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Abstract 

We present the design and implementation of the and-parallel component of ACE. ACE 
is a computational model for the full Prolog language that simultaneously exploits both 
or-parallelism and independent and-parallelism. A high performance implementation of the 
ACE model has been realized and its performance reported in this paper. We discuss how 
some of the standard problems which appear when implementing and-parallel systems are 
solved in ACE. We then propose a number of optimizations aimed at reducing the overheads 
and the increased memory consumption which occur in such systems when using previously 
proposed solutions. Finally, we present results from an implementation of ACE which in-
cludes the optimizations proposed. The results show that ACE exploits and-parallelism 
with high efficiency and high speedups. Furthermore, they also show that the proposed op­
timizations, which are applicable to many other and-parallel systems, significantly decrease 
memory consumption and increase speedups and absolute performance both in forwards 
execution and during backtracking. 
Keywords: Independent And-parallelism, Or-parallelism, Implementation Issues, Mem­
ory Management, Performance Evaluation, Logic Programming. 

1 Introduction 

1.1 Logic Programming and Prolog 

Logic programming is a programming paradigm where programs are expressed as logical rules 
[35, 8]. Logic programming languages have been shown to be suited to a wide range of applica­
tions, from compilers to databases and to symbolic applications, as well as for general purpose 
programming (see, e.g., [49]). Arguably, the most popular logic programming language nowadays 
is Prolog. Unlike conventional programming languages, Logic Programming languages disallow 
destructive assignment and include little explicit control information. Not only this allows cleaner 
(declarative) semantics for programs, and henee a better understanding of them by their users, 
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it also makes it easier for an evaluator of logic programs to employ different control strategies for 
evaluation. That is, different operations in a logic program can often be executed in any order 
without affecting the (declarative) meaning of the program.1 In particular, these operations can 
be performed by the evaluator in parallel. Furthermore, the cleaner semantics also make logic 
languages more amenable to automatic compile-time analysis and transformation. 

An important characteristic of logic programming languages is that they greatly facilítate 
exploiting parallelism in an implicü way. This can be done directly by the program evaluator, as 
suggested above, or, alternatively, it can be done by a parallelizing compiler, whose task then is 
essentially unburdening the evaluator from making run-time decisions regarding when to run in 
parallel. Finally, of course, the program can be parallelized by the user. In all cases, the advantage 
offered by logic programming is that the process is easier because of the more declarative nature of 
the language and its high level, which contribute in preventing the parallelism in the application 
from being hidden in the coding process. Furthermore, the parallelization process can be done 
quite successfully in an automatic way, requiring little or no input from the user. Clearly, 
implicit exploitation of parallelism can in many cases have significant advantages over explicit 
parallelization.2 In that sense, Prolog offers a possible path for solving the new form of "(parallel) 
software crisis" that is posed to arise with the new wider availability of multiprocessors3—given 
systems, such as the one described in this paper, one can run Prolog programs written for 
sequential machines in parallel with little or no effort. For the rest of the paper we assume that 
the reader is familiar with Prolog and its execution model. 

It must be pointed out that while the preferred target áreas of Prolog are Symbolic and AI 
applications, our system, as any other Prolog system (parallel or not), can also be used for the 
execution of general purpose programs [49], retaining the advantages in performance of parallel 
execution. This is borne out from some of the benchmarks we have used in Section 5 of this 
paper. 

1.2 Parallelism in Logic Programming 

Three principal kinds of (implicitly exploitable) control parallelism can be identified in logic 
programs (and, thus, Prolog) [9]. 

1. Or-parallelism arises when more than one clause defines some predicate and a literal uniíies 
with more than one clause head—the corresponding bodies can then be executed in parallel 
with each other [38, 1]. Or-parallelism is thus a way of efficiently searching for solutions to 
the query, by exploring alternative solutions in parallel. 

2. Independent and-parallelism arises when more than one goal is present in the query or in the 
body of a clause, and it can be determined that these goals do not "affect" each other 
in the sequential execution-they can then be safely executed (independently) in parallel 
[16, 28, 36, 24, 27]. 

xData dependencies or side effects however do pose constraints in the evaluation order. 
2This does not mean, of course, that a knowledgeable user should be prevented from parallelizing programs 

manually or even programming sequentially but in a particular way that makes it possible for the system to 
uncover more parallelism. 

3For example, affordable (shared memory) multiprocessor workstations are already being marketed by vendors 
such as Sun (Sun Sparc 10-2000), SGI (Challenge), etc. 



3. Dependerá and-parallelism arises when two or more non-independent goals (in the sense above) 
are executed in parallel. In this case the shared variables are used as a means of communi-
cation. Several proposals and systems adhere to this execution paradigm. Some of them try 
to retain the Prolog semantics and behavior, either relying on low-level machinery [46] or 
on a mixture of compile-time techniques and specialized machinery [10]. Other proposals 
depart from standard Prolog semantics, mainly restricting or disallowing backtracking and 
using matching instead of general unification [50, 32, 34, 12, 2]. In general, these decisions 
simplify the architecture of the system. 

1.3 ACE: An And-Or Parallel System and Execution Model 

The ACE (And-or/parallel Copying-based Execution) model [21, 41] uses stack-copying [1] and 
recomputation [19] to efficiently support combined or- and independent and-parallel execution. 
ACE represents an efficient combination of or- and independent and-parallelism in the sense 
that it strives to pay for the penalties for supporting either form of parallelism only when that 
form of parallelism is actually exploited. It achieves this by ensuring that, in the presence of 
only or-parallelism, execution in ACE be essentially the same as in the MUSE [1] system—a 
stack-copying based purely or-parallel system, while in the presence of only independent and-
parallelism, execution be essentially the same as in the &-Prolog [24] system—a recomputation 
based purely and-parallel system. This efficiency in execution is accomplished by extending the 
stack-copying techniques of MUSE to deal with an organization of processors into teams [10]. 

It is important to observe that reaching this goal goes far beyond solving a simple engineering 
problem in combining two existing systems. The experience of ACE showed that the combination 
of two forms of parallelism leads to question most of the design choices and requires new solutions 
to previously solved problems (e.g. memory management schemes). This allowed us to get a 
better insight in the issues to be tackled in implementing general parallel logic programming 
systems. Some of these fundamental issues are briefly sketched in Section 2.5. 

The ACE system is an efficient implementation of the ACE model supporting the full Pro­
log language, that has been developed at the Laboratory for Logic, Databases, and Advanced 
Programming of the New México State University, in collaboration with the CLIP group at the 
Technical University of Madrid, Spain. In this paper we will present briefly how some of the 
standard problems which appear when implementing and-parallel systems are solved in ACE. 
We then propose a number of optimizations aimed at reducing the overheads and the increased 
memory consumption. Finally, we present results from an implementation of the system which 
includes the optimizations proposed. The results show that ACE exploits and-parallelism with 
very high efficiency and excellent speedups. These results are comparable and often superior 
than those presented for other puré and-parallel systems. Furthermore, they also show that the 
proposed optimizations, which are applicable to many other and-parallel systems, significantly 
decrease memory consumption and increase speedups and absolute performance both in forwards 
execution and during backtracking. The ACE implementation belongs to the second generation 
of and-parallel systems, since it combines the techniques used in older, first generation systems 
(e.g. the first versions of &-Prolog [24]) with new innovative optimizations to obtain a highly 
efficient system. 

As mentioned before, in this paper we are exclusively concerned with the analysis of the 
and-parallel component of the ACE system; for further details on the whole ACE system the 
interested reader is referred to [21]. 



2 Independent And-parallelism 
As pointed out above, the main purpose of this paper is to illustrate the structure, features, 
and optimizations of the and-parallel engine developed for the ACE system, and evalúate its 
performance. In this section we explain the computational behavior of the and-parallel engine 
in more detail. 

Much work has been done to date in the context of independent and-parallel execution of Prolog 
programs. Practical models and systems which exploit this type of parallelism [28, 36, 24, 46] 
are generally designed for shared memory platforms and based on the "marker model", and on 
derivations of the RAP-WAM/PWAM abstract machines, originally proposed in [28, 30] and 
refined in [24, 47, 48]. This model has been shown to be practical through its implementation 
in the &-Prolog system, which proved capable of obtaining quite good speedups with respect to 
state of the art sequential systems. Our design of the and-parallel component of ACE is heavily 
influenced by this model and its implementation in &-Prolog. However, in addition to supporting 
or-parallelism, ACE also incorporates a significant number of optimizations which considerably 
reduce the parallel overhead and result in better overall efficiency. These optimizations are 
fairly general, and are applicable to any and-parallel system whose implementation is based 
on the markers model. The election of having a shared memory space, in contrast to many 
other proposals which use distributed memory models, is now supported by the availability of 
commercial multiprocessors in the market and their relative ease of programming. In addition, 
shared memory machines offer a model for the implementor which is simpler and more portable 
than that offered by distributed memory architectures. 

2.1 Introduction 

As in the RAP-WAM, ACE exploits independent and-parallelism using a recomputation based 
scheme [19]—no sharing of solutions is performed (at the and-parallel level). This means that for 
a query like ? - a ,b , where a and b are nondeterministic, b is completely recomputed for every 
solution of a (as in Prolog). 

