
Some Challenges for Constraint Programming 

MANUEL HERMENEGILDO herme@fi.upm.es • http://www.clip.dia.fi .upm.es/~herme/ 
Computer Science Department, Technical University of Madrid (UPM), Spain 

Abstract . We propose a number of challenges for future constraint programming systems, in-
cluding improvements in implementation technology (using global analysis based optimization 
and parallelism), debugging facilities, and the extensión of the application domain to distributed, 
global programming. We also briefly discuss how we are exploring techniques to meet these chal­
lenges in the context of the development of the CIAO constraint logic programming system. 

Keywords: Constraint Programming, Implementation Technology, Global Analysis, Parallelism, 
Debugging, Visualization, Distributed Programming, Global Programming. 

1. Introduction 

Constraint programming languages [24, 17] are among the very few new language 
proposals that are seeing industrial success while being based on a novel program­
ming paradigm. Intervening factors in this fact appear to be the expressiveness 
awarded by the high level of these languages, the combination of search and incre-
mental constraint solving capabilities, and the relative efnciency of the resulting 
applications. These characteristics are added to the strengths in general-purpose 
symbolic processing of the underlying logic programming kernel on which they are 
often built. Constraints extend this kernel to numerical domains and beyond, of-
fering a natural platform in which applications combining symbolic and numeric 
computing can be easily developed. This initial success notwithstanding, it seems 
important to identify signiñcant challenges which lay ahead for constraint pro­
gramming. Without any pretense of being exhaustive, we herein touch upon some 
challenges in the áreas of implementation technology, network-wide programming, 
and language and system design. 

2. Faster performance through global analysis 

The performance of current constraint logic programming systems often compares 
favorably to other constraint solving and symbolic programming tools. However, 
their performance is still lower than that of traditional imperative languages, spe-
cially in (non constraint related) numerical computations. A possible solution is 
to develop advanced compilation technology capable of detecting the cases where 
limited or no constraint solving is involved and compiling those cases in the most 
efficient way. Some promising progress has already been made towards this goal. 
The efnciency and effectiveness of global analysis of logic programs is already es-

mailto:herme@fi.upm.es
http://www.clip.dia.fi.upm.es/~herme/


tablished [40], and essentially the same performance as imperative languages has 
been achieved in some experimental systems (e.g., [34]). Some results on the possi-
ble speedups attainable in constraint logic programming have been reported (e.g., 
[32, 12]), some practical frameworks for global analysis developed (e.g., [8]), and a 
few systems described which perform global analysis based optimization [25, 12]. 
Such global analysis has also been applied to concurrent constraint programming 
systems, where one of the most important objectives is to reduce suspensión and 
resumption of goals and synchronization overhead [7, 29, 30, 26, 31, 14]. Recent 
progress in incrementa! and compositional global analysis [29, 20, 2] appears to solve 
most remaining problems related to dealing with large programs and the interactive 
program development environment that is common in constraint programming sys­
tems. However, the application of extensive optimization in commercial or widely 
used public domain systems still remains a goal to be achieved. Also, much research 
remains to be done in ñnding accurate abstraction domains for standard constraint 
systems. 

3. Faster performance through automatic parallelization 

Program parallelization is becoming a more and more interesting optimization since 
multiprocessing hardware is starting to be in many cases the default installation 
platform. This is often the case, for example, for departmental servers where 
multiprocessors using using fast, inexpensive, off-the-shelf processors are replacing 
mainframes at a fraction of their cost. Some high-end workstations are also mul­
tiprocessors. It appears likely that this trend towards increased use of parallelism 
will continué as multiprocessor architectures are better understood, interconnec-
tion network performance increases with new technologies (specially if the promise 
of optical interconnect is finally delivered), and feature size diminishes allowing 
placement of several processors on the same chip. 

