

Máster en Ingeniería de Sistemas y Servicios
para la Sociedad de la Información

Trabajo Fin de Máster

Título

Autor VºBº

Tutor

Ponente

Tribunal

Presidente

Secretario

Vocal

Fecha de lectura

Calificación

El Secretario:

Universidad Politécnica de Madrid
Escuela Universitaria

de
Ingeniería Técnica de Telecomunicación

TRABAJO FIN DE MÁSTER

Máster en Ingeniería de Sistemas y Servicios

para la Sociedad de la Información

Energy/Power Consumption Model for an Embedded Processor
Board

Rong Ren

Julio de 2012

“世界不会在意你的自尊，人们看的只是你的成就。

在你没有成就以前，切勿过分强调自尊。”

——比尔盖茨

The world won’t care about your self-esteem.

The world will expect you to accomplish something BEFORE you feel good

about yourself.

——Bill Gates

Acknowledgements

I have been in this beautiful city almost two years. This is the first time
I have left home such a long time; this is the first time I need to take care of
everything by myself; this is the first time I have realized the world is so
different. There are countless firsts; however, the most important one is, this
is the first time I need to be responsible of my promise.

From the very beginning after I arrived Madrid, I was infected by the
enthusiasms of Spanish people, no matter in the work or in the life. I am living
here each day to the fullest. I have been enjoying the time here with sunshine,
objective and progress. But everyone has roses and thorns in the life.

Last September, I started my research topic here. I feel that I am a
little fish who is swimming in the boundless ocean. I often felt perplexed to the
thousands paper which have the same key words; I often felt disappointed to
my practice results; I often felt doubtful to my decision of continuing study.
However, now, the time I am writing this thesis, one stage of my four-year is
coming to be finished. Look back to the last two years, my heart is filled with
joys and appreciations.

I would like to thank my family. They brought me to this world, and are
supporting me on everything, in every minute. No matter how I exactly am, they
always give me the confidence. My father is a serious guy. Before, I really
disliked that his “heavy” topics such as what I had learned from the activities I
participated, I should not only have a long-term goal but also several simple
short-term goals, and his experience during his forty-year engineer career. But
as I grew up, I have realized that his “lessons” are his expectations on me. He
has never directly required me to do what he arranged for me, but he gives me
the chance to try, to fight and to decide by myself. His words imperceptibly
impact on me during my growth. I am quite lucky to have a sweet home. My
mother, my grand-parents, I am so appreciate what you have done for me!

I would like to thank my supervisor, Eduardo Juárez Martínez. His
suggestions and advices helped me a lot to overcome the difficulties. I cannot
forget his word-by-word corrections on my paper; I cannot forget the nights he
stayed with me to improve the paper; I cannot forget the time he celebrated
Jianguo’s and my first papers. His sincerity, meticulousness and diligence have
influenced me a lot.

I would like to thank all the professors in the research group: César Sanz
Álvaro, Matías Javier Garrido González, Fernando Pescador del Oso and Pedro
José Lobo Perea. They are friendly and facetious, which always let me feel that
the lab is a big family.

I would like to thank my lab mates: David, Gonzalo, Ernesto, Juanjo,
Enrique, Miguel, Oscar and Arnaud. They are always willing to help me with the
problem in work or in life. Moreover, they are the guide of this country. From
them, I can often find out a charming and different Spain. Although some of
them have left the lab, I hope we can keep in touch forever. I am really hoping
that one day we can go to China for a travel together.

I would like to thank all my friends: 魏建国, 黄姗, 美娟, 柴亮, 王宪, 杨

振, 土豆, 温馨, 钟如意, either in china or here. I like every time stay with them,
no matter face-to-face or through the internet. I am really appreciating that
they can bear my bad temper, my carelessness, and give me help without
hesitation. A good friend is like a cup of wine which become more and more
fragrant over time.

Is this true that a person who has many thank to say is a happy guy? I
think so, because now I do am. Anyway, this is just a small step in my life, but
the sunflower told me that as long as to endeavor forward the sunshine, every
day would become pure and beautiful.

