
AUTOMATIC COMPILE-TIME
PARALLELIZATION OF LOGIC PROGRAMS
FOR RESTRICTED, GOAL-LEVEL,
INDEPENDENT AND-PARALLELISM

K. M U T H U K U M A R , F. BUENO,
M. GARCÍA DE LA BANDA, M. H E R M E N E G I L D O

D> A framework for the automatic parallelization of (constraint) logic pro-
grams is proposed and proved correct. Intuitively, the parallelization pro-
cess replaces conjunctions of literals with parallel expressions. Such expres-
sions trigger at run-time the exploitation of restricted, goal-level, indepen-
dent and-parallelism. The parallelization process performs two steps. The
first one builds a conditional dependency graph (which can be simplified
using compile-time analysis information), while the second transforms the
resulting graph into linear conditional expressions, the parallel expressions
of the &-Prolog language. Several heuristic algorithms for the latter ("an-
notation") process are proposed and proved correct. Algorithms are also
given which determine if there is any loss of parallelism in the lineariza-
tion process with respect to a proposed notion of maximal parallelism.
Finally, a system is presented which implements the proposed approach.
The performance of the different annotation algorithms is compared exper-
imentally in this system by studying the time spent in parallelization and
the effectiveness of the results in terms of speedups.

Keywords: Automatic Parallelization, Parallelizing Compilers, Condition
pendency Graphs, And-Parallelism, &-Prolog.

1. Introduction

Parallel execution (or- and and-parallelism [22, 19]) has now been proved to be
an effective technique for achieving improved performance in logic programming
systems. In general, in or-parallel models (see [55, 2, 81] and their references)
all alternatives which match a given goal can be safely run in parallel. However,
in and-parallel models goals in the body of a clause cannot in general be freely
executed in parallel, since this can result in incorrect and/or inefficient executions.

There are several ways to solve the above mentioned problems. One, which is cen­
tral to the work presented herein, is to allow parallel execution only of goals which
are independent (we will discuss other possible solutions later). Parallel execution
models for logic programs which adopt this solution are said to exploit independent
and-parallelism. Early notions of independence of goals were proposed by Conery
and DeGroot [22, 27]. They provided sufficient conditions for ensuring that the
goals to be run in parallel would not produce "binding conflicts". The lack of such
binding conflicts not only avoids erroneous results but it also simplifies the imple­
mentation and reduces the overhead of parallel execution (for example, no locking
of variables is required). More recently, independence has been defined simply as a
condition which guarantees both correctness and (time) efRciency (by ensuring that
no "slow-down" will occur) with respect to the sequential execution [44, 46]. Le.,
independence implies that parallel execution preserves the "observables" in terms of
answers, side-effects, and computational complexity of the original program. Sev­
eral notions of independence, including the traditional notions, have been proved to
be correct and efficient in the above mentioned sense, by showing that the search
space of the sequential program is preserved (in addition to ensuring that there
will be no binding conflicts). This view has also allowed proposing new, more lax
notions of independence [27, 83, 45, 46] which allow more goals to be run in parallel,
and extending the notion of independence to constraint logic programming [24, 32].

In independence-based and-parallel models it is necessary to determine which
goals are independent and therefore eligible for parallel execution. Although this
can be done at run-time [22, 54], it can imply significant overhead. It is thus
interesting to perform as much of the work as possible at compile-time. Chang
[17] proposed an approach which generated a single dependency graph for a clause
from a worst case analysis. The approach was somewhat limited, mainly because
of the global analysis technology available at the time. DeGroot [27] proposed a
way of representing a fixed set of execution graphs via an expression generated at
compile-time, choosing among the alternatives at run-time through some checks.
Hermenegildo [38] proposed an extensión of Prolog, &-Prolog, which allows writing
such conditional parallel expressions within the source (&-Prolog) language (they
are in this case referred to as "annotations"). This has the advantage that the par-
allelization can be expressed at the user level, as a source to source transformation,
and that the user can directly write parallel programs if so desired (the compiler
then checking such code for correctness). An efficient implementation of &-Prolog
was also proposed in the form of a parallel abstract machine (the RAP-WAM) [39],
an extensión of the Warren Abstract Machine [80, 1].

DeGroot also proposed restricting the expressions generated to linear expres­
sions, i.e. parenthesized expressions without synchronization primitives. This re-
striction basically corresponds to a conditional "fork and join" paradigm, and the
type of and-parallelism generated is thus called "restricted". We argüe with DeG-

root that the fork and join paradigm has certain advantages. First, the structure
of the resulting parallelism is easier for the user to understand (for example, using
visualization tools [16]). This allows programmers to more easily predict the effec-
tiveness of the parallelization of their programs. The parallelized program consists
only of parenthesized expressions using sequential or parallel conjunction and condi-
tionals, which is arguably easier to understand than programs which use arbitrarily
synchronization primitives. The backtracking behavior of the parallel program is
also simpler and easier to understand [43]. Finally, the restrictions also simplify
the implementation of the parallel system (specially the backtracking) somewhat,
and allow a number of optimizations [42].

For the reasons mentioned above, we argüe that goal-level, restricted, indepen-
dent and-parallelism is, from a practical point of view, a quite interesting model for
exploitation of and-parallelism in (constraint) logic programs. We address in this
paper an essential aspect of the problem of automatic parallelization within this
model: the generation at compile-time of linear expressions, with minimal loss of
parallelism within the restrictions imposed by the model. We use &-Prolog as the
target language for the sake of concreteness and because of the convenience of its
Prolog-compatible syntax, which makes it possible to describe the parallelization
techniques as a source to source transformation of the original (constraint) logic
program.1 However, we argüe that our results are not only useful for the &-Prolog
run-time system itself, but also for other systems using similar annotations and/or
the same type of parallelism such as, for example, Kale's ROPM [64], the ACE and
&ACE systems [35, 62], the IAP subset of the DDAS model [72], etc.

Several alternative approaches to the one that we address have been proposed in
the context of and-parallelism. These include for example the interesting class of
the committed-choice languages [20, 78, 77, 74, 71, 70, 76, 75, 66, 67], which exploit
stream and-parallelism. Synchronization is in this case expressed directly in the
language. Dependencies are taken care of by incrementally passing variable instan-
tiations as streams between processes. Unfortunately, this class of languages does
not support "don't know" nondeterminism [53]: once a branch has been chosen, it is
never backtracked. The model is very interesting from the point of view of concur-
rent execution, but not as appealing for general purpose logic programming where
backtracking is one of the most useful features. From the point of view of efficiency,
interesting work is being done in the concurrent logic programming field in identi-
fying schedulings which are both correct and efficient, possibly sequentializing some
processes [84, 52]. A form of don't know non-determinism can be implemented in
these languages by performing program transformations where the backtracking or
or-parallelism is folded into the and-parallelism [79, 70]. This transformation has
been extended by Bansal [5] and used to parallelize logic programs by translating
them into committed-choice programs, using global analysis [6]. This work is inter­
esting and has many objectives in common with ours. It provides for example quite
useful transformations for parallelizing executions where a producer and a consumer
are deeply intertwined. On the other hand the approach differs from ours in several
key points. First, it does not focus on restricted and-parallelism, and thus, it does
not address the particular and interesting problems that arise as a consequence of

1Recently, an extensión to &-Prolog with constraints, among other things, has been defined:
CIAO-Prolog [47, 41]. We will consider this constraint versión of &-Prolog as the target language
for our transformations, since we will deal with generic constraint logic programs.

using the fork and join paradigm. Also, it does not directly address independence,
and thus it is unclear whether it can guarantee the correctness and efnciency of
the parallel execution with respect to sequential execution. The need to intertwine
the support for a "don't know" semantics in the transformation process makes the
presentation less accessible in our view. Finally, although no performance figures
are provided by Bansal, it appears that the final performance of this approach may
suffer from the fact that there is a certain level of meta-interpretation and also some
overhead (due to the support of general parallelism) in the underlying system.

Other interesting alternative models include the PNU-Prolog approach of Naish
[61] and the Andorra model proposed by D.H.D. Warren [7, 65]. In these approaches
only deterministic goals, or, more precisely, deterministic reductions, are allowed to
run in parallel. The advantage of these models is that they achieve essentially the
same results as the committed-choice languages, while preserving non-deterministic
search. However, they have the disadvantage of not being able to parallelize non-
deterministic computations that are independent, and also they involve a higher
run-time overhead than that involved in supporting goal-level, restricted, indepen­
dent and-parallelism. Another interesting approach has been proposed by Shen,
the DDAS model [72], which essentially combines goal-level, restricted, independent
and-parallelism with a form of dependent and-parallelism. The main idea regard-
ing the exploitation of dependent and-parallelism is to allow dependent goals to
run in parallel, but marking their shared variables specially. Synchronization is
achieved at the binding level through the dependent variables by using a left-to-
right binding priority scheme implemented via token passing. The main drawback
of this approach is the overhead involved in the management of the dependent vari­
ables and the priority scheme. In any case, and as mentioned above, the solutions
that we propose are directly applicable to the independent and-parallel subset of
DDAS.

The Extended Andorra Model of D.H.D. Warren [82] is aimed at enhancing the
basic Andorra model to also support independent and-parallelism. This model
opens interesting possibilities, but a number of issues are left open and need to be
resolved in a satisfactory way in an implementation. The Andorra Kernel Language
AKL [51] is a concurrent language based on this model, in which synchronization is
partly controlled by the programmer through guards and partly by the model, based
on determinacy and "stability" conditions. Interestingly, stability has been found to
be directly related to independence [47]. However, AKL offers an explicit concurrent
programming model which is quite different from that of logic programming, which
is our target. IDIOM [37] is another model aimed at parallelizing both deterministic
and non-deterministic goals.

Finally, [47] studies the relation between the previously proposed models and
proposes a unifying view. The observation is made that most of the models proposed
for exploiting parallelism in logic programs (including all those mentioned above)
can be explained and reconstructed by starting from a general model and applying
a few basic parallelization conditions (such as, for example, "independence" or
"determinacy") at different levéis of granularity (such as, for example, the "goal"
level or the "binding" level). Based on these ideas, a formal model capable of
exploiting as much parallelism as any previously proposed model, and at a very
fine level of granularity, was proposed in [11, 13, 12, 63].

The fork and join model for parallel execution has also been found interesting
and studied in the context of functional languages. For example, in the context of

functional programming, Sarkar [68, 69] defines an algorithm for finding optimal
linearizations of a graph into fork and join non-nested expressions, based on avail-
able information on granularity. However, the approach is not in general applicable
to the problem at hand, since it considers neither nested ñor conditional expres­
sions. Algorithms proposed in the context of imperative languages either do not
deal with conditional parallelism or are not focused on the fork and join paradigm
[29, 4, 34]. We argüe that the results presented herein (parallelization framework
using conditional dependency graphs and algorithms for linearizing such graphs into
parallel conditional parallel expressions, as well as their correctness proofs) can be
easily applied to other programming paradigms and can help deal with difncult
problems such as dealing with irregular computations (see [40] for more details on
this interesting issue).

Guidelines for constructing correct annotations at compile-time for goal-level,
restricted, independent and-parallelism were to the best of our knowledge first pro­
posed in [38]. DeGroot [28] proposed a technique for generating graph expressions
using a simple heuristic. However, the expressions generated with this method tend
to be rather large, with a significant number of checks. Furthermore, the method
has no provisión for conjunctions of checks, because DeGroot's original expressions
did not include this possibility. However, conjunctions of checks appear to be quite
useful in practice and are supported by the &-Prolog language [38]. Jacobs and
Langen [49] describe a quite interesting framework for compiling logic programs to
an extensión of DeGroot's graph expressions equivalent to that introduced in [38].
They propose two rules (SPLIT and IF rules) for transforming a dependency graph
(such as those used in [54, 22, 17]) into graph expressions. Interesting groundwork
is set by describing such rules, but no algorithm or set of heuristics is given that
would suggest how and when to use such rules in a parallelization process. The
approach therefore doesn't represent a complete algorithm for our purposes. Com­
plete algorithms in this sense were first given to the best of our knowledge in [58],
of which this paper is an extensión.

In general, the task of parallelizing a given program through compile-time anal­
ysis can be conceptually viewed in our framework as comprising two steps: (1) a
local or global analysis of the program in order to gather as much information as
possible regarding the terms to which program variables will be bound, and (2)
given that information, a rewriting of the program into another one which contains
expressions which will cause the parallel execution of some goals, perhaps under
certain run-time conditions. Elaborating on the work presented in [58], we present
(a) a methodology for automatically extracting parallelism at compile-time with
the aid of program analysis, (b) algorithms which determine if a given clause can
be compiled into an &-Prolog parallel expression without loss of parallelism (within
the model exploited, i.e. restricted, goal-level, independent and-parallelism), and
(c) algorithms for compiling (rewriting) logic programming clauses into &-Prolog
clauses containing parallel expressions. The methodology is generic in the sense of
being able to deal with several different notions of independence, and incorporating
the role of program analysis information independently of the domain used. The
algorithms are complete in the sense of incorporating not only rules for the transfor-
mation, as in previous approaches, but also heuristics to decide when to apply the
rules. Essentially, the heuristics seek to lose as little parallelism as possible (henee,
the motivation of (b)), while, at the same time, keeping the overhead associated
with such parallelism low. The rest of the paper proceeds as follows: after ini-

tial preliminaries in Section 2, we present the methodology based on compile-time
analysis and transformation in Section 3. In Section 4 we present the compilation
process for unconditional parallelism. We first deal with the important problem of
characterizing in which cases a clause can be compiled into linear parallel expres-
sions without loss of parallelism in the linearization process, and then present an
algorithm to actually perform the compilation. We also present an extensión to
the algorithm for the case when the requirement of not loosing parallelism in the
linearization process is relaxed. A similar scheme is followed in Section 5 for the
case of conditional parallelism. Section 6 then discusses practical issues, including
two new algorithms based on simpler heuristics. Sections 7 and 8 present a compre-
hensive practical study based on an implementation of these algorithms. Finally,
Section 9 presents our conclusions.

2. Notation and Preliminaries

Throughout the paper, we will use the convention that sets of atomic formulae are
interpreted as the conjunctive formula of the atomic ones. Sometimes, we will also
write an equivalent formula instead of the set; thus true for the empty set, and false
for the inexisting set. Set difference will be denoted by A \ B = {x £ A\x $ B},
and the powerset of a set A by p{A). The quantification 3! will be used for "there
exists precisely one". A graph will be denoted as the pair (V,E), where V is the
set of vértices or nodes, and E is the set of edges representing a binary relation
on V (possibly including also a label). We will use E* for the transitive closure
of relation E, and G as a ñame for a graph. Given a graph G = (V,E), G\p will
denote the subgraph (P,E\p) of G induced by edges connecting only vértices in
P C V. The syntax, and semantics, of the languages we use are introduced in
the following. Sometimes, (meta-)expressions of these languages will be enclosed
between angle brackets "(•••)" to sepárate them from plain text.

2.1. Language Syntax and Semantics

Our starting point will be a Prolog or Constraint Logic (CLP) program: a logic
program, for short. The classical left-to-right operational semantics of Prolog and
CLP will be considered (see e.g. [50]). We will denote the computation states in
this semantics by a goal and a (constraint) store, as in (g,c), where g is the goal
and c the store.

Deftnition 2.1. [(Constraint) logic program] Let t be a tupie of terms, c a constraint
predicate symbol, and p a non-constraint predicate symbol. The following (sim-
plified) grammar defines the syntax of logic programs:
Program ::= Clause . Program | e
Clause ::= Atom | Atom :- Body
Body ::= Literal | Literal, Body
Literal ::= Atom | Constraint
Atom ::= p(¿)
Constraint ::= c(t)

Our target language will be (the constraint versión of) &-Prolog. We con-
sider the &-Prolog language as a vehicle for expressing goal-level, restricted, in-
dependent and-parallelism.2 For our purposes, &-Prolog is essentially Prolog (or
CLP), with the addition of the parallel conjunction operator "&" (used in place
of "," — comma — when goals are to be executed in parallel), and a set of
parallelism-related built-ins, which includes suitable run-time checks for the notion
of independence under which parallelism is to be exploited. For syntactic conve-
nience an additional construct is also provided: the Conditional Graph Expression
(CGE). A CGE has the general form (cond => goali & goah & . . . & goalN)
and can be regarded as syntactic sugar for the if-then-else expression {cond ->
goal\ & goahí & . . . & goal^ ; goal\, goahí, •••, goal^)- &-Prolog if-then-
else expressions and CGEs can be nested in order to créate richer execution graphs.

Definition 2.2. [Restricted &-Prolog program] Let t be a tupie of terms, c a con­
straint predicate symbol, and p a non-constraint predicate symbol. The following
(simplified) grammar defines the syntax of &-Prolog programs:
Program ::= Clause . Program | e
Clause ::= Atom | Atom :- Body
Body ::= Literal | Literal, Body
Literal ::= Atom | Constraint \ Body -> Body ;Body

| Body => ParExp \ ParExp
ParExp ::= Body & Body
Atom ::= p(í)
Constraint ::= c(t)

Note from the above grammar that "&" binds stronger than "=>", and this one
in turn binds stronger than ",". The semantics of "&" is defined as follows. Given
a state of the computation ((gi & . . . & gn).s,c), its operational behavior is given
by the parallel computation of the states (gi, c), . . . , (gn, c), giving (e, c A c\), . . . ,
(e, cAc„), respectively, and the sequential execution of the continuation (s,cAci A
. . . A c„). See [46] for details.

By linear expression we will refer to an expression built according to the syntactic
rules given above for the Body of a restricted &-Prolog clause, including if-then-elses
and CGEs. Note that we do not consider if-then-elses in the source languages. This
is no restriction, since a well known transformation can be done from programs with
if-then-else to plain syntax by folding them into new predicates. Also, cut ("!") is
not considered in the syntax. It will be regarded, for our purposes, as a side-effect
built-in. Constraints will be also regarded as built-ins. Negation by failure will be
regarded as a meta-cali. The treatment of built-ins, meta-calis, and side-effects
will be considered later.

2.2. Independence in Logic Programs

As mentioned in the introduction, independence refers to the conditions that the
run-time behavior of the goals to be run in parallel must satisfy in order to guar-

2 Note that the &-Prolog language is rich enough to express unrestricted and-parallelism
through the use of wait primitives [57], and at levéis of granularity other than the goal level.
However, as mentioned before, there is an efficiency penalty associated with this.

antee the correctness and (time) efficiency of the parallelization with respect to the
sequential execution. Correctness is guaranteed if the answers obtained during the
parallel execution are equivalent to those obtained during the sequential execution.
Efficiency is guaranteed if the no "slow-down" property holds, Le., if the (idealized)
parallel execution time is guaranteed to be shorter or equal than the sequential exe­
cution time. Though and-parallel execution of goals can genérate speculative work
in the case of failure, it has been proven in [46] that when goals are independent
no slow-down occurs even in this case. Informally, the general, intuitive notion of
independence that we want to characterize can be expressed as follows: a goal q is
independent of a goal p if the execution of p does not "affect" q.