For simplicity and efficiency, we adopt the solution proposed by DeGroot [16] of restricting 
parallelism to a nested parbegin-parend structure. This is illustrated in Figure 1 which sketches 
the structure of the computation tree created in the presence of and-parallel computation with 
the previously mentioned parbegin-parend structure, where the different branches are assigned to 
different and-agents (and-agents are processing agents working in and-parallel with each other). 
Since and-agents are computing just different parts of the same computation (i.e. they are 
cooperating in building one solution of the initial query) they need to make available to each 
other their (partial) solutions. Doing this in a distributed memory machine would need a traffic 
of data which would impact negatively on performance. This is avoided in a shared memory 
machine by having different but mutually accessible logical address spaces. This can be seen in 
through an example: let us consider the following clause (taken from a program for performing 
symbolic integration): 

in tégrate (X + Y,Z) <- in tégrate (X,Xi) , in tégrate (Y, Yx) , Z = Xi + Yx 

The execution of the two subgoals in the body can be carried out in and-parallel. But at the 
end of the parallel part, the execution is sequential and it requires access to terms created in the 
stacks of different and-agents (see figure 2). 



agent 1 

Figure 1: Computation Tree with Recomputation-based And-parallelism 

<- ¡ntegr(5*x+x,Y) 

<-¡ntegr(5*x,X1), ¡ntegr(x,Y1), Z=X1 + Y1 

Figure 2: Need for Sharing of Data Structures 

2.2 Conditional Graph Expressions 

Since we are exploiting only independerá and-parallelism, only independent subgoals are allowed 
to be executed concurrently by different and-agents. In order to ensure this, in ACE we have 
adopted the proposal originally designed by DeGroot [16] and refined by one of us [28] (adapted 
also in the &-Prolog system [24]) of annotating the program at compile time with Conditional 
Graph Expressions (CGEs). 

A conditional graph expression (CGE for simplicity) is an expression of the form: 
{{conditions) =>• Bi & • • • & Bn) 

where ( conditions } is a conjunction of simple tests on variables appearing in the clause which 
check for the independence of the goals and & denotes parallel conjunction. The intuitive meaning 
of a CGE is quite straightforward: if, at runtime, the tests present in conditions succeed, then 
the subgoals Bi &•••&; Bn can be executed in and-parallel, otherwise they should be executed 
sequentially. The notion of CGE can be further extended in different ways [24, 28]: 

1. B¿ can actually represent an arbitrary sequential conjunction of subgoals or a nested CGE. 

2. we can explicitly add an else part to the CGE conditional, specifying eventually actions 
different from the plain sequential execution of the subgoals. 



3. the (conditions) can be extended allowing more complex tests, whose purpose goes beyond 
independence analysis, e.g. they can be used to implement some form of granularity control 
[15, 26, 37] or more advanced notions of independence [13, 27, 5]. 

The {conditions) can also be omitted, if they always evalúate to true, Le., if it can be deter-
mined that the goals inside the CGE will be independent at runtime for any possible binding. 

A standard Prolog program needs to be annotated with CGEs in order to take advantage 
of the and-parallel engines available. This process can be done manually by the programmer 
but is generally done automatically by specialized compile-time analysis tools (like the &-Prolog 
parallelizing compiler [3], which is also an integral part of ACE). 

2.3 Forward Execution 

Forward execution of a program annotated with CGEs is quite straightforward [28, 25]. Whenever 
a CGE is encountered, the conditions are evaluated and, if these conditions hold at runtime, the 
various subgoals in the CGE are made available for and-parallel execution (otherwise the subgoals 
in the CGE are run sequentially). Idle and-agents are allowed to pick up available subgoals and 
execute them. Only when the execution of those subgoals is terminated the continuation of the 
CGE (Le., whatever comes after the CGE) is taken into consideration. 

The execution of a parallel conjunction can thus be divided into two phases. The first phase, 
called the inside phase, starts with the beginning of the execution of the CGE and ends when 
the parallel conjunction is finished. Once the execution of the continuation is begun for the first 
time, the outside phase is entered. 

At the implementation level, in order to execute all goals in a parallel conjunction in parallel, 
a scheduling mechanism used to assign parallel goals to available processors and some extra 
data structures are introduced to keep track of the current state of execution. The two main 
additional data structures are the goal stack and the parcall frame. Details of the structure of 
a Parcall frame are shown in Figure 3. In addition to parcall frames and goal stacks, an input 
marker node and an end marker node are used to mark the beginning and the end respectively 
of the segment in the stack corresponding to an and-parallel goal. 
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Figure 3: Additional data structures and related registers in ACE 



During execution of and-parallel Prolog programs, when a parallel conjunction is reached that 
is to be executed in parallel (recall that a conditional parallel conjunction may be executed 
sequentially if the conditional test fails), a parcall frame is created.4 The parcall frame is a 
descriptor of the parallel cali, and it stores information regarding the parallel cali as a whole and 
regarding the single subgoals belonging to the parallel conjunction. 

In particular, the parcall frame contains: 

• a slot for each goal in the parallel conjunction where information regarding the state of 
execution of that goal will be recorded (e.g. location of the execution, determinacy infor­
mation, etc.); 

• necessary information about the state of the execution of the parallel conjunction (e.g. 
number of subgoals still to be executed, status of the execution, connections with outermost 
parallel calis, etc.). 

The creation of the parcall frame identifies the beginning of the parallel cali. The next step 
is allowing the idle and-agents to pick up subgoals belonging to the parallel cali for remote 
execution. A Goal Stack is associated to each agent for this purpose. 

In the original RAP-WAM proposal (and in DASWAM5 as well), a descriptor of each subgoal 
(goal frame) is created and allocated in the goal stack. Idle and-agents will access remote goal 
stacks, extract a goal frame, and use the information to start a remote execution. In the current 
versión of ACE a slightly different approach has been used. The goal stack contains pointers 
to the currently open parallel calis with work available for remote execution (as shown in figure 
3). Experimental results [42] have shown that this approach is more efficient and results in 
considerable reduction in memory consumption. 

Processors can pick up a goal for execution from the goal stacks of other processors as well as 
their own goal stack, once they become idle. 

Execution of a parallel goal starts with the allocation of an input marker (to denote the 
beginning of a new stack section) and is completed by the allocation of and end marker (to 
denote the end of the stack section allocated for that goal). Markers are used to: 

• sepárate the different sections of a stack belonging to execution of different subgoals—this 
is fundamental for garbage collection purposes; 

• link (in the correct order) the different subgoals belonging to the same parallel cali—this 
is fundamental to implement a correct backtracking semantics, as explained in the next 
section. 

Markers store various sorts of information, like: 

1. pointers to the various stacks (local stack, global stack) to allow garbage recovery; 

2. links to logically preceding subgoal; 

3. sections of trail associated with the present computation; 
4This can be done in the control stack, as in ACE and DASWAM, or in the local stack, as in the RAPWAM 

and &-Prolog. 
5 DASWAM [47] is na abstract machine for an extensión of &-Prolog (DDAS) which incorpórate dependent 

and-parallelism. 



The processor which completes the execution of an and-parallel subgoal belonging to a parallel 
cali will proceed with the (sequential) execution of the parallel cali continuation. When a solution 
for every subgoal in a parallel conjunction has been found so that the execution of the continuation 
can begin, we say that the parallel conjunction has been closed or completed. 

2.4 Backward Execution 

Backward execution denotes the series of steps that are performed following the failure of a test 
(e.g., an arithmetic test), a unification failure, or the lack of matching clauses for a given cali. 
Since an and-parallel system explores only one or-branch at a time, backward execution involves 
backtracking and searching for new alternatives in previous choice points. In ACE, where both 
or- and and-parallelism are exploited, backtracking should also avoid taking alternatives already 
taken by other or-agents. 

In the presence of CGEs, sequential backtracking must be modified in order to deal with 
computations which are spread across processors. As long as backtracking occurs over the se­
quential part of the computation plain Prolog-like backtracking is used. However, the situation 
is more involved when backtracking involves a CGE, because more than one goal may be exe-
cuting in parallel, one or more of which may encounter failure and backtrack at the same time. 
Thus, unlike in a sequential system, there is no unique backtracking point. The communication 
among the processors involved in such backtracking process in performed using "signáis", which 
can be viewed as specialized messages carrying the information needed to perform backtracking 
correctly. 

In any case, it must be ensured that the backtracking semantics is such that all solutions are 
reported. One such backtracking semantics has been proposed in [31]. Consider the subgoals 
shown below, where ',' is used between sequential subgoals (because of data-dependencies) and 
'&' for parallel subgoals with no data-dependencies (note, also, that (conditions) do not appear, 
because they are supposed to always hold): 

a, b , (c & d & e ) , g, h 
Assuming that all subgoals can unify with more than one rule, there are several possible cases 
depending upon which subgoal fails: If subgoal a or b fails, sequential backtracking occurs, as 
usual. Since c, d, and e are mutually independent, if either one of them fails, backtracking must 
proceed to b, because c, d and e do not affect each other's search space—but see further below. 
If g fails, backtracking must proceed to the right-most choice point within the parallel subgoals c 
& d & e, and re-compute all goals to the right of this choice point. If e were the rightmost choice 
point and e should subsequently fail, backtracking would proceed to d, and, if necessary, to c. 
Thus, backtracking within a set of and-parallel subgoals occurs only if initiated by a failure from 
outside these goals, Le., "from the right" (also known as outside backtracking—since it is initiated 
when the parallel cali has already reached outside status). If initiated from within, backtracking 
proceeds outside of all these goals, Le., "to the left" (also known as inside backtracking—since 
initiated when the parallel cali is in inside status). The latter behavior is a form of "intelligent" 
backtracking6. When backtracking is initiated from outside, once a choice point is found in a 
subgoal g, an untried alternative is picked from it and then all the subgoals to the right of g in 
the parallel conjunction are restarted. 