i

Content

CONTENT ... I

LIST OF FIGURES .. V

LIST OF TABLES .. VIII

SUMMARY ... IX

RESUMEN ... X

1 INTRODUCTION ... 1

1.1 MOTIVATION ... 2

1.2 OBJECTIVES .. 5

1.3 OUTLINE ... 6

2 BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS 7

2.1 INTRODUCTION ... 8

2.2 LOW-LEVEL POWER ESTIMATION MODELS ... 8

2.2.1 Circuit/Transistor-Level Estimation Models ... 8

2.2.2 Gate-Level Estimation Models ... 10

2.2.3 RT-Level Estimation Models ... 12

2.2.4 Architectural-Level Estimation Models .. 14

2.3 HIGH-LEVEL POWER ESTIMATION MODELS .. 16

2.3.1 Instruction-Level Estimation Models ... 17

2.3.2 Function-Level Estimation Models ... 19

2.3.3 Component-Level Power Estimation Models ... 21

2.4 DISCUSSION ... 25

2.5 CONCLUSION .. 27

3 METHODOLOGY ... 29

3.1 INTRODUCTION ... 30

3.2 GENERAL IDEA .. 30

3.2.1 Modeling Flow ... 30

3.2.2 Performance Monitor Counters ... 31

3.2.3 Components Classification ... 32

ii

3.2.3.1 Components Classification ... 32

3.2.3.2 Energy-related Events .. 33

3.3 MODELING METHODOLOGY .. 35

3.3.1 Mathematics Knowledge ... 35

3.3.1.1 Spearman Rank Correlation Coefficient ... 35

3.3.1.2 Linear Regression Methods .. 36

3.3.1.3 Principal Components Analysis .. 37

3.3.2 Methodology ... 37

3.3.2.1 PMC-filter ... 38

3.3.2.2 K-fold Cross-validation ... 41

3.4 DISCUSSION ... 42

3.5 CONCLUSION .. 46

4 IMPLEMENTATION ... 49

4.1 INTRODUCTION ... 50

4.2 EXPERIMENTS ENVIRONMENT .. 50

4.2.1 Hardware Platform .. 50

4.2.1.1 Cortex-A8 CPU .. 51

4.2.1.2 Storage Hierarchy ... 51

4.2.2 Platform PMCs ... 53

4.2.2.1 Platform Available PMCs .. 53

4.2.2.2 PMCs Interface Implementation .. 56

4.2.3 Components ... 69

4.3 MODELING .. 69

4.3.1 Benchmarks ... 70

4.3.2 Measurement .. 70

4.4 CONCLUSION .. 70

5 VALIDATION AND EVALUATION ... 73

5.1 INTRODUCTION ... 74

5.2 PROGRESS OF MODEL .. 74

5.2.1 PMC Accuracy .. 75

5.2.2 First Model ... 77

5.2.3 Second Model .. 79

5.2.3.1 Random Selection .. 80

5.2.3.2 L2-Miss-Rate Selection ... 81

iii

5.2.3.3 IPC Selection ... 82

5.2.4 Third Model ... 84

5.2.5 Fourth Model ... 88

5.2.6 Final Model .. 91

5.3 MODEL LIMITATION AND FUTURE WORK ... 93

5.3.1 Model Limitation ... 93

5.3.2 Future Work ... 94

5.4 CONCLUSION .. 95

6 CONCLUSION ... 97

7 REFERENCE ... 101

iv

v

List of Figures

Figure 1-1 Energy Analysis Framework ... 4

Figure 1-2 Simulation-based VS. Traditional Power Profiling Approach6 4

Figure 2-1 A Schemes to Measure the Average Current Drawn 9

Figure 2-2 A Gate-level Example15 .. 11

Figure 2-3 An Architecture Power Estimation Methodology28 .. 15

Figure 2-4 Principle Instruction-level Power Estimation6 .. 17

Figure 2-5 Processor Modeling Methodology49 ... 20

Figure 2-6 Models Based on Datasheet .. 21

Figure 2-7 General Structure of High-level Modeling Methodology 22

Figure 2-8 Simplest System-Level Power Model ... 23

Figure 2-9 Power Estimation in Different Design Level ... 25

Figure 3-1 Modeling Flow .. 30

Figure 3-2 High-Level Overview of the Embedded System Architecture 32

Figure 3-3 General Core Architecture .. 33

Figure 3-4 Shared Variance ... 39

Figure 3-5 Example of the K-fold Cross Validation Method ... 41

Figure 3-6 Comparison of TLB Instruction Miss .. 42

Figure 3-7 Comparison of the Cache Hit Rate ... 44

Figure 3-8 Comparison of the Branch Miss Prediction Rate .. 45

vi

Figure 4-1 BeagleBoard with High-Level Block Diagram ... 50

Figure 4-2 OMAP3530 Block Diagram83 .. 52

Figure 4-3 Recommended CP15 Performance Monitors72 .. 54

Figure 4-4 PAPI Architecture ... 57

Figure 4-5 Enable Kernel Support for PMCs ... 60

Figure 4-6 Enable Debugging Hardware ... 60

Figure 4-7 Procedure of Using PAPI ... 61

Figure 4-8 “Switch-case” Pattern to Execute a Benchmark .. 64

Figure 4-9 Identify all the Object Files of Benchmarks .. 65

Figure 4-10 Add Compile Targets .. 65

Figure 4-11 Indicate Source Code Path .. 66

Figure 4-12 Compiler Options .. 67

Figure 5-1 PMCs Variation of Do_Queen .. 76

Figure 5-2 PMCs Variation of Do_READ ... 76

Figure 5-3 PMCs Variation of MM_MISS ... 76

Figure 5-4 Relationship between Energy and TOT_INC ... 78

Figure 5-5 Proportional Error of the First Model .. 78

Figure 5-6 Real Energy Consumption VS. First Model Estimation 79

Figure 5-7 Real Energy Consumption VS. Second Model Estimation(a) 81

Figure 5-8 Real Energy Consumption VS. Second Model Estimation (b) 82

vii

Figure 5-9 Real Energy Consumption VS. Second Model Estimation (c) 83

Figure 5-10 Relationship between Energy and PMC ... 85

Figure 5-11 Real Energy Consumption VS. Third Model Estimation 87

Figure 5-12 Measurement Energy Comparison ... 88

Figure 5-13 Estimation Energy Comparison .. 88

Figure 5-14 Correlation Coefficients in Different Cases .. 89

Figure 5-15 Model Comparison ... 90

Figure 5-16 Average Relative Error of G1 ... 92

Figure 5-17 Average Relative Error of G3 ... 93

viii

List of Tables

Table 3-1 Correlation Coefficient Explanation ... 38

Table 4-1 ARM Core Key Features ... 51

Table 4-2 Supports of PMC Drivers on ARM Family (Last Update 6th 2011) 59

Table 4-3 Events Measured by setting the environment variable PAPI_EVENT 68

Table 5-1 The Correlation Coefficients between PMCs and energy 85

Table 5-2 Relative Errors in Different Cases ... 91

ix

Summary

This dissertation, whose research has been conducted at the Group of Electronic and

Microelectronic Design (GDEM) within the framework of the project Power Consumption

Control in Multimedia Terminals (PCCMUTE), focuses on the development of an energy

estimation model for the battery-powered embedded processor board.