Definition 2.3. [Independent goals] Goal g<¿ is independent of goal g\ for store c iff
the execution of (32,c) does not change the number of computation steps, ñor
their cost, ñor their answers, w.r.t. the execution of (32, c'), for every store c'
resulting from the execution of (gi, c). Goals g\ and g^ are independent for c iff
<7i is independent of g^ for c, and vice versa. Goals in the set / = {gi,..., gn}
are pairwise independent for c iff for every g¿ € / , g,j € I, i ^ j , gi and g¡ are
independent for c.

The conditions for ensuring independence can be divided into two main groups:
a priori and a posteriori conditions. An a priori condition is one that can be checked
prior to the execution of the goals involved, and thus can be used as run-time test.
For this to be possible, this condition must only be based on the characteristics of
the current store and the variables belonging to the goals to be run in parallel. As a
result, a priori conditions are restrictive in the sense that they can miss independent
goals, due to the lack of information regarding their run-time behavior. On the
other hand a posteriori conditions can be based on the actual behavior of the goals
to be run in parallel. This has the advantage that the conditions can be defined
in such a way that fewer independent goals are missed. In fact, it is possible
to define conditions which are not only sufficient but also necessary for ensuring
independence, thus detecting all independent goals. The problem of course is that it
might not be possible to check such conditions without actually running the goals.

Example 2.1. In the context of LP, the first notion of independence was proposed in
[22, 27] and formally defined and proved correct in [44, 46]. This condition (referred
to as strict independence) states that two goals gi, g^ are independent w.r.t. a
given substitution 6 if they do not share variables, i.e. if vars(gi#) fl vars(#2#) = 0,
where vars(t) is the set of variables in term t. For example, while goals gi(x) and
g2(x) are independent w.r.t. substitution 6 = {x/í} they are not w.r.t. the empty
substitution. Note that strict independence is an a priori condition.

Strict independence was later generalized in [27, 83, 45, 46] to different concepts
of non-strict independence. The intuition behind such generalizations is that goals
sharing variables can still be run in parallel, provided the bindings established for
those shared variables satisfy certain characteristics. In particular, non-strict in­
dependence in [45, 46] requires that at most one goal further instantiate a shared
variable, and that no aliasing (of different shared variables) be created during the
execution of one of the parallel goals which might affect goals to the right. Obvi-
ously, this is an a posteriori condition since the behavior of the goals is taken into
account.

Consider the goals p(X,Y), q(Y), and the program:

p(X,Y) : - X = Y.
q(X) : - X = a.

It is easy to check that p(X,Y) and q(Y) are non-strictly independent for the
empty substitution, since only q(X) further instantiates X, and the aliasing created
by p(X,Y) does not affect two variables shared by p(X,Y) and q(X) (only X is
shared). •

Example 2.2. In the context of CLP, several a priori and a posteriori conditions
have been defined in [24, 32], showing also that the LP notions can not in general
be applied in this context. The most general a posteriori condition proposed in
this work (referred to as search independence) states that two goals g\, g^ are
independent from a given constraint store c, if for any partial answer p\ of g\ for c
and any partial answer p^ of g^ for c, p\ and p^ are consistent. In fact, this condition
is not only sufficient but also necessary. Note also that the condition relies heavily
on the run-time behavior of the goals.

The most general a priori condition proposed therein (referred to as projection
independence) states that goals g\ and g^ are independent for constraint c if for
any variable x € vars(gi) fl vars(g2), x is uniquely defined by c (ground in the
LP context), and the constraint obtained by conjoining the projection of c over
vars(gi) and the projection of c over varsfa) entails (i.e. logically implies) the
constraint obtained by projecting c over vars(gi) Uvarsfa)- For example, consider
the goals gi(y),g2(z) and constraint c = {y > x, z > x}. The projection of c over
{y} is the empty constraint true. The projection of c over {z} is also true. Since
the projection of c over {y, z} is also true, the condition is satisfied and we can
ensure that <7i(j/), 32(2) are search independent for c.

Unfortunately, the cost of performing a precise projection at run-time may be too
high. A pragmatic solution [24] is to simplify the run-time tests by just checking
if the variables involved are "linked" through the constraints in the store, thus
sacrificing accuracy in favor of simplicity. In particular, for the previous example,
y and z are linked (through x) in the store, and therefore gi(y),g2(z) would not
run in parallel. •

In our context, the parallelization process is parameterized by a particular notion
of independence. For our purposes, the only requirements are that the independence
condition chosen guarantee correctness and efficiency of the parallel execution of
the goals involved, that it can be used as a run-time test (i.e., is a priori), and that
it satisfies what we cali the grouping property. If the condition is not a priori, the
solution is to first use compile-time analysis to infer as much information about the
run-time behavior of the goals as possible. If such information is enough to ensure
that the a posteriori conditions are satisfied (i.e. that the goals are independent),
no run-time tests will be needed. Otherwise, an a priori condition will then be used
for the parallelization of the goals.

Definition 2.4- [Correct and efficient a priori condition (i_cond)] A set of conditions
associated to a pair of goals g\ and g-¿, is an i_cond iff it can be evaluated for
any constraint store and if each condition evaluates to true for a given constraint
store c then g\ and g^ are independent for c.

The importance of the a priori notions of strict and link independence for auto-
matic parallelization does not only come from their run-time efficiency. It is also
due to the fact that they satisfy the "grouping" property. This property is impor-
tant in that it will allow us to consider conditions between goals pairwise, rather
than in sets, thus greatly simplifying our framework.

Definition 2.5. [Grouping set of conditions] Consider the goal g, the set of goals
S = {<7i,...,gn}, and the set / = {i-cond(gi,g) | i £ {1, • • • ,n}}. The set I is
grouping iff if each condition evaluates to true for a given constraint store c, then
for any sequence G built from the goals in S, g and G are independent for c. In
other words, if for any such G, i-Cond(G, g) is equivalent to the conjunction of
the conditions i-cond(gi,g) for each gi in G.

Example 2.3. Although conditions based on strict and link independence are group­
ing, conditions based on projection independence do not always satisfy the grouping
property. For example, for the arithmetic linear constraint x + y = z, although p(x)
is projection independent of p(y) and of p(z), p(x) is not projection independent of
the sequence p(y),p(z). •

When sets of conditions are grouping, the condition between a goal and a set
of goals is simply built from the conjunction of the i-conds of the goal with each
of the goals in the set. When sets of conditions are not grouping, a much more
expensive condition has to be built and tested at run-time. Basically, for each goal
which could run in parallel, a set of conditions on this goal w.r.t. all other goals
which can run in parallel with it should be tested. Such set, although obviously
different from the simple conjunction of the i-conds, can generally be easily built
from them. However, the extensions to the framework in the case of a posteriori or
non-grouping conditions are beyond the scope of this paper.

A priori conditions also enjoy an important property, which is formalized in the
following proposition.

Proposition 2.1. If gi and g^ are a priori independerá, for c, they are also a priori
independent for any constraint c' defined as c A c\ A 02, where c\ and 02 are
constraints satisfying vars(c\) C vars(gi) and vars(c2) C vars(g2).

Proving the above proposition is straightforward given the fact that (a) pro­
jection independence is not only sufficient but also necessary for ensuring a priori
independence, and (b) if g\ and g^ are projection independent for c, they are also
projection independent for any such c'.

Note that the above proposition does not imply that if a particular i_cond is
satisfied in c it will also be satisfied in c'. Consider, for example, the condition
i-cond(p(x),q(y)) defined as "x and y are strict independent for store c and x =
/ (a)" . Although p(x) and q(y) are a priori independent for both c = true and
c' = x = b, i-Cond(p(x),q(y)) holds for c but not for c'. More general independence
conditions, as those based on strict, link and projection independence notions,
satisfy the above proposition. We cali these conditions reasonably general. We will
use this concept to simplify the proof of correctness of the method proposed in the
next section. Note, however, that the crucial point is that Proposition 2.1 holds,
and thus the method is still correct for "non-reasonably general" conditions.

3. Compiling Logic Programs into &>Prolog: General Approach

An (&-) annotation is a transformation of a program into a parallel versión of it.
Assuming an appropriate condition and run-time checks, the result of an annotation
will then be an &-Prolog program with parallel expressions each annotated with an
appropriate test made out of such checks.

Consider a set Cond of first order formulae3 in which the sufficient conditions
for independence on the goals of each clause can be expressed. Also, any relevant
information on those goals can be captured by formulae of Cond. The mapping
i-cond : p(Literal) —>• p(Cond)U {false} provides the required condition for a given
set of literals in the form of a set of atomic formulae, interpreted as their conjunction
(the checks), or false. A characteristic of our framework, thanks to the grouping
property, is that algorithms only need to inspect conditions between two given
goals. For this reason, we restrict the above function to i-cond : Literal x Literal —>
p(Cond) U {false}.

Example 3.1. Consider strict independence as defined in the previous section.
In the Herbrand domain, indep(x,y) is true if x and y do not share variables.
Sufficient independence conditions for goals g\ and 52 can then be defined as
i-cond(gi,g2) = {indep(x,y) | x £ vars(gi),y £ vars(g2),x ^ y} U {ground(x) |
x £ vars(gi) fl vars(g2)}, where ground(x) is introduced as an efficient run-time
test for indep(x,x). Note that, in a practical implementation, these conditions can
be reduced further, since for example indep(x,y) and indep(y,x) need not both be
considered. •

For the sake of concreteness, our examples and performance study will focus
on strict independence for the Herbrand domain, using the checks defined in the
previous example.

3.1. Dependency Graphs

The first step in the annotation is concerned with identifying the dependencies be­
tween each two goals in a clause and the minimum number of tests for ensuring
their independence, based on the sufficient conditions applicable. This step can be
viewed as a compilation of programs into (conditional) dependency graphs. Con­
sider a relation prec C Literal x Literal which captures, in the case of sequential
logic programs, the left-to-right precedence relation. A definition of conditional
dependency graphs, which additionally provides a method for the first step in the
compilation, follows.

Definition 3.1. [Conditional dependency graph] A conditional dependency graph
(V, E) for a given sequence of literals g\... gn is given by V = {gi,..., gn}, and
E = {(9i,9j,i-cond(9i,9j)) I Í9i,9j} Q V,prec(gi,gj),i.cond(gi,gj) ^ 0}.

Conditional dependency graphs (CDGs) are labeled directed acyclic graphs
(DAGs). Acyclicity is guaranteed by the precedence relation prec. The label of

3Though Cond is here defined over a first order language, its variables are the program clause
variables, which can be regarded as constants. If this is done, the "first order" formulation is mere
syntactic sugar for a truly propositional language.

an edge states the independence condition for the two goals connected by the edge.
If the condition is satisfied, the two goals are independent. If the i-cond fails, the
two goals are dependent and must be run sequentially. The direction of the edge
indicates the proper order in which the goals have to be executed. Note that, since
i-cond includes sets of atomic formulae or false, either of these can be a label.
For the sake of conciseness, we will sometimes regard edges labeled false as unla-
beled. Also, since the empty set of formulae is equivalent to true, we will talk of
true instead. Note however that from the definition of CDGs, edges labeled true
are dropped. This is because while for a false condition the edge is still needed
for indicating the order of the corresponding sequential execution, for a successful
condition the edge is not needed anymore. An important special case of CDGs
are graphs where conditions are always false, i.e. dependencies always hold. In
this case we will talk of Unconditional Dependency Graphs (UDGs). This class of
CDGs is very interesting, since it allows to exploit only unconditional parallelism,
thus avoiding any overhead involved in the run-time checks.

Example 3.2. Consider the clause of the familiar program to solve the Towers of
Hanoi problem given below. Assume for simplicity that its CDG has edges labeled
false from the two built-ins to any other literal on their right (see Section 3.2).
The rest of the graph is shown in the figure below. For brevity in the figure, for any
two terms s and t we write i s t for indep(s,t), and i s for indep(s, s). Note that
for non-variable terms s and t , evaluating indep(s,t) requires pairwise evaluation
of the condition for the variables in each term. Thus, given s = f (X,Y) and t =
g(Z,W), the test i s t is equivalent to the test i(X,Y) (Z,W) and also to the set of
tests {iXZ, iXW, iYZ, iYW}.

shanoi (N,A,C,B,R) shano i (N,B ,A,C,S)

shanoi(NO,A,B,C,M) :-
NO > 1,
N is NO - 1,
shanoi(N,A,C,B,R),
shanoi(N,B,A,C,S),
append(R,[mv(A,C)],T),
append(T,S,M).

append(R, [rav(A,C)],T) append(T,S,M)

Conditional dependency graphs, as defined, give a parallel execution model
for the bodies of the program clauses, i.e. for and-parallelism. This model has
been defined in [60] as Maximal Efficient Goal-level Restricted Independent And-
Parallelism, which we will cali "/«-parallelism". It is maximal within the limits of
being both independent and goal-level at the same time, since goals are executed
as soon as they become independent. Because it is independence-based, it is also
correct and efficient. The MEIAP model can be identified with the following oper-
ational semantics for dependency graphs. Let a node be ready if it has no incoming
edges.

Deftnition 3.2. [CDG operational semantics] Given a conditional dependency

i (A,B,C,N)(M,T)

graph (V,E), parallel execution of the goals to which nodes in V correspond
is achieved by repeated application of the following rules:

• Goal initiation: Consider nodes whose incoming edges have source nodes
which are ready. If the conditions labeling all these edges are satisfied for the
current store c, remove them all. Repeat until no edges are removed. Initiate
all goals g in ready nodes by executing (g,c) in different environments.

• Node removal: Remove all nodes whose corresponding goals have finished
executing, and their outcoming edges. Add the associated answers to the
current store c.

Note that, given the form in which CDGs are constructed, there is always at least
one node which is ready: that which corresponds to the leftmost goal. Therefore, the
execution model can always be initiated. The model is also correct w.r.t. sequential
execution.

The proof of correctness is based on the special properties of a priori, grouping
independence conditions and, in particular, on the characteristics of the constraints
that can be added to the store by goals which are independent under such notions.
Given a set of conditions / which is grouping for a goal g and a set of goals S =
{<7i,..., gn} the following result ensures that if each i_cond(gi,g) in / is satisfied
in store c, they will also be satisfied in any subsequent store d resulting from the
execution in c of some of the goals in S. This will later allow us to prove that, at
any point in the execution, the independence conditions between each two ready
goals are satisfied for the current store.

Lemma 3.1. Consider g, the set of goals S = {gi,..., gn}, and the grouping set
I of correct, efficient and reasonably general a priori conditions {ijcond(gi,g) |
gi € S}. If every condition in I is satisfied in store c, then for every sequence
G built from the goals in S, and for every store c' obtained by the execution of
(G,c), each condition in I is still satisfied in c'.

P R O O F . Since the set / is grouping, the condition i_cond(g\ ... gn,g), is equivalent
to the conjunction of the conditions in / , and thus it is satisfied in store c. Since
the conditions are reasonably general, i-cond(gi .. .gn,g) is also satisfied in any d
obtained by executing any goal defined over a subset of variables in either g\ ... gn

or g, and in particular, in the store d obtained by the execution of (G,c). Thus,
every condition in / is also satisfied in such d. •

Given the above result, it is straightforward to prove that if the conditions for
the pairwise independence of a set of goals S are satisfied in store c, the conditions
are also satisfied in any store obtained by executing in c some goals in S.

Corollary 3.1. Consider the set of goals S = {gi,... ,gn}, and the grouping set I
of correct, efficient and reasonably general a priori conditions {i-Cond(gi,gj) |
<7¿,<7j G S,i ^ j}. If each condition in I is satisfied in store c, then for any
sequence G built from goals in S, each condition in I is satisfied in any store d
obtained from the execution of (G,c).

Let us now prove that, at any point in the execution, the independence conditions
between each two goals determined as ready by the model are satisfied in the current

constraint store c'.

Lemma 3.2. Consider a CDG obtained by applying an a priori, reasonably general,
grouping notion of independence to the sequence g\ ... gn. Let c' be the current
constraint store obtained during the execution of the graph following the CDG
operational semantics. For every two ready goals gi and gj, 1 < i < j < n,
i-Cond(gi,gj) is satisfied in c'.

P R O O F . Let us prove this by induction.

• Base case: Let c' be the initial store c. By definition of the model, for each
ready goal g¡ and each goal g¿, 1 < i < j , i-cond(gi,gj) is satisfied for c.

• Induction step: assume that at some point of the execution the current
store is c', and the set of ready goals is R0u- By hypothesis of induction, the
independence conditions between each two ready nodes in R0u are satisfied
in c'. If (a) a goal initiation step is then performed, a new (possibly empty)
set of ready goals Rnew will be found. By definition of the model, for each
ready goal gj £ Rnew and each goal g¿, i < j , i-cond(gi,gj) is satisfied
for c'. Thus, the independence conditions between each two goals in Rnew

are satisfied for c'. Furthermore, since for every g¿ £ R0id and every gj £
Rnew we have that i < j , then every i_cond(gi, gj) is also satisfied in c'.
Thus, all independence conditions between each two ready goals in R0id U
Rnew are satisfied for c'. If (b) a node removal step is performed, then the
answers corresponding to some goals in R0u which have finished are added
to c' obtaining the store c", and the associated ready nodes eliminated. By
Corollary 3.1, the independence conditions between each two ready goals
which have not been eliminated are still satisfied in c". •

We can now prove the main correctness result.

Theorem 3.1 Correctness of the CDG operational semantics. Consider the CDG
obtained by applying an a priori, reasonably general, grouping notion of indepen­
dence to the sequence gi-..gn- Any execution obtained by applying the CDG
operational semantics to the graph with initial store c is corred and efficient
w.r.t. the sequential execution of (gi • • • gn, c).

P R O O F . Let us prove it by induction on the number of goals in the sequence
5 i •••9n-

• Base case: By definition of the model g\ is ready and will be executed in
store c. This execution is obviously identical to the sequential one.