6However, such "intelligent backtracking" cannot be used in the presence of side effects, and additional syn-
chronization mechanisms must be used to ensure a proper execution [17, 7, 39, 18]. 



The presence of the markers allows the backtracking activity to move in the "right" direction. 
The markers represent the entry and exit point of each subgoal. This is further illustrated in 
figure 4. 

... ( c & d & e ) , g 

Figure 4: Backtracking over an And-parallel computation 

If failure occurs in the inside phase, inside backtracking is used—and the whole parcall should 
fail, all the goals in the parallel conjunction being independent. To realize this, the failing 
processor should send a kill signal to all processors that have stolen a goal from that parcall to 
undo any execution for the stolen goal. After all processors finish undoing the work, the goal 
before the CGE will be backtracked over as in the standard WAM. 

On the other hand, after a parallel conjunction completes, if a goal in the continuation of the 
CGE fails, then backtracking proceeds into the conjunction in outside mode. Outside backtrack­
ing is from right to left in the CGE similar to the backtracking in sequential WAM. The only 
difference is that a goal to be backtracked over may have been executed by a remote processor 
if another processor stole the goal. Thus, a redo signal has to be sent to the remote processor. 
If a new solution is found during backtracking, the goals to the right of this goal in the parallel 
conjunction have to be re-executed. If outside backtracking fails to produce any more answers, 
the goal before the CGE will be backtracked over as in normal sequential execution. 

Independent and-parallelism with the backtracking semantics described above was originally 
proposed in RAP-WAM [29], and has been efficiently implemented in the ACE system. 

2.5 Challenges 

The above brief description of the system's activity may give the false impression that engineering 
an and-parallel implementation is relatively simple. However the design and implementation of 
proper mechanisms to support and-parallelism offer some very challenging issues: 

Logical vs. Physical: the Warren Abstract Machine has been carefully designed to support 
efficient sequential execution of logic programs. In its design the WAM takes full advan-
tage of the direct correspondence between logical structure of the execution and its physical 
layout in the abstract machine's data well of as the ordering in memory of these 
áreas. This allows a considerably simpler execution of very complex operations—e.g. back­
tracking becomes very efficient, since a choice point on the stack is capable of completely 
identifying the execution state existing at its creation time. 



This is not anymore true when dealing with unrestricted scheduling of goals7 [48]: the 
computation can be arbitrarily spread on the stacks of different agents, and the physical 
order of computations on each stack can be completely different from the logical one (e.g. 
a subgoal A which appears to the right of a subgoal B may appear on the stack in the 
opposite order [28]). 

This lack of matching between logical and physical view of the execution creates consider­
able difficulties. Positioning on a choice point is not sufficient anymore to get a view of a 
state of the execution (as in the case of sequential computations). This correspondence has 
to be explicitly recreated, using additional data structures (in our case, the information 
contained in the markers). 

Backtracking Policy: the backtracking semantics described earlier specifies what (and when) 
has to be done, but does not hints how backtracking on distributed computations can be 
implemented. Two approaches are feasible: 

1. Prívate Backtracking: each agent is allowed to backtrack only over parts of the com­
putation that are lying in its own stacks. This simplifies the memory management, but 
requires implementation of synchronization mechanisms to transfer the backtracking 
activity between agents. 

2. Public Backtracking: each agent is allowed to backtrack on the stacks of other agents. 
This avoids the additional costs of communication between agents, but makes garbage 
collection and the overall memory organization more complex. 

&-Prolog and the current versión of ACE use private backtracking, while DDAS [47] im-
plements public backtracking. The choice of private backtracking in ACE has been mainly 
based on the issue of supporting stack-copying for or-parallelism. Private backtracking 
guarantees a "better" distribution of the computation between the processors, making it 
easier during stack-copying to decide which stack sections need to be copied. (Never-
theless, a prototype implementation of ACE with public backtracking is currently under 
development for comparison purposes.) 

Trail Management: one of the main problems in managing backtracking in an and-parallel 
system is detecting the parts of the trail stack that need to be unwound (Le., detecting 
bindings that have to be removed to restore the proper computation state). The current 
model used by ACE is based on a segmented view of the stack, where a segment is defined by 
a section of the stack between two consecutive choicepoints. This makes trail management 
slightly less efficient than in traditional sequential implementations (two pointers, instead 
of one, pointing to the beginning and end of the relevant section of the trail, need to be 
saved in each choicepoint), but considerably simplifies both backtracking and management 
of or-parallelism. 

Garbage Collection: the use of private backtracking allows recovery of a considerable amount 
of garbage "on-the-fly" during execution. Nevertheless, garbage collection remains more 
complicated, due to the lack of correspondence between logical order of backtracking and 

7We use the term unrestricted scheduling to specify that no restrictions are imposed during scheduling on the 
selection of the next piece of work. 



physical distribution of the computation. Parts of computation which are not on the top 
of the stack may be backtracked over first, leaving behind holes in the stacks (this is the 
so-called "garbage slot" problem) that need to be properly tagged and eventually recovered. 

Or-parallelism: last but not least, ACE has been developed from the beginning as a system 
in which and-parallelism and or-parallelism coexist and are concurrently exploited. The 
and-parallel engine was designed with this in mind, so that future extendibility of the 
system to also exploit or-parallelism is not compromised. The main aim in designing the 
and-parallel engine was to keep physical memory organization as clear and as cióse to the 
logical memory organization as possible. This is essential for efficient detection of áreas to 
be copied during stack-copying. In particular, the adoption of a "segmented view" to the 
management of the trail stack and the use of private backtracking are meant to simplify the 
identification of the bindings to be installed/de-installed and to allow parallelization of the 
stack copying operation. While the above considerations have to be taken into account, the 
overall design of the and-parallel component of ACE is only marginally affected by them. 
This is because the and-parallel engine is a "basic" component of the system; an or-parallel 
agent is composed of a team of several and-parallel engines [21]. 

3 Signal Management 

As mentioned in the previous sections, during execution the and-agents need to exchange mes-
sages. Each message implies a request sent to the destination agent for execution of a certain 
activity. The system supports two kinds of messages: 

1. redo messages—used to request a remote backtracking activity. This is necessary whenever 
the logical path of the computation continúes on the stack of a different agent. 

2. kill messages—used to request a remote killing activity. 

Some of the messages could be avoided by allowing an agent to freely perform backtracking 
on the stack of another agent, as in the public backtracking scheme. On the other hand, in the 
implementation of ACE we require the use of private backtracking, as mentioned previously. 

Messages are sent and received asynchronously. The frequency at which an agent checks for 
the presence of messages can be tuned by modifying some system defined constants. 

3.1 Kill Signáis 

In this section we discuss two methods for implementing the kill operation. As mentioned earlier, 
performing the kill is not easy since it is a global operation on the execution tree that may involve 
more than one processor. 

The killing of a single subgoal G, once the corresponding processor has received a signal 
affecting it, involves the complete removal of all the information allocated on the stacks of the 
processor(s) during the execution of G. It consists of two actions: 

• garbage collection: recovery of the stack space occupied by the killed computation; 

• trail unwinding: removal of all the bindings generated during the killed computation. 



None of these actions impose any sort of constraint on the order in which they must be 
performed (i.e. the various parts of the computation may be deallocated and unwound in any 
order, since they are mutually independent). However, care must be taken while mixing forward 
and backward execution (there might be data dependencies among the goals in the CGE and 
the previous ones). For instance, consider a goal: 

: - a, (b & c & d) . . . 
in which the processor Pl that executed goal a also picks up goal b. Goals c and d are picked 
up by other processors. Suppose goal b fails, then processor Pl will send a kill to the processors 
executing c and d. While the kill of c and d is in progress, Pl cannot backtrack over a, and 
restart a new alternative—since the new alternative of a may reuse some memory locations that 
are successively modified by the trail unwinding process of c or d. In other words, the processor 
executing the goal preceding the parallel conjunction should not restart computation unless c 
and d are completely killed and the correct state restored to begin the new computation. 

A kill phase is always started by a failing worker that reaches a parcall frame during back­
tracking. This covers two cases: 

• the parcall frame is reached while there are other and-parallel subgoals of this parcall that 
are still active (i.e. the parcall frame is in inside status). In this case all the other subgoals 
of the parcall need to be killed. 