The main objectives and contributions of the work are summarized as follows:

 A model is proposed to obtain the accurate energy estimation results based

on the linear correlation between the performance monitoring counters (PMCs)

and energy consumption.

 Considering the uniqueness of the appropriate PMCs for each different

system, the modeling methodology is improved to obtain stable accuracies

with slight variations among multiple scenarios and to be repeatable in other

systems. It includes two steps: the former, the PMC-filter, to identify the most

proper set among the available PMCs of a system and the latter, the k-fold

cross validation method, to avoid the bias during the model training stage.

 The methodology is implemented on a commercial embedded board running

the 2.6.34 Linux kernel and the PAPI, a cross-platform interface to configure

and access PMCs. The results show that the methodology is able to keep a

good stability in different scenarios and provide robust estimation results with

the average relative error being less than 5%.

x

Resumen

Este trabajo fin de máster, cuya investigación se ha desarrollado en el Grupo de

Diseño Electrónico y Microelectrónico (GDEM) en el marco del proyecto PccMuTe, se centra

en el desarrollo de un modelo de estimación de energía para un sistema empotrado

alimentado por batería.

Los objetivos principales y las contribuciones de esta tesis se resumen como sigue:

 Se propone un modelo para obtener estimaciones precisas del consumo de

energía de un sistema empotrado. El modelo se basa en la correlación lineal

entre los valores de los contadores de prestaciones y el consumo de energía.

 Considerando la particularidad de los contadores de prestaciones en cada

sistema, la metodología de modelado se ha mejorado para obtener

precisiones estables, con ligeras variaciones entre escenarios múltiples y

para replicar los resultados en diferentes sistemas. La metodología incluye

dos etapas: la primera, filtrado-PMC, que consiste en identificar el conjunto

más apropiado de contadores de prestaciones de entre los disponibles en un

sistema y la segunda, el método de validación cruzada de K iteraciones, cuyo

fin es evitar los sesgos durante la fase de entrenamiento.

 La metodología se implementa en un sistema empotrado que ejecuta el

kernel 2.6.34 de Linux y PAPI, un interfaz multiplataforma para configurar y

acceder a los contadores. Los resultados muestran que esta metodología

consigue una buena estabilidad en diferentes escenarios y proporciona unos

resultados robustos de estimación con un error medio relativo inferior al 5%.

INTRODUCTION

1 Introduction

INTRODUCTION

2

1.1 Motivation

Nowadays, battery-powered consumer electronics devices like smart phones, media

players, PDAs and tablets have become more and more indispensable in people's daily life.

However, the design of those devices still faces several problems: computing capability,

memory constraints and, especially, the limited battery lifetime. Battery lifetime is improved

very slowly comparing to the continuously increasing demands for new functionalities such

as games, network services and multiplayer. These functionalities usually cause the

intensive computations, heavy network transmissions and the always-on display, which are

inversely proportional to the battery lifetime. Therefore, low-power design has become a

hotspot. It includes several techniques such as the specialized circuit design, the

architecture design, the power-aware operating system (OS) scheduler and the power

management (PM) policy, all of which work at different levels to address energy/power

consumption issues. Low-power design concentrates on increasing the energy efficiency,

unfortunately, these techniques alone are not sufficient. High-level strategies, such as

energy-aware OS schedulers and PM policies, are becoming increasingly important to

maximize battery lifetime. PM policies in mainline OS assume that the energy saving can be

achieved by running at the low chip speed. Therefore, one PM policy in work [1] consider the

workload completion in low-power mode by scaling chip voltage and frequency. To achieve a

balance between energy consumption and performance, PM policies usually, either, run the

workload at the maximum performance setting within the longest time on low-power mode,

or alternatively, under deadline constraints, try to save more energy by running at the lowest

performance setting. However, Snowdon et al. pointed out that such a simple approach

leaded to sub-optimal results on actual hardware in [2] and [3]. Furthermore, they presented

that the PM policy which considered on energy characteristics of workloads was able to

achieve the maximum energy efficiency. Therefore, an accurate estimation model for

profiling the on-line energy consumption at a fine granularity is needed. This kind of models,

as the foundation of system PM policies, can help PM policies to improve and facilitate the

energy efficiency optimization on battery-powered platforms4.

Traditional energy profiling is usually based on the direct measurements.

Measurement is limited to the entire chip due to chip integration and packaging. Moreover,

the final entire chip is not available at early design stages. Therefore, the energy profiling

cannot be obtained until the late design stage. In order to avoid this weak point, emulation-

based power profiling approaches have been employed to consider energy issue at the

beginning of the design stage. These approaches try to extract the physical behavior

information during the application executions to make an estimation model based on the

INTRODUCTION

3

system resources’ utilizations and energy consumptions. They can work at the low-level or

high-level depending on how they obtain the predictions of power consumption. The low-

level approaches exploit the main strategies to simulate the activities from the power-related

hardware operation units of the microprocessor architecture. This solution suffers the lack of

details on the internal structure of the system and the quite long simulation time. To

overcome these problems, high-level abstract models have been proposed. These models

concentrate on the events happened on the higher level of the system architecture. For

example, to construct an estimation model for the processor, on one hand, they will first

measure the average current drawn by the processor during the application execution; on

the other hand, they monitor some key energy-related events triggered at this period. The

model is constructed by relating these events with the measured energy. The energy-related

events can also be divided into different levels such as instruction level, function level or

system level. Usually, finding the relationship among events and energy is an off-line

procedure, once a fine energy estimation model is constructed, it can be simply applied to

the energy-optimizing strategies such as the PM policy and then continuously makes the on-

line estimations. A PM unit can be considered as an energy manager. It tries to optimize the

energy usage to extend the battery lifetime. Meanwhile, this energy estimation profiling will

help it to make a power-aware decision. The Figure 1-1 shows a typical example to attach

the software designs together with the hardware simulator platform to figure out an energy

profiling. The left part in the figure is the steps involved to use the simulator. The compiler

generates the objects codes from the operating system and the applications, then these

object codes are linked and work as the stimuli. The right part is the simulation model, which

considers the hardware of the system as several components, and then the high-level

simulator models each component. Note that the modeling methodology could be various. In

this work, they obtained the power models from the data-sheet except for the processor

which was modeled by the instruction-level energy models. After a reasonably accurate

model was done, the energy consumption profiling of the tasks ran on the system can be

expressed as a sum of the energy contribution from each component.