• Induction step: assume that the CDG operational semantics is correct for
the sequence g\ .. .gn-i- Let c' be the store in which goal gn is executed,
according to the CDG operational semantics. By definition of the model,
gn has become ready in c' and thus all goals in the sequence gi-..gn-i
must be either already initiated, or ready to be initiated in c'. Therefore,
the execution of goals in the sequence g\ .. .gn-i cannot be affected by the
execution of gn and thus, by induction hypothesis, it is identical to the
sequential execution. By Lemma 3.2 the set of independence conditions
between each two ready goals is satisfied in c'. Since the set of conditions is

grouping, by definition of independence, the execution of (gn, d) is identical
to that of (gn,s') where s' is obtained from the execution in d of any goal
in { g i , . . . , g n - i } which have not finished yet. Since d has been obtained by
adding to c the answers to the goals in {gi,... ,g„_i} which have already
finished, and we have already proved that such answers are identical to those
in the sequential execution, s' is equivalent to s and the induction is proved.

D

The CDG model is "maximal" in the sense that goals are run in parallel as soon
as they become independent. However, this requirement can be dropped, allowing
a more general model in which ready goals are ensured to be independent if run
in parallel, but they are not actually required to be run in parallel. In fact, any
possible correct goal-level parallel (or even sequential) execution is allowed. In
particular, given a non-simplified graph, a parallel expression simply corresponds
to a particular execution of the graph in the above model: that which is obtained
following the particular heuristic of the annotator being used to build the parallel
expression.

Proving the correctness of a non-maximal model is straightforward since, given
the above two lemmas, and the fact that they hold even if the model is not maximal,
we can conclude that, once a goal g has been determined ready for store d, its
execution in d is identical to its execution in any subsequent store obtained by the
model while g is still ready.

Note that CDGs can also represent &-Prolog clauses that are already annotated.
Since any goals joined by "&" can be run in parallel, the i-cond for these is true, and
therefore no edge exists in the corresponding CDG. If the parallel expressions are
embedded in either a CGE or an if-then-else, the i-cond labeling the corresponding
edge is precisely the condition in that conditional structure. It is easy to see that
such a CDG is equivalent to the (parallel) operational semantics of the given clause.
Also, consider a CDG for a given clause, and another one which has either more
edges or larger labels in some edges (a label V is larger than another one l, l < l',
iff l' —>• l). We cali such a CDG a super-CDG of the original one. It is obvious that
super-CDGs are correct, as long as the original ones are.

Definition 3.3. [Super-CDG] The CDG (V,E') is a super-CDG of the CDG (V,E)
iff (1) all edges in E are in E', modulo labels, and (2) for all edges in E with
label l the corresponding edge in E' with label l' is such that l < V.

3.2. Dealing with Non-pure Features and Built-ins

It must be taken into account that, in general, side-effects cannot be allowed to
execute freely in parallel with other goals. In order to avoid their parallelization,
the annotation can use the information derived by an analyzer which propagates
the side-effect characteristic of built-ins yielding side-effect procedures (see e.g.
[57]). Quite powerful solutions exist for dealing with side-effect built-ins and pro­
cedures (e.g. [18, 57, 36]). In our framework, there is an elegant solution which can
be defined in terms also of a notion of independence. Note that some side-effects
are themselves independent (for example, writing to different files) and could be
considered for parallel execution. A suitable analysis for these cases, as well as
defining a set of conditions which allow capturing them, will make our framework

readily applicable also to the parallelization of side-effects. For simplicity, how-
ever, the (instances of the) algorithms we have studied sequentialize side-effects.
Sequentialization can be achieved by slightly modifying the building process of the
CDG associated to a clause, so that every edge connecting a side-effect literal is
labeled with false.

Definition 3.4- [Annotation front-end] The CDG (V,E) corresponding to a
given sequence of literals g\...gn is given by V = {gi,... ,gn}, and E =
{(9i,9j,label(9i,9j)) I Í9i,9j} Q V, prec(gi,gj), label(gi,gj) ^ 0}, and
1 1 1 / \ — í fa^se if 9i o r 9j is a g°al with side-effects

\yn 9j¡ | ijcond(gi, g¿) otherwise

In the following we will denote by cdg(Lit) the function which computes the CDG
corresponding to the sequence of literals Lit according to the above definition. Note
that the above definition is just a modification of Definition 1 for the case in which
side-effects are allowed.

Some limited knowledge regarding the granularity of the goals, in particular the
built-ins, is used in the parallelization task. Built-ins which are known to have
enough size to be worth forking in parallel are considered for parallelization. Those
which are known to be "small" are not. Meta-calis are sequentialized unless the
called goal is available in the program text or their independence can be otherwise
determined.

3.3. Linearization of a Dependency Graph

The second step of the transformation will compile a CDG into a linear expression
which will then be used as the corresponding restricted &-Prolog clause body. In
doing this, dependencies represented in the CDG must be satisfied. This step is
in general non-deterministic: several different annotations are possible. Given a
clause, its CDG is deterministically built, and from it, the corresponding &-Prolog
clause is reconstructed. Different heuristic algorithms implement different strategies
to select among all possible parallel expressions for a given clause.

The back-end of the transformation is parameterized by a function exp. The
function exp can be instantiated to a particular algorithm for annotation, such as
one of those described in the following sections.

Definition 3.5. [Annotation] Given a program clause C, an annota­
tion of it yields an &-Prolog clause C" = annotate(C), where
annotate(h) = h, annotate(h:- g) = h:-g, and annotate(h:-gi,... ,gn) =
h:- expicdgdg!,...^^)).

The algorithms we present are focussed on preserving all the available ¡JL-
parallelism in the input graph. It is clear that in order to achieve this, a goal
should be initiated as soon as all goals on which it depends have finished executing.
All dependencies are captured in the dependency graphs, therefore a desirable ob-
jective in the annotation process would be to linearize a graph in such a way that
no independent goals are executed sequentially. Graphs which can be linearized
without loss of /z-parallelism will be called //-graphs. Algorithms which decide if
this is possible for the case of UDGs and CDGs will also be presented.

3.4- The Role of Program Analysis

In general, the independence conditions (as defined by i-cond) are generated in
such a way that for any substitution, if those conditions are satisfied, the literals
are independent. However, when considering the literals in the context of a clause
and within a program, the condition can be simplified since independence then
only needs to be ensured for those substitutions that can appear during execution
of that program. Furthermore, if the class of admissible queries to the program
is specified in some way, then only the substitutions which might appear in the
execution of those queries need be considered. This observation is the basis of the
role of program analysis within the transformation process.

The independence conditions can thus be simplified, or eliminated altogether,
by using compile-time information provided either by the user or by an analyzer.
Labels in the CDG can be simplified based on this information: if a condition is
ensured to succeed, it is removed from the label; if a condition is ensured to fail, the
label can be reduced to false. If the label becomes the empty set (i.e. it is reduced
to trué), the edge can be removed. On the contrary, if it is reduced to false, the
edge becomes unconditional.

In the algorithms that we will propose, whether the CDG is already simplified
or not is immaterial. Given a conditional graph for (part of) a clause C, its la­
bels can be simplified based on the available information, prior to its linearization.
However, it is worth noting that conditions can also be improved further in the
back-end of the parallelization process: after a linear expression is built, the con­
dition can possibly be reduced again. Both simplifications are parameterized by a
function improve. Consider a propositional logic language in which the conditions
can be expressed (e.g., the set Cond of Section 3). The compile-time information
is translated into such language, capturing the subset of the compile-time infor­
mation which is relevant for independence detection. In this context, we say that
improve(c,i) = c' if the simplification of condition c with (translated) information
i yields the new condition c'. The only correctness requirement on the function
improve, is that the propositional formula c can be proved from c' Ai (see [9, 13]).

The updating of a set of edges of a CDG (V,E), identified by their source vértices
Vi C V, w.r.t. some information (condition) c is given by a function update:

update((V,E),Vuc) = (V,(E\{(gug,l)\g1GVi})U
{(gi,g,l') | ffi £ Vi, (gi,g,l) € E, V = improve(l,c) ^ true})

We assume that the available information is valid before executing each goal g
in the program, and denote it by IC(g). Therefore, the correctness requirement
over improve is also enough for update, as long as the information c is valid for
all <7i € Vi. This requirement is also applicable to the initial simplification of a
CDG (V,E) w.r.t. the information available, since it is just the result of applying
update((V,E), {g},JC(g)) for all g&V.

Example 3.3. Consider the clause in Example 3.2 and its CDG. Local analysis
can infer that N is a ground variable, and that R, S, and T are not aliased to any
other variable until the point of their first occurrences. Moreover, global analysis
can infer from other clauses in the program that A, B, and C are ground variables.
The CDG after simplification is shown below.
Note that, of the original edges, three of them have been dropped, and the rest

shanoi(N,A,C,B,R) shanoi(N,B,A,C,S)

9 9
f a l s e f a l s e

i "
/ ^ \ f a l s e f ^ \ u— —\J

append(R,[mv(A,C)],T) append(T,S,M)

have become unconditional. •

For non-grouping conditions the simplification process is different. Although
conditions can be reduced to false before a particular annotation of the clause has
been chosen, no condition can be reduced to true until the linear expression is built.
This is because, in order to build the final conditions that will appear in the linear
expression, we must first know which goals are possibly going to be run in parallel.

4. Unconditional Parallelism: Compiling UDGs

UDGs allow exploiting unconditional parallelism. Note that, even if the result of
the front-end described before is not a UDG, it can be turned into a UDG on
purpose with the aim of only exploiting unconditional parallelism. The rationale
behind this is to avoid the overhead introduced by the run-time checks. We first
turn our attention to this class of CDGs. We will first describe an algorithm which
checks if a UDG is a /x-graph. Then, for UDGs which are known to be /x-graphs,
we define an algorithm to actually do the compilation, which we cali the UDG
algorithm. Finally, for UDGs which are not //-graphs we also present extensions
to the UDG algorithm which allow to compile them. For clarity, the label false
present in all edges of a UDG will be dropped, all edges thus now being unlabeled.

4-1. Deciding whether a UDG is a ¡i-graph

The basic idea behind the decisión algorithm is as follows. Let UDG G = (V, E)
be closed under transitivity (i.e. E = E*), let P be the set of ready nodes in G,
and Q = V\P. Investígate whether the subgoals in Q can be executed in parallel
with or should sequentially follow the subgoals in P. As a result, the set Q can
be partitioned so that for each partition there is only a subset of P on which the
elements of the partition depend. This induces another (pseudo-)partition in P:
that of the corresponding subsets (which may not be disjoint). For the UDG to be
a /U-graph, these sets have to be either pairwise disjoint or subsets of one another.
If this is so, check if the sub-UDGs induced by the partition of Q satisfy these
conditions again. All the sub-UDGs should satisfy these conditions so that the
given UDG is a //-graph. Note that the following results hold for transitively closed
UDGs.

We first define the partitioning of the UDG, and discuss its characteristics. Let
P be the set of ready literals computed by the function ready(G) = {p £ V \ \/x £
V (x,p) £" E}. Consider the set Q = V \ P of dependent goals. For each g¿ £ Q,
the set £(<7¿) = {p £ P\(p,qi) £ E)} is not empty. Let Cover(P) = {£(</«) £
2P|<7¿ £ Q} = {Pi, • • • ,Pn}, i-e., there is at least one literal in Q for each of these

Pi which depends on all elements of P¿. These literals are grouped together so
that VP¿ £ Cover(P), Dep(Pi) = {q € Q\£(q) = Pi}, i.e. Dep(Pi) is the set of all
vértices in Q that must wait for all vértices in P¿ (and only those, out of the vértices
in P) to finish executing before their execution can be initiated.

The following results hold directly from the definition of Cover(P) and Dep(Pi)
for Pi £ Cover(P). They are instrumental in determining if the given UDG is a
/U-graph.

Lemma 4-1- For any Pi, P¡ in Cover(P), (i ^ j =>- Dep(Pi) fl Dep(Pj) = 0).

PROOF. Consider {PÍ,PJ} C Cover(P) s.t. Dep(Pi) n Dep(Pj) ^ 0. This means
that 3q G Q, q G Dep(Pi) n Dep(Pj), and therefore £(g) = P¿ and £(g) = P,-.
Henee, P¿ = P,-, which is a contradiction. D

Lemma 4-2. For each non-intersecting pair of sets Pi, P¡ in Cover(P), there are
no edges between a vértex in Dep(Pi) and a vértex in Dep(Pj).

PROOF. Consider two disjoint sets P¿, P¿ in Cover(P), and assume that there
exist two vértices u £ Dep(Pi), v £ Dep(Pj) s.t. (u,v) £ E. Since there exists
w £ P¿ s.t. (w,u) € E, then by virtue of transitivity, (w,v) € E, and therefore
v e Dep(Pi). But this contradiets the fact that Dep(Pj) n Dep(Pj) = 0 . •

In this context, no loss of /U-parallelism can oceur when converting the graph
into a linear (parallel) expression, if and only if the following conditions hold. Ba-
sically, for each P¿ £ Cover(P), the linear expression should satisfy the following
requirements:

• There should be "&" operators between all the elements of P¿ so that they
can be run in parallel.

Additionally, all elements of P should execute in parallel as well.

• The subexpressions involving elements of Dep(Pi) should sequentially follow
the subexpressions involving elements of P¿, and not of P \ P¿.

Also, they should sequentially follow the subexpressions of Dep(Pj) for each
Pj C Pi.

Let us now informally discuss how to determine if a UDG satisfies these require­
ments. From the definition of the elements of Cover(P), it always holds that for
all Pi, P2 in Cover(P), P1 ^ P2 and either:

1. p 1 n P 2 = 0 , or

2. Pi n P2 = Pi, or Pi n P2 = P2 , or

3. P i H P 2 =P s.t. P ^¿0, P T¿ P i , P ^ P 2

Consider a UDG with Cover(P) = {Pi ,P 2}. If these sets are in the first case,
it is obvious that the subexpressions for P\ U Dep(Pi) and P2 U P>ep(P2) can be
parallelized, thanks to the above two lemmas. No loss of /x-parallelism oceurs in this
case if it does not oceur for the two subexpressions, i.e. if the UDGs for Dep(Pi)
and P>ep(P2) are also //-graphs. In the second case, let P\ fl P2 = P\. Since the
elements of Dep{P\) should not wait for elements in P2 \ Pi and all elements in

Pi \ P\ must run in parallel with those in P\, there should be a subexpression for
P\ U Dep(Pi) in parallel with that for P2 \ P\. Cali this (partial) expression Exp.
Since the elements in Dep{P2) have to wait for all elements in P2 (which includes
Pi), the subexpression for Dep{P2) can only sequentially follow Exp. This does not
lead to a loss of /x-parallelism iff each element of Dep{P2) depends on all elements
of Dep(Pi) (and, as before, the UDGs for Dep(Pi) and Dep(p2) are also /x-graphs).
In the third case, the expression should allow P, P2\P, and Pi\P to run in parallel.
Also it should guarantee that Dep(Pi) does not wait for P2 \ P, and Dep(p2) does
not wait for P\ \ P . There is no expression which satisfies this.

We now formalize the above reasoning. First, if the UDG is a /x-graph, then the
third case above cannot occur. This is stated in the following result.

Lemma 4-3- If the given UDG is a ¡i-graph, then for each Pi, Pj in Cover(P),
either

• pi n Pj = 0, or

• P ¿ C P i ; orPj c P j .

P R O O F . Assume that there exist distinct sets P¿, Pj that do not satisfy the
condition stated. Thus, they are not a subset one of the other, and P¿ fl Pj ^ 0. If
both Pi and Pj are singleton distinct sets, it can only be that P¿ fl P¿ = 0, which
is a contradiction. If one of them is a singleton set, say P¿, but not the other
one, since P¿ fl Pj ^ 0, then P¿ C Pj, which is also a contradiction. If none is a
singleton set, let without loss of generality, P¿ D {pi,p2}, Pj 12 {^2,^3}, £(<7i) = Pi
and £(«72) = Pj- If the UDG is a /x-graph, its linear expression should allow (a)
Pi, P2, and pz to run in parallel, while (b) qi waits only for p\ and P2, and (c) (72
only for P2 and p-¡. Therefore the expression should contain as subexpressions (a)
Pi&¿P2&¿P3, (b) ((P1&P2), qi), and (c) ((P2&P3), 92), but no other one. To achieve
this, consider introducing expressions (b) and (c) within (a). In (a) q\ should
sequentially follow (P1&P2) (but not p-¡) while 52 sequentially follows (P2&P3) (but
not p\). No parentherization (of any permutation) of (a) is possible which achieves
this. •

Also, if the UDG is a /x-graph, and some elements P\ and P2 of Cover(P) are
in the second case above, all elements of Dep(p2) must depend on all elements of
Dep(Pi), as stated below.

Lemma 4-4- If the given UDG is a ¡i-graph, then each pair Pi, Pj in Cover(P),
such that Pi C Pj, satisfies the following condition: \fuv(u £ Dep(P{) A v £
Dep(Pj))=>((u,v)eE).

P R O O F . Assume that there exist P¿, Pj in Cover(P) that viólate the above con­
dition. Without loss of generality, let P¿ D {pi}, Pj 3 {^1,^2}, £(<Zi) = Pi and
£(92) = Pj- Since P¿, Pj do not satisfy the condition, the edge (51,(72) does not
exist in the given UDG, i.e. according to it, q\ and 52 can execute in parallel.
Also, q\ should sequentially follow only p\, but 52 both p\ and p-2- This means
that (pi,(qi&¿q2)) and (^2,92) must be subexpressions of the resulting expression.
There are only two ways in which the second one can be folded into the first one:
either P2 is attached to (72, or to p\. In the first case, consider the linear expression
(pi,qi&¿(p2, (72))- It makes P2 sequentially follow p\, which contradicts the condi-

tions in the UDG. In the second case, consider the linear expression (pi&p2, <7i&92)-
It makes q\ sequentially follow P2, which is also in contradiction. D

Finally, the above conditions are not only necessary, but also sufficient for a
UDG to be a //-graph, as stated below.

Lemma 4-5. If the conditions in lemmas 4-3 and 4-4 hold for a given UDG, and its
sub-UDGs, then it is a ¡i-graph.

