
Improving the Efficiency of Nondeterministic Independent
And-parallel Systems

Enrico Pontelli, Gopal Gupta Manuel Carro
DongXing Tang Manuel Hermenegildo

Laboratory for Logic and Databases Facultad de Informática
Dept. of Computer Science Universidad Politécnica de Madrid

New México State University 28660-Boadilla del Monte
Las Cruces, NM, USA Madrid, Spain

{epontell,gupta,dtang}@cs.nmsu.edu {mcarro,herme}@fi.upm.es

Abstract

We present the design and implementation of the and-parallel component of ACE. ACE
is a computational model for the full Prolog language that simultaneously exploits both
or-parallelism and independent and-parallelism. A high performance implementation of the
ACE model has been realized and its performance reported in this paper. We discuss how
some of the standard problems which appear when implementing and-parallel systems are
solved in ACE. We then propose a number of optimizations aimed at reducing the overheads
and the increased memory consumption which occur in such systems when using previously
proposed solutions. Finally, we present results from an implementation of ACE which in-
cludes the optimizations proposed. The results show that ACE exploits and-parallelism
with high efficiency and high speedups. Furthermore, they also show that the proposed op­
timizations, which are applicable to many other and-parallel systems, significantly decrease
memory consumption and increase speedups and absolute performance both in forwards
execution and during backtracking.
Keywords: Independent And-parallelism, Or-parallelism, Implementation Issues, Mem­
ory Management, Performance Evaluation, Logic Programming.

1 Introduction

1.1 Logic Programming and Prolog

Logic programming is a programming paradigm where programs are expressed as logical rules
[35, 8]. Logic programming languages have been shown to be suited to a wide range of applica­
tions, from compilers to databases and to symbolic applications, as well as for general purpose
programming (see, e.g., [49]). Arguably, the most popular logic programming language nowadays
is Prolog. Unlike conventional programming languages, Logic Programming languages disallow
destructive assignment and include little explicit control information. Not only this allows cleaner
(declarative) semantics for programs, and henee a better understanding of them by their users,

http://nmsu.edu
http://upm.es

it also makes it easier for an evaluator of logic programs to employ different control strategies for
evaluation. That is, different operations in a logic program can often be executed in any order
without affecting the (declarative) meaning of the program.1 In particular, these operations can
be performed by the evaluator in parallel. Furthermore, the cleaner semantics also make logic
languages more amenable to automatic compile-time analysis and transformation.

An important characteristic of logic programming languages is that they greatly facilítate
exploiting parallelism in an implicü way. This can be done directly by the program evaluator, as
suggested above, or, alternatively, it can be done by a parallelizing compiler, whose task then is
essentially unburdening the evaluator from making run-time decisions regarding when to run in
parallel. Finally, of course, the program can be parallelized by the user. In all cases, the advantage
offered by logic programming is that the process is easier because of the more declarative nature of
the language and its high level, which contribute in preventing the parallelism in the application
from being hidden in the coding process. Furthermore, the parallelization process can be done
quite successfully in an automatic way, requiring little or no input from the user. Clearly,
implicit exploitation of parallelism can in many cases have significant advantages over explicit
parallelization.2 In that sense, Prolog offers a possible path for solving the new form of "(parallel)
software crisis" that is posed to arise with the new wider availability of multiprocessors3—given
systems, such as the one described in this paper, one can run Prolog programs written for
sequential machines in parallel with little or no effort. For the rest of the paper we assume that
the reader is familiar with Prolog and its execution model.

It must be pointed out that while the preferred target áreas of Prolog are Symbolic and AI
applications, our system, as any other Prolog system (parallel or not), can also be used for the
execution of general purpose programs [49], retaining the advantages in performance of parallel
execution. This is borne out from some of the benchmarks we have used in Section 5 of this
paper.

1.2 Parallelism in Logic Programming

Three principal kinds of (implicitly exploitable) control parallelism can be identified in logic
programs (and, thus, Prolog) [9].

1. Or-parallelism arises when more than one clause defines some predicate and a literal uniíies
with more than one clause head—the corresponding bodies can then be executed in parallel
with each other [38, 1]. Or-parallelism is thus a way of efficiently searching for solutions to
the query, by exploring alternative solutions in parallel.

2. Independent and-parallelism arises when more than one goal is present in the query or in the
body of a clause, and it can be determined that these goals do not "affect" each other
in the sequential execution-they can then be safely executed (independently) in parallel
[16, 28, 36, 24, 27].

xData dependencies or side effects however do pose constraints in the evaluation order.
2This does not mean, of course, that a knowledgeable user should be prevented from parallelizing programs

manually or even programming sequentially but in a particular way that makes it possible for the system to
uncover more parallelism.

3For example, affordable (shared memory) multiprocessor workstations are already being marketed by vendors
such as Sun (Sun Sparc 10-2000), SGI (Challenge), etc.

3. Dependerá and-parallelism arises when two or more non-independent goals (in the sense above)
are executed in parallel. In this case the shared variables are used as a means of communi-
cation. Several proposals and systems adhere to this execution paradigm. Some of them try
to retain the Prolog semantics and behavior, either relying on low-level machinery [46] or
on a mixture of compile-time techniques and specialized machinery [10]. Other proposals
depart from standard Prolog semantics, mainly restricting or disallowing backtracking and
using matching instead of general unification [50, 32, 34, 12, 2]. In general, these decisions
simplify the architecture of the system.

1.3 ACE: An And-Or Parallel System and Execution Model

The ACE (And-or/parallel Copying-based Execution) model [21, 41] uses stack-copying [1] and
recomputation [19] to efficiently support combined or- and independent and-parallel execution.
ACE represents an efficient combination of or- and independent and-parallelism in the sense
that it strives to pay for the penalties for supporting either form of parallelism only when that
form of parallelism is actually exploited. It achieves this by ensuring that, in the presence of
only or-parallelism, execution in ACE be essentially the same as in the MUSE [1] system—a
stack-copying based purely or-parallel system, while in the presence of only independent and-
parallelism, execution be essentially the same as in the &-Prolog [24] system—a recomputation
based purely and-parallel system. This efficiency in execution is accomplished by extending the
stack-copying techniques of MUSE to deal with an organization of processors into teams [10].

It is important to observe that reaching this goal goes far beyond solving a simple engineering
problem in combining two existing systems. The experience of ACE showed that the combination
of two forms of parallelism leads to question most of the design choices and requires new solutions
to previously solved problems (e.g. memory management schemes). This allowed us to get a
better insight in the issues to be tackled in implementing general parallel logic programming
systems. Some of these fundamental issues are briefly sketched in Section 2.5.

The ACE system is an efficient implementation of the ACE model supporting the full Pro­
log language, that has been developed at the Laboratory for Logic, Databases, and Advanced
Programming of the New México State University, in collaboration with the CLIP group at the
Technical University of Madrid, Spain. In this paper we will present briefly how some of the
standard problems which appear when implementing and-parallel systems are solved in ACE.
We then propose a number of optimizations aimed at reducing the overheads and the increased
memory consumption. Finally, we present results from an implementation of the system which
includes the optimizations proposed. The results show that ACE exploits and-parallelism with
very high efficiency and excellent speedups. These results are comparable and often superior
than those presented for other puré and-parallel systems. Furthermore, they also show that the
proposed optimizations, which are applicable to many other and-parallel systems, significantly
decrease memory consumption and increase speedups and absolute performance both in forwards
execution and during backtracking. The ACE implementation belongs to the second generation
of and-parallel systems, since it combines the techniques used in older, first generation systems
(e.g. the first versions of &-Prolog [24]) with new innovative optimizations to obtain a highly
efficient system.

As mentioned before, in this paper we are exclusively concerned with the analysis of the
and-parallel component of the ACE system; for further details on the whole ACE system the
interested reader is referred to [21].

2 Independent And-parallelism
As pointed out above, the main purpose of this paper is to illustrate the structure, features,
and optimizations of the and-parallel engine developed for the ACE system, and evalúate its
performance. In this section we explain the computational behavior of the and-parallel engine
in more detail.

Much work has been done to date in the context of independent and-parallel execution of Prolog
programs. Practical models and systems which exploit this type of parallelism [28, 36, 24, 46]
are generally designed for shared memory platforms and based on the "marker model", and on
derivations of the RAP-WAM/PWAM abstract machines, originally proposed in [28, 30] and
refined in [24, 47, 48]. This model has been shown to be practical through its implementation
in the &-Prolog system, which proved capable of obtaining quite good speedups with respect to
state of the art sequential systems. Our design of the and-parallel component of ACE is heavily
influenced by this model and its implementation in &-Prolog. However, in addition to supporting
or-parallelism, ACE also incorporates a significant number of optimizations which considerably
reduce the parallel overhead and result in better overall efficiency. These optimizations are
fairly general, and are applicable to any and-parallel system whose implementation is based
on the markers model. The election of having a shared memory space, in contrast to many
other proposals which use distributed memory models, is now supported by the availability of
commercial multiprocessors in the market and their relative ease of programming. In addition,
shared memory machines offer a model for the implementor which is simpler and more portable
than that offered by distributed memory architectures.

2.1 Introduction

As in the RAP-WAM, ACE exploits independent and-parallelism using a recomputation based
scheme [19]—no sharing of solutions is performed (at the and-parallel level). This means that for
a query like ? - a ,b , where a and b are nondeterministic, b is completely recomputed for every
solution of a (as in Prolog).