• the parcall frame is reached after all the subgoals have detected at least one solution (i.e. 
the parcall frame is in outside status). In this case the backtracking semantics previously 
described is applied. When the CGE is re-entered after backtracking over the continua-
tion, messages are sent to those and-parallel subgoals to the right whose computation was 
deterministic (i.e., these determínate goals do not offer any further alternatives, and henee 
such goals should be killed immediately rather than backtracked over). A redo message is 
sent to the rightmost non-deterministic subgoal. 

In the second case, all the processors involved in the kill operation are free to return to their 
normal previous operations once the kill is completed (since the worker generating the kills is 
itself taking care of continuing the execution by sending redo messages to the non-deterministic 
subgoals). In the first case, instead, once the kill is completed, one of the workers involved in 
the kill needs to continué the main execution by backtracking over the computation preceding 
the parcall frame. 

A kill can be serviced lazily or eagerly. Each approach requires a different kind of support 
from the underlying runtime system. The only data structures that are common to both the 
lazy approach and the eager approach described in this paper are those that are required to 
support sending/receiving of kill messages. Kill messages are realized by associating a kill-
message queue with each worker. The kill-message queue of a processor should be accessible to 
all other processors—and consequently the access operations on these queues should be atomic. 

3.1.1 Kill Steps 

The process of killing a computation can be further subdivided into two distinct phases: 

1. Propagation phase: in which the kill signal is propagated to all the and-parallel branches 
nested inside the and-branch of the subgoal being killed; 



2. Cleaning phase: in which the space from killed computation is removed (garbage collec-
tion and trail unwinding). 

The execution of the cleaning phase is relatively easy but requires the knowledge of the phys-
ical boundaries of the computation to be removed. The stack structure adopted to store the 
computation by any Prolog inference engine allows exclusively a bottom-up traversal of the com­
putation tree (i.e. we can only visit the computation tree starting from the leaves and moving 
upwards, towards the root), which corresponds to scanning the stack from the top towards the 
bottom.8 Thus, to sean the tree, we at least require pointers to the bottommost leaf nodes that 
represent the point from which the upward traversal to clean up should begin. Once this starting 
point is known, cleaning is a straightforward operation, which resembles in many aspeets a back­
tracking process. As in backtracking, the worker performing the kill scans the stack, removing 
each encountered data structure and unwinding the part of trail associated with that part of the 
computation. The main differences with the backtracking process are: 

• alternatives in the choice points are ignored—and the choice points are removed; 

• parcall frames are treated as if they are in inside status, i.e. kills towards all the subgoals 
of the parcall frame are generated. 

It is important to observe that the cleaning activity can be performed quite efficiently since 
parallel branches enclosed in a killed subgoal can be cleaned in parallel. Once the bottommost 
extreme of the computation to be killed has been detected, the cleaning step can be immediately 
applied. Figure 5 shows this process. The main issue—and the most difficult problem—is the 
actual detection of the location of the leaves from where the cleaning activity can be started. 
This is the purpose of the propagation step mentioned earlier and the rest of the section will deal 
with different approaches to tackle this problem. 

In the following we present two approaches for propagating kills (with possible variations). 
These approaches are parameterized by: 

1. direction of the propagation: two possible directions can be considered 

(a) top-dovm: kill signáis are actively propagated from the root of the killed subgoal to 
the leaves; 

(b) bottom-up: kill is started from the leaves and pushed towards the root of the subgoal. 

Note that a top-down element is always present in any kill propagation mechanism since, 
after all, a kill is received by a subgoal and has to be propagated to its descendent parcall 
frames. The difference in the two approaches is related to how eagerly the top-down 
component is exploited. 

2. m o d e of propagation: the propagation of the kill signáis in the tree can be realized in 
two alternative ways: 

(a) active: the various workers are actively receiving (or seeking) and propagating the kill 
signáis; 

(b) passive: workers lazily wait to receive a kill directed to them. 

8A sean in the opposite direction would be very expensive, due to the variable size of the structures allocated 
on the choice point stack. 



3.1.2 Lazy Propagat ion of Kill Messages 

The main idea behind this propagation technique is to avoid sending kill messages (unless they 
are strictly necessary). This is realized by leaving to each processor the task of realizing when 
the computation that it is currently performing has been killed. 

In the lazy approach to killing, a kill message is sent to a worker only when the bounds of the 
computation are known (i.e. the computation to be killed has already been completed). In this 
case the cleaning step can be immediately applied. 

Failing Subgoal 
1: failing subgoal 

2 2: kill message to end of subgoal 

3: unwind+garbage collection on local branch 

4: kill propagated to other subgoals 

5: continuation above the CGE 

Figure 5: Cleaning Operation during a Kill 

If the kill is issued when the branch to be killed is still computing, then a suspended kill 
is generated. A suspended kill is simply a kill operation that will be completed later; all the 
necessary information to execute the kill is stored in the slot describing the killed subgoal. The 
effects of this operation are: 

1. since the worker which completes the execution of the subgoal will access the slot for up-
dating the various fields of the slot (like recording its id for backtracking purposes), it 
will immediately realize that the computation that it has just completed has been previ-
ously killed and it will automatically start performing the cleaning operation (as explained 
above). 

2. if the and-scheduler selects an and-parallel subgoal that is subsumed by another subgoal 
with a suspended kill then it will immediately discard the goal and look for new work. Key 
to this step is the presence of a representation of the computation tree which allows us to 
efficiently determine whether one subgoal is subsumed by another (i.e. one is a descendent 
of the other in the search tree). 

3. periodically each worker checks whether its current computation is subsumed by one of 
the goals killed by a suspended subgoal. If this condition is satisfied then the worker will 
immediately interrupt the computation and start the cleaning phase. 

The beauty of this approach lies in its simplicity. The scheme can also take advantage of many 
of the algorithms that have been developed for efficient backtracking (lazy kill is almost identical 
to backtracking). Furthermore, a worker is never distracted by kill messages during a useful 
computation, since the checks performed will affect its execution only if the worker is positioned 
on a killed branch of the tree. In this way the kill operation is postponed and performed only 
when no useful work is available. 

The main disadvantages that we can identify in this approach are the following: 



1. the implementation of this scheme relies on the availability of a representation of the com-
putation tree which allows to determine efficiently whether a given subgoal is a descendent 
of another. It is an open problem whether this can be done in constant time. 

2. the execution of the kill may be slower than in other schemes; this is due to the fact that 
cleaning is started by one processor from the bottommost end of a branch, making it an 
inherently sequential operation. Other approaches may offer a higher degree of parallelism 
during the cleaning up of execution. 

3. more speculative work (which will be eventually undone) is being performed, so resources 
like processors and memory are used in what will be an unused computation. 

A simplified versión of this approach to kill has been implemented in the &-Prolog system. 
Detection of kill only occurs at the end of the subgoal execution. This leads to a very simple 
implementation involving little overhead. On the other hand it has the important drawback of 
being unsafe w.r.t. infinite computations [27]. 

3.1.3 Eager Kill 

The disadvantages mentioned above seem to make the Lazy Kill approach not too advantageous, 
at least in principie. For this reason we propose a different approach, called eager kill, which is 
mainly (but not exclusively) a top-down approach (see Fig. 6(i)). 

•,% Failing Subgoal 

1 / ^ t Direction ofKill 
Propagation 

Lazy Kill 

Failing Subgoal 

/ \ 

Direction ofKill 
Propagation 

Eager Kill 

F¡g(¡) F¡g(¡¡) 

Figure 6: Eager and Lazy Kill 

The main problem in this approach is the lack of information that will allow us to perform a 
top-down traversal of the tree (starting from a given node towards the leaves). As we will see 
later on, this can be accomplished with a small amount of information. 

One of the main issues in killing is that of unwinding of the trail, Le., removal of the bindings 
generated during the computation that is killed. In the presence of and-parallel computation, 
this operation needs to be carefully performed in order to avoid race conditions. If, for example, 
we are trying to kill the computation containing a, (b & c), where a, b have been executed 
by Pi and c by Pj, then a synchronization point needs to be introduced at the level of the 



parallel cali. Without such point, it may happen that Pj returns to its original computation 
(the one interrupted by the kill message) before Pj completes unwinding b. This may lead to 
Pj overwriting memory space which has been just allocated on the heap by Pj. This essentially 
means that, in the presence of a parcall, the kill of the part of the computation tree above the 
parcall may be started only once all the subgoals of the parcall have been completely killed. 
This seems to be the least restrictive requirement to impose (unless a previous global analysis 
deduces precise information about the bindings made in the computation before the parcall). 
Essentially the worker P that is in charge of continuing the killing above the CGE will wait for 
all the subgoals to be completely removed. During this waiting period P needs to keep checking 
for other kill messages received, since otherwise a deadlock situation may occur. 

This introduces the issue of scheduling the worker on serving the kill messages. Using queues to 
store the kill messages and function calis to serve them introduces a specific and rigid ordering on 
the kill serving operations. The first kill to be received is the first to be served and, whenever the 
worker has left behind some busy-wait loops, it will return to them in the opposite order (w.r.t. 
the order in which it accepted the new kill messages). This approach may not be the optimal 
one. Any situation in which the same worker Pj is in charge of killing the computation preceding 
two different CGEs may lead to a potential delay (e.g. all the subgoals of one CGEs have been 
removed but P¿ is suspended on the other CGE waiting for some subgoals to be killed). A better 
scheme can be realized by relaxing the implicit analysis order enforced by the recursive nature 
of the kill-serving function and by restructuring the killing activity as a loop which iterates as 
long as there is at least one parallel cali on which such a worker is required to wait, but allowing 
a dynamic rescheduling of the killing activity. 