INTRODUCTION

4

Application
Source Code

OS
Source Code

Compiler

OS Binary Code

Application
Binary Code

Linker

I/O
Peripherals

Memory

Computaion

Communication

High
Level

Energy
Model

Energy
Profiling

Figure 1-1 Energy Analysis Framework5

Based on the energy profiling from the software aspect, high-level energy estimation

can help products to decrease their time to market6. Energy estimation is needed at different

stages in the design process. Ideally, designer would like to estimate the energy of the

design very early, such as when only a high-level (behavioral) description of the design is

available. In this stage, when the design is still sufficiently flexible, energy information can be

delivered to the designers before available silicon by utilizing an FPGA prototyping platform

(Figure 1-2) to make energy tests. Therefore, designers do not need to wait until the whole

design flow is finished to solve the energy problem, they can make the major changes rather

cheaply.

Traditional Development Process

High-level Emulation-Based
Development Process

Power
Simulator

Silicon

High-level
Power Simulator

Saved
Development Time

Development Time

Power
Test

Power
Simulator

Silicon

Power
Test

Figure 1-2 Simulation-based VS. Traditional Power Profiling Approach6

Although there is much work that has been done to have a good energy profiling,

energy estimation is still a very important topic, especially on battery-powered embedded

INTRODUCTION

5

systems. This thesis concentrates on this topic to provide an accurate energy consumption

model of the battery-powered devices. The model is based on the PMCs (Performance

Monitoring Counters) which are realized as the hardware registers attached with the

processor to measure various programmable events occurring in the processor. It can give a

detection of those events which influence the power consumption, and supply the power-

aware strategies or individual user the key issues to maximize energy efficiency. Meanwhile,

this energy estimation model is able to keep the stability on various cases. For example, if

an application has a low performance due to its high cache misses rate and a frequent data

transfer between cache and the main memory, the model can detect their bottlenecks and

identify its high energy consumption. This model is also generic and portable. It obtains its

required information from a high-extracted level to mask the hardware differences. Therefore

it can be attached to various platforms with few modifications.

1.2 Objectives

For getting the energy/power consumption profiling, the estimation model should be

able to provide a correlation between run-time resource usage and energy consumption to

help the energy-related strategies to improve the energy efficiency optimization.

The main goal of this thesis is an exploration of a methodology to build a platform-

independent high-level model. It estimates the energy consumption from the analysis of the

on-line system energy-consuming behaviors. An ideal estimation model should be suitable

for on-line using and should meet several rules described below:

 Non-intrusive and low-overhead: This model should not require too much

intrusive hardware adjustments and software overhead when collect the

model input parameters. It must give a quick response for real-time

optimizations. A long time-taken model, in contrast, will delay the energy-

optimizing strategies to make decisions of tasks arrangements or

voltage/frequency scaling.

 Easy to develop and use: The model should be simple. This means a model

can keep low complexity while provide enough accurate predictions, thus it

can be used on different systems without too many modifications and restrict

the model's own enable energy consumption in a small limitation.

INTRODUCTION

6

 Reasonably accurate: The model must be sufficiently accurate to enable

energy-efficiency optimization. A certain error range is accepted by

considering the model's own overhead.

 Generic and portable: This model should have highly enough abstract level to

other systems. It should work for different platforms of various combinations

of processor families, memory hierarchies and components within few

modifications. Generating a model for a new system, it requires neither

exhaustive details nor extensive design exploration.

Considering the requirements of easy usability, good scalability and high speed, an

estimation method should be a high-level abstraction to avoid many platform details. In this

thesis, a PMC-based approach is focused. The PMC-based model may be built from a

specific hardware platform, but the methodology can be used on any PMC available systems.

1.3 Outline

This thesis continues with four chapters:

 Second chapter describes various energy/power estimation methods based

on different levels. Their main methodologies are introduced and a

comparison to identify the most suitable method for energy optimization

strategies is given later.

 Third chapter describes the methodology introduced in this thesis in detail. It

includes the basic thought of modeling associated with the PMCs, the needed

mathematics knowledge and the improvement of the modeling method to give

a good predictability and generalization.

 Forth chapter gives an implementation which uses the third-part existing

interface to measure the according set of PMCs of a particular platform. It

also introduces the usage of the according functions of the interface to

configure the PMCs.

 The fifth chapter describes the progress of the modeling methodology. It

begins with the simplest method which has the unacceptable estimation error,

and follows with how to derive the methodology to improve the accuracy. The

limitation of the methodology and the future work are also discussed in this

chapter.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

2 Background:
Energy/Power
Consumption
Estimation Methods

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

8

2.1 Introduction

Accurate models of energy/power consumption estimation have been a crucial

research field of many schemes to improve the energy efficiency. These models focus on

the initial design of individual component or the whole system to provide the possibility to

identify the key influences of the energy consumption. In this chapter, contributions and a

discussion on previously proposed approaches of power modeling in different level are

summarized.

An energy profiling is the representation of the system’s energy consumption.