For simplicity and efficiency, we adopt the solution proposed by DeGroot [16] of restricting
parallelism to a nested parbegin-parend structure. This is illustrated in Figure 1 which sketches
the structure of the computation tree created in the presence of and-parallel computation with
the previously mentioned parbegin-parend structure, where the different branches are assigned to
different and-agents (and-agents are processing agents working in and-parallel with each other).
Since and-agents are computing just different parts of the same computation (i.e. they are
cooperating in building one solution of the initial query) they need to make available to each
other their (partial) solutions. Doing this in a distributed memory machine would need a traffic
of data which would impact negatively on performance. This is avoided in a shared memory
machine by having different but mutually accessible logical address spaces. This can be seen in
through an example: let us consider the following clause (taken from a program for performing
symbolic integration):

in tégrate (X + Y,Z) <- in tégrate (X,Xi) , in tégrate (Y, Yx) , Z = Xi + Yx

The execution of the two subgoals in the body can be carried out in and-parallel. But at the
end of the parallel part, the execution is sequential and it requires access to terms created in the
stacks of different and-agents (see figure 2).

agent 1

Figure 1: Computation Tree with Recomputation-based And-parallelism

<- ¡ntegr(5*x+x,Y)

<-¡ntegr(5*x,X1), ¡ntegr(x,Y1), Z=X1 + Y1

Figure 2: Need for Sharing of Data Structures

2.2 Conditional Graph Expressions

Since we are exploiting only independerá and-parallelism, only independent subgoals are allowed
to be executed concurrently by different and-agents. In order to ensure this, in ACE we have
adopted the proposal originally designed by DeGroot [16] and refined by one of us [28] (adapted
also in the &-Prolog system [24]) of annotating the program at compile time with Conditional
Graph Expressions (CGEs).

A conditional graph expression (CGE for simplicity) is an expression of the form:
{{conditions) =>• Bi & • • • & Bn)

where (conditions } is a conjunction of simple tests on variables appearing in the clause which
check for the independence of the goals and & denotes parallel conjunction. The intuitive meaning
of a CGE is quite straightforward: if, at runtime, the tests present in conditions succeed, then
the subgoals Bi &•••&; Bn can be executed in and-parallel, otherwise they should be executed
sequentially. The notion of CGE can be further extended in different ways [24, 28]:

1. B¿ can actually represent an arbitrary sequential conjunction of subgoals or a nested CGE.

2. we can explicitly add an else part to the CGE conditional, specifying eventually actions
different from the plain sequential execution of the subgoals.

3. the (conditions) can be extended allowing more complex tests, whose purpose goes beyond
independence analysis, e.g. they can be used to implement some form of granularity control
[15, 26, 37] or more advanced notions of independence [13, 27, 5].

The {conditions) can also be omitted, if they always evalúate to true, Le., if it can be deter-
mined that the goals inside the CGE will be independent at runtime for any possible binding.

A standard Prolog program needs to be annotated with CGEs in order to take advantage
of the and-parallel engines available. This process can be done manually by the programmer
but is generally done automatically by specialized compile-time analysis tools (like the &-Prolog
parallelizing compiler [3], which is also an integral part of ACE).

2.3 Forward Execution

Forward execution of a program annotated with CGEs is quite straightforward [28, 25]. Whenever
a CGE is encountered, the conditions are evaluated and, if these conditions hold at runtime, the
various subgoals in the CGE are made available for and-parallel execution (otherwise the subgoals
in the CGE are run sequentially). Idle and-agents are allowed to pick up available subgoals and
execute them. Only when the execution of those subgoals is terminated the continuation of the
CGE (Le., whatever comes after the CGE) is taken into consideration.

The execution of a parallel conjunction can thus be divided into two phases. The first phase,
called the inside phase, starts with the beginning of the execution of the CGE and ends when
the parallel conjunction is finished. Once the execution of the continuation is begun for the first
time, the outside phase is entered.

At the implementation level, in order to execute all goals in a parallel conjunction in parallel,
a scheduling mechanism used to assign parallel goals to available processors and some extra
data structures are introduced to keep track of the current state of execution. The two main
additional data structures are the goal stack and the parcall frame. Details of the structure of
a Parcall frame are shown in Figure 3. In addition to parcall frames and goal stacks, an input
marker node and an end marker node are used to mark the beginning and the end respectively
of the segment in the stack corresponding to an and-parallel goal.

Ph.Top

PF »

B »

Control
Stack

/

Physical Top

Trail Section

Environment

GS'

Status

PIP

#of slots

of goals to wait on

of goals still to schedule

process id. comp. status ready

entriesfor other goals

process id. comp. status ready

Parcall Frame

B 'x

Physical Top

Trail End

Figure 3: Additional data structures and related registers in ACE

During execution of and-parallel Prolog programs, when a parallel conjunction is reached that
is to be executed in parallel (recall that a conditional parallel conjunction may be executed
sequentially if the conditional test fails), a parcall frame is created.4 The parcall frame is a
descriptor of the parallel cali, and it stores information regarding the parallel cali as a whole and
regarding the single subgoals belonging to the parallel conjunction.

In particular, the parcall frame contains:

• a slot for each goal in the parallel conjunction where information regarding the state of
execution of that goal will be recorded (e.g. location of the execution, determinacy infor­
mation, etc.);

• necessary information about the state of the execution of the parallel conjunction (e.g.
number of subgoals still to be executed, status of the execution, connections with outermost
parallel calis, etc.).

The creation of the parcall frame identifies the beginning of the parallel cali. The next step
is allowing the idle and-agents to pick up subgoals belonging to the parallel cali for remote
execution. A Goal Stack is associated to each agent for this purpose.

In the original RAP-WAM proposal (and in DASWAM5 as well), a descriptor of each subgoal
(goal frame) is created and allocated in the goal stack. Idle and-agents will access remote goal
stacks, extract a goal frame, and use the information to start a remote execution. In the current
versión of ACE a slightly different approach has been used. The goal stack contains pointers
to the currently open parallel calis with work available for remote execution (as shown in figure
3). Experimental results [42] have shown that this approach is more efficient and results in
considerable reduction in memory consumption.

Processors can pick up a goal for execution from the goal stacks of other processors as well as
their own goal stack, once they become idle.

Execution of a parallel goal starts with the allocation of an input marker (to denote the
beginning of a new stack section) and is completed by the allocation of and end marker (to
denote the end of the stack section allocated for that goal). Markers are used to:

• sepárate the different sections of a stack belonging to execution of different subgoals—this
is fundamental for garbage collection purposes;

• link (in the correct order) the different subgoals belonging to the same parallel cali—this
is fundamental to implement a correct backtracking semantics, as explained in the next
section.

Markers store various sorts of information, like:

1. pointers to the various stacks (local stack, global stack) to allow garbage recovery;

2. links to logically preceding subgoal;

3. sections of trail associated with the present computation;
4This can be done in the control stack, as in ACE and DASWAM, or in the local stack, as in the RAPWAM

and &-Prolog.
5 DASWAM [47] is na abstract machine for an extensión of &-Prolog (DDAS) which incorpórate dependent

and-parallelism.

The processor which completes the execution of an and-parallel subgoal belonging to a parallel
cali will proceed with the (sequential) execution of the parallel cali continuation. When a solution
for every subgoal in a parallel conjunction has been found so that the execution of the continuation
can begin, we say that the parallel conjunction has been closed or completed.

2.4 Backward Execution

Backward execution denotes the series of steps that are performed following the failure of a test
(e.g., an arithmetic test), a unification failure, or the lack of matching clauses for a given cali.
Since an and-parallel system explores only one or-branch at a time, backward execution involves
backtracking and searching for new alternatives in previous choice points. In ACE, where both
or- and and-parallelism are exploited, backtracking should also avoid taking alternatives already
taken by other or-agents.

In the presence of CGEs, sequential backtracking must be modified in order to deal with
computations which are spread across processors. As long as backtracking occurs over the se­
quential part of the computation plain Prolog-like backtracking is used. However, the situation
is more involved when backtracking involves a CGE, because more than one goal may be exe-
cuting in parallel, one or more of which may encounter failure and backtrack at the same time.
Thus, unlike in a sequential system, there is no unique backtracking point. The communication
among the processors involved in such backtracking process in performed using "signáis", which
can be viewed as specialized messages carrying the information needed to perform backtracking
correctly.

In any case, it must be ensured that the backtracking semantics is such that all solutions are
reported. One such backtracking semantics has been proposed in [31]. Consider the subgoals
shown below, where ',' is used between sequential subgoals (because of data-dependencies) and
'&' for parallel subgoals with no data-dependencies (note, also, that (conditions) do not appear,
because they are supposed to always hold):

a, b , (c & d & e) , g, h
Assuming that all subgoals can unify with more than one rule, there are several possible cases
depending upon which subgoal fails: If subgoal a or b fails, sequential backtracking occurs, as
usual. Since c, d, and e are mutually independent, if either one of them fails, backtracking must
proceed to b, because c, d and e do not affect each other's search space—but see further below.
If g fails, backtracking must proceed to the right-most choice point within the parallel subgoals c
& d & e, and re-compute all goals to the right of this choice point. If e were the rightmost choice
point and e should subsequently fail, backtracking would proceed to d, and, if necessary, to c.
Thus, backtracking within a set of and-parallel subgoals occurs only if initiated by a failure from
outside these goals, Le., "from the right" (also known as outside backtracking—since it is initiated
when the parallel cali has already reached outside status). If initiated from within, backtracking
proceeds outside of all these goals, Le., "to the left" (also known as inside backtracking—since
initiated when the parallel cali is in inside status). The latter behavior is a form of "intelligent"
backtracking6. When backtracking is initiated from outside, once a choice point is found in a
subgoal g, an untried alternative is picked from it and then all the subgoals to the right of g in
the parallel conjunction are restarted.

6However, such "intelligent backtracking" cannot be used in the presence of side effects, and additional syn-
chronization mechanisms must be used to ensure a proper execution [17, 7, 39, 18].

The presence of the markers allows the backtracking activity to move in the "right" direction.
The markers represent the entry and exit point of each subgoal. This is further illustrated in
figure 4.

... (c & d & e) , g

Figure 4: Backtracking over an And-parallel computation

If failure occurs in the inside phase, inside backtracking is used—and the whole parcall should
fail, all the goals in the parallel conjunction being independent. To realize this, the failing
processor should send a kill signal to all processors that have stolen a goal from that parcall to
undo any execution for the stolen goal. After all processors finish undoing the work, the goal
before the CGE will be backtracked over as in the standard WAM.

On the other hand, after a parallel conjunction completes, if a goal in the continuation of the
CGE fails, then backtracking proceeds into the conjunction in outside mode. Outside backtrack­
ing is from right to left in the CGE similar to the backtracking in sequential WAM. The only
difference is that a goal to be backtracked over may have been executed by a remote processor
if another processor stole the goal. Thus, a redo signal has to be sent to the remote processor.
If a new solution is found during backtracking, the goals to the right of this goal in the parallel
conjunction have to be re-executed. If outside backtracking fails to produce any more answers,
the goal before the CGE will be backtracked over as in normal sequential execution.