Next, we present an example to illustrate our technique for eager propagation of a kill. 

E x a m p l e : 

Let us consider the computation described in Figure 6(ii). 
Assuming that processor P¿ is the one which started the execution of b, then the 

initial kill message will be sent to P¿ from the worker which failed in the computation 
of c. If P¿ was looking for work by invoking the and-scheduler, then it will simply 
leave the and-scheduler and start serving the kill. Otherwise, at the next check for 
kill, it will suspend the current execution and move to serve the kill. 

In the Eager kill approach, P¿ has access to the first parcall frame generated 
during the computation of b. It positions itself on that parcall frame and, since 
this has already completed (i.e. it is in outside status), it starts the killing activity 
by sending a kill to the continuation of the parcall frame (step 2). The continuation 
itself contains another parcall frame; the worker receiving this kill message will access 
the parcall frame (step 3) and send another kill message to its continuation (since 
even this parcall frame is in outside status). The worker executing j will receive the 
kill and serve it, removing the whole computation of j and setting the appropriate 
bit in the parcall frame (h & i ) . At this point the worker that is busy waiting on 
such parcall frame (busy waiting until the continuation has been killed) will kill all 
the subgoals of the parallel cali (h and i , step 6) and then continué further and 
remove g. Once g has been removed, a bit in the parcall frame (d & f) is set and Pi, 
which was in the meantime busy waiting on that parcall frame (busy waiting until the 
continuation has been killed), may proceed to send the kill messages to the subgoals 
of the parallel cali (d and f, step 7) and, once all of them have reported the end of 



the kill, it may proceed with the killing of b. 
Once the whole branch has been removed and also a has reported the end of the 

kill, the worker P¿ is free to restart the computation previously interrupted. 

Note that both the Lazy and Eager schemes for propagating kill can be optimized further, 
however, we do not describe these possible improvements due to lack of space. More details can be 
found elsewhere [21]. The current versión of ACE [20, 21] incorporates a hybrid kill management 
mechanism, where the lazy mechanism has been improved by making use of frequent check points 
(to verify the presence of kills along the current computation branch), together with a complete 
support of the workers scheduling mechanism mentioned above (to deal with múltiple parallel 
calis failing concurrently). 

4 System Optimizations 

Innumerable optimizations can be applied to a recomputation-based and-parallel system like 
ACE. Some optimizations that have been implemented in the current versión of the system deal 
with taking advantage of various forms of determinacy that arise during the computations. In 
the following text some of these optimizations are discussed. Last Parallel Cali Optimization 
(LPCO), Shallow Parallelism Optimization, and Processor Determinacy Optimization are opti­
mizations based exclusively on the run-time behavior of the program, while the Backtracking 
Families Optimization makes use of specific information produced by a suitable compile-time 
analysis tool. All of them are based on general optimization principies [43, 23], aimed at the 
exploitation of determinacy through simplification of the structure of the computation and reuse 
of parts of the computation. Some of these optimizations were suggested in [28] and left as future 
work. 

4.1 Last Parallel Cali Optimization 

Last Parallel Cali Optimization (LPCO) is a generalization of the Last Cali Optimization [51]— 
adopted in most sequential implementations—to the case of parallel calis. Its intent is to merge, 
whenever possible, distinct parallel conjunctions. Last Parallel Cali Optimization can lead to a 
number of advantages (discussed later). The advantages of LPCO are very similar to those for 
last cali optimization [51] in the WAM. The conditions under which the LPCO applies are also 
very similar to those under which last cali optimization is applicable in sequential systems. 
Consider first an example: ? - (p & q) . where 

p : - ( r & s) . q : - ( t & u) . 
The and-tree constructed is shown in Figure 7(i). One can reduce the number of parcall nodes, 
at least for this example, by rewriting the query as ? - ( r & s & t & u ) 9 . Figure 7(ii) shows 
the and-tree that will be created if we apply this optimization. Note that executing the and-tree 
shown in Figure 7(ii) on ACE will require less space because the parcall frames for ( r & s) 
and ( t & u) will not be allocated. The single parcall frame allocated will have two extra goal 
slots compared to the parcall frame allocated for (p & q) in Figure 7(i). It is possible to detect 
cases such as the one above at compile time. However, our aim is to accomplish this saving 
in time and space at runtime. Thus, for the example above, our scheme will work as follows. 

9 Under the assumption that the two clauses are the only matching ones. 



When the parallel calis ( r & s) and ( t & u) are made, the runtime system will recognize that 
they are the last parallel calis in their respective clauses and that the parallel cali (p & q) is 
immediately above. Instead of allocating a new parcall frame some extra information will be 
added to the parcall frame of (p & q) and allocation of a new parcall frame avoided. Note that 
this is only possible if both p and q are determínate, i.e. they have at most one matching clause. 
The extra information added will consist of adding slots for the goals r, s, etc. In particular, no 
new control information needs to be recorded in the parcall frame of (p & q) . However, some 
control information, such as the number of slots, etc., need to be modified in the parcall frame 
of (p & q) . It is also necessary to slightly modify the structure of a slot in order to adapt it to 
the new pattern of execution.10 

r & s & t & u 

f 3 

f¡g (¡) fig(ü) 

Figure 7: Optimization Schemes 

It is important to observe that, if the goal r is to fail in inside mode, then in case (ii) (see Figure 
7(ii)) killing of computation in sibling and-branches will be considerably simplified. In case (i) 
the failure will have to be propagated from parcall frame f2 to parcall frame fl. From fl a kill 
message will have to be sent out to parcall frame f3. In case (ii) a linear sean of only one goal 
list is sufficient. 
One could argüe, as mentioned earlier, that the improved scheme described above can be ac-
complished simply through compile time transformations. However, in many cases this may not 
be possible. For example, if p and q are dynamic predicates or if there is not sufficient static 
information to detect the determinacy of p and q, then the compile-time analysis will not be able 
to detect the eventual applicability of the optimization. Our scheme will work even if p and q are 
dynamic or if determinacy information cannot be statically detected (because it is triggered only 
at runtime). Also, even more relevant, for many programs the number of parallel conjunctions 
that can be combined into one will only be determined at run-time [43]. 

In general, application of LPCO requires two conditions to be satisfied: 

1. determinacy of the computation between two nested parallel calis; 

2. non-existence of any continuation after the nested parallel calis (i.e., only the topmost 
parcall can have a continuation). 

10For example, it is necessary to keep in each slot a pointer to the environment in which the execution of the 
corresponding subgoal will start. 



These conditions are satisfied by a large number of programs (e.g., tail-recursive programs) [22]. 
Work is in progress to generalize this optimization, so that it applies to a wider range of programs 
[40, 42]. 

It is important to observe that the cost of verifying applicability of LPCO at run-time is 
absolutely negligible (comparison of two pointers). This is a further justification for keeping the 
optimization as a puré run-time operation. 

4.2 Shallow Parallelism Optimization 

The Shallow Parallelism optimization is aimed at reducing marker allocation by taking advantage 
of deterministic computations. Many programs involve the development of deep nestings of 
parallel calis, while the sequential subgoals (those which do not contain a further parallel cali) are 
deterministic computations. The main idea is that once one of those deterministic computations 
has been completed, there is no need to keep any data structure alive (since on backtracking 
there will not be any alternatives available). For this reason the allocation of the input marker 
is delayed until the first choice point/parcall frame is allocated (in a fashion similar to shallow 
backtracking technique [6]). If the end of the computation is reached without allocating any input 
marker, then the end marker itself is not allocated (we simply need to record the boundaries of 
the current trail section in the descriptor of the subgoal). On backtracking no kill messages need 
to be generated for this kind of subgoals—we just need to unwind the trail section indicated in 
the corresponding slot of the parcall frame. This simple optimization allows savings in time and 
space since various data structures are not allocated and the number of messages sent during 
backtracking is reduced. 

The cost of applying this optimization is minimal: a simple check at the time of choice-
point creation. In all the benchmarks tested we were not able to observe any slow-down due to 
application of the Shallow Parallelism optimization. 

The optimization is also illustrated in figure 8(i). 

. ( . . . & a & b . . (... & a & b . 
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Figure 8: Shallow Parallelism and Processor Determinacy Optimization 

4.3 Processor Determinacy Optimization 

The aim of a general purpose and-parallel system is clearly to exploit the highest possible amount 
of parallelism, respecting the no-slowdown requirement (Le., parallel execution should be guar-



anteed to run at least as fast as sequential execution[27]). Nevertheless the amount of parallelism 
exploited is often greater than the actual amount of computing resources available—which leads 
to situations in which the same computing resource (processor/agent/team of processors/etc.) 
will successively execute different units of parallel work, e.g. different subgoals of the same 
parallel execution. Thus, we get to a situation in which two potentially parallel pieces of com-
putation are executed sequentially. In particular, two units of work can be actually executed 
contiguously and in the same order in which they would be executed during a purely sequential 
computation—if this is the case then all the additional operations performed that are related to 
the management of parallel execution (allocation of markers, etc.) represent puré overhead. The 
intent of the Processor Determinacy Optimization is precisely to reduce this sort of overhead as 
much as possible. 