P R O O F . The result is shown to hold by constructing the linear expression. Con­
sider the UDG G = (V, E) with associated P and Q. From Lemma 4.3, every two
sets in Cover(P) are either disjoint or one a subset of the other. Therefore we
can parti t ion Cover(P) into maximal subsets, each one containing the elements of
Cover(P) which are not disjoint:

Partition(Cover(P)) = { Pt C Cover(P) | VP¿ £ Pt it holds tha t

VPfc £ Cover(P) {Pk £ Pt -> Pk n P¿ = 0) and
VPj £Pt(j¿i^ Pj C P ¡ V Pj C P ¡ V 3Pk G Pt (Pi U Pj C Pk)) }

For every Pt £ Partition(Cover(Pj), let Dep(Pt) = {JPePtDep(P). Since
for any two elements P í i , P Í 2 G Partition(Cover(P)), Dep(Pti) fl Dep{Pt2) =
0, by Lemma 4.2 no dependencies exist for Dep(Pti) on DepiPt^)- Let
Partition(Cover(Pj) = {Pti, • • • Ptn}. Then, it is correct to convert G into the
linear expression:

(exp(G\ptlUDep(Ptl}) & ••• & exp(G\ptnUDep(Ptn}))

and no loss of /x-parallelism occurs if no loss occurs for each exp(G\pt.uDep(Pu))-
Now, for each Pt = {Pi,..., Pm} in Partition(Cover(Pj), either (a) P\ C . . . C Pm

or (b) 3Pk e Pt such tha t VP¿ e P í , j ^ fc,Pj C Pk. In case (a), by Lemma 4.4, it
is correct to convert G\pti\jDep{Pti) m t ° the linear expression:

((• • • (&pGPl p, exp{G\Dep{Pl))) & • • • ^Pe(pm\pm-1) P) > exp(G\Dep{Pm)))

and no loss of //-parallelism occurs. In case (b), let Pm be the superset (Le.,

we, partially, order Pt by inclusión). Let also P = U¿G[I m-il ^ a n d ^ =

U¿G[i m-il Dep(Pi). Then the linear expression:

(e x p (G | p u S) &p G (P m \p) P , exp(G| D e í) (p m)))

is correct, and no loss of //-parallelism occurs if no loss occurs for exp{G\p^). The
same reasoning applies to the induced sub-UDGs, which are guaranteed to at some
point be partit ioned in sets which satisfy case (a) above. •

The compilability decisión algorithm recursively checks the conditions in lemmas
4.3 and 4.4 for the subgraphs induced by the partit ions in Cover(P).

Algorithm 4-1 Checking UDG compilability. The algorithm to check if a given UDG
G = (V, E) is a ¡jL-graph is as follows:

f u n c t i o n udg_is_/x-graph(G) : b o o l e a n
b e g i n

Let P = ready{G) and Q = V \ P;
If Q = 0 t h e n r e t u r n true;

Let Cover = Cover(P) = {Px,..., Pn};
For i := 1 to n-1 do
For j := i+1 to n do

If PÍHPJ =P s . t . P^%,P^PÍ,P^PJ r e tu rn false;
If 3u £ Dep(Pi) 3v e Dep(Pj) (u,v) g E r e tu rn false;

od;
od;
Answer := true;
i : = 1;
Repeat

Answer := Answer AND udg_is_//-graph(G|£>ep/p.\) ;
i := i+1;

u n t i l (Answer = false) OR (i > n) ;
r e tu rn Answer;

end.

Theorem 4-1 Correctness of udgJs-ii-graph. The algorithm returns the answer true
iff the given UDG is a ¡i-graph and the answer false iff it is not.

P R O O F . If the algorithm returns true, then conditions in lemmas 4.3 and 4.4 hold
for the UDG and its sub-UDGs. Then from Lemma 4.5, it is a //-graph. If it
returns false, then some condition in lemma 4.3 or 4.4 does not hold, and henee
the UDG is not a //-graph. D

FIGURE 4.1. Example UDGs.

Example J^.í. Consider the UDG shown in Figure 4.1(a). We have V =
{A,B,C,D} and P = {A,B}. Henee, Q = {C,D}, with £{C) = {A}, and
S(D) = {A,B}. Henee Cover(P) = {{A}, {A, B}}. Since £{C) C £{D) and
(C, D) is an edge of the given UDG, the conditions in lemmas 4.3 and 4.4 are
satisfied.

We remove A, B and their edges from the graph. We have now V = {C,D}
and the edge (C,D), with P' = {C}, and Q' = {D}, and £{D) = {C}. Henee,
Cover(P1) = {{C}}. Since Cover(P1) is a singleton set, the conditions in the
lemmas are trivially satisfied. We remove C and its edge from the graph. Now
V" = P" = {D}, and Q" = 0, and the UDG is found to be a //-graph. The
corresponding expression will be given in Example 4.4. •

Example 4-2. Consider now the UDG in Figure 4.1(b), similar to the previous one.
We have V = {A, B, C, D} and P = {A, B}. Henee, Q = {C, D}, with £(C) = {A}
and £{D) = {A,B}. Henee, Cover(P) = {{A},{A,B}}.

Cover(P) satisfies the condition in Lemma 4.3. We have Dep({A}) = {C,D}
and Dep({A,B}) = {D}. Since {A} C {A,B}, and C € Dep{{A}) and D £
Dep({A, B}), but (C, D) is not an edge in the given graph, the condition in Lemma
4.4 is violated. Henee, this UDG cannot be a //-graph. D

Example 4-3- Finally, consider the UDG in Figure 4.1(c). We have V =
{A, B, C, D, E} and P = {A, B, D}. Henee, Q = {C, E}. Also, £{C) = {A, B}, and
£(E) = {B,D}. Henee Cover(P) = {{A,B},{B,D}}. The elements in Cover(P)
do not satisfy the condition in Lemma 4.3. Therefore, this UDG cannot be a
/z-graph. D

4-2. The UDG Algorithm for ¡i-graphs

This algorithm compiles a UDG which is a /x-graph, into a linear expression in such
a way tha t all the parallelism present in the UDG is preserved. To do this, we
will just follow the steps indicated by the proof of Lemma 4.5 and make use of the
function Partition defined within such proof.

Algorithm 4-2 UDG annotation. The expression built by the UDG algorithm from
a transitively closed UDG G = (V, E) which is ¡i-graphs, is given by exp(G) as
follows.

f u n c t i o n expuDo(G): e x p r e s s i o n
b e g i n

Let P = ready{G) and Q = V \ P;
If Q = 0 tr ien r e t u r n (&pgp p) ;
Let Partition = Partition(Cover(P)) = {Partí, • • •, Part„} ;
For i := 1 t o n do

Let Parti = {Pi,---,Pm} s . t . VPfc, P, £ Partí {Pk C Pi -> k < l);
I f P\ C . . . C Pm t h e n

Answeri := (kpePl p, expUDG(G\Dep^Pl))) ;
For j := 2 t o m do

Answeri •= (Answeri &Pe(p,-\P,-_i) P> expUDG(G\Dep<Kpj})) ;
od;

e l s e

Let P = üie{i..m-i}pi a n d D = {Jie{1 m_1}Dep(Pi);
Answeri •= (expUDG(G\pu^) &pG(Pm\p) P, expuDG(G\Dep(Pm)))'<

f i ;
od;

r e t u r n (&¿G[ln] Answeri) ;
end.

Theorem 4-2 Correctness of UDG annotations. The execution of the expressions
obtained by the UDG algorithm is correct w.r.t. their sequential semantics.

P R O O F . We only need to prove tha t the UDG for the obtained expression is a
super-UDG of the original one. The proof of this is very similar to tha t of Lemma
4.5, since the algorithm follows exactly the construction steps in tha t proof. Since
the linearizations at each step are perfect, no additional edges exist in the resulting

UDG. In fact, the original UDG is exactly preserved. •

Example 4-4- Consider a clause h : - p(X), q(Y), r (X) , s(X,Y) whose UDG
corresponds to that of Example 4.1 and Figure 4.1(a), with A = p(X), B = q(Y),
C = r(X), and D = s(X,Y). There are dependencies for C on A, and for D on A, C,
and B. There is no dependency for B on A. Algorithm 4.2 will compile this clause
as follows. We have Cover(P) = {{A},{A,B}}, with Dep{Pi) = Dep({k}) = {C}
and Dep(P2) = Dep({h,B}) = {D}. Partition = {Cover(P)}, and the outer loop
of the algorithm is performed only once for this single element. Since {A} C {A,B},
Answeri is first initialised to e\ = (A, expuDG{G\Dep{P1)))• The inner loop is also
performed only once, for {A,B}, giving Answeri = (el & B, expuDG(G\p,ep(p2)))•
Clearly, expuDG{G\Dep{p1)) = C, and expuDG(G\Dep(P2))

 = D- Therefore, the final
expression is:

h : - (p(X), r(X)) & q(Y), s(X,Y). D

4-3. Extensions to the UDG Algorithm

In real program clauses, usually bodies are transformed to UDGs which are not
transitively closed. Although the definition of a CDG implies that it will be transi-
tively closed (because of the prec relation), if the conditions labeling its edges can
be found to be true, by simplification based on available information, these labels
will become empty sets, and the corresponding edges would then be dropped in the
corresponding UDG. The more accurate the information is, the more this case can
happen. We will consider extending the algorithm to these cases.

Algorithm 4.2 finds the best linearization of the dependency graph in such a way
that no loss of //-parallelism occurs. For this to be possible, we have seen that the
body of a given clause must satisfy certain conditions, which restrict the class of
UDGs which can be handled by that algorithm. In order to extend the algorithm
to deal with all possible UDGs, the following possible graph linearizations have to
be considered (as subexpressions of the final result exp(G)):
VPiP2 G Cover(P), if

1. P ! n P 2 = 0

exp(G\plUDep(Pl)) & exp(G\p2UDep(p2))

2. Pj_ n P2 = Pi

(a) Vgi G DepiPíWq* G Dep(P2)((qi,q2) G E)

exp(G\plUDep(Pl)) & exp(G\p2\Pl), exp(G\Dep(P2})

(b) Vgi G DepiPíWq* G Dep(P2)((qi,q2) <¿ E)

i. at the loss of parallelism between Dep(Pi) and Dep(P2)

exp(G\PlijDep(Pl)) & exp(G\p2\Pl), exp(G\Dep(P2})

ii. at the loss of parallelism between Dep(Pi) and P2 \ P\

exp(G\p2), exp(G\Dev{Pl)) & exp{G\Dep{p2))

(c) 3gi £ Dep(P1)3q2 £ Dep(P2){(qi,q2) £ -E) but 2a does not hold

i. at the loss of parallelism between q2 £ Dep(P2) and q\ £ Dep(Pi)

s.t. (gi ,g2) ^ £

exp(G\plUDep(Pl)) & e x p (G | p 2 \ P l) , e x ^ G ^ , , ^))

ii. at the loss of parallelism between Dep(Pi) and P2 \ P\

exp(G\p2), exp(G\Dep(pl)ljDep(p2))

iii. for Q i 2 = {gi £ Dep{Pi) \ 3q2 £ Dep(P2)(q1,q2) £ £ } and Q u =

£ > e p (P i) \ Q i 2

exp(G\PlljQ12) & e x p (G | p 2 \ P l) , ea;p(G|Q l l) & exp(G|p e p (p 2))

at the loss of parallelism between Q i i and P2 \ P\ and also between

Q12 and g2 £ -Dep(P2) s.t. Vgi £ £>ep(Pi)((gi,g2) £ #)

3. p1nP2 = P\P¿Q),P¿P1,P¿P2

exp(G\plUp2), exp(G\Dep(Pl)UDep(p2))

at the loss of parallelism between q2 £ Dep(P2) and pi £ Pi \ P and also
gi £ Dep(Pi) and p2£ P2\P

Algorithm 4.2 deals with cases 1 and 2a. The natural extensión of the algorithm
to be able to deal with the whole of Case 2 is to make it forcé the assumption tha t
the required condition in Case 2a holds and let it behave as in this case. This leads
the extended algorithm to follow the strategy of cases 2(b)i and 2(c)i. To make the
extensión complete, it also has to deal with Case 3, for which the elements P\ and
P2 involved are considered as a single one and replaced by P\ U P2. Note tha t each
of these extensions implies a loss of parallelism.

The extensión proposed is the simplest one tha t allows the UDG algorithm to
deal with non-/x-graphs. However, there are other possibilities. It is interesting to
reason about the execution cost of the parallel expressions tha t can be obtained. It
then turns out tha t in general it may be more proñtable to perform the extensión
in a different way. This can be seen with a simple experiment. Consider all the
possible parallel expressions listed above for a situation like Case 2. Let us construct
the minimum sets needed to cover all sub-cases in tha t case. These are P\ = {pi},
Pi = {pi,Pi}, Dep(P!) = {qi} (£>ep(Pi) = {911,912} for Case 2c) and Dep(P2) =
{q2}. The conditions in each sub-case of Case 2 then yield the following expressions:

2(b)i (pi,qi) & p2, q2 2(c)i (pi,qn & gi2) & p2, q2

2(b)ii p! & p2, qx & q2 2(c)ii pi & p2, qn & (q12, q2)
2(c)iii (p i ,g i 2) & p2, gn & q2

We would like to evalúate the cost of each of these expressions. We assume tha t
there is an upper bound on the execution cost (i.e. the granularity) of all literals.
Since we are only interested in the relative computational cost of the goals (whatever
metric is used to measure it), we just assign arbitrary units of "size" to each goal,
from 1 to the upper bound. We then compute the cost for the expression for all
possible combinations of costs of the single goals up to the upper bound. Note
tha t the exact valué of the upper bound is not important , but rather expresses

the máximum difference in cost among the goals. Table 4.1 shows, for each paraUel
expression, the percentage of combinations where that expression gives the minimal
cost. The percentage includes situations where more than one expression is best,
and thus the total percentage can add up to more than 100%.

Max.G.

Grain

1
2
3
4
5
6
7
8
9
10

% Best case

2(b)i

0
18
22
23
24
24
24
24
24
24

2(b)ii

100
100
97
95
94
93
92
92
91
91

Max.G.

Grain

1
2
3
4
5
6
7
8
9
10

% Best case

2(c)i

100
78
72
70
68
67
66
65
65
65

•_'..• .ii

100
78
71
67
65
63
62
61
60
60

2(c)iii

100
78
70
66
64
62
61
60
59
59

TABLE 4.1. Performance test for possible paraUel expressions.

From the table, our previous choice of strategy, 2(c)i, appears as the best par-
allelization strategy in Case 2c. However, in Case 2b, the second option, 2(b)ii,
instead of the one we chose previously, 2(b)i, behaves best. This is due to the
fact that this strategy performs a better load balancing of paraUel tasks with goals
which are already balanced (i.e. have almost the same granularity, as with máxi­
mum grain of 1 or 2) or for which the differences in grain size are not high. When
a bigger difference is allowed (increasing the máximum permitted goal cost) the
average efnciency of 2(b)ii lowers a bit, while that of 2(b)i progressively behaves
better. Therefore, the best parallelization strategies in order to extend the UDG
algorithm seem to be those of cases 2(b)ii and 2(c)i.

It is worth noting that this result points out the importance of having granularity
information on the literals being annotated, so that the annotators could take
granularity into consideration in the load balancing algorithms. Unfortunately,
having good measures for the granularity of literals is a difücult task.4 Dealing fully
with annotation in the presence of granularity information is beyond the scope of
this paper: in the absence of information on granularity, the parallelization strategy
of 2(b)ii and 2(c)i should be pursued.

4-4- The UDG Algorithm for non-fi-graphs

We will now propose an algorithm along the lines discussed above. Note however
that, even if we assume the loss of parallelism which occurs when considering sets of
Cover(P) pairwise, there can be additional losses when coupling expressions for any
two sets together. A radical solution to this is to consider literals pairwise, instead
of in sets. Dependencies are considered in a literal-to-literal fashion, incrementally

4Although quite interesting progress has been made recently — see [25, 26, 84] and their
references.

creating the expression from the one already generated by introducing a new literal
each time (an algorithm in this style is presented in [14]). We take a similar solution,
but applied to the sets of Cover(P). We first order Cover(P) so as to consider each
set after its subsets have been considered, in order to reduce the loss of parallelism.
Le. if Cover(P) D {Pi,P2,Pz} s.t. P\ C P<¿ C P3, we consider an expression for P\
and J2 and apply the corresponding strategy; afterwards, we consider an expression
by adding P3 to the previous one and building it by applying the strategy based on
the relations among P¿ and P3, thus ignoring those among P\ and P3. To guarantee
tha t we will only find sets which are either disjoint or subsets of one another, we will
modify Cover(P) in order to first deal with Case 3. The modification consists in
recursively selecting two sets PÍ,PJ in Cover(P) which are not disjoint ñor subsets
of one another, and substituting them by their unión, until no more such sets exists:

(Modify(C \ {Pi} Pj} U {Pi U Pj})
Modify(C) = < if 3Piy Pj £ C (P¿ n Pj = P -> P ¿ 0 A P ¿ P¿ A P ¿ Pj)

y C otherwise

Note tha t the resulting C might depend on the order in which P¿ and Pj are
selected. For example, consider C = {Pi , P 2 , P3} with P± = {^1,^2}, Pi = {pi,P3},
P3 = {p2, P3, Pi}• On the one hand, by selecting first P¿ and J3 we obtain C" =
{Pi , P2 U P 3 } which cannot be further modified. On the other hand, by selecting
first P\ and P2 we obtain C = {Pi U P2 ,Ps} which must be further modified,
resulting in {Pi U P2 U P3}. This suggests, in view of the discussion of the previous
section, tha t it is bet ter to select the biggest P¿, Pj satisfying the condition in order
to apply the modification. In our implementation, the elements of Cover(P) are
ordered by length, so tha t , in the previous example, the second alternative will be
taken. Abstraction made of this issue, the algorithm is as follows.

Algorithm 4-3 Extended UDG annotation. The expression built by the extended
UDG algorithm, from a UDG G = (V, E) is given by exp(G) as follows.

f u n c t i o n expuDo(G): e x p r e s s i o n
b e g i n

Let P = ready{G) and Q = V \ P;
If Q = 0 t h e n r e t u r n (&pgp p) ;
Let Partition = Partition(Modify(Cover(P))) = {Partí, • • • ,Partn};
For i := 1 t o n do

Let Parti = {P1,---,Pm}, m<n, ^Pk,Pi&Parti (Pk C P¡ -»• k < l);
I f Pi C ... C Pm t h e n

Answeri := (tp€Pl p) ;
Qs := £>ep(Pi);
For each j := 2 t o m do

I f Pj and Pj-i a r e i n Case 2a o r 2c t h e n
Answeri •= ((Answeri, expUDG{G\^s)) kp^p^p.^ p) ;
Qs := Dep(Pj);

e l s e

Answeri •= (Answeri ^ (P A - P J - I) P) '
Qs := QsUDep(Pj);

f i ;
od;

Answeri := (Answeri, expuDG(G\ns)) ;
e l se

Let P = \Jie{1..m_1}Pi and D = {jie{lm_1}Dep{Pi);

Answeri •= (expUDG(G\pu^) &pG(Pm\p) P, expUDG(G\Dep<Kpm})) ;
f i ;

od;

re turn (kparuePartition Answeri >;
end.