Independent and-parallelism with the backtracking semantics described above was originally
proposed in RAP-WAM [29], and has been efficiently implemented in the ACE system.

2.5 Challenges

The above brief description of the system's activity may give the false impression that engineering
an and-parallel implementation is relatively simple. However the design and implementation of
proper mechanisms to support and-parallelism offer some very challenging issues:

Logical vs. Physical: the Warren Abstract Machine has been carefully designed to support
efficient sequential execution of logic programs. In its design the WAM takes full advan-
tage of the direct correspondence between logical structure of the execution and its physical
layout in the abstract machine's data well of as the ordering in memory of these
áreas. This allows a considerably simpler execution of very complex operations—e.g. back­
tracking becomes very efficient, since a choice point on the stack is capable of completely
identifying the execution state existing at its creation time.

This is not anymore true when dealing with unrestricted scheduling of goals7 [48]: the
computation can be arbitrarily spread on the stacks of different agents, and the physical
order of computations on each stack can be completely different from the logical one (e.g.
a subgoal A which appears to the right of a subgoal B may appear on the stack in the
opposite order [28]).

This lack of matching between logical and physical view of the execution creates consider­
able difficulties. Positioning on a choice point is not sufficient anymore to get a view of a
state of the execution (as in the case of sequential computations). This correspondence has
to be explicitly recreated, using additional data structures (in our case, the information
contained in the markers).

Backtracking Policy: the backtracking semantics described earlier specifies what (and when)
has to be done, but does not hints how backtracking on distributed computations can be
implemented. Two approaches are feasible:

1. Prívate Backtracking: each agent is allowed to backtrack only over parts of the com­
putation that are lying in its own stacks. This simplifies the memory management, but
requires implementation of synchronization mechanisms to transfer the backtracking
activity between agents.

2. Public Backtracking: each agent is allowed to backtrack on the stacks of other agents.
This avoids the additional costs of communication between agents, but makes garbage
collection and the overall memory organization more complex.

&-Prolog and the current versión of ACE use private backtracking, while DDAS [47] im-
plements public backtracking. The choice of private backtracking in ACE has been mainly
based on the issue of supporting stack-copying for or-parallelism. Private backtracking
guarantees a "better" distribution of the computation between the processors, making it
easier during stack-copying to decide which stack sections need to be copied. (Never-
theless, a prototype implementation of ACE with public backtracking is currently under
development for comparison purposes.)

Trail Management: one of the main problems in managing backtracking in an and-parallel
system is detecting the parts of the trail stack that need to be unwound (Le., detecting
bindings that have to be removed to restore the proper computation state). The current
model used by ACE is based on a segmented view of the stack, where a segment is defined by
a section of the stack between two consecutive choicepoints. This makes trail management
slightly less efficient than in traditional sequential implementations (two pointers, instead
of one, pointing to the beginning and end of the relevant section of the trail, need to be
saved in each choicepoint), but considerably simplifies both backtracking and management
of or-parallelism.

Garbage Collection: the use of private backtracking allows recovery of a considerable amount
of garbage "on-the-fly" during execution. Nevertheless, garbage collection remains more
complicated, due to the lack of correspondence between logical order of backtracking and

7We use the term unrestricted scheduling to specify that no restrictions are imposed during scheduling on the
selection of the next piece of work.

physical distribution of the computation. Parts of computation which are not on the top
of the stack may be backtracked over first, leaving behind holes in the stacks (this is the
so-called "garbage slot" problem) that need to be properly tagged and eventually recovered.

Or-parallelism: last but not least, ACE has been developed from the beginning as a system
in which and-parallelism and or-parallelism coexist and are concurrently exploited. The
and-parallel engine was designed with this in mind, so that future extendibility of the
system to also exploit or-parallelism is not compromised. The main aim in designing the
and-parallel engine was to keep physical memory organization as clear and as cióse to the
logical memory organization as possible. This is essential for efficient detection of áreas to
be copied during stack-copying. In particular, the adoption of a "segmented view" to the
management of the trail stack and the use of private backtracking are meant to simplify the
identification of the bindings to be installed/de-installed and to allow parallelization of the
stack copying operation. While the above considerations have to be taken into account, the
overall design of the and-parallel component of ACE is only marginally affected by them.
This is because the and-parallel engine is a "basic" component of the system; an or-parallel
agent is composed of a team of several and-parallel engines [21].

3 Signal Management

As mentioned in the previous sections, during execution the and-agents need to exchange mes-
sages. Each message implies a request sent to the destination agent for execution of a certain
activity. The system supports two kinds of messages:

1. redo messages—used to request a remote backtracking activity. This is necessary whenever
the logical path of the computation continúes on the stack of a different agent.

2. kill messages—used to request a remote killing activity.

Some of the messages could be avoided by allowing an agent to freely perform backtracking
on the stack of another agent, as in the public backtracking scheme. On the other hand, in the
implementation of ACE we require the use of private backtracking, as mentioned previously.

Messages are sent and received asynchronously. The frequency at which an agent checks for
the presence of messages can be tuned by modifying some system defined constants.

3.1 Kill Signáis

In this section we discuss two methods for implementing the kill operation. As mentioned earlier,
performing the kill is not easy since it is a global operation on the execution tree that may involve
more than one processor.

The killing of a single subgoal G, once the corresponding processor has received a signal
affecting it, involves the complete removal of all the information allocated on the stacks of the
processor(s) during the execution of G. It consists of two actions:

• garbage collection: recovery of the stack space occupied by the killed computation;

• trail unwinding: removal of all the bindings generated during the killed computation.

None of these actions impose any sort of constraint on the order in which they must be
performed (i.e. the various parts of the computation may be deallocated and unwound in any
order, since they are mutually independent). However, care must be taken while mixing forward
and backward execution (there might be data dependencies among the goals in the CGE and
the previous ones). For instance, consider a goal:

: - a, (b & c & d) . . .
in which the processor Pl that executed goal a also picks up goal b. Goals c and d are picked
up by other processors. Suppose goal b fails, then processor Pl will send a kill to the processors
executing c and d. While the kill of c and d is in progress, Pl cannot backtrack over a, and
restart a new alternative—since the new alternative of a may reuse some memory locations that
are successively modified by the trail unwinding process of c or d. In other words, the processor
executing the goal preceding the parallel conjunction should not restart computation unless c
and d are completely killed and the correct state restored to begin the new computation.

A kill phase is always started by a failing worker that reaches a parcall frame during back­
tracking. This covers two cases:

• the parcall frame is reached while there are other and-parallel subgoals of this parcall that
are still active (i.e. the parcall frame is in inside status). In this case all the other subgoals
of the parcall need to be killed.

• the parcall frame is reached after all the subgoals have detected at least one solution (i.e.
the parcall frame is in outside status). In this case the backtracking semantics previously
described is applied. When the CGE is re-entered after backtracking over the continua-
tion, messages are sent to those and-parallel subgoals to the right whose computation was
deterministic (i.e., these determínate goals do not offer any further alternatives, and henee
such goals should be killed immediately rather than backtracked over). A redo message is
sent to the rightmost non-deterministic subgoal.

In the second case, all the processors involved in the kill operation are free to return to their
normal previous operations once the kill is completed (since the worker generating the kills is
itself taking care of continuing the execution by sending redo messages to the non-deterministic
subgoals). In the first case, instead, once the kill is completed, one of the workers involved in
the kill needs to continué the main execution by backtracking over the computation preceding
the parcall frame.

A kill can be serviced lazily or eagerly. Each approach requires a different kind of support
from the underlying runtime system. The only data structures that are common to both the
lazy approach and the eager approach described in this paper are those that are required to
support sending/receiving of kill messages. Kill messages are realized by associating a kill-
message queue with each worker. The kill-message queue of a processor should be accessible to
all other processors—and consequently the access operations on these queues should be atomic.

3.1.1 Kill Steps

The process of killing a computation can be further subdivided into two distinct phases:

1. Propagation phase: in which the kill signal is propagated to all the and-parallel branches
nested inside the and-branch of the subgoal being killed;

2. Cleaning phase: in which the space from killed computation is removed (garbage collec-
tion and trail unwinding).

The execution of the cleaning phase is relatively easy but requires the knowledge of the phys-
ical boundaries of the computation to be removed. The stack structure adopted to store the
computation by any Prolog inference engine allows exclusively a bottom-up traversal of the com­
putation tree (i.e. we can only visit the computation tree starting from the leaves and moving
upwards, towards the root), which corresponds to scanning the stack from the top towards the
bottom.8 Thus, to sean the tree, we at least require pointers to the bottommost leaf nodes that
represent the point from which the upward traversal to clean up should begin. Once this starting
point is known, cleaning is a straightforward operation, which resembles in many aspeets a back­
tracking process. As in backtracking, the worker performing the kill scans the stack, removing
each encountered data structure and unwinding the part of trail associated with that part of the
computation. The main differences with the backtracking process are:

• alternatives in the choice points are ignored—and the choice points are removed;

• parcall frames are treated as if they are in inside status, i.e. kills towards all the subgoals
of the parcall frame are generated.

It is important to observe that the cleaning activity can be performed quite efficiently since
parallel branches enclosed in a killed subgoal can be cleaned in parallel. Once the bottommost
extreme of the computation to be killed has been detected, the cleaning step can be immediately
applied. Figure 5 shows this process. The main issue—and the most difficult problem—is the
actual detection of the location of the leaves from where the cleaning activity can be started.
This is the purpose of the propagation step mentioned earlier and the rest of the section will deal
with different approaches to tackle this problem.

In the following we present two approaches for propagating kills (with possible variations).
These approaches are parameterized by:

1. direction of the propagation: two possible directions can be considered

(a) top-dovm: kill signáis are actively propagated from the root of the killed subgoal to
the leaves;

(b) bottom-up: kill is started from the leaves and pushed towards the root of the subgoal.