This saving is obtained by simply avoiding allocating any marker between the two subgoals 
and—in general—treating them as a unique, contiguous piece of computation (See Figure 8(ii)). 
Intuitively, the optimization acts at run-time to coalesce smaller goals in larger units of work 
taken care of by a single computing agents. 

There are several advantages in doing this: 

1. memory consumption is reduced, since we are avoiding allocation of the markers between 
consecutive subgoals executed on the same processor; 

2. execution time during forward execution is reduced since the whole phase of creating an 
end marker for the first subgoal and an input marker for the second one (or a unique marker 
as happens in &-Prolog) is skipped; 

3. execution time during backward execution is also reduced, since backtracking on the two 
subgoals flows directly without the need to perform the various actions associated with 
backtracking over markers (sending messages, etc.). 

4.4 Backtracking Families Optimization 

As we will show, the previously described shallow parallelism and determínate processor opti-
mizations can achieve considerable performance improvements (see Section 5.2) and have the 
advantage of not requiring compile-time analysis (although compile-time knowledge can always 
be used to reduce or avoid the small run-time tests needed). However, it is interesting to explore 
whether these ideas can be extended to cover more cases if some compile-time analysis informa-
tion is available. In particular, we concéntrate on the following types of information: knowledge 
that a goal (and its whole subtree) is deterministic, and knowledge that a goal has a single 
solution. In addition, knowledge that a goal will not fail is also quite useful [27]. It is beyond 
the scope of this paper to address how this information is gathered - the reader is referred to 
related work in the área of abstract interpretation based global analysis [33, 4, 11, 44, 14]. We 
will address instead how such information can be exploited at the parallel abstract machine level. 

We start by considering the case in which several parallel goals, perhaps not contiguous in 
the program text, but which are known to be deterministic, end up being executed on the same 
processor. As an example, consider the parallel cali (a & b & c), where a, b and c are known 
to be deterministic. If a and b are executed on the same processor, the situation is as in the 
previous section and clearly no markers need to be allocated between the two goals. But if 
a and c are executed on the same processor, one after the other, since they are known to be 



deterministic, no markers need to be allocated between them either. This is based on the fact 
that if a, b, c are known to be deterministic and independent (a & b & c) is equivalent to (a 
& c & b) , and to any other permutation, modulo side effects.11 The advantage is clearly that 
the input marker of a can be simply shared by c. 

The optimization can also be applied in cases where whole collections of related deterministic 
goals are created in loops, as in 

- (a & b & p) 

We assume that a, 
of the form 

b , p are known to be deterministic. An execution of p would genérate goals 

(a & b & a ' & b ' & a ' ' & b ' & p) 

Since all these goals are independent and deterministic, no intermedíate marker is needed 
whenever they stack one over the other in a given processor, i.e., only one marker would be 
needed per processor (assuming there are no other parallel conjunctions). Note that when p is 
to be backtracked from outside, all the goals a, b , a.', b ' . . . have to be backtracked over. 
However, the order in which this is done is not important. Thus, every segment formed by 
consecutively stacked goals can be backtracked (only untrailing is really required) in one step by 
simply unwinding down to the solé input marker. This saves time and space in forward execution, 
since fewer markers are needed, and time in backward execution, since fewer intermedíate steps 
and messages are needed. We will cali the set of parallel goals a, b , a ' , b', a ' ' , b'' . . . a 
backtracking family: a set of independent parallel goals, such that all of them are backtracked 
over in the same backtracking step in the sequential execution. The fundamental characteristic 
of the members of a backtracking family is that they have a "common choice point" which they 
backtrack to in case of failure. 

Figure 10: Eliminated choice points Figure 9: Backtracking families 

11 Note that side effects would have been taken into account beforehand by the parallelizer by imposing a 
synchronization among them — which, in the worst case, can lead to the sequentialization of the goals. 



As mentioned before, unlike those proposed previously, this technique requires knowledge 
regarding goal determinism beforehand. In order to illustrate this, consider the situation in which, 
for (a & b & c), a is executed on processor Pt, and b in P2 . P\ (which is deterministic) finishes 
first with a and picks up the goal corresponding to c (also deterministic). If b is deterministic, 
then there is no need for any marker between a and c (or saving the trail segment in the slot) 
since no intermedíate backtracking is possible. This may be determined once b finishes, but then 
P\ would have to wait for P2 , which is undesirable. On the other hand, if P2 liad finished before, 
then it could have stolen b, and the determínate processor optimization could have been applied. 

Each backtracking family is given a unique identifier (e.g., the address of the "common choice 
point" that they would backtrack to). This identifier is also associated with each goal belonging 
to the family and stored in the input marker when the first goal of a family is picked up by a 
processor. When a goal is picked up by a processor, if it has a family identifier attached and it 
is the same as that of the current input marker in the processor, no new input marker needs to 
be allocated. It is clear that this has an implication on scheduling in the sense that picking up 
goals belonging to the same backtracking family as the last goal executed in a given processor is 
always preferable. 

Markers are still necessary in principie between deterministic and non-deterministic goals, 
and between goals that do not belong to the same backtracking family. If we have (pi & q 
& p 2 ) , where p is defined as above, and q generates non-deterministic computations, then the 
goals generated by pi can be stacked one over the other without markers. However, markers are 
needed to sepárate goals generated by pi and q, p2 and q, and pi and p2 (this is illustrated in 
Figure 9, where segments marked with ', " . . . correspond to different activations of the same goal, 
and goals marked with a subindex are offsprings of the corresponding initial cali, pi or p2). 

However, note that the optimization is not necessarily restricted to deterministic goals, as 
might be implied by the discussion above. In fact, the fundamental characteristic of the goals of 
a backtracking family is that they have a "common choice point" that they backtrack to in case 
of failure of one of such goals. Thus, if a goal is deterministic in the end (Le., it produces only 
one solution) it can also benefit from the proposed technique, even if it does créate choice points 
and backtrack internally along the way, provided that it can be determined that such choice 
points will not provide additional solutions or that they will be discarded upon termination 
(for example, by executing a "cut"). In summary, goals which can be determined to have a 
single solution, independently of whether they créate choice points during their execution and 
perform backtracking internally, are also eligible for forming a backtracking family with other 
such goals or with deterministic goals. Simple examples are (a , !) & (b , ! ) , or even (a & 
b ) , !, where a and b may have non-determinism inside, but are made single solution by the 
presence of the cut (see Figure 10). As another, more elabórate example, consider sorting a 
list of complex items (Le., not simple numbers) with quick-sort, where the tests performed in 
the partitioning predicate could be arbitrarily complex, leaving intermedíate choice points and 
backtracking internally, but finally yielding only one solution. We believe it is possible to detect 
this "single solution" status in many cases through existing compile-time analysis techniques, 
even if this cannot be determined locally, as in the simple examples above. 

In order to implement the proposed optimization the determinism information is passed to the 
low-level compiler through source program annotations. In the same way as we have assumed for 
the "&" annotations, these determinacy annotations can be provided by the user or generated 
by an automatic analyzer. Note that, while the annotation is static, its effect has a dynamic 
nature in general in the sense that, for a given program, the actual performance increase may 



differ from execution to execution due to different schedulings, which would result in different 
relative stackings of members of different families, and thus different actual numbers of markers 
allocated. 

Regarding the benefits obtainable from the optimization proposed, it can clearly provide con­
siderable savings in memory consumption, and, as a side effect of this, time savings due to the 
smaller number of markers which have to be initialized. In an ideal situation, in which all goals 
picked up by each processor belong to the same backtracking family only one marker would 
be allocated per processor (even while choice points infernal to a parallel goal are allocated, 
used, and eventually discarded before the parallel goal finishes). Furthermore, and as mentioned 
before, backtracking is potentially also greatly sped up. 

5 Preliminary Performance Results 

The purpose of this section is to present the results obtained by executing some well-known 
benchmarks. They range from simple test programs to actual applications. The results for the 
following benchmarks are initially reported: Matrix Multiplication, Quicksort, Takeuchi, Tower 
of Hanoi, Boyer (a reduced versión of the Boyer-Moore theorem prover), Listsum (a naive list-
processing program operating over nested lists), Compiler (the PLM Prolog compiler written by 
P. VanRoy that is approximately 2,200 lines of Prolog code), POccur (a list processing program), 
BT_cluster (a clustering program from British Telecom, UK), Annotator (the annotator part of 
the ACE/&-Prolog parallelizing compiler that is about 1,000 lines), and Simulator (a simulator 
for simulating parallel Prolog execution that is about 1,100 lines, written by Kish Shen). 