Because of the general usage, a profiling may highlight some key factors of energy

consumption of the system while abstract away some others. Energy profiling can based on

the real measurements or the estimation models. In this dissertation, the modeling method is

focused on. Modeling methods of energy estimation involve two important issues during the

model constructing: complexity and accuracy, both of which are determined by the

abstraction layer on which the energy models are set up. These two issues result in two

main categories of the models: low-level and high-level energy estimation models. Low-level

models which estimate the energy and power from the detailed design information include

circuit level, gate level, register transfer level (RT level) and architectural level. High-level

models deal with the instructions, functional units or components to profile the system

energy from software point in order to avoid the hardware details.

2.2 Low-Level Power Estimation Models

2.2.1 Circuit/Transistor-Level Estimation Models

A simple and straight method of average power estimation is to simulate the circuit

behaviors to obtain the power supply voltage and current waveforms, from which the

average power can be computed. Several circuit simulation based approaches have been

proposed in work [7] by Kang. In fact, the model in this level is most used for VLSI (Very

Large Scale Integrated Circuits) design and the technology choice. The basic scheme of this

approach is shown in Figure 2-1. A parallel RC sub-circuit is inserted into a VLSI circuit

without any interference of the original circuit. The sub-circuit measures the current drawn

from the voltage source and computes the average power as equation 2-1:

𝑷(𝒕) = 𝒖 ∙ 𝒊(𝒕) = 𝒖 ∙ 𝒅𝒒
𝒅𝒕

= 𝒖 ∙ 𝑪𝒙
𝒅𝒖
𝒅𝒕

= 𝑪𝒙𝑽𝒙(𝒕)
𝒕

 (2-1)

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

9

Cx
+
Vx
-

Device
Or

Circuit Cload

Vx(0) = 0

VDD

Idd(t)

Input

Vin(t) = Vin(t +T)

Figure 2-1 A Schemes to Measure the Average Current Drawn

Yacoub et al in [8] proposed a similar circuit simulation technique as the basic one to

measure the average current in complementary circuit structures. Their difference was in the

complementary circuit structures, where current was not permitted to flow during a steady

state of a circuit because there was no path between power and ground in this equilibrium

state.

However, these early methods are not suitable to the complex circuit design with

higher integration density, smaller device geometry, larger chip size and faster clock

frequency caused by the rapid development of the CMOS technology. Subsequent

researchers in [9],[10],[11],[12] and [13] proposed the probabilistic approach instead of

directly simulating a circuit. Probabilistic approaches compute and propagate the probability

for a node to change its logic state. There probability methods usually include two kinds of

definition:

 Signal Probability: The average fraction of clock cycles in which the steady

state value of node x is logic high;

 Transition Probability: The average fraction of clock cycles in which the value

of node x at the end of the cycle is different from its initial value.

Followed with the probabilistic logic, a novel simulator, PowerMil14, was proposed to

build a transistor-level power consumption model by simulating the current and power

behavior in modern deep-submicron VLSI circuits. PowerMil provides piecewise linear

transistor model to capture transistor characteristics from a table to greatly shorten the

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

10

evaluation overhead. However, it is extremely complex to represent a circuit/transistor-level

models due to all details of the design flow, layout, routing and parameter extraction.

Probabilistic-based models can achieve very good accuracy while take unbearable long time

to simulate more than one million transistors, thus, they are not suitable for the real-time

demand because of both the high complexity and expense. In the other side, they also

require the user to specify complete information about the input patterns.

Although the circuit details can be obtained during the logic synthesis at the early

design stage, they may invalid to the transformations or design decisions made at later

implementation stages, hence the model in this level is hard to be used in the early design

stage. This technique is accurate and general to estimate the power of any circuit with

various technology, design style, functionality and architecture. However, the estimation

model is driven by the complete and specific input information which causes huge number of

input pattern and heavy computation, thus it is impossible to use for the large circuits.

2.2.2 Gate-Level Estimation Models

Gate-level estimation methods aim to describe the different gate circuit behaviors

during the system runs. The advantage of such methods is that the simulations are driven by

events and take place in the discrete time domain. This means that the model is enable to

provide an estimation of the switching activities of the basic logic blocks without actually

simulating the circuit with a large number of test patterns. Compared with the circuit-level

models, gate-level estimation method is faster, can handle larger circuits, and, the most

important difference is to be applied before all the circuits details are available. There are

two major types of approaches, dynamic and static, used in gate-level power estimation.

Dynamic approaches simulate the circuit based on the input sequence with the system

representativeness. Their main shortcomings are their very slow estimation speed and highly

dependent results on the simulated sequence. Usually, the required the required number of

simulated sequence is high to produce a valid power estimate. To address this problem,

Monte Carlo simulation techniques are proposed. These techniques use an input model

based on a Markov process to generate the input stream for simulation. The main difficulty is

that it is not clear how the input stream can be efficiently generated when the circuit inputs

exhibit complex correlations. The static techniques are implemented based on the statistical

information abstract from the input sequences to estimate the internal switching activity of

the circuit.

Gate-level model assumes that the circuit consists of logic gates and latches, as

shown in Figure 2-2. In other words, it consists of latches driven by a common clock and

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

11

combinational logic blocks whose inputs (outputs) are latch outputs (inputs). Therefore, the

average power consumption of the circuit can be divided into two parts: the power consumed

by the latches and that consumed by the combinational logic blocks.

Combinational Logic

Primary Imputs Primary
Outputs

Latches

Next Sate
Inputs

Present State
Inputs

Figure 2-2 A Gate-level Example15

Gate-level energy estimation needs the gate switching activities, thus pattern

independent approaches are well-suited for this kind of power estimation. Pattern

independent methods provide an estimate of the average switching activity without actually

simulating the circuit with a large number of test patterns15. Gate-level energy estimation

reduce the computational complexity compare with the circuit-level models, meanwhile, it

does not loss too much accuracy. Several gate-level energy estimation approaches with

good accuracy and high efficiency have been proposed. They are classified into dynamic

and static two categories.