Note that a top-down element is always present in any kill propagation mechanism since,
after all, a kill is received by a subgoal and has to be propagated to its descendent parcall
frames. The difference in the two approaches is related to how eagerly the top-down
component is exploited.

2. m o d e of propagation: the propagation of the kill signáis in the tree can be realized in
two alternative ways:

(a) active: the various workers are actively receiving (or seeking) and propagating the kill
signáis;

(b) passive: workers lazily wait to receive a kill directed to them.

8A sean in the opposite direction would be very expensive, due to the variable size of the structures allocated
on the choice point stack.

3.1.2 Lazy Propagat ion of Kill Messages

The main idea behind this propagation technique is to avoid sending kill messages (unless they
are strictly necessary). This is realized by leaving to each processor the task of realizing when
the computation that it is currently performing has been killed.

In the lazy approach to killing, a kill message is sent to a worker only when the bounds of the
computation are known (i.e. the computation to be killed has already been completed). In this
case the cleaning step can be immediately applied.

Failing Subgoal
1: failing subgoal

2 2: kill message to end of subgoal

3: unwind+garbage collection on local branch

4: kill propagated to other subgoals

5: continuation above the CGE

Figure 5: Cleaning Operation during a Kill

If the kill is issued when the branch to be killed is still computing, then a suspended kill
is generated. A suspended kill is simply a kill operation that will be completed later; all the
necessary information to execute the kill is stored in the slot describing the killed subgoal. The
effects of this operation are:

1. since the worker which completes the execution of the subgoal will access the slot for up-
dating the various fields of the slot (like recording its id for backtracking purposes), it
will immediately realize that the computation that it has just completed has been previ-
ously killed and it will automatically start performing the cleaning operation (as explained
above).

2. if the and-scheduler selects an and-parallel subgoal that is subsumed by another subgoal
with a suspended kill then it will immediately discard the goal and look for new work. Key
to this step is the presence of a representation of the computation tree which allows us to
efficiently determine whether one subgoal is subsumed by another (i.e. one is a descendent
of the other in the search tree).

3. periodically each worker checks whether its current computation is subsumed by one of
the goals killed by a suspended subgoal. If this condition is satisfied then the worker will
immediately interrupt the computation and start the cleaning phase.

The beauty of this approach lies in its simplicity. The scheme can also take advantage of many
of the algorithms that have been developed for efficient backtracking (lazy kill is almost identical
to backtracking). Furthermore, a worker is never distracted by kill messages during a useful
computation, since the checks performed will affect its execution only if the worker is positioned
on a killed branch of the tree. In this way the kill operation is postponed and performed only
when no useful work is available.

The main disadvantages that we can identify in this approach are the following:

1. the implementation of this scheme relies on the availability of a representation of the com-
putation tree which allows to determine efficiently whether a given subgoal is a descendent
of another. It is an open problem whether this can be done in constant time.

2. the execution of the kill may be slower than in other schemes; this is due to the fact that
cleaning is started by one processor from the bottommost end of a branch, making it an
inherently sequential operation. Other approaches may offer a higher degree of parallelism
during the cleaning up of execution.

3. more speculative work (which will be eventually undone) is being performed, so resources
like processors and memory are used in what will be an unused computation.

A simplified versión of this approach to kill has been implemented in the &-Prolog system.
Detection of kill only occurs at the end of the subgoal execution. This leads to a very simple
implementation involving little overhead. On the other hand it has the important drawback of
being unsafe w.r.t. infinite computations [27].

3.1.3 Eager Kill

The disadvantages mentioned above seem to make the Lazy Kill approach not too advantageous,
at least in principie. For this reason we propose a different approach, called eager kill, which is
mainly (but not exclusively) a top-down approach (see Fig. 6(i)).

•,% Failing Subgoal

1 / ^ t Direction ofKill
Propagation

Lazy Kill

Failing Subgoal

/ \

Direction ofKill
Propagation

Eager Kill

F¡g(¡) F¡g(¡¡)

Figure 6: Eager and Lazy Kill

The main problem in this approach is the lack of information that will allow us to perform a
top-down traversal of the tree (starting from a given node towards the leaves). As we will see
later on, this can be accomplished with a small amount of information.

One of the main issues in killing is that of unwinding of the trail, Le., removal of the bindings
generated during the computation that is killed. In the presence of and-parallel computation,
this operation needs to be carefully performed in order to avoid race conditions. If, for example,
we are trying to kill the computation containing a, (b & c), where a, b have been executed
by Pi and c by Pj, then a synchronization point needs to be introduced at the level of the

parallel cali. Without such point, it may happen that Pj returns to its original computation
(the one interrupted by the kill message) before Pj completes unwinding b. This may lead to
Pj overwriting memory space which has been just allocated on the heap by Pj. This essentially
means that, in the presence of a parcall, the kill of the part of the computation tree above the
parcall may be started only once all the subgoals of the parcall have been completely killed.
This seems to be the least restrictive requirement to impose (unless a previous global analysis
deduces precise information about the bindings made in the computation before the parcall).
Essentially the worker P that is in charge of continuing the killing above the CGE will wait for
all the subgoals to be completely removed. During this waiting period P needs to keep checking
for other kill messages received, since otherwise a deadlock situation may occur.

This introduces the issue of scheduling the worker on serving the kill messages. Using queues to
store the kill messages and function calis to serve them introduces a specific and rigid ordering on
the kill serving operations. The first kill to be received is the first to be served and, whenever the
worker has left behind some busy-wait loops, it will return to them in the opposite order (w.r.t.
the order in which it accepted the new kill messages). This approach may not be the optimal
one. Any situation in which the same worker Pj is in charge of killing the computation preceding
two different CGEs may lead to a potential delay (e.g. all the subgoals of one CGEs have been
removed but P¿ is suspended on the other CGE waiting for some subgoals to be killed). A better
scheme can be realized by relaxing the implicit analysis order enforced by the recursive nature
of the kill-serving function and by restructuring the killing activity as a loop which iterates as
long as there is at least one parallel cali on which such a worker is required to wait, but allowing
a dynamic rescheduling of the killing activity.

Next, we present an example to illustrate our technique for eager propagation of a kill.

E x a m p l e :

Let us consider the computation described in Figure 6(ii).
Assuming that processor P¿ is the one which started the execution of b, then the

initial kill message will be sent to P¿ from the worker which failed in the computation
of c. If P¿ was looking for work by invoking the and-scheduler, then it will simply
leave the and-scheduler and start serving the kill. Otherwise, at the next check for
kill, it will suspend the current execution and move to serve the kill.

In the Eager kill approach, P¿ has access to the first parcall frame generated
during the computation of b. It positions itself on that parcall frame and, since
this has already completed (i.e. it is in outside status), it starts the killing activity
by sending a kill to the continuation of the parcall frame (step 2). The continuation
itself contains another parcall frame; the worker receiving this kill message will access
the parcall frame (step 3) and send another kill message to its continuation (since
even this parcall frame is in outside status). The worker executing j will receive the
kill and serve it, removing the whole computation of j and setting the appropriate
bit in the parcall frame (h & i) . At this point the worker that is busy waiting on
such parcall frame (busy waiting until the continuation has been killed) will kill all
the subgoals of the parallel cali (h and i , step 6) and then continué further and
remove g. Once g has been removed, a bit in the parcall frame (d & f) is set and Pi,
which was in the meantime busy waiting on that parcall frame (busy waiting until the
continuation has been killed), may proceed to send the kill messages to the subgoals
of the parallel cali (d and f, step 7) and, once all of them have reported the end of

the kill, it may proceed with the killing of b.
Once the whole branch has been removed and also a has reported the end of the

kill, the worker P¿ is free to restart the computation previously interrupted.

Note that both the Lazy and Eager schemes for propagating kill can be optimized further,
however, we do not describe these possible improvements due to lack of space. More details can be
found elsewhere [21]. The current versión of ACE [20, 21] incorporates a hybrid kill management
mechanism, where the lazy mechanism has been improved by making use of frequent check points
(to verify the presence of kills along the current computation branch), together with a complete
support of the workers scheduling mechanism mentioned above (to deal with múltiple parallel
calis failing concurrently).

4 System Optimizations

Innumerable optimizations can be applied to a recomputation-based and-parallel system like
ACE. Some optimizations that have been implemented in the current versión of the system deal
with taking advantage of various forms of determinacy that arise during the computations. In
the following text some of these optimizations are discussed. Last Parallel Cali Optimization
(LPCO), Shallow Parallelism Optimization, and Processor Determinacy Optimization are opti­
mizations based exclusively on the run-time behavior of the program, while the Backtracking
Families Optimization makes use of specific information produced by a suitable compile-time
analysis tool. All of them are based on general optimization principies [43, 23], aimed at the
exploitation of determinacy through simplification of the structure of the computation and reuse
of parts of the computation. Some of these optimizations were suggested in [28] and left as future
work.

4.1 Last Parallel Cali Optimization

Last Parallel Cali Optimization (LPCO) is a generalization of the Last Cali Optimization [51]—
adopted in most sequential implementations—to the case of parallel calis. Its intent is to merge,
whenever possible, distinct parallel conjunctions. Last Parallel Cali Optimization can lead to a
number of advantages (discussed later). The advantages of LPCO are very similar to those for
last cali optimization [51] in the WAM. The conditions under which the LPCO applies are also
very similar to those under which last cali optimization is applicable in sequential systems.
Consider first an example: ? - (p & q) . where

p : - (r & s) . q : - (t & u) .
The and-tree constructed is shown in Figure 7(i). One can reduce the number of parcall nodes,
at least for this example, by rewriting the query as ? - (r & s & t & u) 9 . Figure 7(ii) shows
the and-tree that will be created if we apply this optimization. Note that executing the and-tree
shown in Figure 7(ii) on ACE will require less space because the parcall frames for (r & s)
and (t & u) will not be allocated. The single parcall frame allocated will have two extra goal
slots compared to the parcall frame allocated for (p & q) in Figure 7(i). It is possible to detect
cases such as the one above at compile time. However, our aim is to accomplish this saving
in time and space at runtime. Thus, for the example above, our scheme will work as follows.