Theorem 4-3 Correctness of extended UDG annotations. The execution of the ex­
pressions obtained by the extended UDG algorithm is correct w.r.t. their sequen-
tial semantics.

P R O O F . We only need to prove tha t the UDG for the obtained expression is a
super-UDG of the original one. We first prove tha t it holds for the If statement
for Q = 0, then tha t it holds for the expressions in the If statement of the inner
For loop, then tha t it holds for those in the If statement of the outer loop, and
finally tha t it holds for tha t in the r e t u r n statement.

When Q = 0 no edges exist in the original UDG; henee, the expression (&pGp p)
has the same UDG as the original one. In the inner loop, note tha t Qs always
contains elements of Dep(Pk) for some Pfc's s.t. Pu C Pj for the current j . Answeri
always contains an expression for such P^'s and possibly some of the corresponding
-Dep(Pfc)'s. In the "then" part of the If statement Pj \ Pj-i is allowed in parallel
with the goal formed by the sequential execution of Answeri and an expression
for Qs. No edges will exist in the corresponding UDG between Pj \ Pj-i and the
elements of Answeri and Qs, which is to say of P^'s and Dep(Pk)'s s.t. Pu C Pj. By
construction of Partition and the P>ep(Pfc)'s, no edges exist between such elements
in the original UDG. For the same reason, the resulting UDG in the "else" part
does not lose any edges in the original one, either. In the outer loop, in the "then"
part , an expression for Qs sequentially follows Answeri. This can only have the
effect of adding edges which were not in the original UDG from elements of some
P¿'s and Dep(Pj)'s to some other Dep(Pi)'s s.t. P¿ C P¿. In the "else" part , the
only parallel expression is between P U D and Pm \ P. Since Pm D P , and no
edges originally exist between Dep(Pi) € D and Pm \ P , this does not viólate any
of the original edges, either. Finally, in the returned expression elements of each
Answeri are allowed in parallel. Since the set Partition is built in such a way tha t
each of the elements of Parti is disjoint with each of the elements of Partj, where
{Parti,Partj} C Partition, no edges exist in the original UDG between elements
of each of the Answeri. Thus, the UDG of the resulting expression is a super-UDG
of the original one. •

5. Condi t iona l Paral le l i sm: C o m p i l i n g C D G s

Let us now turn our at tention to the general case of CDGs. Since we now have
conditions, the most ambitious strategy would be to try to exploit all the available
/«-parallelism in each of the situations determined by the combination of the con­
ditions. Basically, the idea is to convert the given CDG into a set of UDGs, each
of which is a dependeney graph corresponding to one combination of t ru th valúes
on the conditions labeling the edges of the CDG. It is easy to prove tha t if there

is at least one feasible UDG which is not a /x-graph, then the given CDG is not a
//-graph either. Also, if the given CDG is a //-graph, then each feasible UDG must
also be a /x-graph.

c(X,Y)

iX / \ iY

/ iXY \

(a) CDG (Node 1)

c (X , Y)

v V
Node 2

c (X , Y)

a (X) b (Y)

Node 5
c (X , Y)

Node 8

a (X

@

© ©
(b)

c (X , Y)

/ V /Y
Node 3

c (X , Y)

\
\

b(Y)

Node 6
c (X , Y)

/

Node 9

©
©

© G
UDG-

©

-tree
c (X , Y)

/Y
Node 4

c (X , Y)

/
/

a (X) b (Y)

Node 7
c (X , Y)

A
Node 10

FIGURE 5.1. CDG and the UDG-tree for a(X) ,b(Y) ,c(X,Y).

Example 5.1. Consider a clause whose body is a(X) ,b(Y) ,c(X,Y). The CDG for
this clause is given in Figure 5.1 (a). Figure 5.1(b) shows the steps needed to derive
the set of feasible UDGs (leaves of the tree) from the original CDG (root of the
tree). The graphs corresponding to nodes from 2 to 10 are given in the same figure.

The combinations of the truth valúes of edges departing from the node a(X)
yield three possibilities: {iX, —>iX A iXY, -dX A -iiXY} (note that iX implies iXY).
Nodes 2, 3, and 4 are obtained by assuming one of the possibilities, respectively.
Nodes 5 and 6, 7 and 8, and 9 and 10, are then obtained by applying the same
process to the conditions labeling the edges departing from node b(Y) in graphs 2,
3, and 4, respectively.

Although all the UDGs (the graphs corresponding to nodes from 5 to 10) are
//-graphs, we cannot ensure that the initial CDG is a //-graph. D

Since the algorithm informally described above is only complete, it has a limited
interest. We will skip a formal definition of it and we will start with an annotation
algorithm which deals with non-^-graphs directly. Extensions to this algorithm are
also discussed.

5.1. The CDG Algorithm

The CDG algorithm produces the linear expression of a given CDG G = (V,E).
Following the ideas mentioned before, it considers all possible states of computation
which can occur w.r.t. the conditions in G, and annotates the body literals into the
best parallel expressions achievable under such conditions. The algorithm starts
with the same set P of independent literals as in UDGs. The main difference
resides in that literals depending unconditionally on literals in P are not coupled to
them (i.e. the cióse relation upon each P¿ and corresponding Dep(Pi) in the UDG
algorithm is not followed here). This is because the CDG algorithm focuses on the
conditional dependencies present in the graph, rather than on edges labeled false
(or unlabeled).

Consider the CDG G = (V,E), with P = ready(G), and Q = V \ P. We
denote by PConds(G,P,Q) the function which computes the sets of conditions
(other than false) in labels of edges between literals in P and literals in Q, i.e.,
PConds(G, P, Q) = {l £ Cond \ (p,x,l) £ E Ap £ P Ax £ Q Al ^ false}. Also,
we denote by QConds(G, Q) the function which computes the sets of conditions
in labels of edges among literals in Q, QConds(G,Q) = {l £ Cond \ (x,y,l) £
E A {x,y} C Q A l ^ false}. The algorithm proceeds by incrementally building
up the parallel expression exp(G) as follows; let P = {pi,...,pn}, PConds =
PConds(G,P,Q), QConds = QCons(G,Q):

• if Q = 0 then exp(G) = (pi & . . . & pn)

• if Q ^ 0, PConds = QConds = 0 then exp(G) = expuDG(G)

• if Q ^ 0, PConds = 0, QConds ¿ 0
then exp(G) = (pi & ... k pn, exp(G\Q))

• if Q ^ 0, PConds ^ 0 then exp(G) is recursively built up from the boolean
combinations of the elements of PConds as described below.

Let BoolComb(Conds) be the function which returns the set of simplified
boolean combinations of the conditions in Conds which are different from false. Let
Bool = BoolComb(PConds). For each boolean combination b £ Bool the graph G
is updated as if the conditions in b hold by means of the function update(G, P, b).
Note that this is similar to the update performed in Example 5.1, but considering
the set of edges with source in P. However, specialized versions of update for the
notion of independence under consideration can be defined. In [58] an instance
of this function for the particular case of strict independence in the Herbrand do-
main is presented. The parallel expressions resulting from recursively applying the
CDG algorithm after this updating are annotated as if-then-elses and combined in
a simplified form.

Example 5.2. Consider a clause p(W,X,Y,Z) : - W i s X+l,a(W) ,b(X,Y) ,c(Y,Z).
Given the information inferred from the built-in, its CDG corresponds to that of
Node 2 of Figure 5.1 (modulo the arities of the predicates). The algorithm will
consider all possible alternatives (nodes 5 and 6) and yield the following clause:

p(W,X,Y,Z) : - W i s X+l,
(ground(Y) -> a(W) & b(X,Y) & c(Y,Z)

; a(W) & (b(X,Y), c(Y,Z))) .

whereas the UDG algorithm will yield:

p(W,X,Y,Z) : - W i s X+l, a(W) & (b (X ,Y) , c (Y , Z)) .

which is the worst case subexpression of the expression above. •

The simplified form of the resulting expression is formally defined by a
function simplify. Let Bool = {b\,... ,bn} be the result of the function
BoolComb(PConds) and { e i , . . . , e„} be their corresponding expressions, we define
simplify(bi —>• e±;...; bn —>• e„) as follows:

• If a parti t ion of Bool = {b^,..., 6¿M } U {b¡i,..., bjN}, can be done such tha t
for some cond, Vfc £ [1, M] (bik = cond A s¿fe) and Vfc € [1, N] (bjk = -^condA
Sjk), then simplify(bi —>• e±;...; bn —> e„) = (goal(cond) —> DI; D2) where
DI = simplify{sil ->• eil;...;sÍM ->• e¿M), and L>2 = simplify(sjl ->•
e j l i • • • i S Í N ~~̂ eÍJV J

• If such parti t ion cannot be done, conditions are all atomic, and therefore
simplify(bi ->• ex; . . . ; & „ -) • e„) = (goal(bi) ->• e i ; . . . ;goal(bn) ->• e„)

where goal(cond) maps condition cond into a suitable &-Prolog goal, after possibly
simplifying it again with the same improve function as in the simplification phase
of the graph. This simplification must be done only based on the information valid
for the leftmost literal of e i , . . . , e„. Note tha t this literal is the same for all the
e¿'s, since they are obtained from the same graph in the following algorithm.

Algorithm 5.1 CDG annotation. The expression built by the CDG algorithm from
a CDG G is given by exp(G) as follows.

f u n c t i o n expcDa(G): e x p r e s s i o n
b e g i n

Let P = ready{G) and Q = V \ P;
If Q = 0 t h e n r e t u r n (&pgp p) ;
Let PConds = PConds(G,P,Q) and QConds = QConds(G,Q);
If PConds = QConds = 0 t h e n r e t u r n expuDG(G);
If PConds = 0 t h e n r e t u r n (p\ & . . . & pn, CXPCDG{G\Q)) ;
Let Bool = BoolComb(PConds) = {bi,..., bn} ;
For i := 1 t o n do

e¿ = expcDG(update(G,P,bi))
od;
r e t u r n simplify{b\ —>• e±;...; bn —>• e „) ;

end.

Theorem 5.1 Correctness of CDG annotations. The execution of the expressions
obtained by the CDG algorithm is correct w.r.t. their sequential semantics.

P R O O F . We prove by induction tha t the CDG for the obtained expression is
a super -CDG of the original one. First we reason for the base case. If Q = 0
the original CDG has no edges, and the same happens for tha t of the expression
returned: (p\ & . . . & pn). If PConds = QConds = 0 then the original CDG
has no conditional edges, and the graph is then a UDG. Correctness is guaranteed
because the expression returned is expuDG(G) which is correct by Theorem 4.2.
Now we reason for the induction step. The induction hypothesis is tha t the recursive

calis already return a correct expression (w.r.t. the graph with which the calis are
made). If PConds = 0 the expression returned is (p\ & . . . & pn, expcDG(G\c}))•
The subexpression for P = {pi,... ,pn} has an associated CDG which is a //-graph,
since there are no edges between elements of P in the original CDG. The sequential
conjunction respects the original edges from elements of P to elements of Q, and
possibly adds more. Since the CDG G\Q is precisely the original one without the
edges from elements of P to elements of Q, and the recursive cali is correct by
hypothesis, the CDG for this expression is a super-CDG of the original one. In the
last case, consider expressions e¿ and function simplify. The CDGs with which
the recursive calis in the e¿'s are made are sub-CDGs of the original one, in such
a way that each one has been simplified w.r.t. some condition &¿. The results of
the recursive calis are expressions whose CDGs are super-CDGs of each of these
(by hypothesis). Since the effect of the function simplify is to add &¿ to the labels
in all the edges of each of these CDGs, their labels can only be larger than those
in the original subgraphs. Henee, the CDG of the resulting expression is also a
super-CDG of the original one. •

5.2. Variants to the CDG Algorithm

The CDG algorithm seeks to obtain the best possible parallel expressions which can
be generated on each of the different situations which may oceur from the boolean
combinations of conditions it considers. In doing this, it does not particularly focus
on unconditional dependencies (as the UDG algorithm), rather it focuses instead
on conditions which can allow independence of literals. Thus, in the third case
of Algorithm 5.1 {PConds = 0), an unconditional parallel expression is built for
elements in P followed sequentially by another expression recursively computed for
the rest Q of the literals. No consideration is given in this case to the unconditional
dependencies which could oceur from literals in Q on literals in P. Algorithm 4.2 for
UDGs, on the other hand, does this, and groups literals depending unconditionally
on those of P (i.e. Dep(Pi) for P¿ £ Cover(Pj) together and with those on which
they depend (i.e. each P¿), building an expression for the different groups of literals.
A variant of the CDG algorithm is possible if the case for PConds = 0 is omitted.
Instead, when this case is detected, the sets P and Q should be computed again,
as if the vértices in P and the edges with origin in them did not exist (but without
deleting them). Unconditional dependencies will therefore persist, and will be taken
care of by the UDG algorithm in a recursive cali in which PConds = QConds = 0
is detected. This variant will allow a one-to-one correspondence between both
algorithms, so that the expressions built by Algorithm 4.2 will always be the worst
case subexpression of those built by Algorithm 5.1. This happens in Example 5.2,
but it is not so in general. E.g.:

Example 5.3. Consider the clause h : - p(X) ,q(Y) ,r(X) ,s(X,Y). Algorithm
5.1 will work as follows. Since X has its first oceurrence in p(X) and Y
in q(Y), p(X) and q(Y) are independent, and the dependencies of r(X) and
s(X,Y) on p(X) and of s(X,Y) on q(Y) are unconditional. Thus, there is only
one conditional dependeney: for s(X,Y) on r(X), labeled mcfep(X, X). There­
fore, P = |p(X),q(Y)} and PConds = 0. The following expression is built:
(p(X) & q(Y), expcDc{G\ r r (x) s(X Y)})' anc^ the recursive cali builds a CGE

for the two goals involved. The resulting expression is:

h : -p(X) & q(Y), ground(X) => r(X) & s(X,Y).

which is very different from the one in Example 4.4 obtained by Algorithm 4.2:

h : - (p(X), r(X)) & q(Y), s(X,Y).

If Algorithm 5.1 is extended as mentioned, P and Q will be computed again
when PConds = 0 is foimd, giving a new P = | r (X)} and Q = {s(X,Y)}. The
boolean combinations of indep{\, X) will be considered, but since -lindepft, X) is
known to hold at the neck of the clause, this one will be the only combination. The
graph will be updated accordingly, giving a UDG, and thus Algorithm 4.2 will be
called, resulting in the above unconditional expression. D

In less contrived cases, the resulting expressions of the extended CDG algorithm
will give nested if-then-elses in which the final "else" case will always be an uncon­
ditional expression built by the UDG algorithm. Note however that the example
shows why the conditions in the /x-checking algorithm for CDGs are not sufficient.
The algorithm will return true for the clause in the example. However, the best lin-
earization is that of the unconditional expression above, and in this expression there
is no way to incorpórate the check ground(X) between r(X) and s(X,Y). Thus, if
it were the case that p(X) made X ground, the available parallelism between these
two goals would have been lost.

6. Compilation of CDGs made Practical

Algorithm 5.1 for compiling CDGs has the disadvantage of having exponential
complexity. This suggests the need of more practical approaches that can either
be used by themselves or serve as a "fall back" when the algorithm is faced with
large inputs. Several more practical approaches are discussed in this section. First,
an alternative algorithm (MEL) not necessarily based on graphs is presented. This
algorithm exploits a very simple heuristic: partition the clause body at points in
which parallel execution is not allowed. The aim is to find the longest parallel
expression possible among those which are fíat, i.e. such that nested subexpressions
are not allowed. The resulting algorithm is quite simple, has polynomial complexity
(quadratic, in fact), results in very simple parallel expressions, and, as we will show
in Section 8, is quite effective. Secondly, and as further alternatives, we discuss two
possible variants of algorithms for CDGs. These two methods are aimed at reducing
the complexity of Algorithm 5.1 by seeking unconditional parallelism. Thus, they
can be seen as ways to combine the CDG and UDG algorithms in order to obtain an
algorithm for CDGs which has some of the good properties of the UDG algorithm
(and thus they are called UCDGs algorithms). Both methods are parameterized by
several functions whose definition depends on the kind of compile-time information
available. In this sense, the algorithms can be considered more as skeletons of
possible algorithms.

6.1. Non Graph-Based Compilation: the MEL Algorithm

The MEL (Máximum Expression Length) algorithm is based on a heuristic which
tries to find out points in the body of a clause where it can be split into different

expressions. One example of such a point, for the case of strict independence, is
where a new variable appears. Consider a literal which has the first occurrence of
a variable in a clause, and this variable is used as an argument of another literal to
the right of the first one. The condition in strict independence which must hold for
two literals which share variables establishes that these variables must be ground;
obviously this is not the case for such two literals, and thus this is a point where it
is not appropriate to annotate a parallel expression.

The heuristic can however be separated from the notions of independence used in
parallelizing the programs. The heuristic can be read as "partition the body where
a condition between two literals is first found to be false". In order to accommo-
date the MEL definition to this approach, it is necessary to define a framework
for capturing when conditions can be turned to false for a particular concept of
independence. This is done by the functions i-cond (and label) and improve of
sections 3 and 3.4.5

The algorithm then proceeds in this manner from right to left, i.e. from the last
literal in the body to the neck of the clause. The clause body is then broken into
two at the points where the above condition is found, and a parallel expression (a
CGE) built for the right part of the sequence split. The splitting is done right after
the leftmost goal involved in the condition. The motivation to do this is to find the
longest parallel expressions possible. An alternative heuristic will proceed forwards
and split right before the rightmost goal involved. The reasoning behind proceeding
backwards is based on the observation that goals are generally more instantiated,
and thus more likely to be independent, towards the end of the clause. Since as the
algorithm progresses it makes choices (by creating expressions) that prevent later
opportunities for parallelization, it seems more profitable to start from the end of
the clause.

Let a CDG cdg(B) be built for each clause C = h\- B with B = (gi,... ,gn).
Define 1 = {I(<?¿, gj) \i < j}, where I(<?¿, gj) are the sets of conditions such that g¡
and gj are independent, which are already simplified w.r.t. the available information
valid before the execution of g¿, denoted /C(<7¿).