The interest of the study of parallelism in logic and constraint logic programs 
goes beyond the paradigms themselves. In fact, these languages allow studying 
challenging issues in parallelization while remaining in the context of a relatively 
clean and well understood framework for which application codes are available. 
Such challenging issues include inter-procedural parallelization, irregular computa-
tions, recursion, complex data structures with (well behaved) pointers, and spec-
ulative parallelism. These issues have already been studied in the context of logic 
programs [4], where significant speedups have been obtained. In the context of con­
straint logic programming, exploitation of parallelism in the search (or-parallelism) 
is comparatively easy and has been shown to achieve significant speedups in con­
straint programs containing independent search [18, 11, 10]. On the other hand, 
and as pointed out in [24], comparatively little work has been devoted so far to 
exploiting parallelism within a given path of the search (and-parallelism) and in 
the solver itself. Although traditional concepts of independence used in imperative 
programming (e.g., the "Bernstein conditions") or even those of logic program­
ming, do not apply in the context of CP [13], notions of independence appropriate 



for (concurrent) CP have been recently proposed [13, 3]. Our group has since been 
tackling the issue of automatic parallelization and has recently developed an auto-
matic parallelizing compiler for constraint logic programs, with encouraging initial 
results [12]. While it may prove the case that there is often not much parallelism 
in constraint solving kernels, we believe that over the set of all programs the tech-
nology will eventually prove as successful as in the context of logic programming. 
However, proving this and developing new parallelization technology for constraint 
logic programs remains an área for future work. 

4. Improved debugging and visualization facilities 

An área in which current constraint logic programming systems have been found 
lacking by users developing industrial applications is debugging, in terms of ensur-
ing correctness as well as understanding and improving performance of the program. 
Possible solutions can be based on both static and dynamic techniques. One tech-
nique is the use of assertions [9, 2]. Assertions can be seen as a generalization of type 
systems (often including directional types), in which relatively general preconditions 
and postconditions can be declared for procedures. Assertions can be provided by 
the user and checked at compile-time or run-time. Compile-time checking can in 
some cases be done via global analysis. Furthermore, assertions can be generated 
by the compiler, which the user can then inspect in order to detect high-level er-
rors (here, the same technology used by the compiler for optimization purposes 
can be used). Another possible technique is the use of visualization, both of the 
search space and of the constraint store at different points of the execution (e.g., 
[28]). The development of more useful assertions, assertion checking and genera-
tion algorithms, and visualization paradigms for constraint programming remains 
a challenge. 

5. Distributed and network-wide programming 

Another challenge for constraint programming systems is related to the role of such 
systems in network-wide programming. This type of programming is likely to be 
of growing importance since the recent wider diffusion of the Internet and the pop-
ularity of the "World Wide Web" -WWW- protocols, which effectively provide a 
platform that is standard and ubiquitous and allows a new class of highly sophisti-
cated distributed applications. Constraint logic programming systems already offer 
many characteristics which appear to place them well for making an impact in 
this área. Some of these characteristics, including dynamic memory management, 
well behaved structure and pointer manipulation, robustness, and compilation to 
architecture independent byte-code, are shared with other proposed network pro­
gramming tools. In addition, constraint logic programming systems offer a quite 
unique set of other built-in features including dynamic databases, search facili­
ties, grammars, sophisticated meta-programming, constraint solving capabilities, 



and well understood semantics. In addition, the theory of concurrent constraint 
programming offers a novel and very rich notion of inter-process communication 
based on constraint entailment [27, 37]. Some of these characteristics, such as the 
built-in datábase and grammars, can facilítate the rapid coding of relatively sim­
ple applications, even by naive end users. Furthermore, it seems natural that the 
more sophisticated network applications, such as intelligent information retrievers 
or distributed decisión making systems, will require complex symbolic and numeric 
capabilities, including natural language processing, at which constraint program­
ming (and, in particular, constraint logic programming) has already been shown 
particularly successful [33]. 