9 Under the assumption that the two clauses are the only matching ones.

When the parallel calis (r & s) and (t & u) are made, the runtime system will recognize that
they are the last parallel calis in their respective clauses and that the parallel cali (p & q) is
immediately above. Instead of allocating a new parcall frame some extra information will be
added to the parcall frame of (p & q) and allocation of a new parcall frame avoided. Note that
this is only possible if both p and q are determínate, i.e. they have at most one matching clause.
The extra information added will consist of adding slots for the goals r, s, etc. In particular, no
new control information needs to be recorded in the parcall frame of (p & q) . However, some
control information, such as the number of slots, etc., need to be modified in the parcall frame
of (p & q) . It is also necessary to slightly modify the structure of a slot in order to adapt it to
the new pattern of execution.10

r & s & t & u

f 3

f¡g (¡) fig(ü)

Figure 7: Optimization Schemes

It is important to observe that, if the goal r is to fail in inside mode, then in case (ii) (see Figure
7(ii)) killing of computation in sibling and-branches will be considerably simplified. In case (i)
the failure will have to be propagated from parcall frame f2 to parcall frame fl. From fl a kill
message will have to be sent out to parcall frame f3. In case (ii) a linear sean of only one goal
list is sufficient.
One could argüe, as mentioned earlier, that the improved scheme described above can be ac-
complished simply through compile time transformations. However, in many cases this may not
be possible. For example, if p and q are dynamic predicates or if there is not sufficient static
information to detect the determinacy of p and q, then the compile-time analysis will not be able
to detect the eventual applicability of the optimization. Our scheme will work even if p and q are
dynamic or if determinacy information cannot be statically detected (because it is triggered only
at runtime). Also, even more relevant, for many programs the number of parallel conjunctions
that can be combined into one will only be determined at run-time [43].

In general, application of LPCO requires two conditions to be satisfied:

1. determinacy of the computation between two nested parallel calis;

2. non-existence of any continuation after the nested parallel calis (i.e., only the topmost
parcall can have a continuation).

10For example, it is necessary to keep in each slot a pointer to the environment in which the execution of the
corresponding subgoal will start.

These conditions are satisfied by a large number of programs (e.g., tail-recursive programs) [22].
Work is in progress to generalize this optimization, so that it applies to a wider range of programs
[40, 42].

It is important to observe that the cost of verifying applicability of LPCO at run-time is
absolutely negligible (comparison of two pointers). This is a further justification for keeping the
optimization as a puré run-time operation.

4.2 Shallow Parallelism Optimization

The Shallow Parallelism optimization is aimed at reducing marker allocation by taking advantage
of deterministic computations. Many programs involve the development of deep nestings of
parallel calis, while the sequential subgoals (those which do not contain a further parallel cali) are
deterministic computations. The main idea is that once one of those deterministic computations
has been completed, there is no need to keep any data structure alive (since on backtracking
there will not be any alternatives available). For this reason the allocation of the input marker
is delayed until the first choice point/parcall frame is allocated (in a fashion similar to shallow
backtracking technique [6]). If the end of the computation is reached without allocating any input
marker, then the end marker itself is not allocated (we simply need to record the boundaries of
the current trail section in the descriptor of the subgoal). On backtracking no kill messages need
to be generated for this kind of subgoals—we just need to unwind the trail section indicated in
the corresponding slot of the parcall frame. This simple optimization allows savings in time and
space since various data structures are not allocated and the number of messages sent during
backtracking is reduced.

The cost of applying this optimization is minimal: a simple check at the time of choice-
point creation. In all the benchmarks tested we were not able to observe any slow-down due to
application of the Shallow Parallelism optimization.

The optimization is also illustrated in figure 8(i).

. (. . . & a & b . . (... & a & b .

(i) (ü)

Figure 8: Shallow Parallelism and Processor Determinacy Optimization

4.3 Processor Determinacy Optimization

The aim of a general purpose and-parallel system is clearly to exploit the highest possible amount
of parallelism, respecting the no-slowdown requirement (Le., parallel execution should be guar-

anteed to run at least as fast as sequential execution[27]). Nevertheless the amount of parallelism
exploited is often greater than the actual amount of computing resources available—which leads
to situations in which the same computing resource (processor/agent/team of processors/etc.)
will successively execute different units of parallel work, e.g. different subgoals of the same
parallel execution. Thus, we get to a situation in which two potentially parallel pieces of com-
putation are executed sequentially. In particular, two units of work can be actually executed
contiguously and in the same order in which they would be executed during a purely sequential
computation—if this is the case then all the additional operations performed that are related to
the management of parallel execution (allocation of markers, etc.) represent puré overhead. The
intent of the Processor Determinacy Optimization is precisely to reduce this sort of overhead as
much as possible.

This saving is obtained by simply avoiding allocating any marker between the two subgoals
and—in general—treating them as a unique, contiguous piece of computation (See Figure 8(ii)).
Intuitively, the optimization acts at run-time to coalesce smaller goals in larger units of work
taken care of by a single computing agents.

There are several advantages in doing this:

1. memory consumption is reduced, since we are avoiding allocation of the markers between
consecutive subgoals executed on the same processor;

2. execution time during forward execution is reduced since the whole phase of creating an
end marker for the first subgoal and an input marker for the second one (or a unique marker
as happens in &-Prolog) is skipped;

3. execution time during backward execution is also reduced, since backtracking on the two
subgoals flows directly without the need to perform the various actions associated with
backtracking over markers (sending messages, etc.).

4.4 Backtracking Families Optimization

As we will show, the previously described shallow parallelism and determínate processor opti-
mizations can achieve considerable performance improvements (see Section 5.2) and have the
advantage of not requiring compile-time analysis (although compile-time knowledge can always
be used to reduce or avoid the small run-time tests needed). However, it is interesting to explore
whether these ideas can be extended to cover more cases if some compile-time analysis informa-
tion is available. In particular, we concéntrate on the following types of information: knowledge
that a goal (and its whole subtree) is deterministic, and knowledge that a goal has a single
solution. In addition, knowledge that a goal will not fail is also quite useful [27]. It is beyond
the scope of this paper to address how this information is gathered - the reader is referred to
related work in the área of abstract interpretation based global analysis [33, 4, 11, 44, 14]. We
will address instead how such information can be exploited at the parallel abstract machine level.

We start by considering the case in which several parallel goals, perhaps not contiguous in
the program text, but which are known to be deterministic, end up being executed on the same
processor. As an example, consider the parallel cali (a & b & c), where a, b and c are known
to be deterministic. If a and b are executed on the same processor, the situation is as in the
previous section and clearly no markers need to be allocated between the two goals. But if
a and c are executed on the same processor, one after the other, since they are known to be

deterministic, no markers need to be allocated between them either. This is based on the fact
that if a, b, c are known to be deterministic and independent (a & b & c) is equivalent to (a
& c & b) , and to any other permutation, modulo side effects.11 The advantage is clearly that
the input marker of a can be simply shared by c.

The optimization can also be applied in cases where whole collections of related deterministic
goals are created in loops, as in

- (a & b & p)

We assume that a,
of the form

b , p are known to be deterministic. An execution of p would genérate goals

(a & b & a ' & b ' & a ' ' & b ' & p)

Since all these goals are independent and deterministic, no intermedíate marker is needed
whenever they stack one over the other in a given processor, i.e., only one marker would be
needed per processor (assuming there are no other parallel conjunctions). Note that when p is
to be backtracked from outside, all the goals a, b , a.', b ' . . . have to be backtracked over.
However, the order in which this is done is not important. Thus, every segment formed by
consecutively stacked goals can be backtracked (only untrailing is really required) in one step by
simply unwinding down to the solé input marker. This saves time and space in forward execution,
since fewer markers are needed, and time in backward execution, since fewer intermedíate steps
and messages are needed. We will cali the set of parallel goals a, b , a ' , b', a ' ' , b'' . . . a
backtracking family: a set of independent parallel goals, such that all of them are backtracked
over in the same backtracking step in the sequential execution. The fundamental characteristic
of the members of a backtracking family is that they have a "common choice point" which they
backtrack to in case of failure.

Figure 10: Eliminated choice points Figure 9: Backtracking families

11 Note that side effects would have been taken into account beforehand by the parallelizer by imposing a
synchronization among them — which, in the worst case, can lead to the sequentialization of the goals.

As mentioned before, unlike those proposed previously, this technique requires knowledge
regarding goal determinism beforehand. In order to illustrate this, consider the situation in which,
for (a & b & c), a is executed on processor Pt, and b in P2 . P\ (which is deterministic) finishes
first with a and picks up the goal corresponding to c (also deterministic). If b is deterministic,
then there is no need for any marker between a and c (or saving the trail segment in the slot)
since no intermedíate backtracking is possible. This may be determined once b finishes, but then
P\ would have to wait for P2 , which is undesirable. On the other hand, if P2 liad finished before,
then it could have stolen b, and the determínate processor optimization could have been applied.

Each backtracking family is given a unique identifier (e.g., the address of the "common choice
point" that they would backtrack to). This identifier is also associated with each goal belonging
to the family and stored in the input marker when the first goal of a family is picked up by a
processor. When a goal is picked up by a processor, if it has a family identifier attached and it
is the same as that of the current input marker in the processor, no new input marker needs to
be allocated. It is clear that this has an implication on scheduling in the sense that picking up
goals belonging to the same backtracking family as the last goal executed in a given processor is
always preferable.

Markers are still necessary in principie between deterministic and non-deterministic goals,
and between goals that do not belong to the same backtracking family. If we have (pi & q
& p 2) , where p is defined as above, and q generates non-deterministic computations, then the
goals generated by pi can be stacked one over the other without markers. However, markers are
needed to sepárate goals generated by pi and q, p2 and q, and pi and p2 (this is illustrated in
Figure 9, where segments marked with ', " . . . correspond to different activations of the same goal,
and goals marked with a subindex are offsprings of the corresponding initial cali, pi or p2).