Example 6.1. Consider the clause h(X) : - p(X,Y) ,q(X,Z) ,r(X) ,s(Y,Z). With
a simple local analysis, we have the following (note that freejnot-aliasedft) =>
-imdep(X, X)):

/C(p(X,Y)) = {free-not-aliased(Y), free-not-aliased(Z)}
I(p(X,Y),q(X,Z)) = {indep(l,l),indep(Y,Z)}
I(p(X,Y),r(X)) = |mcfep(X,X)}
I(p(X,Y),s(Y,Z)) = {indep(Y,Y),indep(X,Z)} = {false}
/C(q(X,Z)) = {freejnot-aliased(Z)}
I(q(X,Z),r(X)) = {indep(X,t)}
I(q(X,Z),s(Y,Z)) = {indep(Z,Z),indep(X,Y)} = {false}
/C(r(X))=0
I(r(X),s(Y,Z)) = {indep(X,Y),indep(X,Z)}

So C will be compiled, under strict independence, into the following parallel

6Although in the example we will use a notation which looks like predícate logic, the clause
variables are in fact constants in the theory underlying improve. Thus, the framework of Section
3.4, based on propositional logic, is still valid for our purpose in this section.

clause:

h(X) : - g r o u n d (X) =>• p(X,Y) & q (X , Z) ,
i n d e p (X , Y) , indep(X,Z) =>• r (X) & s (Y , Z) .

Note tha t the body is split at q(X,Z) (because of Z) and not at p(X,Y) (because
of Y), the largest expression being achieved in this way. In fact, if the clause were
split at p(X,Y) , no parallel expressions would be possible. Note also tha t the first
CGE does not have the condition indep(Y,Z) since this condition is automatically
satisfied by virtue of the fact tha t f r ee_no t_a l i a sed (Z) e /C(p(X,Y)). D

Example 6.2. Consider the same clause above. We could apply the alternative
heuristic of proceeding forwards, which will cause the splitting at s (Y,Z) because
of Z(p(X,Y), s (Y,Z)) = {false}. The resulting expression will be:

h(X) : - g r o u n d (X) =>• p(X,Y) & q(X,Z) & r (X) , s (Y , Z) .

Note however tha t , unless X is ground upon clause entry, this expression will result
in no parallelism. •

The algorithm starts with a sequence B of literals (initially the body of the
clause under consideration) and computes its corresponding parallel expression
exp(cdg(B)).

Algorithm 6.1 MEL annotation. The compüation of a CDG G = (V,E) to a paral­
lel expression is given by exp(G) as follows. Let the elements {gi,... ,gn} of V
be ordered by relation prec.

f u n c t i o n expMEL(G): e x p r e s s i o n
b e g i n

compute p a s t h e l a r g e s t j £ [í,n] s . t . 3i £ [j + í,n] I{gj,gi) = false;
If t h e r e i s no such j t h e n p := 0;
Let B l = {gi,...,gp} and B2= {gp+i,... ,gn};
IConds := \JP<i<n l(gi, gj);

¿ < j < i »

D2 := (<7oa/(lConds) =^ gp+i & . . . & gn) ;
I f Bl = 0 t h e n r e t u r n D2;
r e t u r n (expMEL(G\Bi), D2) ;

end.

Note tha t the definition of the algorithm uses function goal introduced in Section
5.1, and tha t in applying this function there is a possibility of further simplifying
the condition w.r.t. the available information (in this case, tha t of 1C(gp+i)).

Theorem 6.1 Correctness of MEL annotations. The execution of the expressions
obtained by the MEL algorithm is correct w.r.t. their sequential semantics.

P R O O F . We show tha t the CDG for the obtained expression is a super -CDG of
the original one by induction. First, if no unconditional edge exists, p = 0 and
Bl = 0. In this case, IConds is the unión of all the labels in the original CDG,
and D2 has this as condition. Therefore, the labels in the resulting CDG for D2 are
IConds in all of the edges; henee they are larger than the original ones. Since in this
case the resulting expression is precisely D2, the hypothesis holds. Second, for the

induction step, assume recursion satisfies the hypothesis for a number of calis. In a
new cali, D2 also satisfies it, with a similar reasoning than in the base case. Clearly,
the resulting expression in this case, (expMEL(G\BI), D2), also satisfies it, since
the sequentialization here gives unconditional edges. If corresponding edges existed
in the original CDG, the new label false is always larger than the original one. If
they didn't exist, still the final CDG is a super-CDG of the original one. •

6.2. Extensions to CDG: UCDG Algorithms

Any modification of the CDG algorithm will result in some loss of parallelism for
certain input graphs. The question is then how to minimize the loss, or, in other
words, which of all the possible simplified expressions is best. Unfortunately, the
answer to such question depends on many different parameters, like the granu-
larity of the goals to be parallelized, the cost of the tests to be performed, the
success/failure ratio of such tests, etc. For this reason we present two algorithms
which are parameterized by several functions. These functions can de defined in
terms of the compile-time information available on the above mentioned issues,
thus reducing the loss of parallelism. As we will see, the choice between the two
algorithms will also depend on such information.

We first propose an algorithm which tries to reduce the complexity of the ex­
pressions, while keeping the good properties of the UDG algorithm. It checks if
the CDG can be parti t ioned into subsets which can then unconditionally be run in
parallel. Otherwise, a condition is selected and enforced on the graph, in the hope
tha t the parti t ion will now be possible. When a parti t ion is found, subexpressions
are built for each subset, and all of them annotated to run in parallel. Both the
selection of a condition and the annotat ion of the subexpressions are parameterized.
An algorithm in this style will work as follows. Let V = P U Q be a parti t ion of
the nodes of a CDG G = (V,E), as before. The algorithm will compute subsets of
Q which depend on one and only one element of P:

• V p G P Conn(p) = {p} U {x € V \ (p, x, l) € E* A ffi G P (p', x, l') G E*}

• Conn(P) = {Conn(p) \ p £ P}

Then the subsets of Conn(P) are just the connected components of the graph
G\conn(P)- The sets Conn(pi) will act as the sets Dep(Pi) in the UDG algorithm,
but unlike the corresponding P¿'s, they will always be disjoint. Thus, an uncondi­
tional parallel expression can be built for the subexpressions arising from recursively
applying the algorithm to these subsets. Let select(L) denote a function which se-
lects a condition from (a subset of) a set L of them. Let linear(C) denote the
sequential expression corresponding to the nodes of set C (according to the prec
relation of Section 3.1). This algorithm builds the expression exp(G) as follows.

f u n c t i o n expucDo(G) : e x p r e s s i o n
b e g i n

If V = {g} t h e n r e t u r n g;
Let P = ready(G);
I f P = {p} t h e n

Cond := select({l £ Cond \ (gi,gj,l) G E});
I f Cond = false t h e n r e t u r n exp(G);

r e tu rn (Cond -> expuc'DG(update(G, V, Cond)) ; linear(V));
else

Let ConnP = Conn(P) = {C\,..., C„} and ConnP = LiceConnpC;
r e tu rn (exp(G\Cl) & . . . & exp(G\Cn),

 exP(G\v\ConnP) >;
f i ;

end.

Note that the resulting expression returned by the algorithm is parameterized
on a generic function exp which is left open. We can instantiate this function to
expuDG of Algorithm 4.3 (if the corresponding component is a UDG) or any of
the other instances of exp which are defined in the paper, including the variants of
CDG, MEL, and many more that can be defined.

Example 6.3. Consider the clause h(X) : - p(X) ,q(Y) ,r(X) ,s(Y). There is an un-
conditional dependency for s (Y) on q(Y) and a dependency labeled with indep(X, X)
for r(X) on p(X). While CDG will annotate it as:

h(X) : - ground(X) -> p(X) & r(X) & (q(Y), s(Y))

; (p(X), r(X)) & (q(Y), s(Y)) .

and UDG will annotate it as:

h(X) : - (p(X), r(X)) & (q(Y), s(Y)) .
which is the worst case subexpression of the expression above, the UCDG algorithm,
using expuDG, will annotate it as follows, where we use => for brevity:

h(X) : - (ground(X) => p(X) & r(X)) & (q(Y), s(Y)) .

which contains the subexpressions of UDG, one of them additionally annotated
with a condition. D

In this rather simple example, the last expression is equivalent to the expression
produced by CDG. However, this is not always the case. In particular, the UCDG
algorithm behaves better for clauses with big bodies (which sometimes pose serious
problems to CDG — see Section 8). The reason for this is that the UCDG algo­
rithm behaves in a stepwise manner, first allowing unconditional parallelism to be
annotated, and then postponing the consideration of the conditions until no more
unconditional parallelism can be exploited.

In the above algorithm there is an implicit choice in the definition of the select
function, where there is room for different heuristics. For example, this function
could select the label with the lowest associated run-time cost. Such a function
could also be used in Algorithm 5.1 or its variants, in order to reduce the size of
the expressions it builds. Another option is to choose the label whose associated
tests are more likely to succeed at run-time. In summary, the definition of select
would depend on the compile-time information available.

A more radical way of combining the CDG and UDG algorithms is to use the
UDG algorithms (4.2 and 4.3) explicitly. For this purpose all dependencies will be
considered unconditional and the UDG algorithm applied. Then, the labels of the
resulting expression will be considered, the aim being to improve such expressions
by exploiting the conditional parallelism. An algorithm in this style would work as
follows. Let nodes(Exp) denote the set of nodes corresponding to the atoms in the

expression Exp, and unconditional (Vi, V2) be true if all dependencies of the nodes
in V2 on nodes of Vi are unconditional.

function expucDo(G) : expression
begin

r e tu rn Improve (expuDG (G)) ;
end.

function Improve(Exp) : expression
begin

If Exp i s atomic then r e tu rn Exp;
If Exp = Expik, • • • ¡kExpn then

r e tu rn (Improve(Exp\) & ••• & Improve(Expn));
If Exp = Expi, Exp2 and unconditional(nodes(Expi),nodes(Exp2)) then

r e tu rn (Improve(Expi) , Improve(Exp^))
e l se

r e tu rn exp(nodes(Exp));
f i ;

end.

Note that the effect of the last If statement is similar to that of the MEL
algorithm: if unconditional(nodes(Expi),nodes(Exp2)) succeeds, this is probably
a place where Algorithm 6.1 would have broken the original clause body in two
parts. However, this new UCDG algorithm has the advantage of exploiting first
unconditional parallelism.

Example 6.4- Consider the clause in Example 5.3, augmented with a new indepen-
dent literal:

h : - t (z) , p(X), q(Y), r (X) , s(X,Y).

Algorithms 6.1 (MEL) and 5.1 (CDG) will build:

h : - t (z) & p(X) & q(Y), ground(X) => r(X) & s(X,Y)

neglecting the independence between t (z) and the other goals. The UCDG algo­
rithm proposed avoids this by using the UDG algorithm, building:

h : - t (z) & ((p(X), r(X)) & q(Y), s(X,Y)) D

In the above example, if ground(X) succeeds, the first expression will exploit
all available parallelism, while the second one will not. On the other hand, if
the computational cost of t (z) is much greater than that of p(X) and q(Y), the
first expression will unnecessarily forcé the CGE to wait. This suggests that both
granularity information and information regarding the probabihties of success of
the tests, should be taken into account when choosing between the two algorithms.
This issue will not be discussed further here and is left as future work.

7. Experimental Results

We have implemented the parallelization framework in the context of the &-Prolog
system. The result is an automatic parallelizer which is parametric in the type of

independence and the parallelization algorithm supported. The system has been
instantiated to the case of strict independence in the Herbrand domain for our
experimental study. We have selected for evaluation one algorithm in each of the
interesting classes to compare them. Algorithm 4.3 was selected as the most promis-
ing variant of the algorithms which exploit only unconditional parallelism. Algo­
rithm 5.1 is arguably the most interesting variation of the conditional algorithms,
though with an exponential cost. The heuristic underlying Algorithm 6.1 (MEL),
rather than that of UCDG, seems the most interesting variation of the conditional
algorithms with polynomial cost. We have compared the performance of these
three algorithms, both from the point of view of their behavior when annotating
a program, and that of the annotated program when running in and-parallel. A
relatively wide range of programs has been used as benchmarks.6 Not all of them
are discussed here; instead, we have selected a representative collection. Table 7.1
gives a short description of each benchmark, and Table 7.2 gives an overview of the
complexity of each of them, useful for the interpretation of the results.

In Table 7.2, columns are read as follows. Cl is the number of clauses being
actually annotated (dead code, which is detected by the analyzers, is not considered,
as well as facts and clauses with single literals); AvG the average and MG the
máximum number of goals in these clauses. CDGs is the number of graphs processed
by the annotators; and AvGan the average and MGan the máximum number of
goals in the CDGs. The rationale behind the CDGs, AvGan, and MGan columns
in the table lies in the treatment of built-ins and side-effects. The first step in the
compilation is to sequentialize these ones, as explained in Section 3. As a result,
the CDG for the clause is actually partitioned into subgraphs at the points where
side-effects or built-ins occur. Column CDGs shows the number of these subgraphs
(which have more than one node, and thus worth considering) that the annotators
have received as input.

To measure the effectiveness of the annotators we have carried out two kinds of
tests: static and dynamic, and in two different situations. In the first situation, no
global analysis is used, i.e. only local, clause level analysis, is performed ("loe" in the
tables). In the second situation, a quite powerful global analysis is performed, using
the combination of the Sharing+Freeness and ASub abstract interpreters described
in [59, 60, 73, 21] ("abs" in the tables). Note that the information obtained in this
case includes that of the local analysis.

7.1. Annotation Efficiency

Table 7.3 presents the results in terms of the compilation time required for anno­
tation in seconds (SparcStation 10, one processor, SICStus 2.1, native code). It
shows for each benchmark and annotator the average time out of ten executions in
the two different situations mentioned. Note that the time taken in the analysis
phase is not considered.

6Both system and benchmarks are available either by ftp at c l i p . d i a . f i . u p m . e s , or from
http:/ /www.cl ip.dia. i i .upm.es, or by contacting the authors.

http://clip.dia.fi.upm.es
http://www.clip.dia.ii.upm.es

Bench.

aiakl

ann
bid
boyer

browse

deriv
fib
grammar
hanoiapp
mmatrix

occur

palin
progeom

qplan

qsortapp
query
rdtok
read
tak
tictactoe
warplan
zebra

Description
Initialization phase for abstract unitícation in the AKL ana-
lyzer (D. Sahlin and T. Sjóland)
The &-Prolog implementation of the MEL annotator
Computes an opening bid for a bridge hand (J. Conery)
Reduced Boyer/Moore theorem prover (E. Tick)
Pattern recognition of regular expressions (T. Dobry and H.
Touati)
Symbolic differentiation
Fibonacci numbers
Generates/recognizes a small set of English
Solves the Towers of Hanoi problem
Multiplies two matrices
Checks occurrences of sublists within lists of lists (B. Ramku-
mar and L. V. Kale)
Recognizes palindromes (D.H.D. Warren)
Builds a perfect difference set (W. Older)
Supplies control for execution of a datábase query - Chat'80
(D.H.D. Warren)
Quick-sort algorithm (with append)
Small query to a datábase (D.H.D. Warren)
R.A. O'Keefe's public domain Prolog tokenizer
D.H.D. Warren and R.A. O'Keefe's public domain Prolog parser
Computes the Takeuchi function
Plays tic-tac-toe by alpha-beta pruning (A.K. Bansal)
Builds plans for robot control (D.H.D. Warren)
Zebra puzzle (V. Santos-Costa)

TABLE 7.1. Benchmark Description.

7.2. Performance of CGEs and Tests

One way to measure the effectiveness of the annotators is to count the number of
CGEs which actually result in parallelism and to study the overhead introduced in
the program by the tests generated. For this purpose we have measured the total
number of checks which occur in the annotated programs ("T" in the tables), the
number of these which are not checked during the execution of the program ("N"),
and for the rest, the number of them which always succeeded ("S"), which always
fail ("F"), and which sometimes succeed and others fail ("SF"). Also, the times the
checks have succeeded ("TS") or failed ("TF") during execution, and the number
of goals which have been run in parallel as a result ("E"). The results for each
benchmark and each of the situations are shown in tables 7.4, 7.5, 7.6, 7.7, and
7.8. Note that each column shows ground checks on the left and indep on the right
(ground/indep), except for UDG, since it only exploits unconditional parallelism.

Table 7.4 shows programs for which the annotated result is identical in all cases.
In the programs of Table 7.5 MEL ("M") and CDG ("C") yield the same result
(not UDG), but it is different with and without global analysis. The same happens
in Table 7.6, but in this case the result of UDG is the same with and without

Bench.

aiakl
ann
bid
boyer
browse
deriv
fib
gr animar
hanoiapp
mmatrix
occur
palin
progeom
qplan
qsortapp
query
rdtok
read
tak
tictactoe
warplan
zebra

Cl

7
65
18
10
9
5
1
4
1
3
3
6
6

47
2
2

46
37

2
37
26

2

AvG

3.00
3.32
2.78
3.60
2.89
3.20
6.00
2.50
6.00
2.33
3.00
3.17
3.00
4.00
3.50
4.50
3.43
4.14
5.00
4.24
3.69

10.50

MG

5
6
5
6
5
4
6
3
6
3
4
4
5
9
4
6
8
7
7

48
10
19

CDGs

2
26

8
2
5
4
1
4
1
2
2
2
3

31
1
2
0
2
1
5

16
3

AvGan

3.50
2.62
2.50
2.00
2.20
2.00
2.00
2.25
4.00
2.00
2.00
3.00
3.00
2.68
4.00
2.00
0.00
2.00
4.00
2.20
2.56
3.33

MGan

5
6
4
2
3
2
2
3
4
2
2
3
4
5
4
2
0
2
4
3
5
6

TABLE 7.2. Benchmark Profile.

information. In Table 7.8 all algorithms give the same result when global analysis
information is available, but different otherwise. The rest of the programs appear
in Table 7.7.

7.3. Speedup Results

An arguably better way of measuring the effectiveness of the annotators is to mea-
sure the speedup achieved: the ratio of the parallel execution time of the program
(ideally for an unbounded number of processors) to that of the sequential program.
This has the additional advantage of allowing to measure the impact of the over-
head of the checks: even if the number of goals run in parallel is the same for
different annotations ("E" in the previously mentioned tables), the checks actually
performed can differ and cause differences in speedup.