The dynamic approaches explicitly simulated the circuit based on the typical input

sequences. Their main shortcoming was the very slow simulated speed. Moreover, their

results were highly dependent on the simulated vectors. The required number of simulated

vectors was usually high to produce meaningful energy estimation. Burch et al. proposed the

Monte Carlo approach to solve the vector problem in work [16] by Burch et al. Their

approach used the probabilities to compute the power consumption by directly monitoring

the total power during the random simulation. The input vector streams for simulation were

generated by Markov process. The Monte Carlo approach faced to a main difficulty of clearly

showing how the input vectors could be efficiently generated when the circuit inputs

exhibited complex correlations.

The static approaches in [17],[18] and [19] relied on statistical information, for

instance, the mean activities of the input signals and their correlations. The concept of

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

12

probability waveforms, transition density and the enumeration approach based on symbolic

simulation were proposed. An example of a gate-level statistical power estimation approach

was presented by Chou et al in work [20]. They took the spatial and temporal correlations of

logic signals into consideration. Their proposed the states partitions approach to reduce the

computation time. Ding et al. in work [21] proposed a similar approach based on tagged

(probability) waveforms. The tagged waveforms were obtained by two issues. One is the

partition of the logic waveform space of a circuit node, according to the initial and final values

of each waveform. The other is to compact all logic waveforms in each partition by a single

tagged waveform. Then, the tagged waveform can be used to calculate the switching activity

of the circuit node. Note that only tagged waveforms at the circuit inputs were exactly

computed, the remaining nodes were computed using a compositional scheme that

propagated the tagged waveforms from circuit inputs to circuit outputs.

In practice, the model required input probabilities could be directly provided to

eliminate the need for a large set of specific input patterns. The results of the model analysis

will depend on the supplied probabilities. Thus, to some extent the process is still pattern-

dependent and the user must supply information about the typical behavior at the circuit

inputs, in terms of probabilities.

2.2.3 RT-Level Estimation Models

A register transfer level data path is consist with the interconnections of the pre-

designed functional blocks such as adders, substractors, multiplexers, comparators and

registers (the control units, buses, memories and clock trees are excluded from this data

path category). A register transfer level description captures the application specific

integrated circuit (ASIC) behaviors at the physical levels. The simulation approach in RT-

level is try to functionally estimate and collect the input sequence including blocks or network

on interconnections such as adders, registers, multiplexers and the netlists. The power

properties of a block could be traced by the application under the controlled operating

conditions of an individual block through its input statistics.

Most RT-level power estimation approaches use the capacitance models with activity

profiles of data or control signals, which are signal probability or switching activity. For a

node to switch state and consume dynamic power, its current state must differ from its

previous one, which meant that if the previous state was zero and the node was now directly

set to one. Thus, signal probability (SP) is the fraction of time a signal is logic high. This

probability of this occurring was referred to the switching activity (SA), thus a simple dynamic

power dissipation model of a gate could be calculated by multiplying the SA, the capacitive

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

13

load (C), the clock frequency (f) and the square of the supply voltage for each node as the

formula 2-2:

𝑷𝒅𝒚𝒏𝒂𝒎𝒊𝒄 = 𝜶 ∙ 𝑪𝑳 ∙ 𝑽𝒅𝒅𝟐 ∙ 𝒇𝒄𝒍𝒌 = 𝜶 ∙ 𝑪𝑳 ∙ ∆𝑽 ∙ 𝑽𝒅𝒅 ∙ 𝒇𝒄𝒍𝒌 (2-2)

Here, 𝐶𝐿 is the load capacitance, 𝑓𝑐𝑙𝑘 is the clock frequency, 𝑽𝒅𝒅 is the supply voltage,

∆𝑽 is the swing voltage of the node, and 𝜶 is the node '0 →1' transition activity factor which

is defined between 0 and 1.

The switched capacitance and switching probability of each functional module are

modeled by formulas that are a function of the module's inputs probabilities. These formulas

are computed beforehand for each model using the polynomial simulation scheme, and

stored in the model library. The switched capacitance for each isdtance of a module in the

circuit can hen be efficiently evaluated for its specific input probabilities. The switching

ptobabilities at the outputs of each model can be computed in a similar maner, thus ptoviding

a means of propageting the switching probabilities through the circuit described at the RT

level.

Najm gave a good list of several RTL power estimation approachs in work [18]. The

main idea is based on the probabilisitc and statistical techniques. These techniques are

applicable only to combinational circuits. They require the user to specify information on the

activity at the latch outputs. Some estimation tools, such as Primepower22 performed power

estimation both at the structural RTL and gate levels. Others like HSPICE22 and SPICE23 can

also be used to do the low-level simulate. These tools give very closed result caompare to

the actual power comsumptions. However, research studies and these tools show the

limitations of RT-level power estimation: long-lasted time and required RTL design details,

which are extremely difficult to get. Another tool Hotspot24 although considered the power

estiamiton together with the thermal, it still based the design data from a gate-level netlist

and the activity factors from a structural RTL model, thus it cannot avoid those

disadvantages mentioned before. Those disadvantages make them not proper for early-

stage design explrations. Besides, they cannot be easily updated for the future technology.