However, note that the optimization is not necessarily restricted to deterministic goals, as
might be implied by the discussion above. In fact, the fundamental characteristic of the goals of
a backtracking family is that they have a "common choice point" that they backtrack to in case
of failure of one of such goals. Thus, if a goal is deterministic in the end (Le., it produces only
one solution) it can also benefit from the proposed technique, even if it does créate choice points
and backtrack internally along the way, provided that it can be determined that such choice
points will not provide additional solutions or that they will be discarded upon termination
(for example, by executing a "cut"). In summary, goals which can be determined to have a
single solution, independently of whether they créate choice points during their execution and
perform backtracking internally, are also eligible for forming a backtracking family with other
such goals or with deterministic goals. Simple examples are (a , !) & (b , !) , or even (a &
b) , !, where a and b may have non-determinism inside, but are made single solution by the
presence of the cut (see Figure 10). As another, more elabórate example, consider sorting a
list of complex items (Le., not simple numbers) with quick-sort, where the tests performed in
the partitioning predicate could be arbitrarily complex, leaving intermedíate choice points and
backtracking internally, but finally yielding only one solution. We believe it is possible to detect
this "single solution" status in many cases through existing compile-time analysis techniques,
even if this cannot be determined locally, as in the simple examples above.

In order to implement the proposed optimization the determinism information is passed to the
low-level compiler through source program annotations. In the same way as we have assumed for
the "&" annotations, these determinacy annotations can be provided by the user or generated
by an automatic analyzer. Note that, while the annotation is static, its effect has a dynamic
nature in general in the sense that, for a given program, the actual performance increase may

differ from execution to execution due to different schedulings, which would result in different
relative stackings of members of different families, and thus different actual numbers of markers
allocated.

Regarding the benefits obtainable from the optimization proposed, it can clearly provide con­
siderable savings in memory consumption, and, as a side effect of this, time savings due to the
smaller number of markers which have to be initialized. In an ideal situation, in which all goals
picked up by each processor belong to the same backtracking family only one marker would
be allocated per processor (even while choice points infernal to a parallel goal are allocated,
used, and eventually discarded before the parallel goal finishes). Furthermore, and as mentioned
before, backtracking is potentially also greatly sped up.

5 Preliminary Performance Results

The purpose of this section is to present the results obtained by executing some well-known
benchmarks. They range from simple test programs to actual applications. The results for the
following benchmarks are initially reported: Matrix Multiplication, Quicksort, Takeuchi, Tower
of Hanoi, Boyer (a reduced versión of the Boyer-Moore theorem prover), Listsum (a naive list-
processing program operating over nested lists), Compiler (the PLM Prolog compiler written by
P. VanRoy that is approximately 2,200 lines of Prolog code), POccur (a list processing program),
BT_cluster (a clustering program from British Telecom, UK), Annotator (the annotator part of
the ACE/&-Prolog parallelizing compiler that is about 1,000 lines), and Simulator (a simulator
for simulating parallel Prolog execution that is about 1,100 lines, written by Kish Shen).

Table 1 illustrates the speedups obtained for the various benchmarks (all the figures have been
generated on a Sequent Symmetry multiprocessors). The figures clearly indicate that the current
implementation, even though not completely optimized, is quite effective. On many benchmarks,
containing a sufficient amount of parallelism, the system manages to obtain linear speedups (e.g.,
for Matrix Multiplication and Hanoi). With more processors in the multiprocessor systems we
believe we should be able to obtain higher speedups, provided the program contains enough
parallel work.

9.00

8.00

7.00
OH

_3 6.00

ü 5.00
OH

OO 4.00

3.00

2.00

1.00

- ' ' ' ') -

&/ '
>4y -

/••'''
/'''

// boyer

//S
- //

• i i i i

2.00 4.00 6.00 8.00 10.00

No. of Agents

F i g (i)
Speedups

4.00 6.00 8.00 10.00

No. of Agents

F i g (i i)

Figure 11: Speedups Curves for Selected Benchmarks on the Sequent Symmetry

Goals
executed

matrixjmult(SO)
quicksort(lO)
takeuchi(14)
hanoi(ll)
boyer(O)
poccur(5)
bt-duster
annotator(5)
compüer

1

5598
1882
2366
2183
9655
3651
1461
1615

29902

ACEa
3

1954
778
832
766

5329
1255
528
556

12522

gents
5

1145
548
521
471

3816
759
345
392

6437

10

573
442
252
231

2887
430
215
213

4801

Table 1: Execution times in msec. (Sequent Symmetry)

Goals
executed

matrix-mult(4 0)
annotator(12)
compüer

ACE agents
1 2 3

1379
1025
5859

784
550

3317

498
400

2127

Table 2: Execution times in msec. (Sun Sparc 20)

Speedups for some benchmarks are shown in Table 1 and plotted in Figure 11. Note that
for the annotator, quicksort, and boyer benchmarks, the speedup curve flattens out because at
some point all available parallelism is exhausted. Our implementation incurs an average parallel
overhead of about 5%-30% over the versión of SICStus Prolog it is based on. This parallel
overhead is considerably reduced by triggering optimizations mentioned earlier.

As mentioned before, our benchmarks have been executed on a Sequent Symmetry. It is
important to observe that tests made on other parallel machines have produced comparable
speedups. Table 2 indicates some performance figures obtained on a 4 processor Sparc 10,
which gives results comparable with those in Table 1 in terms of speedup, and serves as well to
appreciate the relative speed of the two machines.

5.1 Shallow Parallelism

The shallow parallelism optimization has been incorporated in the ACE system. The results
obtained have been extremely good. On average, an improvement of 5% to 25% in execution
time over an unoptimized implementation is obtained due to this optimization alone. We can
observe some of the results obtained in Table 3. In this table the execution times and relative
percentage of improvement obtained on some common benchmarks are listed.

Observe that those benchmarks which show the best improvement under the Shallow Paral­
lelism Optimization are those which contain a considerable amount of parallelism (nesting of over
1000 parallel calis) and in which the "leaves" of the computation tree are deterministic compu-
tations (hanoi and takeuchi are two such benchmarks). For other benchmarks the effects of the

Goals
executed

matrixjmult(SO)
takeuchi(14)
hanoi(ll)
poccur(5)
bt-duster
annotator(5)

1
5598/5214 (7%)
2366/1811 (23%)
2183/1671 (23%)
3651/3197 (12%)
1461/1343 (8%)
1615/1422 (12%)

ACEag
3

1954/1768 (10%)
832/586 (30%)
766/550 (28%)

1255/1079 (14%)
528/480 (9%)
556/475 (15%)

ents
5

1145/1059 (8%)
521/368 (29%)
471/336 (29%)
759/662 (13%)
345/312 (10%)
392/322 (18%)

10
573/534 (7%)
252/200 (21%)
231/180 (22%)
430/371 (14%)
204/189 (7%)
213/187 (12%)

Table 3: Unoptimized/Optimized Execution times in msec (% improvement in parenthesis)

optimizations are more limited—for example in the matrix multiplication benchmark the whole
computation is deterministic but the determinism is not detected because of (i) the presence of
nested (deterministic) parallel computations, and (ii) the presence of choice points whose remain-
ing alternatives lead to failure. The "backtracking families" optimization discussed earlier, can
be used in these cases, but requires compile-time analysis. The previously described benchmarks
are quite deterministic in nature. Still, the shallow parallelism optimization gives surprisingly
good results also on more complex benchmarks, involving backtracking across parallel subgoals.
For example, running a program to solve a map-coloring problem (involving backtracking over
parallel conjunctions), we obtained an average improvement in execution time of 14%. Clearly,
since the main issue of this optimization is the avoidance of allocation of certain data structures,
the computation will also gain considerable advantage in terms of memory consumption. Figure
12 illustrates the savings on the number of markers allocated obtained for some of the bench­
marks (executing using a single processor). We go from an extreme case like boyer in which no
saving at all is obtained, to some extremely good results, like for takeuchi, in which we save
almost 50% of the total number of markers.

Usage of Markers

5000

4000

0)
•* 3000

2000

1000

Unoptimized

Optimized

boyer

takeuchi

matrix mult

quick_sort

fibonacci

poccur

Benchmarks

Figure 12: Number of Markers allocated (using one agent)

Finally, figure 13(i) shows the behavior of the optimization on the Takeuchi benchmark varying
the number of processors used.

5.2 Processor Determinacy Optimization
Regarding forward execution, the results obtained with this optimization are very encouraging,
as can be observed from Table 4. For many examples the optimization manages to improve the
execution time from 4% to almost 20%.

Goals
executed

bt-duster
poccur(5)
matrix-mult(30)
listsum
hanoi(ll)
takeuchi(14)

ACE Execution
Unoptimized Optimized

1461
3561
5598
2333
2183
2366

1391 (5%)
3418 (4%)
5336 (5%)
2054 (12%)
1790 (18%)
1963 (17%)

Table 4: Unoptimized/Optimized Execution times in msec (single processor)

The variations in improvement depend exclusively on the number of parcall frames generated
and on the effect of the marker allocation overhead on the overall execution time. For this
reason we obtain considerable improvements in benchmarks like takeuchi, where we have deep
nestings of parallel calis and the marker allocation represents the main component of the parallel
overhead.

The optimization maintains its effects when we consider execution spread across different
processors, as we can see in figure 13(ii), which shows the execution times of both the optimized
and the unoptimized versión for the Hanoi benchmark.

Takeuchi Benchmark Hanoi Benchmark T i m e (s e e)

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

-í ' ' '
\

\ *• Takeuch i unop t im i zed

_ \ \
\ \

\ \
\ * * * • .

\ *****

— T a k e u c h i o p t i m i z e d

l l l
2.00 4.00 6.00

N o . o f A g e n t s

Fig(i)

i

a-

i
8.00

1

1
10.00

T i m e (s e e)

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

l i l i

*.

\ \ H a n o i u n o p t i m i z e d

\ \
~ \ \
- \ \

\ \

\ ****
^ S S S * s s ^ * * * • • •

H a n o i o p t i m i z e d " • — — I I " " * "

l i l i
2.00 4.00 6.00 8.00

N o . o f A g e n t s

F ig(ü)

i

-
-

-
-
-
-
-
-

i
10.00

Figure 13: Shallow Parallelism Optimization and Processor Determinacy Optimization

The advantages are even more evident in terms of memory consumption: as we can see from
Table 5 the number of markers allocated is cut in almost all the cases to half of the original valué
(measured during a single processor execution)—this because most of the examples analyzed
have parallel calis of size 2 and the optimization allows avoiding the allocation of the marker
between the two subgoals.