In order to concéntrate on the available parallelism itself, without the limita-
tions imposed by a fixed number of physical processors, a particular scheduling,
bus bandwidth, etc., we use a novel evaluation environment, called IDRA, pro-
posed in [30]. IDRA takes as input a special execution trace file generated from a
sequential (or, also, parallel) execution of the parallel program and the time taken
by the sequential program, and computes the achievable speedup for any number
of processors. The trace files list the events occurred during the execution of a
parallel program, such as a goal being started or finished, and the times at which
the events occurred. Since &-Prolog normally generates all possible parallel tasks

Benchmark
program

aiakl
ann
bid
boyer
browse
deriv
fib
gr animar
hanoiapp
mmatrix
occur
palin
progeom
qplan
qsortapp
query
rdtok
read
tak
tictactoe
warplan
zebra

loe
MEL

0.26
1.55
0.39
0.34
0.53
0.20
0.13
0.17
0.18
0.21
0.26
0.22
0.20
1.59
0.17
0.26
0.87
0.90
0.17
0.90
0.54
2.08

CDG

0.26
1.55
0.39
0.31
0.46
0.18
0.11
0.15
0.18
0.19
0.25
0.20
0.19
1.67
0.16
0.23
0.79
0.82
0.15
0.81
0.54

300.86

UDG

0.24
1.43
0.36
0.31
0.45
0.18
0.11
0.15
0.16
0.19
0.24
0.20
0.18
1.35
0.16
0.23
0.80
0.82
0.15
0.81
0.51
0.57

abs
MEL

0.37
7.60
0.48
0.68
0.63
0.27
0.15
0.21
0.22
0.22
0.28
0.41
0.25
3.63
0.19
0.29
1.87
2.02
0.23
2.08
2.89
4.96

CDG

0.36
7.60
0.45
0.66
0.56
0.26
0.15
0.20
0.20
0.21
0.27
0.38
0.24
3.43
0.18
0.27
1.82
1.99
0.21
2.03
2.86
4.65

UDG

0.36
7.53
0.46
0.64
0.55
0.25
0.14
0.20
0.20
0.20
0.26
0.39
0.24
3.43
0.18
0.28
1.84
2.01
0.21
2.02
2.77
4.64

TABLE 7.3. EfRciency Results for Annotators.

in a parallel program, regardless of the number of processors in the system, infor-
mation is gathered for all possible goals that would be executed in parallel. Using
this data, IDRA builds a task dependeney graph whose edges are annotated with
the exact execution times. The possible actual execution graphs (which could be
obtained if more processors were available) are constructed from this data and their
total execution times compared to the sequential time, thus making quite accurate
estimations of (ideal — in the sense that parallelization overheads are not taken
into account) speedups. Though ideal, the results have been shown to be very good
approximations of the best possible parallel execution [30], and to match closely
the actual speedups obtained in the &-Prolog system for the number of processors
available for comparison.

The results for a representative subset of the benchmarks used are presented in
figures 7.1, 7.2, and 7.3. For each benchmark and situation of analysis, a diagram
with speedup curves obtained with IDRA is shown. Each curve represents the
speedup achievable for the parallelized versión of the program obtained with one
annotator.

8. Discussion

Annotation times are fairly acceptable for all annotators. MEL and CDG usually
take the same time, with a slight difference favoring CDG for simpler programs.

Benchmark

fib
gr animar
rdtok
tak

E

986
0
0

2372

TABLE 7.4. Expressions with no checks — Identical code in all cases.

Bench.
Prog.

deriv

mmatrix

occur

palin

qsortapp

query

read

tictactoe

all

Info

loe
abs

loe
abs

loe
abs

loe
abs

loe
abs

loe
abs

loe
abs

loe
abs

loe

Ann

M/C
all

M/C
all

M/C
all

M/C
all

M/C
all

M/C
all

M/C
all

M/C
all

udg

ground/indep
T

4/16
0/ 0

2/ 8
0/ 0

2/ 5
0 / 1

0/ 4
0/ 0

0 / 1
0/ 0

1/4
0/ 0

1/ 6
0/ 0

10/ 3
0/ 0

-

N

0/ 0
0/0

0/0
0/0

0/0
0/1

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

-

s
4/ 16
0/0

2/8
0/0

2/5
0/0

0/4
0/0

0/1
0/0

0/4
0/0

1/6
0/0

10/3
0/0

-

F

0/ 0
0/0

0/0
0/0

0/0
0/0
II II

0/0
II II

0/0

1/0
II II

II II

II II

II II

0/0

-

SF

0/ 0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

-

TS

538/ 2152
0/0

182/728
0/0

252/279
0/0

0/36
0/0

0/250
0/0

0/4
0/0

1/6
0/0

29796/5176
0/0

-

TF

0/ 0
0/ 0

0/ 0
0/ 0

0/ 0
0/ 0

0/ 0
0/ 0

0/ 0
0/ 0

2/ 0
0/ 0

0/ 0
0/ 0

0/ 0
0/ 0

-

E

538
538

182
182

252
252

9
9

250
250

1
1

1
1

11124
11124

0

TABLE 7.5. Cases where MEL=CDG — Identical code for all annotators in "abs".

Bench.
Prog.

boyer

browse

Info

loe
abs
all

loe
abs
all

Ann

M/C
M/C
udg

M/C
M/C
udg

ground/indep
T

4/ 2
4/ 0

-
3/ 7
2/ 2

-

N

0/1
0/0
-

0/2
0/0
-

s
3/1
3/0
-

1/4
0/1
-

F

1/0
1/0
-

2/0
2/0
-

SF

0/0
0/0
-

0/1
0/1
-

TS

42/14
42/0

-
60/16300
0/4105

-

TF

38348/ 0
38348/ 0

-
25/ 20
25/ 20

-

E

14
14
0

4105
4105

0

TABLE 7.6. Cases where CDG and MEL produce identical code.

Benchmark: ann Benchmark: hanoiapp

4.8-

f
8 2 4

0.0-

4.8

4.2

3.6

§• 3.0

& 24

1.8

1 1.2
i

0.6

0.0
10 13 16 19 22 25 28 31 34

Processors
cdg-loc —o— mel-loc —•— udg-loc
cdg-abs —•— mel-abs udg-abs

4 7 l'o 13 16 l'9 22 25 28 3Í Ú
Processors

cdg-loc —o— mel-loc —•— udg-loc
cdg-abs —•— mel-abs —H— udg-abs

F I G U R E 7.1 . Effectiveness of Annotators: Dynamic Tests — ann/hanoiapp.

Benchmark: aiakl

^

Processors

cdg-loc o mel-loc
cdg-abs mel-abs udg-abs

udg-loc

1.0-»
Benchmark: boyer

0.8

0.6

0.4

0.2

0.0--
T T T T T T T T io

Processors
cdg-loc —•— mel-loc —•— udg-loc
cdg-abs mel-abs udg-abs

F I G U R E 7.2. Effectiveness of Annotators: Dynamic Tests — Little Parallelism.

Benchniark: tak Benchniark: qsortapp

18.0-

16.0-

14.0-

12.0-

f
1310.0-
&

W 8.0-

6.0-

4.0-

2.0-

0.0--

4 7 l'o l'3 16 l'9 2'2 25 28 3Í 3'4
Processors

cdg-loc mel-loc udg-loc
cdg-abs mel-abs udg-abs

0.0- =
I 7 l'o l'3 l'6 l'9 2'2 25 28 3Í 3'4

cdg-loc
cdg-abs

Processors
?— mel-loc
•— mel-abs

udg-loc
udg-abs

Benchniark: deriv Benchniark: occur

34 13 16 19 22 25 28
Processors

cdg-loc —o— mel-loc —D— udg-loc
cdg-abs —•— mel-abs —H— udg-abs

26.0-

•É3

<U

4.0-

0.0-
7 10 13 16 19 22 25 28 31 34

Processors

cdg-loc —o— mel-loc —D— udg-loc
cdg-abs mel-abs udg-abs

F I G U R E 7.3. Effectiveness of Annotators: Dynamic Tests — Good Parallelism.

Bench.
Program

ann

hanoiapp

qplan

warplan

zebra

Info

loe

abs

loe

abs

loe

abs

loe

abs

loe

abs

Ann

mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg
mel
edg
udg

ground/indep
T

14/ 36
22/ 46
-

6/ 14
12/ 18
-
2/1
5/1
-

0/ 0
0/ 0
-

13/ 57
16/ 84
-
2/1
2/1
-

14/ 11
28/ 15
-

14/ 7
28/ 10
-

0/ 250
1/ 4835

-
0/ 0
0/ 0
-

N
3/19
6/29
-
0/3
2/8
-
0/0
2/1
-
0/0
0/0
-

9/47
12/74
-
2/1
2/1
-
3/3
13/9
-
3/1
13/6
-

0/247
0/4729
-
0/0
0/0
-

s
3/12
5/12
-
0/6
1/5
-
2/1
3/0
-
0/0
0/0
-

3/10
3/10
-
0/0
0/0
-
6/8
8/5
-
6/6
8/3
-
0/2
1/96
-
0/0
0/0
-

F
5/1
8/1
-
3/1
6/1
-
0/0
0/0
-
0/0
0/0
-
1/0
1/0
-
0/0
0/0
-
2/0
3/1
-
2/0
3/1
-
0/1
0/10
-
0/0
0/0
-

SF
3/4
3/4
-
3/4
3/4
-
0/0
0/0
-
0/0
0/0
-
0/0
0/0
-
0/0
0/0
-
3/0
4/0
-
3/0
4/0
-
0/0
0/0
-
0/0
0/0
-

TS
168/183
180/183

-
75/111
81/105
-

510/255
765/0
-
0/0
0/0
-

6/12
6/12
-
0/0
0/0
-

105/47
113/45
-

105/33
113/29
-

0/112
56/3346

-
0/0
0/0
-

TF
207/ 93
297/ 93

-
138/ 93
228/ 93

-
0/ 0
0/ 0
-

0/ 0
0/ 0
-

3/ 0
3/ 0
-

0/ 0
0/ 0
-

50/ 0
58/ 4
-

50/ 0
58/ 4
-

0/ 56
0/ 420
-

0/ 0
0/ 0
-

E

99
99
0
99
99
0

255
255
0

255
255
255
7
7
0
7
7
7
66
66
6
66
66
6
1
1
1
1
1
1

TABLE 7.7. Other Programs.

On the contrary, MEL takes less time for complex programs, with zebra being an
extreme example. Note that complexity here is measured as the number of literals
in clauses: the higher the number of literals, the more linearizations of the clause
graph are possible. This dominates the complexity of CDG, as it tries to consider all
possible alternatives. UDG usually takes less than the other two without informa­
tion (from global analysis), because in this case it can rarely find any opportunities
for parallelization. When information from global analysis is available, UDG takes
the same time as the other two. In several cases (like qplan, read, tictactoe, and
also zebra) the annotation task is faster with global analysis. Since the input graph
in this case is fairly simplified with the information from such analysis, the algo-
rithms have to deal with less edges and shorter labels. This causes annotation with
global analysis to be more efficient than without it. The unusually large annotation
time for zebra is due to the low accuracy of the information provided by the local
analyzer, which is unable to detect the defmite dependencies which exist among all

Bench.
Program

aiakl

bid

progeom

Info

loe

abs

loe

abs

loe

abs

Ann

mel
edg
udg
all
mel
edg
udg
all
mel
edg
udg
all

ground/indep
T

0/10
4/42
-
0/0
7/12
10/19
-
0/0
2/2
2/2
-
0/0

N
0/0
2/38
-
0/0
2/0
5/7
-
0/0
0/0
0/0
-
0/0

s
0/10
2/4
-
0/0
4/12
4/12

-
0/0
1/2
1/2
-
0/0

F
0/0
0/0
-
0/0
1/0
1/0
-
0/0
1/0
1/0
-
0/0

SF
0/0
0/0
-
0/0
0/0
0/0
-
0/0
0/0
0/0
-
0/0

TS
0/10
2/4
-
0/0
17/44
17/44

-
0/0

13/220
13/220
-
0/0

TF
0/0
0/0
-
0/0
1/0
1/0
-
0/0
13/0
13/0
-
0/0

E

2
2
0
2
27
27
0
27
110
110
0
110

TABLE 7.8. Cases where all annotated results nave no checks with "abs".

the six goals being considered for one clause. As a result, all possible combinations
have to be explored. This is avoided when using the information provided by the
Sharing+Freeness domain.

Regarding the parallelized programs resulting from annotation, we identify sev-
eral classes of programs. Two purely sequential programs and two (simple) parallel
programs appear in Table 7.4, the simplest cases. The annotators are successful at
detecting such sequentiality and do not genérate any parallel expression. In the case
of simple parallel programs, where independence of goals can be inferred even with
a local analysis of the clauses (global analysis in this case leads to no advantage),
all the annotators are able to exploit this (unconditional) parallelism.

Programs whose parallelization is more complex, but still relatively easy, appear
in Table 7.5. MEL and CDG (as well as UDG when having good information) are
able to extract the available parallelism to a great extent. Also, all annotations
produced lead to parallelism, i.e. no spurious parallel expressions (not really run in
parallel, since their tests in fact fail at run-time) are generated. This is shown by
the fact that none of the checks ever fail at execution time ("F" in the table). In
fact, for MEL and CDG the annotated code is exactly the same, and thus the same
parallelism is exploited. The worst case is that of UDG, which cannot exploit any
parallelism without global analysis information.7 When information is available, its
annotated code is also identical to that of the other two: all annotators are able
to extract the same amount of parallelism, and with expressions without run-time
checks.

For more complex programs, like those of Table 7.8, the differences in the be-
havior of MEL and CDG are more apparent. Once again, for these programs the
three annotators behave the same way when good global information is available,
and extract the same parallelism as when not having such information, but without
checks. Without information, though, annotators are forced to place some checks
to be executed at run-time. In the case of CDG, it turns out that most of these

7This can actually be observed in all tables, except for the cases of warplan and zebra; the
parallelism exploited in these cases is marginal, and with granularity analysis it would be avoided.

eheeks are not actually executed at run-time because many of the possible paral­
lel expressions annotated by CDG are not used in the execution of the program.
Nonetheless, note that in the case of aiakl, the expression exploited has much fewer
eheeks than the corresponding one annotated by MEL (for the same goals in the
program): 2 ground eheeks and 4 indep eheeks against 10 indep eheeks. This is due
to the graph linearization performed by CDG, which takes all possibilities into ac-
count. If-then-elses built by CDG can be viewed as an "indexing" over the possible
parallel expressions, based on some eheeks. In aiakl, this indexing is able to lead to
the parallel expressions with less effort than that required by MEL, which simply
puts conditions at certain points in the clause. Though this difference is not very
relevant at execution time in the case of aiakl (see Figure 7.2), it can be so for other
programs, and is an interesting feature (though expensive) of the CDG algorithm.

Table 7.6 shows two programs which are harder to parallelize. UDG cannot
extract parallelism, because there is no unconditional parallelism. MEL and CDG
extract the same amount of conditional parallelism, but for both algorithms the
number of eheeks is less when global information is available. This is specially true
for indep eheeks, since independence is not easy to reason about in "loe" (without
global analysis). In fact, though, little parallelism is obtained. In the case of boyer,
significant parallelism can be exploited but only using the concept of non-strict
independence [46, 14]; in browse, although a good number of goals are executed in
parallel, a critical part of the algorithm is still sequential.

Programs in Table 7.7 deserve more discussion. The first thing to be noticed
is that in some cases UDG is not able to extract parallelism even with global
information — this happens for ann, and for warplan and zebra, in which the
parallelism extracted is marginal. On the contrary, for hanoiapp and qplan the
same parallelism as the other two annotators is extracted by UDG. Considering the
high complexity of qplan, global analysis turns out to be quite effeetive. Second
thing is that global analysis shows also effeetive in redueing eheeks. This is precisely
the reason of the speedups achieved with "abs" w.r.t. "loe" in ann (Figure 7.1) and
hanoiapp (Figure 7.1), since the number of parallel goals run ("E" in Table 7.7) is
actually the same.

Regarding MEL and CDG, it has to be noted that in most programs of Table
7.7 the overhead in number of eheeks of CDG is high. Although in some cases (e.g.
qplan) it happens (as it happened in aiakl or bid) that these extra eheeks (and the
corresponding expressions) are discarded at execution time, in other cases they do
yield some overhead also at execution time. This is the case for ann, as can be seen
in Figure 7.1, where speedups for CDG are always lower than for MEL. The same
happens also for warplan.

An interesting case is that of hanoiapp. Its speedup curves (in Figure 7.1)
illustrate a case where, with only local analysis, CDG achieves good speedups while
MEL shows very little speedup. MEL correctly but inemciently parallelizes a cali to
hanoi and a cali to append, while CDG parallelizes a cali to hanoi with a sequence
composed of the other cali to hanoi and a cali to append. As shown in the example
below, MEL needs an indep check, while CDG uses instead a ground check, which
is much less expensive.

Example 8.1. For the clause of the Towers of Hanoi program whose CDGs appear
in examples 3.2 and 3.3, the annotation result of CDG is shown below on the left,
and that of MEL on the right.

shanoi(NO,A,B,C,M) : -
NO > 1,
NI i s NO - 1,
(g r o u n d ([A , B , C]) ->

shanoi (N,B,A,C,S)&
(s h a n o i (N , A , C , B , R) ,

append(R , [mv(A,C)] ,T)

) ,
append(T,S,M)

>
shano i (N,A,C,B ,R) ,
(g r o u n d ([A , C]) ,

i n d e p ([[B , R]]) ->
shanoi (N,B,A,C,S)&
append(R, [mv(A,C)] ,T)
append(T,S,M)

shanoi(NO,A,B,C,M) : -
NO > 1,
N i s NO - 1,
s h a n o i (N , A , C , B , R) ,
(g r o u n d ([A , C]) ,

i n d e p ([[B , R]]) ->
shano i (N,B,A,C,S)&
append(R , [mv(A,C)] ,T)

J

s h a n o i (N , B , A , C , S) ,
append(R , [mv(A,C)] ,T)

) ,
append(T ,S ,M) .

shano i (N ,B ,A ,C ,S) ,
append(R , [mv(A,C)] ,T)
append(T,S,M)

))•

In general, though, the differences in speedups between MEL and CDG are
not very significant. Exceptions are hanoiapp, as discussed, and programs with
very little parallelism, as aiakl (Figure 7.2). In this case, as in hanoiapp, CDG
does bet ter than MEL due to its ability to annotate different possibilities for the
same clause body. In this program only one body with two parallel expressions is
parallelized, and since the speedup achieved is very small, the differences between
the annotations produced by the two algorithms are more relevant. For other
programs with good speedups, as those in Figure 7.3, this does not happen.

9. C o n c l u s i o n s

We have proposed a proved correct a framework for the automatic parallelization
of logic programs by program transformation. The transformation implies replac­
ing conjunctions of literals with parallel expressions which at run-time trigger the
exploitation of restricted, goal-level independent and-parallelism. Our framework
consists of a two-step compilation process using conditional dependency graphs as
an intermediate formalism. In the first step such graphs are constructed using a
given notion of independence and simplified taking into account information gath-
ered by program analysis. In the second step the conditional dependency graphs are
converted into fork-join expressions and the original program rewritten by replacing
the corresponding sequential conjunctions of goals with such expressions.