RT-level estimation methods cannot totally avoid the pattern-dependence problem in

circuit-level or gate-level since some of the inputs provided by the users are typical

behaviors. These inputs are usually based on the probability, which is defined as the

average fraction of time that a signal stay in high status and the density, the average number

of transitions during each second. Comparatively speaking, this information is much more

easily obtained by the desigers than specific input patterns are. For example, designers can

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

14

estimate the average input switching frequencies through the test streams or assume the

frequency by the known clock frequency. For the real implementation, the statistial approach

can ne construct by the existed simulation tools and libraries, which mainly differs with the

dynamic one. In the other word, dynamic modeling approach, which based on the

probabilistic technique, requires the specifc simulation models.

2.2.4 Architectural-Level Estimation Models

Architects typically make decisions in the planning phase before the design has

begun; therefore, those tools such as PowerMill25 and QuickPower25 which operate on the

circuit level and need complete HDL design are not helpful for making architectural decisions.

Considering with the insufficient usage of the previous estimation methods on energy

efficiency optimizing, architectural and software estimation methods, as the addition to the

low-level circuit estimation approaches, have become more important. However, this method

still suffers from the lack of the efficient simulator tool that analyzes and quantifies the power

ramification of various architectures. Such a tool requires to trade-off the low-level details

and accuracy against the simulation speed and portability26.

There are three components that define the important contributions to power

consumption in CMOS27 technology as formula 2-3:

𝑷 = 𝑨𝑪𝑽𝟐𝒇 + 𝝉𝑨𝑽𝑰𝒔𝒉𝒐𝒓𝒕 + 𝑽𝑰𝒍𝒆𝒂𝒌 (2-3)

The first component is the dynamic power consumption which depends on the

capacitive load charging and discharging of each gate, in which factor “A” means the activity

of the gates, factor “C” means the total capacitance seen by the gate outputs, factors “V” and

“f” are the supply voltage and the system frequency, respectively. The second term stands

for the power dissipated on the short-circuit. The factor “𝐼𝑠ℎ𝑜𝑟𝑡 ” means the short-circuit

current that flows between the supply voltage and ground when the output of a CMOS logic

gate switches in the 𝜏 period. The third part is the power consumed by the leakage current

depends on the number of gates and threshold voltages. Therefore, to estimate by a cycle-

accurate simulator is necessary to focus on the activities on the gate level (the first two

terms) and the number of the gate of each micro-architecture (the third term). Based on this

reason, various architectural power simulators combine with the lower level power

consumption models to get the circuit activities and capacitive models of activated

components during each cycle28.

Figure 2-3 shows an architecture-level estimation model for power by extending a

cycle simulator. Before model constructing, primary technology parameters, such as supply

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

15

voltage, threshold voltage, capacitance per area and the sheet resistances of the

interconnectors, are needed to well prepare. Furthermore, the micro-architecture

specification should also be determined. Usually, the micro-architecture functional blocks are

designed as full-custom, thus the design styles influence the power consumption and require

the different power models. Therefore, architectural-level model usually divides the chip into

several regular functional blocks such as memory, datapath, interconnectors and clock

distribution tree, thus the number of the activity patterns is reduced. The model of each block

is constructed with the consideration of its specific determination and features only once and

kept in the look-up table. Finally, the estimation model profile the energy of each micro-

architectural block by combining the power model and the execution statistics from the cycle

simulator.

Circuit Design
Styles

u-architectural
Specifications

U-architectural block
circuit models

U-architecture
simulations

Technology
parameters & Lib

Analytic/LUT
power models

Access/transition
statistics

U-processor
power estimations

Figure 2-3 An Architecture Power Estimation Methodology28

Architectural-level power models have the same idea with the RTL/gate-level ones,

but it uses the instructions and events instead of circuit signals to drive the model, therefore,

the number of patterns decreases. The event activity (EA) is defined to determine the

probability of the event's occurrence. Most research in architectural-level power estimation

were based on empirical methods that constructed the power consumption models based on

the measurements from existed implementations in [29],[30],[31],[32],[33],[34].

Measurement-based approaches for estimating the power consumption could be divided into

three sub-categories:

The first one is a fixed-activity macro-modeling approach. This approach assumed

that the inputs would not affect the switching activities of a hardware block35,36,37. To increase

the accuracy, the second approach, an activity-sensitive empirical energy model was

developed. These schemes were based on predictable input signal statistics. An example

was the method proposed by Landman et al. in work [38]. They introduced a technique to

estimate the power of individual architectural blocks by datapath controller and interconnect

analysis. Controllers were often the finite state machines (FSM), their stages were provided

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

16

by the combinational logic and depended on primary outputs and present state. Controllers

guided the sequence of operations to be executed by the datapath, initiate memory

accesses and coordinate data transfers over interconnect, and thus the power estimation

can be envisioned only by the FSM behavior. Interconnect analysis addresses the problem

of estimating the power consumed in charging and discharging interconnected capacitance.

The estimation considers the interconnect activity, physical capacitance, wire length and the

composite blocks. In case of a microprocessor driven by instructions it is impossible to know

prior the typical input patterns to the individual modules. Considering this weak point, the

third empirical approach is transition-sensitive energy models which were more concentrated

on input transitions rather than input statistics 39 . This approach does not need any

knowledge of module functionality and with the accuracy controlled by the designer.

Models in this abstraction level give a better balance between the estimation

accuracy and estimation speed than other low-level models because it provides each

functional unit an energy model and used a table to record the power consumed by each

input transition. The tables consume substantial time to contain the switch capacitance of

each input transition and lookup due to their exponential growth of the size. Therefore, how

to design these tables was the challenge. For example, to reduce the size of the table,

closely related input transitions and energy patterns could be considered as a cluster.

Simulators such as SoftWatt40 and Wattch41 utilized a simple fixed-activity model for the

functional unit. These simulators only trace the number of accesses to a specific component

and utilized an average capacity value to estimate the power consumption without

accommodating the power variance of the access sequences. This approach is not a

transition-sensitive approach. Therefore, it allows the designers to aware the power

constraint at the early design stage.