Sophisticated distributed applications can be developed with current constraint 
logic programming systems using the available low-level primitives to build com­
munication abstractions such as blackboards [1, 5, 38] and even incorporating dis­
tributed variable-based communication (which can be supported, for example, using 
attributed variables [16]). In our experience the main feature found lacking in stan­
dard systems is native support for concurrent execution. While many systems allow 
starting a whole subprocess via the operating system interface and this can provide 
the desired functionality, it is very inefficient. A more direct support for concur­
rency (perhaps along the lines of that present in the AKL [23], Oz [36], and CIAO 
[21, 15] systems) seems highly desirable and we feel should be provided in all future 
constraint programming systems. One additional important use of concurrency 
is in implementing complex, delay based constraint solving algorithms. However, 
concurrency brings important new challenges in many áreas. As mentioned before, 
an important one from the implementation point of view is developing effective 
analysis and optimization techniques. 

Distributed concurrent constraint systems are currently being worked on [5, 22], 
distribution and application development librarles are being offered (e.g., [16, 6]), 
and network and WWW applications are being reported [39]. CP is a promising 
foundation for many aspects of the next generation of distributed systems, but 
it still remains as a challenge to develop simple, elegant and practically usable 
environments, and to demónstrate applications of such environments. 

6. The CIAO sys tem 

We are developing a concurrent constraint logic programming system, "CIAO", 
which illustrates our own ideas on how to approach some of the challenges that 
we have set forward in the previous paragraphs [21, 15]. At the user level CIAO 
is a programming environment offering support for full standard Prolog, as well 
as several constraint domains, several control rules, a module and object system, 
and concurrency, synchronization, and distribution primitives. As opposed to other 
concurrent constraint languages such as AKL [23] or OZ [36], the language is "se-
quential by default", in the sense that concurrency is annotated explicitly by the 
user. Optional control rules include for example the determinate-ñrst principie 
[35]. A rich set of assertions is available which the compiler understands and both 



generates and checks by means of global analysis techniques based on abstract 
interpretation. These assertions include a flexible type system. 

At the implementation level most functionality is implemented via source to 
source transformation into a simple kernel language, which is then the subject of ex-
tensive analysis and optimization, using a single set of analysis and transformation 
tools. High-level optimizations include parallelization, granularity control, reduc-
tion of concurrency and synchronization, reordering of goals, code simplification, 
and specialization. Distributed and network-wide programming are implemented 
via librarles [16, 6]. One of the main features of the kernel language and the abstract 
machine underlying it is the support for concurrency and parallel execution, based 
on an extensión of the capabilities of the &-Prolog engine [19]. CIAO is currently 
being used both as a workbench for testing implementation techniques (many of 
the program analysis and transformation systems referenced elsewhere have been 
prototyped on CIAO) and a powerful programming environment. Current versions 
of the &-Prolog and CIAO systems, and the related librarles are publicly available 
for experimentation (see h t tp : / /www.c l ip .d ia . f i .upm.es / fo r both software and 
publications). 

References 

1. J. Almgren, S. Andersson, L. Flood, C. Frisk, H. Nilsson, and J. Sundberg. Sicstus Prolog 
Library Manual. Po Box 1263, S-16313 Spanga, Sweden, October 1991. 

2. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-flow Analysis of Standard 
Prolog Programs. In European Symposium on Programming, number 1058 in LNCS, pages 
108-124, Sweden, April 1996. Springer-Verlag. 

3. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From Eventual to Atomic and 
Locally Atomic CC Programs: A Concurrent Semantics. In Fourth International Conference 
on Algebraic and Logic Programming, number 850 in LNCS, pages 114-132. Springer-Verlag, 
September 1994. 

4. J. Chassin and P. Codognet. Parallel Logic Programming Systems. Computing Surveys, 
26(3):295-336, September 1994. 

5. D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint Execution in the CIAO 
System. In Proc. of the 1995 COMPULOG-NET Workshop on Parallelism and Implemen­
tation Technologies, Utrecht, NL, September 1995. U. Utrecht / T.U. Madrid. Available 
from h t t p : / / w w w . c l i p . d i a . f i .upm.es/. 