Several different algorithms for the second step in the process have been defined
and studied. The UDG and CDG algorithms are based on the desirable objective
of not losing a particular notion of "maximal" parallelism (which we have called ¡JL-
parallelism) available in the original program. Algorithms for determining whether

this objective can be achieved at all using fork-join expressions have also been
defined. Two alternatives of UDG for the case in which avoiding loss of parallelism
is not possible have been presented and discussed. Our study suggests that one
of these alternatives is more appropriate than the other one. Also, an alternative
for CDG which makes it equivalent (modulo some conditions) to UDG has been
proposed, as well as a new algorithm, UCDG, which combines the heuristics of UDG
and CDG. A much less costly alternative for exploiting conditional parallelism,
MEL, based on a simple but quite effective heuristic has also been proposed. Finally,
we have also briefly discussed the importance of considering different alternatives
for parallelization, but designing good heuristics (typically based on information
regarding goal granularity) to select among them.

The three main annotation algorithms have also been implemented and studied
experimentally. MEL and CDG have been shown to give very similar results in
practice. Despite this, each one of them has demonstrated advantages and disad-
vantages. The results show CDG to be better when not having information from
global analysis and if the programs are simple. Interestingly, CDG also shows
advantage in more complex programs if good information from global analysis is
available, because in these cases CDG can extract more sophisticated parallelism
than MEL. On the contrary, for complex programs for which the analysis informa­
tion is not accurate enough (or no analysis is available), the exponential nature of
CDG can result in significant overhead, and thus MEL is a reasonable alternative.
It appears that a good strategy to apply in practice may be to use the CDG algo­
rithm in general, but apply MEL in clauses which are complex and/or for which
there is imprecise analysis information, since for them CDG may be too expensive.

As expected, the UDG avoids any slow-downs caused by run-time independence
checks. This makes this algorithm an obvious choice for completely transparent
parallelization. However, our results show that the use of good analyses which make
accurate information available is of crucial importance in this case. Otherwise UDG
is not effective, obtaining small speedups or no speedups at all.

While not the main focus of this paper, our results point at the fact that the
availability of accurate dependency information from global analysis is crucial in
automatic parallelization. Although interesting speedups can be obtained in some
cases using only local analysis, our overall conclusión, based on the improvements
observed, is that global analysis based on abstract interpretation is indeed a power-
ful tool in this application. The effectiveness of this type of global analysis in auto­
matic parallelization with the proposed model is studied in detail in [48, 33, 9, 10].

The general conclusión of our work, specially when seen in conjunction with the
progress made in global analysis, is that, at least using the overall approach studied
and the practical systems implemented, the task of automatic (constraint) logic
program parallelization is feasible and practical. Useful speedups can be obtained
for interesting programs while slow-downs can be avoided for those programs which
the approach cannot parallelize.

However, much work remains to be done. The speedups described have been ob­
tained on the current generation of medium-sized shared-memory multiprocessors,
which are characterized by relatively small communication overhead. However,
larger shared addressing space multiprocessors are starting to appear which sup-
port larger numbers of faster processors, but with higher communication overheads.
Also, faster networks are starting to make exploiting parallelism in distributed plat-
forms (multicomputers) more attractive. This requires accurate control of the sizes

of the tasks to be parallelized: granularity control (see, e.g., [31] and its references).
Taking into account granularity information requires some modifications to the an-
notation algorithms. Granularity information was already pointed out as one of the
sources of heuristic information which can be used in CDG to choose among the
alternatives it generates and reduce the overhead from the conditionals.

Another important avenue for improvement is the exploitation of more advanced
notions of independence, specially a-posteriori ones. One such notion is "non-
strict independence" [46]. Intuitively, this type of independence allows parallelizing
procedures that share variables (Le., pointers) by observing that the uses of such
shared variables do not "interfere." We have recently developed an automatic
parallelizer using non-strict independence [14]. This parallelizer uses the same
framework (and implementation) proposed herein, although it was necessary to
adapt the annotation algorithms. We are also working on applying the framework
to the automatic parallelization of constraint logic programs, using as a starting
point the generalized notions of independence presented in [24, 32]. Some results
are reported in [23].

Larger programs tend to make more use of side-effects and sometimes of obscure
features of the source language or operating system. A parallelizing compiler, and,
especially, its global analysis phase, has to be able to deal correctly and as accurately
as possible with these uses. We have addressed previously this problem [8] (and
many of the solutions proposed are present in the analyzer used in this study), but
this is also an área that requires additional work.

The compilation of programs into a language allowing goal-level, but unrestricted
parallelism is another interesting topic. Restricted parallelism could be exploited
when possible, with unrestricted expressions being annotated otherwise. In [64, 15]
language primitives are proposed for expressing unrestricted parallelism. Moreover,
another potentially important avenue for further improvement may be to detect
parallelism at finer levéis of granularity than the goal level used in our study [65,
37, 72]. An extensión of the proposed parallelization framework in this direction is
reported in [63]. In this context, the notion of /ocaündependence [56, 13, 12] allows
the highest degree of parallelism proposed so far (to our knowledge). The tradeoffs
between the additional parallelism obtained by finer grain parallelizations and the
increased overheads involved need to be studied in detail. Finally, there remains
the general issue of combining with or-parallelism [3, 55], which we have considered
herein beyond our scope.

REFERENCES

1. Hassan Ait-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction. MIT
Press, 1991.

2. K. A. M. Ali and R. Karlsson. Full Prolog and Scheduling Or-parallelism in Muse.
International Journal of Parallel Programming, 1990. Vol. 19, No. 6, pp. 445-475.

3. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor­
mance. In 1990 North American Conference on Logic Programming, pages 757-776.
MIT Press, October 1990.

4. D. Bacon, S. Graliam, and O. Sharp. Compiler Transformations for High-
Performance Computing. Computing Surveys, 26(4):345-420, December 1994.

5. A. Bansal and L. Sterling. Transforming Generate-and-test Logic Programs
to Committed-choice And-parallelism. Int'l. Journal of Parallel Programming,
18(5):401-446, 1989.

6. A. Bansal and L. Sterling. An Abstract Interpretation Scheme for Identifying
Inherent Parallelism in Logic Programs. New Generation Computing, 7(2-3) :273-
324, 1990.

7. P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog—The Language and
Application in Distributed Simulation. In International Conference on Fifth Gen­
eration Computer Systems. Tokyo, November 1988.

8. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan­
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

9. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Global
Analysis in Strict Independence-Based Automatic Program Parallelization. In In­
ternational Symposium on Logic Programming, pages 320-336. MIT Press, Novem­
ber 1994.

10. F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189-238, March
1999.

11. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From Eventual to Atomic
and Locally Atomic CC Programs: A Concurrent Semantics. In Fourth Interna­
tional Conference on Algebraic and Logic Programming, number 850 in LNCS,
pages 114-132. Springer-Verlag, September 1994.

12. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial Order and Con-
textual Net Semantics for Atomic and Locally Atomic CC Programs. Science of
Computer Programming, 30:51-82, January 1998. Special CCP95 Workshop issue.

13. F. Bueno Carrillo. Automatic Optimisation and Parallelisation of Logic Programs
through Program Transformation. PhD thesis, Universidad Politécnica de Madrid
(UPM), October 1994.

14. D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Information. In 1994 International Static
Analysis Symposium, number 864 in LNCS, pages 297-313, Namur, Belgium,
September 1994. Springer-Verlag.

15. D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In Proc. ofthe AGP'96 Joint conference on Declar-
ative Programming, pages 67-78, San Sebastian, Spain, July 1996. U. ofthe Basque
Country. Available from h t tp : / /www.c l ip .d ia . f i .upm.es / .

16. M. Carro, L. Gómez, and M. Hermenegildo. Some Paradigms for Visualizing Par­
allel Execution of Logic Programs. In 1993 International Conference on Logic
Programming, pages 184-201. MIT Press, June 1993.

http://www.clip.dia.fi.upm.es/

17. J.-H. Chang, A. M. Despain, and D. Degroot. And-Parallelism of Logic Programs
Based on Static Data Dependency Analysis. In Compcon Spring '85, pages 218-
225, February 1985.

18. S.-E. Chang and Y. P. Chiang. Restricted AND-Parallelism Execution Model with
Side-Effects. In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the
North American Conference on Logic Programming, pages 350-368. MIT Press,
Cambridge, MA, 1989.

19. J. Chassin and P. Codognet. Parallel Logic Programming Systems. Computing
Surveys, 26(3):295-336, September 1994.

20. K. Clark and S. Gregory. Parlog: Parallel Programming in Logic. Journal of the
ACM, 8:1-49, January 1986.

21. M. Codish, A. Mulkers, M. Bruynooghe, M. García de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining Domains.
ACM Transactions on Programming Languages and Systems, 17(l):28-44, January
1995.

22. J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Pro­
grams. PhD thesis, The University of California At Irvine, 1983. Technical Report
204.

23. M. García de la Banda, F. Bueno, and M. Hermenegildo. Towards Independent
And-Parallelism in CLP. In Programming Languages: Implementation, Logics, and
Programs, number 1140 in LNCS, pages 77-91, Aachen, Germany, September 1996.
Springer-Verlag.

24. M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in
Constraint Logic Programs. In 1993 International Logic Programming Symposium,
pages 130-146. MIT Press, Cambridge, MA, October 1993.

25. S. K. Debray, P. López García, M. Hermenegildo, and N.-W. Lin. Estimating the
Computational Cost of Logic Programs. In Static Analysis Symposium, SAS'94,
number 864 in LNCS, pages 255-265, Namur, Belgium, September 1994. Springer-
Verlag.

26. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826-875, November 1993.

27. D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth
Generation Computer Systems, pages 471-478. Tokyo, November 1984.

28. D. DeGroot. A Technique for Compiling Execution Graph Expressions for Re­
stricted AND-parallelism in Logic Programs. In Int'l Supercomputing Conference,
pages 80-89, Athens, 1987. Springer Verlag.

29. D. Kuck et al. Dependence Graphs and Compiler Optimizations. In 8th Symposium
on Principies of Programming Languages, pages 207-218. ACM, January 1981.

30. M. Fernández, M. Carro, and M. Hermenegildo. IDeal Resource Allocation (IDRA):
A Technique for Computing Accurate Ideal Speedups in Parallel Logic Languages.
Technical report, T.U. of Madrid (UPM), June 1992.

31. P. López García, M. Hermenegildo, and S. K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

32. M. García de la Banda. Independence, Global Analysis, and Parallelism in Dy-
namically Scheduled Constraint Logic Programming. PhD thesis, Universidad
Politécnica de Madrid (UPM), Facultad Informática UPM, 28660-Boadilla del
Monte, Madrid-Spain, September 1994.

33. M. García de la Banda and M. Hermenegildo. A Practical Application of Sharing
and Freeness Inference. In 1992 Workshop on Static Analysis WSA'92, number
81-82 in BIGRE, pages 118-125, Bourdeaux, France, September 1992. IRISA-
Beaulieu.

34. D. Gelernter, A. Nicolau, and D. Padua. Languages and Compüers for Parallel
Computing. MIT Press, Cambridge, Mass., 1990.

35. G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos-Costa. ACE: And/Or-
parallel Copying-based Execution of Logic Programs. In International Conference
on Logic Programming, pages 93-110. MIT Press, June 1994.

36. G. Gupta and V. Santos-Costa. Cuts and Side-Effects in And-Or Parallel Prolog.
Journal of Logic Programming, 27(1):45-71, April 1992.

37. G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: Integrating
Dependent And-, Independent And-, and Or-parallelism. In 1991 International
Logic Programming Symposium, pages 152-166. MIT Press, October 1991.

38. M. Hermenegildo. An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel.
PhD thesis, U. of Texas at Austin, August 1986.

39. M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution
of Logic Programs. In Third International Conference on Logic Programming,
number 225 in Lecture Notes in Computer Science, pages 25-40. Imperial College,
Springer-Verlag, July 1986.

40. M. Hermenegildo. Automatic Parallelization of Irregular and Pointer-Based Com-
putations: Perspectives from Logic and Constraint Programming. In Proceedings
of EUROPAR'97, volume 1300 of LNCS, pages 31-46. Springer-Verlag, August
1997. (invited).

41. M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in the
Implementation of Concurrent and Parallel Logic Programming Systems. In Proc.
of the Twelfth International Conference on Logic Programming, pages 631-645.
MIT Press, June 1995.

42. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

43. M. Hermenegildo and R. I. Nasr. Efficient Management of Backtracking in AND-
parallelism. In Third International Conference on Logic Programming, number 225
in LNCS, pages 40-55. Imperial College, Springer-Verlag, July 1986.

44. M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of Independent
And-Parallelism in Logic Programs. In 1989 North American Conference on Logic
Programming, pages 369-390. MIT Press, October 1989.

45. M. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In 1990
International Conference on Logic Programming, pages 237-252. MIT Press, June
1990.

46. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal
of Logic Programming, 22(l):l-45, 1995.

47. M. Hermenegildo and The CLIP Group. Some Methodological Issues in the De­
sign of CIAO - A Generic, Parallel, Concurrent Constraint System. In Principies
and Practice of Constraint Programming, number 874 in LNCS, pages 123-133.
Springer-Verlag, May 1994.

48. M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Prac-
tical Compilation Tool. Journal of Logic Programming, 13(4):349-367, August
1992.

49. D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted And-
Parallelism. In European Symposium on Programming, pages 284-297, 1988.

50. Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. In ACM
Symposioum on Principies of Programming Languages, pages 111-119. ACM, 1987.

51. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.
In 1991 International Logic Programming Symposium, pages 167-183. MIT Press,
1991.

52. A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In
Krzysztof Apt, editor, Proceedings of the Joint International Conference and Sym­
posium on Logic Programming, pages 478-492, Washington, USA, 1992. The MIT
Press.

53. Robert A. Kowalski. Logic for Problem Solving. Elsevier North-Holland Inc., 1979.

54. Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared
Memory Multiprocessor: A Summary of Results. In Fifth International Conference
and Symposium on Logic Programming, pages 1123-1141. MIT Press, August 1988.

55. E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing,
7(2,3), 1990.

56. U. Montanari, F. Rossi, F. Bueno, M. García de la Banda, and M. Hermenegildo.
Towards a Concurrent Semantics-based Analysis of CC and CLP. In Principies
and Practice of Constraint Programming, number 874 in LNCS, pages 151-161.
Springer-Verlag, May 1994.

57. K. Muthukumar and M. Hermenegildo. Complete and Efficient Methods for Sup-
porting Side Effects in Independent/Restricted And-parallelism. In 1989 Interna­
tional Conference on Logic Programming, pages 80-101. MIT Press, June 1989.

58. K. Muthukumar and M. Hermenegildo. The CDG, UDG, and MEL Methods for
Automatic Compile-time Parallelization of Logic Programs for Independent And-
parallelism. In Int'l. Conference on Logic Programming, pages 221-237. MIT Press,
June 1990.

59. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna­
tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

60. Kalyan Muthukumar. Compile-time Algorithms for Efficient Parallel Implementa-
tion of Logic Programs. PhD thesis, University of Texas at Austin, August 1991.

61. L. Naish. Parallelizing NU-Prolog. In Fifth International Conference and Sym­
posium on Logic Programming, pages 1546-1564. University of Washington, MIT
Press, August 1988.

62. E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance Parallel
Prolog System. In International Parallel Processing Symposium, pages 564-572.
IEEE Computer Society Technical Committee on Parallel Processing, IEEE Com­
puter Society, April 1995.

63. E. Pontelli, G. Gupta, F. Pulvirenti, and A. Ferro. Automatic Compile-time Par­
allelization of Prolog Programs for Dependent And-Parallelism. In Proc. of the
Fourteenth International Conference on Logic Programming, pages 108-122. MIT
Press, July 1997.

64. B. Ramkumar and L. V. Kale. Compiled Execution of the Reduce-OR Process
Model on Multiprocessors. In 1989 North American Conference on Logic Program­
ming, pages 313-331. MIT Press, October 1989.

65. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-parallelism. In Proceedings
of the Srd. ACM SIGPLAN Symposium on Principies and Practice of Parallel
Programming. ACM, April 1990.

66. V. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,
Carnegie Mellon, Pittsburgh, 1989. School of Computer Science.

67. V. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concur­
rent Constraint Programming. In Proceedings of the 18th. Annual ACM Conf. on
Principies of Programming Languages. ACM, 1991.

68. V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Pit-
man, London, (1989).

69. V. Sarkar. Instruction Reordering for Fork-Join Parallelism. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, volume 25, pages 322-336, June 1990.

70. E.Y. Shapiro, editor. Concurrent Prolog: Collected Papers. MIT Press, Cambridge
MA, 1987.

71. E.Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21(3):412-510, September 1989.

72. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming, 29(l-3):245-293, November 1996.

73. H. Sondergaard. An application of abstract interpretation of logic programs: occur
check reduction. In European Symposium on Programming, LNCS 123, pages 327-
338. Springer-Verlag, 1986.

74. S. Taylor, S. Safra, and E. Shapiro. A Parallel Implementation of Fiat Concurrent
Prolog. In E.Y. Shapiro, editor, Concurrent Prolog: Collected Papers, pages 575-
604, Cambridge MA, 1987. MIT Press.

75. E. Tick. The Deevolution of Concurrent Logic Programming Languages. The
Journal of Logic Programming, 23(l-3):89-125, 1995.

76. E. Tick and C. Bannerjee. Performance evaluation of moñaco compiler and runtime
kernel. In 1993 International Conference on Logic Programming, pages 757-773.
MIT Press, June 1993.

77. K. Ueda. Guarded Rom Clauses. PhD thesis, University of Tokyo, March 1986.

78. K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog:
Collected Papers, pages 140-156. MIT Press, Cambridge MA, 1987.

79. K. Ueda. Making Exhaustive Search Programs Deterministic. New Generation
Computing, 5(l):29-44, 1987.

80. D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artifi­
cial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA
94025, 1983.

81. D.H.D. Warren. OR-Parallel Execution Models of Prolog. In Proceedings of TAP-
SOFT '87, Lecture Notes in Computer Science. Springer-Verlag, March 1987.

82. D.H.D. Warren. The Extended Andorra Model with Implicit Control. In Sverker
Jansson, editor, Parallel Logic Programming Workshop, Box 1263, S-163 13
Spanga, SWEDEN, June 1990. SICS.

83. W. Winsborough and A. Waern. Transparent And-Parallelism in the Presence of
Shared Free variables. In Fifth International Conference and Symposium on Logic
Programming, pages 749-764, Seattle,Washington, 1988.

84. X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastry, and R. Sundararajan.
Towards an EfRcient Compile-Time Granularity Analysis Algorithm. In Proc. of
the 1992 International Conference on Fifth Generation Computer Systems, pages
809-816. Institute for New Generation Computer Technology (ICOT), June 1992.