Goals
executed

bt-duster
deriv(O)
poccur(5)
matrix-mult(30)
listsum
takeuchi(14)
hanoi(ll)

ACE Execution
Unoptimized Optimized

120
174
100
1798
3000
3558
4094

60
87
50

899
1500
2372
2047

Table 5: Memory Consumptions (no. of markers)

5.3 Last Parallel Cali Optimization
Table 6 illustrates the results obtained executing some of the benchmarks on ACE using LPCO.

Goals
executed

bt-duster
deriv(O)
poccur(5)
annotator(5)
matrix-mult(20)
search(1500)

ACE Exec
fw/no lpco

890
94

3216
1327
1724
2354

ution with Shallow Parallelism Optim.
fw/lpco bw/no lpco bw/lpco

843 (5%)
34 (64%)
3063 (5%)
1282 (3%)
1649 (4%)

1952 (17%)

929
131

3352
1334
1905
8370

853 (8%)
38 (71%)
3226 (4%)
1281 (4%)

1696 (11%)
2154 (74%)

Table 6: Unoptimized/Optimized Execution times in msec (single processor)

The results are extremely good for programs with a certain structure. In particular, programs
of the form p (. . .) : - q (. . .) & p (. . .) , where q (. . .) gives rise to a deterministic computation
with a sufficiently deep level of recursion, will offer considerable improvement in performance.
Interesting results are also seen by examining the effect of inside failures during execution: the
use of LPCO allows further improvement. The presence of a single parcall frame considerably
reduces the delay of propagating kill signáis (kill signáis are sent to sibling and-branches by a
failed subgoal in a parallel conjunction to remove them from the computation). Table 7 shows
the result obtained causing an inside failure during the execution of the matrix multiplication
benchmark.

Also in terms of memory consumption, the combination of LPCO and Shallow Parallelism
has proven to be extremely successful—while the LPCO cuts on the number of parcall frames,

Goals
executed

matrix-mult-inside-fail-first

ACE Execution
Unoptimized | Optimized

5346 3100 (42%)

Table 7: Unoptimized/Optimized Execution times in msec (single processor)

the Shallow Parallelism optimization removes the allocation of input and end markers. Table 8
summarizes these results: each entry of the form a/b —>• c/d indicates that the number of markers
needed went down from a to c and the number of parcall frames went down from b to d when the
LPCO and shallow parallelism optimizations were applied. The second line of the table indicates
the total percentage of improvement in stack consumption obtained by introducing the LPCO.
Also these figures have been obtained by using a single processor during the execution.

Goals
executed

Markers/Parcall
% Improvement

bt-cluster

119/60 -> 1/1
49%

deriv

134/87 -> 0/1
45%

ACE Execution
poccur(5) serial

95/50 -> 40/1
34%

16/11 ->• 0/1
43%

matrix-mult(40)

1638/1599 ->• 0/1
39%

Table 8: Memory Usage (Markers/Parcall-Frames for Unoptimized —>• Optimized)

5.4 Backtracking Families Optimization
Clearly, the practical advantages which can be obtained automatically with the backtracking
families optimization strongly depend on the quality of the compile-time analysis performed or,
if done manually, of the annotations provided by the user. The general issue of static analysis
of determinism is beyond the scope of this paper. However, the potential of the optimization
can still be assessed by making reasonable assumptions regarding the information that could be
obtained based on the current state of the art in global analysis, and annotating the programs to
encode this information. We have done this for a number of benchmarks and the results are shown
in Table 9, which shows the number of markers allocated (without and with the optimization)
when executing on 10 processors.

As expected, the number of markers in the optimized versión actually differs much from run
to run - a range over a large number of runs is given in this case. It can be observed that, as
expected, the reduction in the number of markers allocated is quite significant, and larger than
with the dynamic methods studied previously (which have the obvious advantage on the other
hand of not requiring analysis). The results are graphically compared in figure 14.

As mentioned before, the advantage comes either from the knowledge that parallel calis that
do créate choice-points (and thus are not eligible for the shallow backtracking optimization
dynamically) are in fact deterministic, or from the knowledge that goals that are not deterministic
and are picked up by a processor out of contiguous order (and thus are not eligible for the
determínate processor optimization) are in the same backtracking family. For example, it is quite
simple to determine by global analysis (using the same information that the parallelizing compiler

Goals
Executed

deriv(l)
deriv(2)
deriv(S)
deriv(4)
boyer(O)
boyer(l)
boyer(2)
boyer(S)
quicksort(50)
quicksort(lOO)
quicksort(150)
quicksort(200)
poccur(l)
poccur(2)
poccur(S)
poccur(4)
poccur(5)
takeuchi(lS)
takeuchi(14)
takeuchi(15)
takeuchi(16)

&-Prolog
unoptimized

261
2109
16893
135165

24
747
7290

282168
150
300
450
600
30
60
90
120
150
1412
4744
10736
21236

Execution
optimized

[9]
[11]
[11]
[11]

[3 -8]
[111 - 153]
[543 - 745]

[4770 - 6500]
[13 - 15]
[14 - 16]
[15 - 17]
[15 - 16]
[9 - 10]
[11 - 12]
[11 - 13]
[12 - 13]
[12 - 13]
[19 - 23]
[21 - 29]
[21 - 30]
[23 - 28]

Table 9: Backtracking Families Optimization (memory consumption, 10 proc.)

uses to parallelize the benchmark) that the matrix benchmark is completely deterministic. This
is the case also with most of the other examples in Table 9. However, the issue of determining
precisely the exact extent to which this optimization is applicable in large programs using state
of the art analysis technology remains a topic for future work.

It may be noticed that the number of markers allocated with no optimization is somewhat
larger than in the previous tables. This is simply due to the fact that in order to split the work
involved in system modification for testing the different optimizations proposed these tests were
run on the current versión of the &-Prolog system, rather than on ACE.

While due to the collaborative work between our two teams the two systems are currently
quite similar, this versión of &-Prolog differs slightly from the current implementation of ACE,
and this justifies the slight difference in the number of markers used when no optimizations are
implemented.

5.5 Kill Management Performance

Figure 15 (i) shows the execution time obtained for a program that involves massive amount of
killing. This program is for computing fibonacci(16), where, after the computation is finished
a failure is forced. As a result, the whole tree created during the Fibonacci computation needs
to be unwound and removed. We expect that the time to kill, i.e., to unwind and remove the
tree, should be approximately the same as the time it takes to construct the tree. Henee, the
expected time for executing this program that fails at the end should be twice the time for

250

c
.2 200
Q.
E
3
t/>
C

ü 150
>
O
E
o

S 100

50

deriv boyer quick_sort poccur

Benchmarks

Figure 14: Improvements using Backtracking Families

successfully computing fi,bonacci(16). The two curves (labeled "Actual time" and "Expected
time" respectively) in Figure 15 (i) show the actual execution time and the expected execution
time obtained for different number of agents.

A third curve (labeled Optimized Time) shows the slight improvement obtained by introducing
the determínate processor optimization (Le., sequentializing consecutive and-parallel subgoals
executed by the same agent thus reducing the number of input markers allocated and the number
of parallel threads). The figure illustrates that with fewer processing agents (< 2) the actual
time to process a parallel conjunction and then kill it is smaller than the expected time for this
computation (in other words the time it takes to unwind and kill the tree is less than the time it
takes to créate it). This is because of the fact that with fewer processors each processor ends up
sending signáis to itself which can be handled faster. With larger number of processors the time
to communicate kill messages becomes quite significant; as a result, and not too surprisingly,
the actual time exceeds the expected time. The figure also shows that reducing the number
of parallel threads via our optimization results in improved performance. This is also expected
since by reducing the number of threads we effectively reduce the number of kill messages that
will be exchanged.

The discussion so far suggests that killing adds a significant overhead to computation. However,
killing leads to some advantages as well—in some cases failure of a computation can be detected
quite a bit earlier, resulting in super-linear speedups. Figure 15(ii) illustrates this other extreme
of the lazy approach to killing. The program, whose execution time is plotted against the

1 •

^ | Unoptimized

\ \^\ Optimized (worst) \

| | Optimized (best)

I: : :i : ::: 1
1 _r - l rrm rrm

number of processors, consists of activating two parallel threads. The first thread contains a
huge amount of computation, while the second encounters an early failure. The early failure
will not be immediately detected in sequential execution (it will be detected after the huge first
thread is finished and the second thread is started), while in any parallel computation it will be
immediately detected and propagated to the first thread avoiding the huge computation. This
results in super-linear speedups as shown in Figure 15(ii).

Benchmarks with Killing

H

2.00 4.00 6.00 8.00

No. of Agents

Fig(i)

10.00

1.20

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

- 1 1 1

Program with
Unbalanced
and-parallel
goals

-

-

-

-

-

-

-

\

1-

-

-

-

-

-

-

-

-

-
l l l

2.00 4.00 6.00 8.00

No. of Agents

Fig(ü)

10.00

Figure 15: Benchmarks involving Killing

6 Conclusions

This paper describes some of the important features of the independent and-parallel component
of the ACE system—a system which implicitly exploits both independent and- and or-parallelism
from Prolog programs. We discussed the structure of the abstract machine and the organization
of the execution, placing emphasis on the new ideas and optimizations introduced in the design.
We presented results for a comparatively large suite of benchmarks, some over two thousand
Prolog lines long. Our results show that our system is well-suited for parallel execution of sym-
bolic applications coded in Prolog. These results also confirm our initial contention that ACE
can exploit and-parallelism with the efficiency of and-parallel only systems such as &-Prolog:
performance is quite cióse to that reported for the original versión of &-Prolog described in [24],
despite the fact that: (i) ACE contains a significantly richer implementation of signal manage-
ment and backtracking than &-Prolog had at that time The versión of &-Prolog reported in [24]
did not implement outside backtracking because this restriction results in many simplifications
in the backtracking machinery (backtracking was still allowed elsewhere, as, for example, within
parallel goals). It was expected that it would not be a serious burden on the compiler to detect

cases where backtracking across parallel goals might occur, which would then not be parallelized.
However, for generality, and because ACE also exploits or-parallelism, support for full backtrack­
ing over parallel conjunctions is fully justified and has been shown herein not to result in too
high an overhead; (ii) ACE supports or-parallelism. The results obtained with ACE are quite
similar, as expected, to those obtained by &-Prolog, since the two models are based on similar
principies. The optimizations introduced in ACE allow ACE to gain better execution eíticiency
and, in certain situations, better speedups (e.g. when LPCO allows to optimize computations
containing heavy backtracking over parallel calis).