6. D. Cabeza, M. Hermenegildo, and S. Varma. The P Í ' L L O W / C I A O Library for 
INTERNET/WWW Programming using Computational Logic Systems. In Pro-
ceedings of the lst Workshop on Logic Programming Tools for INTERNET Ap­
plications, JICSLP"96, Bonn, September 1996. Text and code available from 
h t tp : / /www.c l ip .d ia . f i .upm.es /miscdocs /p i l low/p i l low.h tml . 

http://www.clip.dia.fi.upm.es/for
http://www.clip.dia.fi
http://upm.es/
http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html


68 M. HERMENEGILDO 

7. M. Codish, K. Marriott M. Falaschi, and W. Winsborough. Efficient analysis of concur­
rent constraint logic programs. In Twentieth International Coll. Autómata, Languages and 
Programming, Lund, Sweden, July 1993. 

8. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, and 
W. Simoens. Global Analysis of Constraint Logic Programs. ACM Transactions on Pro­
gramming Languages and Systems, 18(5):564-615, 1996. 

9. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with assertions. 
In H.Abramson and M.H.Rogers, editors, Meta-programming in Logic Programming. MIT 
Press, 1989. 

10. L. Li et al. APPLAUSE: Applications using the ElipSys parallel CLP system. In Proceedings 
of the International Conference on Logic Programming, pages 847-848. MIT Press, 1993. 

11. European Computer Research Center. Eclipse User's Guide, 1993. 
12. M. García de la Banda, F. Bueno, and M. Hermenegildo. Towards independent And-

Parallelism in CLP. In International Symposium on Programming Language Implementation 
and Logic Programming, PLILP'96, volume 1140 of LNCS, pages 77-91. Springer Verlag, 
September 1996. 

13. M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in Constraint Logic 
Programs. In 1993 International Logic Programming Symposium, pages 130-146. MIT Press, 
Cambridge, MA, October 1993. 

14. M. García de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Constraint Logic 
Programs with Dynamic Scheduling. In 1995 International Logic Programming Symposium, 
pages 417-431, Portland, Oregon, December 1995. MIT Press, Cambridge, MA. 

15. M. Hermenegildo, F . Bueno, M. García de la Banda, and G. Puebla. The CIAO Multi-
Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems. 
In Proceedings of the ILPS'95 Workshop on Visions for the Future of Logic Programming, 
Portland, Oregon, USA, December 1995. 

16. M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in the Implemen­
tation of Concurrent and Parallel Logic Programming Systems. In Proc. of the Twelfth 
International Conference on Logic Programming, pages 631-645. MIT Press, June 1995. 

17. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989. 
18. P. Van Hentenryck. Parallel Constraint Satisfaction in Logic Programming. In Sixth Inter­

national Conference on Logic Programming, pages 165-180, Lisbon, Portugal, June 1989. 
MIT Press. 

19. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-
Parallelism. New Generation Computing, 9(3,4):233-257, 1991. 

20. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Logic 
Programs. In International Conference on Logic Programming, pages 797-811. MIT Press, 
June 1995. 

21. M. Hermenegildo and the CLIP group. Some Methodological Issues in the Design of CIAO -
A Generic, Parallel, Concurrent Constraint System. In Principies and Practice of Constraint 
Programming, LNCS 874, pages 123-133. Springer-Verlag, May 1994. 

22. S. Haridi, P. VanRoy, and G. Smolka. An Overview of the Design of Distributed Oz. In 
Proc. of the 1996 JISCLP Workshop on Multi-Paradigm Logic Programming. T.U.Berlín, 
September 1996. 

23. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language. In 1991 
International Logic Programming Symposium, pages 167-183. MIT Press, 1991. 

24. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic 
Programming, 13/20:503-581, 1994. 

25. A. Kelly, A. Macdonald, K. Marriott, P. Stuckey, and R. Yap. Effectiveness of optimizing 
compilation for CLP(R). In Proceedings of Joint International Conference and Symposium 
on Logic Programming, pages 37-51. MIT Press, 1996. 