Table 1 illustrates the speedups obtained for the various benchmarks (all the figures have been 
generated on a Sequent Symmetry multiprocessors). The figures clearly indicate that the current 
implementation, even though not completely optimized, is quite effective. On many benchmarks, 
containing a sufficient amount of parallelism, the system manages to obtain linear speedups (e.g., 
for Matrix Multiplication and Hanoi). With more processors in the multiprocessor systems we 
believe we should be able to obtain higher speedups, provided the program contains enough 
parallel work. 
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Figure 11: Speedups Curves for Selected Benchmarks on the Sequent Symmetry 



Goals 
executed 

matrixjmult(SO) 
quicksort(lO) 
takeuchi(14) 
hanoi(ll) 
boyer(O) 
poccur(5) 
bt-duster 
annotator(5) 
compüer 

1 

5598 
1882 
2366 
2183 
9655 
3651 
1461 
1615 

29902 

ACEa 
3 

1954 
778 
832 
766 

5329 
1255 
528 
556 

12522 

gents 
5 

1145 
548 
521 
471 

3816 
759 
345 
392 

6437 

10 

573 
442 
252 
231 

2887 
430 
215 
213 

4801 

Table 1: Execution times in msec. (Sequent Symmetry) 

Goals 
executed 

matrix-mult(4 0) 
annotator(12) 
compüer 

ACE agents 
1 2 3 

1379 
1025 
5859 

784 
550 

3317 

498 
400 

2127 

Table 2: Execution times in msec. (Sun Sparc 20) 

Speedups for some benchmarks are shown in Table 1 and plotted in Figure 11. Note that 
for the annotator, quicksort, and boyer benchmarks, the speedup curve flattens out because at 
some point all available parallelism is exhausted. Our implementation incurs an average parallel 
overhead of about 5%-30% over the versión of SICStus Prolog it is based on. This parallel 
overhead is considerably reduced by triggering optimizations mentioned earlier. 

As mentioned before, our benchmarks have been executed on a Sequent Symmetry. It is 
important to observe that tests made on other parallel machines have produced comparable 
speedups. Table 2 indicates some performance figures obtained on a 4 processor Sparc 10, 
which gives results comparable with those in Table 1 in terms of speedup, and serves as well to 
appreciate the relative speed of the two machines. 

5.1 Shallow Parallelism 

The shallow parallelism optimization has been incorporated in the ACE system. The results 
obtained have been extremely good. On average, an improvement of 5% to 25% in execution 
time over an unoptimized implementation is obtained due to this optimization alone. We can 
observe some of the results obtained in Table 3. In this table the execution times and relative 
percentage of improvement obtained on some common benchmarks are listed. 

Observe that those benchmarks which show the best improvement under the Shallow Paral­
lelism Optimization are those which contain a considerable amount of parallelism (nesting of over 
1000 parallel calis) and in which the "leaves" of the computation tree are deterministic compu-
tations (hanoi and takeuchi are two such benchmarks). For other benchmarks the effects of the 



Goals 
executed 

matrixjmult(SO) 
takeuchi(14) 
hanoi(ll) 
poccur(5) 
bt-duster 
annotator(5) 

1 
5598/5214 (7%) 
2366/1811 (23%) 
2183/1671 (23%) 
3651/3197 (12%) 
1461/1343 (8%) 
1615/1422 (12%) 

ACEag 
3 

1954/1768 (10%) 
832/586 (30%) 
766/550 (28%) 

1255/1079 (14%) 
528/480 (9%) 
556/475 (15%) 

ents 
5 

1145/1059 (8%) 
521/368 (29%) 
471/336 (29%) 
759/662 (13%) 
345/312 (10%) 
392/322 (18%) 

10 
573/534 (7%) 
252/200 (21%) 
231/180 (22%) 
430/371 (14%) 
204/189 (7%) 
213/187 (12%) 

Table 3: Unoptimized/Optimized Execution times in msec (% improvement in parenthesis) 

optimizations are more limited—for example in the matrix multiplication benchmark the whole 
computation is deterministic but the determinism is not detected because of (i) the presence of 
nested (deterministic) parallel computations, and (ii) the presence of choice points whose remain-
ing alternatives lead to failure. The "backtracking families" optimization discussed earlier, can 
be used in these cases, but requires compile-time analysis. The previously described benchmarks 
are quite deterministic in nature. Still, the shallow parallelism optimization gives surprisingly 
good results also on more complex benchmarks, involving backtracking across parallel subgoals. 
For example, running a program to solve a map-coloring problem (involving backtracking over 
parallel conjunctions), we obtained an average improvement in execution time of 14%. Clearly, 
since the main issue of this optimization is the avoidance of allocation of certain data structures, 
the computation will also gain considerable advantage in terms of memory consumption. Figure 
12 illustrates the savings on the number of markers allocated obtained for some of the bench­
marks (executing using a single processor). We go from an extreme case like boyer in which no 
saving at all is obtained, to some extremely good results, like for takeuchi, in which we save 
almost 50% of the total number of markers. 
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Figure 12: Number of Markers allocated (using one agent) 



Finally, figure 13(i) shows the behavior of the optimization on the Takeuchi benchmark varying 
the number of processors used. 

5.2 Processor Determinacy Optimization 
Regarding forward execution, the results obtained with this optimization are very encouraging, 
as can be observed from Table 4. For many examples the optimization manages to improve the 
execution time from 4% to almost 20%. 

Goals 
executed 

bt-duster 
poccur(5) 
matrix-mult(30) 
listsum 
hanoi(ll) 
takeuchi(14) 

ACE Execution 
Unoptimized Optimized 

1461 
3561 
5598 
2333 
2183 
2366 

1391 (5%) 
3418 (4%) 
5336 (5%) 
2054 (12%) 
1790 (18%) 
1963 (17%) 

Table 4: Unoptimized/Optimized Execution times in msec (single processor) 

The variations in improvement depend exclusively on the number of parcall frames generated 
and on the effect of the marker allocation overhead on the overall execution time. For this 
reason we obtain considerable improvements in benchmarks like takeuchi, where we have deep 
nestings of parallel calis and the marker allocation represents the main component of the parallel 
overhead. 

The optimization maintains its effects when we consider execution spread across different 
processors, as we can see in figure 13(ii), which shows the execution times of both the optimized 
and the unoptimized versión for the Hanoi benchmark. 
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The advantages are even more evident in terms of memory consumption: as we can see from 
Table 5 the number of markers allocated is cut in almost all the cases to half of the original valué 
(measured during a single processor execution)—this because most of the examples analyzed 
have parallel calis of size 2 and the optimization allows avoiding the allocation of the marker 
between the two subgoals. 

Goals 
executed 

bt-duster 
deriv(O) 
poccur(5) 
matrix-mult(30) 
listsum 
takeuchi(14) 
hanoi(ll) 

ACE Execution 
Unoptimized Optimized 

120 
174 
100 
1798 
3000 
3558 
4094 

60 
87 
50 

899 
1500 
2372 
2047 

Table 5: Memory Consumptions (no. of markers) 

5.3 Last Parallel Cali Optimization 
Table 6 illustrates the results obtained executing some of the benchmarks on ACE using LPCO. 

Goals 
executed 

bt-duster 
deriv(O) 
poccur(5) 
annotator(5) 
matrix-mult(20) 
search(1500) 

ACE Exec 
fw/no lpco 

890 
94 

3216 
1327 
1724 
2354 

ution with Shallow Parallelism Optim. 
fw/lpco bw/no lpco bw/lpco 

843 (5%) 
34 (64%) 
3063 (5%) 
1282 (3%) 
1649 (4%) 

1952 (17%) 

929 
131 

3352 
1334 
1905 
8370 

853 (8%) 
38 (71%) 
3226 (4%) 
1281 (4%) 

1696 (11%) 
2154 (74%) 

Table 6: Unoptimized/Optimized Execution times in msec (single processor) 

The results are extremely good for programs with a certain structure. In particular, programs 
of the form p ( . . . ) : - q ( . . . ) & p ( . . . ) , where q ( . . . ) gives rise to a deterministic computation 
with a sufficiently deep level of recursion, will offer considerable improvement in performance. 
Interesting results are also seen by examining the effect of inside failures during execution: the 
use of LPCO allows further improvement. The presence of a single parcall frame considerably 
reduces the delay of propagating kill signáis (kill signáis are sent to sibling and-branches by a 
failed subgoal in a parallel conjunction to remove them from the computation). Table 7 shows 
the result obtained causing an inside failure during the execution of the matrix multiplication 
benchmark. 

Also in terms of memory consumption, the combination of LPCO and Shallow Parallelism 
has proven to be extremely successful—while the LPCO cuts on the number of parcall frames, 



Goals 
executed 

matrix-mult-inside-fail-first 

ACE Execution 
Unoptimized | Optimized 

5346 3100 (42%) 

Table 7: Unoptimized/Optimized Execution times in msec (single processor) 

the Shallow Parallelism optimization removes the allocation of input and end markers. Table 8 
summarizes these results: each entry of the form a/b —>• c/d indicates that the number of markers 
needed went down from a to c and the number of parcall frames went down from b to d when the 
LPCO and shallow parallelism optimizations were applied. The second line of the table indicates 
the total percentage of improvement in stack consumption obtained by introducing the LPCO. 
Also these figures have been obtained by using a single processor during the execution. 