Apart from &-Prolog, very few "real" and-parallel Prolog systems have been realized. APEX
[36] is another and-parallel system implemented by Lin and Kumar. Performance figures for
APEX have been published for only some very simple benchmarks. For these benchmarks both
&-Prolog and ACE appears to be superior or equivalent.

DDAS [47] is an extensión of the RAP-WAM model to the case of dependent and-parallelism.
Very recently a parallel implementation has been finished [45], but there are no performance
figures available anywhere yet. Older articles on the DDAS used a high-level simulation, which
does not allow realistic comparisons: the reported speedups were equivalent to those of ACE on
most of the benchmarks, except few cases where DDAS gets better speedups, due to the fact
that the simulator does not take into account certain overheads encountered in a real parallel
implementations (e.g. need to use locks).

Our results also show that the optimizations that we proposed, that are also applicable to
other parallel systems, can significantly reduce the memory and execution overhead in and-
parallel systems. With these various optimizations ACE performance is the same as or better
than that of the previously reported implementation of &-Prolog and the memory consumption
greatly reduced with respect to that reported in previous studies [48].

References

[1] K.A.M. Ali and R. Karlsson. The Muse Or-parallel Prolog Model and its Performance. In
1990 N. American Conf. on Logic Prog. MIT Press, 1990.

[2] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Programming. In
G.Levi and M.Martelli, editors, Proc. of the 6th International Conference on Logic Por-
gramming. MIT Press, 1990.

[3] F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Global Analysis in
Strict Independence-based Automatic Program Parallelization. In M. Bruynooghe, editor,
International Logic Programming Syrnposium. MIT Press, 1994.

[4] F. Bueno, M. García de la Banda, and M. Hermenegildo. The PLAI Abstract Interpretation
System. Technical Report CLIP2/94.0, Univ. Politécnica de Madrid, November 1994.

[5] D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-parallelism Using
Sharing and Freeness Information. In Springer-Verlag, editor, 1994 International Static
Analysis Symposium, number 864 in LNCS, pages 297-313, Namur, Belgium, September
1994.

[6] M. Carlsson. On the Efficiency of Optimizing Shallow Backtracking in Compiled Prolog. In
Sixth International Conference on Logic Programming, pages 3-16. MIT Press, June 1989.

[7] S.-E. Chang and Y. P. Chiang. Restricted AND-Parallelism Execution Model with Side-
Effects. In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, pages 350-368, 1989.

[8] A. Colmerauer. Les gramaire de metamorphose. Technical report, Univ. D'aix-Marseille,
Groupe De la, 1975.

[9] J. S. Conery. Parallel Execution of Logic Programa. Kluwer Academic Publishers, Norwell,
Ma 02061, 1987.

[10] V. Santos Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-parallelism. In Proc. 3rd ACM SIGPLAN PPoPP,
1990.

[11] V. Santos Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Support-
ing Full Prolog on the Basic Andorra Model. In 1991 International Conference on Logic
Programming. MIT Press, June 1991.

[12] S. Debray D. Gudeman, K. De Bosschere. je: An Efficient and Portable Sequential Im-
plementation of Janus. In Procs. of the Joint International Conference and Symposium on
Logic Programming. MIT Press, 1992.

[13] M. García de la Banda, M. Hermenegildo, and K. Marriot. Independence in constraint logic
programming. In Proc. of the 1993 International Symposium on Logic Programming. MIT
Press, 1993.

[14] S. Debray, P. López-García, and M. Hermenegildo. Non-failure Analysis for Logic Programs.
Technical Report CLIP14/94.0, Univ. Politécnica de Madrid, October 1994.

[15] S. K. Debray, N.-W. Lin, and M. Hermenegilo. Task Granularity Analysis in Logic Programs.
In Proc. of the 1990 ACM Conf. on Programming Language Design and Implementation.
ACM Press, June 1990.

[16] D. DeGroot. Restricted AND-Parallelism. In Int'l Conf. on 5th Generation Computer
Systems, pages 471-478. Tokyo, Nov. 1984.

[17] D. DeGroot. Restricted AND-Parallelism and Side-Eífects. In International Symposium on
Logic Programming, pages 80-89. San Francisco, IEEE Computer Society, August 1987.

[18] G. Gupta and V. Santos Costa. Cuts and Side-effects in And/Or Parallel Prolog. Journal
of Logic Programming, 1995. to appear.

[19] G. Gupta and M. Hermenegildo. Recomputation based Implementation of And-Or Parallel
Prolog. In Int'l Conf. on 5th Generation Computer Sys. '92, pages 770-782, 1992.

[20] G. Gupta, M. Hermenegildo, and E. Pontelli. &ACE: A High-performance Parallel Prolog
System. In IPPS 95. IEEE Computer Society, Santa Barbara, CA, April 1995.

[21] G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos Costa. ACE: And/Or-parallel
Copying-based Execution of Logic Programs. In Proc. ICLP'94, pages 93-109. MIT Press,
1994.

[22] G. Gupta and E. Pontelli. Data-Parallel Execution of Prolog Programs in ACE. In IEEE
Symposium on Parallel and Distributed Processing. IEEE Computer Society, 1995.

[23] G. Gupta and E. Pontelli. Optimization Principies for Parallel Implementation of Nondeter-
ministic Languages and Systems. Technical report, Dept. of Computer Science, New México
State University, 1995.

[24] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent
And-Parallelism. In 1990 Int'l Conf. on Logic Prog., pages 253-268. MIT Press, June 1990.

[25] M. Hermenegildo and K. Greene. The &-prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

[26] M. Hermenegildo and P. Lopez-Garcia. Efficient Term Size Computation for Granularity
Control. In L. Sterling, editor, Proc. of the Twelfth International Conference on Logic
Programming. MIT Press, 1995.

[27] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in Logic
Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic Pro­
gramming, 22(1): 1-45, 1995.

[28] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architec-
ture Design and Efficient Implementation of Logic Programs in Parallel. PhD thesis, U. of
Texas at Austin, August 1986.

[29] M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of Logic
Programs. In Proc. 3rd ICLP, LNCS 225, pages 25-40. Springer-Verlag, 1986.

[30] M. V. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Management in
AND-Parallel Execution of Logic Programs. In Fourth International Conference on Logic
Programming, pages 556-575. University of Melbourne, MIT Press, May 1987.

[31] M. V. Hermenegildo and R. I. Nasr. Efficient Management of Backtracking in AND-
parallelism. In Third International Conference on Logic Programming, number 225 in Lee-
ture Notes in Computer Science, pages 40-55. Imperial College, Springer-Verlag, July 1986.

[32

[33

[34

[35

[36

[37;

[38

[39

[40

[41

[42;

[43;

[44

[45;

[46

A. Houri and E. Shapiro. A sequential abstract machine for fíat concurrent prolog. Technical
Report CS86-20, Dept. of Computer Science, The Weizmann Institute of Science, Rehovot
76100, Israel, July 1986.

J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming, 13/20:503-581, 1994.

S. Kliger. Compiling Concurrent Logic Programming Languages. PhD thesis, Weizmann
Institute, 1992.

R. A. Kowalski. Predicate Logic as a Programming Language. In Proceedings IFIPS, pages
569-574, 1974.

Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared Memory
Multiprocessor: A Summary of Results. In Fifth International Conference and Symposium
on Logic Programming, pages 1123-1141. University of Washington, MIT Press, August
1988.

P. López García, M. Hermenegildo, and S.K. Debray. Towards Granularity Based Control
of Parallelism in Logic Programs. In Proc. of First International Symposium on Parallel
Symbolic Computation, PASCO'94, pages 133-144. World Scientific Publishing Company,
September 1994.

E. Lusk and al. The Aurora Or-parallel Prolog System. New Generation Computing, 7(2,3),
'90.

K. Muthukumar and M. Hermenegildo. Efficient Methods for Supporting Side Effects in
Independent And-parallelism and Their Backtracking Semantics. In 1989 International
Conference on Logic Programming. MIT Press, June 1989.

E. Pontelli and G. Gupta. Nested Parallel Cali Optimization. Technical report, New México
State University, 1994.

E. Pontelli and G. Gupta. An Overview of the ACE Project. In Proc. of Compulog Parlmp
Workshop, 1995.

E. Pontelli and G. Gupta. On the Duality Between And-parallelism and Or-parallelism. In
Proc. of Euro-Par195. Springer Verlag, 1995.

E. Pontelli, G. Gupta, and D. Tang. Determinacy Driven Optimizations of Parallel Prolog
Implementations. Technical report, New México State University, 1994.

P. Van Roy and A.M. Despain. High-performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer, 25(1), 1992.

K. Shen. Parallel execution of DASWAM. Private comunication.

K. Shen. Exploiting Dependent And-parallelism in Prolog: The Dynamic Dependent And-
parallel Scheme. In Proc. Joint Int'l Conf. and Symp. on Logic Prog. MIT Press, 1992.

[47] K. Shen. Studies in And/Or Parallelism in Prolog. PhD thesis, U. of Cambridge, 1992.

[48] K. Shen and M. Hermenegildo. Divided We Stand: Parallel Distributed Stack Memory
Management. In E. Tick and G. Succi, editors, Implementations of Logic Programming
Systems. Kluwer Academic Press, 1994.

[49] L. Sterling, editor. The Second International Conference on the Practical Application of
Prolog. Royal Society of Arts, 1994.

[50] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog: Collected
Papers, pages 140-156. MIT Press, Cambridge MA, 1987.

[51] D. H. D. Warren. An Improved Prolog Implementation Which Optimises Tail Recursion.
Research Paper 156, Dept. of Artificial Intelligence, University of Edinburgh, 1980.

