretations by Combining Domains. In: PEPM 1993 (1993)

9. Codish, M., Dams, D., Filé, G., Bruynooghe, M.: On the design of a correct freeness analysis
for logic programs. The Journal of Logic Programming 28(3), 181-206 (1996)

10. Codish, M., S0ndergaard, H , Stuckey, P.J.: Sharing and groundness dependencies in logic
programs. ACM Transactions on Prog. Languages and Systems 21(5), 948-976 (1999)

11. Cousot, P, Cousot, R.: Abs Interp: a Unifled Lattice Model for Static Analysis of Programs
by Construction or Approx of Fixpoints. In: POPL 1977 (1977)

12. Esponda, E, Ackley, E.S., Forrest, S., Helman, P: On-line negative databases (with experi­
mental results). Intl. Journal of Unconventional Computing 1(3), 201-220 (2005)

13. Esponda, E, Trias, E.D., Ackley, E.S., Forrest, S.: A relational algebra for negative databases.
Technical Report TR-CS-2007-18, University of New México (2007)

14. Fecht, C: An efficient and precise sharing domain for logic programs. In: Kuchen, H, Swier-
stra, S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp. 469-470. Springer, Heidelberg (1996)

15. Hill, P.M., Zaffanella, E., Bagnara, R.: A correct, precise and efficient integration of set-
sharing, freeness and linearity for the analysis of flnite and rational tree languages. In: TPLP
2004 (2004)

16. Minato, S.: ZBDDs for Set Manipulation in Combinatorial Problems. In: DAC 1993 (1993)
17. Jacobs, D., Langen, A.: Static Analysis of Logic Programs for Independent And-Parallelism.

Journal of Logic Programming 13(2, 3), 291-314 (1992)
18. King, A., Soper, P: Depth-k Sharing and Freeness. In: ICLP 1994 (1994)
19. Langen, A.: Advanced techniques for approximating variable aliasing in Logic Programs.

PhD thesis, Computer Science Dept, University of Southern CA (1990)
20. Li, X., King, A., Lu, L.: Collapsing Closures. In: Etalle, S., Truszczynski, M. (eds.) ICLP

2006. LNCS, vol. 4079. Springer, Heidelberg (2006)
21. Li, X., King, A., Lu, L.: Lazy Set-Sharing Analysis. In: Hagiya, M., Wadler, P (eds.) FLOPS

2006. LNCS, vol. 3945. Springer, Heidelberg (2006)
22. Méndez-Lojo, M., Hermenegildo, M.: Precise Set Sharing Analysis for Java-style Programs.

In: Logozzo, E, Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905. Springer,
Heidelberg (2008)

23. Mulkers, A., Simoens, W., Janssens, G., Bruynooghe, M.: On the Practicality of Abstract
Equation Systems. In: ICLP 1995 (1995)

24. Muthukumar, K., Hermenegildo, M.: Combined Determination of Sharing and Freeness of
Program Variables Through Abstract Interpretation. In: ICLP 1991 (1991)

25. Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Dependency Us-
ing Abstract Interpretation. JLP 13(2/3), 315-347 (1992)

26. Navas, J., Bueno, E, Hermenegildo, M.: Efficient top-down set-sharing analysis using
diques. In: Van Hentenryck, P (ed.) PADL 2006. LNCS, vol. 3819. Springer, Heidelberg
(2005)

27. S0ndergaard, H.: An application of abstract interpretation of logic programs: occur check
reduction. In: Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213. Springer, Hei­
delberg (1986)

28. Trias, E., Navas, J., Ackley, E.S., Forrest, S., Hermenegildo, M.: Efficient Representations
for Set-Sharing Analysis. TR-CLIP9/2008.0, Univ. of New México (2008)

29. Zaffanella, E., Bagnara, R., Hill, P.M.: Widening Sharing. In: Nadathur, G. (ed.) PPDP 1999.
LNCS, vol. 1702. Springer, Heidelberg (1999)