Goals 
executed 

Markers/Parcall 
% Improvement 

bt-cluster 

119/60 -> 1/1 
49% 

deriv 

134/87 -> 0/1 
45% 

ACE Execution 
poccur(5) serial 

95/50 -> 40/1 
34% 

16/11 ->• 0/1 
43% 

matrix-mult(40) 

1638/1599 ->• 0/1 
39% 

Table 8: Memory Usage (Markers/Parcall-Frames for Unoptimized —>• Optimized) 

5.4 Backtracking Families Optimization 
Clearly, the practical advantages which can be obtained automatically with the backtracking 
families optimization strongly depend on the quality of the compile-time analysis performed or, 
if done manually, of the annotations provided by the user. The general issue of static analysis 
of determinism is beyond the scope of this paper. However, the potential of the optimization 
can still be assessed by making reasonable assumptions regarding the information that could be 
obtained based on the current state of the art in global analysis, and annotating the programs to 
encode this information. We have done this for a number of benchmarks and the results are shown 
in Table 9, which shows the number of markers allocated (without and with the optimization) 
when executing on 10 processors. 

As expected, the number of markers in the optimized versión actually differs much from run 
to run - a range over a large number of runs is given in this case. It can be observed that, as 
expected, the reduction in the number of markers allocated is quite significant, and larger than 
with the dynamic methods studied previously (which have the obvious advantage on the other 
hand of not requiring analysis). The results are graphically compared in figure 14. 

As mentioned before, the advantage comes either from the knowledge that parallel calis that 
do créate choice-points (and thus are not eligible for the shallow backtracking optimization 
dynamically) are in fact deterministic, or from the knowledge that goals that are not deterministic 
and are picked up by a processor out of contiguous order (and thus are not eligible for the 
determínate processor optimization) are in the same backtracking family. For example, it is quite 
simple to determine by global analysis (using the same information that the parallelizing compiler 



Goals 
Executed 

deriv(l) 
deriv(2) 
deriv(S) 
deriv(4) 
boyer(O) 
boyer(l) 
boyer(2) 
boyer(S) 
quicksort(50) 
quicksort(lOO) 
quicksort(150) 
quicksort(200) 
poccur(l) 
poccur(2) 
poccur(S) 
poccur(4) 
poccur(5) 
takeuchi(lS) 
takeuchi(14) 
takeuchi(15) 
takeuchi(16) 

&-Prolog 
unoptimized 

261 
2109 
16893 
135165 

24 
747 
7290 

282168 
150 
300 
450 
600 
30 
60 
90 
120 
150 
1412 
4744 
10736 
21236 

Execution 
optimized 

[9] 
[11] 
[11] 
[11] 

[3 -8 ] 
[111 - 153] 
[543 - 745] 

[4770 - 6500] 
[13 - 15] 
[14 - 16] 
[15 - 17] 
[15 - 16] 
[9 - 10] 
[11 - 12] 
[11 - 13] 
[12 - 13] 
[12 - 13] 
[19 - 23] 
[21 - 29] 
[21 - 30] 
[23 - 28] 

Table 9: Backtracking Families Optimization (memory consumption, 10 proc.) 

uses to parallelize the benchmark) that the matrix benchmark is completely deterministic. This 
is the case also with most of the other examples in Table 9. However, the issue of determining 
precisely the exact extent to which this optimization is applicable in large programs using state 
of the art analysis technology remains a topic for future work. 

It may be noticed that the number of markers allocated with no optimization is somewhat 
larger than in the previous tables. This is simply due to the fact that in order to split the work 
involved in system modification for testing the different optimizations proposed these tests were 
run on the current versión of the &-Prolog system, rather than on ACE. 

While due to the collaborative work between our two teams the two systems are currently 
quite similar, this versión of &-Prolog differs slightly from the current implementation of ACE, 
and this justifies the slight difference in the number of markers used when no optimizations are 
implemented. 

5.5 Kill Management Performance 

Figure 15 (i) shows the execution time obtained for a program that involves massive amount of 
killing. This program is for computing fibonacci(16), where, after the computation is finished 
a failure is forced. As a result, the whole tree created during the Fibonacci computation needs 
to be unwound and removed. We expect that the time to kill, i.e., to unwind and remove the 
tree, should be approximately the same as the time it takes to construct the tree. Henee, the 
expected time for executing this program that fails at the end should be twice the time for 
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Figure 14: Improvements using Backtracking Families 

successfully computing fi,bonacci(16). The two curves (labeled "Actual time" and "Expected 
time" respectively) in Figure 15 (i) show the actual execution time and the expected execution 
time obtained for different number of agents. 

A third curve (labeled Optimized Time) shows the slight improvement obtained by introducing 
the determínate processor optimization (Le., sequentializing consecutive and-parallel subgoals 
executed by the same agent thus reducing the number of input markers allocated and the number 
of parallel threads). The figure illustrates that with fewer processing agents (< 2) the actual 
time to process a parallel conjunction and then kill it is smaller than the expected time for this 
computation (in other words the time it takes to unwind and kill the tree is less than the time it 
takes to créate it). This is because of the fact that with fewer processors each processor ends up 
sending signáis to itself which can be handled faster. With larger number of processors the time 
to communicate kill messages becomes quite significant; as a result, and not too surprisingly, 
the actual time exceeds the expected time. The figure also shows that reducing the number 
of parallel threads via our optimization results in improved performance. This is also expected 
since by reducing the number of threads we effectively reduce the number of kill messages that 
will be exchanged. 

The discussion so far suggests that killing adds a significant overhead to computation. However, 
killing leads to some advantages as well—in some cases failure of a computation can be detected 
quite a bit earlier, resulting in super-linear speedups. Figure 15(ii) illustrates this other extreme 
of the lazy approach to killing. The program, whose execution time is plotted against the 
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number of processors, consists of activating two parallel threads. The first thread contains a 
huge amount of computation, while the second encounters an early failure. The early failure 
will not be immediately detected in sequential execution (it will be detected after the huge first 
thread is finished and the second thread is started), while in any parallel computation it will be 
immediately detected and propagated to the first thread avoiding the huge computation. This 
results in super-linear speedups as shown in Figure 15(ii). 

Benchmarks with Killing 

H 

2.00 4.00 6.00 8.00 

No. of Agents 

Fig(i) 

10.00 

1.20 

1.10 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

- 1 1 1 

Program with 
Unbalanced 
and-parallel 
goals 

-

-

-

-

-

-

-

\ 

1-

-

-

-

-

-

-

-

-

-
l l l 

2.00 4.00 6.00 8.00 

No. of Agents 

Fig(ü) 

10.00 

Figure 15: Benchmarks involving Killing 

6 Conclusions 

This paper describes some of the important features of the independent and-parallel component 
of the ACE system—a system which implicitly exploits both independent and- and or-parallelism 
from Prolog programs. We discussed the structure of the abstract machine and the organization 
of the execution, placing emphasis on the new ideas and optimizations introduced in the design. 
We presented results for a comparatively large suite of benchmarks, some over two thousand 
Prolog lines long. Our results show that our system is well-suited for parallel execution of sym-
bolic applications coded in Prolog. These results also confirm our initial contention that ACE 
can exploit and-parallelism with the efficiency of and-parallel only systems such as &-Prolog: 
performance is quite cióse to that reported for the original versión of &-Prolog described in [24], 
despite the fact that: (i) ACE contains a significantly richer implementation of signal manage-
ment and backtracking than &-Prolog had at that time The versión of &-Prolog reported in [24] 
did not implement outside backtracking because this restriction results in many simplifications 
in the backtracking machinery (backtracking was still allowed elsewhere, as, for example, within 
parallel goals). It was expected that it would not be a serious burden on the compiler to detect 



cases where backtracking across parallel goals might occur, which would then not be parallelized. 
However, for generality, and because ACE also exploits or-parallelism, support for full backtrack­
ing over parallel conjunctions is fully justified and has been shown herein not to result in too 
high an overhead; (ii) ACE supports or-parallelism. The results obtained with ACE are quite 
similar, as expected, to those obtained by &-Prolog, since the two models are based on similar 
principies. The optimizations introduced in ACE allow ACE to gain better execution eíticiency 
and, in certain situations, better speedups (e.g. when LPCO allows to optimize computations 
containing heavy backtracking over parallel calis). 

Apart from &-Prolog, very few "real" and-parallel Prolog systems have been realized. APEX 
[36] is another and-parallel system implemented by Lin and Kumar. Performance figures for 
APEX have been published for only some very simple benchmarks. For these benchmarks both 
&-Prolog and ACE appears to be superior or equivalent. 

DDAS [47] is an extensión of the RAP-WAM model to the case of dependent and-parallelism. 
Very recently a parallel implementation has been finished [45], but there are no performance 
figures available anywhere yet. Older articles on the DDAS used a high-level simulation, which 
does not allow realistic comparisons: the reported speedups were equivalent to those of ACE on 
most of the benchmarks, except few cases where DDAS gets better speedups, due to the fact 
that the simulator does not take into account certain overheads encountered in a real parallel 
implementations (e.g. need to use locks). 

Our results also show that the optimizations that we proposed, that are also applicable to 
other parallel systems, can significantly reduce the memory and execution overhead in and-
parallel systems. With these various optimizations ACE performance is the same as or better 
than that of the previously reported implementation of &-Prolog and the memory consumption 
greatly reduced with respect to that reported in previous studies [48]. 
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