26. Andy King and Paul Soper. Schedule Analysis of Concurrent Logic Programs. In Krzysztof 
Apt, editor, Proceedings of the Joint International Conference and Symposium on Logic 
Programming, pages 478-492, Washington, USA, 1992. The MIT Press. 



SOME CHALLENGES FOR CONSTRAINT PROGRAMMING 69 

27. M. J. Maher. Logic Semantics for a Class of Committed-choice Programs. In Jean-Louis 
Lassez, editor, Proceedings of the Fourth International Conference on Logic Programming, 
Series in Logic Programming, pages 858-876, Melbourne, 1987. MIT Press. 

28. M. Meier. Grace User Manual, 1996. Available at 
h t tp : / /www.ecrc .de /ec l ipse /h tml /grace /grace .h tml . 

29. K. Marriott M. Falaschi, M. Gabbrielli and C. Palamidessi. Compositional analysis for 
concurrent constraint programming. In IEEE Symposium on Logic in Computer Science 
(LICS), Montreal, June 1993. 

30. K. Marriott, M. García de la Banda, and M. Hermenegildo. Analyzing Logic Programs with 
Dynamic Scheduling. In 20th. Annual ACM Conf. on Principies of Programming Languages, 
pages 240-254. ACM, January 1994. 

31. U. Montanari, F. Rossi, F . Bueno, M. García de la Banda, and M. Hermenegildo. Towards 
a Concurrent Semantics based Analysis of CC and CLP. In Principies and Practice of 
Constraint Programming, LNCS 874, pages 151-161. Springer-Verlag, May 1994. 

32. K. Marriott and P. Stuckey. The 3 R's of Optimizing Constraint Logic Programs: Refine-
ment, Removal, and Reordering. In 19th. Annual ACM Conf. on Principies of Programming 
Languages. ACM, 1992. 

33. The practical application of constraint technology conference series. The Practical Applica­
tion Company, 54 Knowle Avenue, Blackpool, Lañes FY2 9UD, U.K. 

34. P. Van Roy and A.M. Despain. High-Performace Logic Programming with the Aquarius 
Prolog Compiler. IEEE Computer Magazine, pages 54-68, January 1992. 

35. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that 
Transparently Exploits both And- and Or-parallelism. In Proceedings of the 3rd. ACM 
SIGPLAN Symposium on Principies and Practice of Parallel Programming. ACM, April 
1990. 

36. Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science 
Today, Lecture Notes in Computer Science, vol. 1000, pages 324-343. Springer-Verlag, Berlin, 
1995. 

37. V. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Constraint 
Programming. In Proceedings of the 18th. Annual ACM Conf. on Principies of Programming 
Languages. ACM, 1991. 

38. Paul Tarau and Koen De Bosschere. Virtual World Brokerage with BinProlog and Netscape. 
In Proceedings of the lst 
Workshop on Logic Programming Tools for INTERNET Applications, JICSLP"96, Bonn, 
September 1996. Available from h t tp : / / c l emen t . i n fo .umonc ton . ca /~ lpne t / l pne t l l . h tml 
http://clement.info.umoncton.ca/~lpnet/lpnetll.html. 

39. Paul Tarau, Andrew Davison, Koen De Bosschere, and Manuel Hermenegildo, editors. Pro­
ceedings of the lst Workshop on Logic Programming Tools for INTERNET Applications, 
JICSLP"96, Bonn, September 1996. 

40. R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of Global Flow Analysis of 
Logic Programs. In Fifth International Conference and Symposium on Logic Programming, 
pages 684-699, Seattle, Washington, August 1988. MIT Press. 

Received Date 
Accepted Date 
Final Manuscript Date 

http://www.ecrc.de/eclipse/html/grace/grace.html
http://clement.info.umoncton.ca/~lpnet/lpnetll.html
http://clement.info.umoncton.ca/~lpnet/lpnetll.html