2.3 High-Level Power Estimation Models

As the discussion before, low-level estimation models or simulators are suitable for

the hardware designers to make a decision on combinational circuit technology choice.

Based on the deliberate choices, the greatest benefits are derived by trying to assess early

in the design process the merits of the potential implementation. However, low-level

estimation methods are not suitable for the software or OS designers for whom it is difficult

to obtain the details of the hardware. Thus the high-level estimation models are proposed.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

17

2.3.1 Instruction-Level Estimation Models

The instruction level energy model for individual processors is first proposed by

Tiwari et al in work [42]. Its basic idea is try to get the different current drawn by the

processor during executes distinct instructions or distinct instruction sequences (Figure 2-4).

A base cost of each individual instruction plus the inter-instruction overhead is used as the

model of the energy. The huge different combinations of instructions cause to the various

inter-instruction effects, which become the disadvantage of this approach. To simplify the

combinations complexity, Tiwari et al proposed an experimental approach to empirically

determine the base and the inter-instructions overhead cost. In this approach, they used

several programs containing an infinite loop consisting of several instances of the given

instruction or instruction sequences and then measured the average current drawn by the

processor core during the execution of this loop. Tiwari's continued with this topic and his

following researches [43],[44] and [45] showed that the complex processor in general have

less variation in instruction costs compared to smaller DSP processors because of the

dominance of the overhead costs, so the instruction options reduction was able to achieved

by ignoring those instructions which are not so important for the power consumptions.

Mov
Inc
Add
...

Functional
Emulation on

Embedded System

Hardware Power
Estimation

FPGA Board

Functional
Verification

Power
Verification

p
o

w
e

r

time

HOST PC

Figure 2-4 Principle Instruction-level Power Estimation6

This method uses a table to record the average power of each instruction. An

accurate model not only needs the pre-estimated power of each instruction but also the

effects of inter-instructions. Unfortunately, such a table requites 𝑂(𝑛2) space which is quite

high spatial and temporal expense. A simple solution proposed by Lee et al. in work [46] was

to classify instructions into categories based on their functionalities and the addressing mode.

In their work, they abstracted six instruction classes including loading immediate data to a

register, transferring memory data to registers, moving data between registers and operating

in ALU. However, this simply method will meet problem when the instruction set has various

addressing modes and high parallelism. Klass et al. in work [47] proposed an approach to

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

18

reduce the spatial complexity by observing the inter-instruction effects when a generic

instruction is executed after a no-operation instruction. This approach also aims to reduce

the difficulties of classifying instructions by assuming the inter-instruction overhead mainly

depends on instruction changing. Thus they proposed a NOP model. Its main idea is to

insert a NOP instruction before changing any instruction to model the transition overhead.

They use a loop to repeat one estimated instruction several times, once alternate to another

target instruction, they insert a NOP instruction, and so they do not need to enumerate each

pair of instructions to build the instruction power table. The model reduces the size of the

table to 𝑂(𝑛). In other work, Sama et al. in work [48] attempted to add the gate-level

simulator into the instruction-level. Their base energy cost was measured by repeated

executions of each instruction individually. Programs have to be made which cause repeated

instruction execution and then average power has to be measured during this time. This

average power consumed and the execution time of the instruction gives the base energy

cost of the instruction. Overhead energy consumption comes from opcodes and control state

changes between the continuous instructions, as well as the data passing, which also added

into their work. To reduce the complexity of the instruction pairs, this method classify the

instructions based on their functionality and base costs. Therefore, the instruction overheads

are only needed to measure for the pairs of intergroup. For those instructions in the same

group, this approach assumes the same instruction overhead because the similar

functionality and base costs usually indicate similar control state and opcode value. A

reduction of the measurement set for characterization process is obtained through the new

architecture based model. This is achieved by relating the instruction power dissipation with

the processor modules. Since the measurement process is done on a much lower level, it

requires a lot of time and efforts. Also for the case of large instruction set processors, this

reduction is important. If the link between instruction level and architecture level is

established, the effects of small changes in architecture can be propagated to the instruction

level without total re-measurements. It the constituent instructions of a program are known,

the effect of such changes can be predicted. This can provide us methods for fine tuning the

architecture for the application programs that use it.

Instruction-level modeling approach faces three problems. The first is the numbers of

current measurements, which has a direct relationship with the size of the instruction set

architecture (ISA). The second is the number of parallel instructions in the very long

instruction word (VLIW) processor. The last one is the difficulty to draw the whole picture of

the full-system power consumption since this approach cannot provide any insight on the

isolate other components. The first two problems cause the model is not general for utility,

and the previous work discussed before made some trade-off of the estimation accuracy and

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

19

the complexity of the individual instruction and the inter-instruction effects. The last one

makes this model cannot distinguish the instructions executed on the processor at the

specific time related which part on the system, thus the user cannot know which part

consume most percentage of the energy.

2.3.2 Function-Level Estimation Models

Function-level power analysis (FLPA) is applicable to all types of processor

architectures without the details of the system circuits. Instead of the classical energy

characterization abstracted from the instructions, the basic idea of FLPA is to obtain the

distinction energy consumption from system activities of different processor functional blocks.

Thus, FLPA model first divides the target into several functional units. Then it relates the

processor operations to the power activations. Nathalie et al. in work [49] proposed a model

for DSP based on FLPA. They divided the DSP processor into four units: instructions

management unit (IMU), processing unit (PU), memory management unit (MMU) and control

unit (CU). This experimental approach converges at each functional block and discards the

blocks which negligible impact on the power-consumption. The processor is divided into

different functional blocks; each of them is a cluster of components that are concurrently

activated when a code is running. Each functional block consumes energy during the

program execution; its energy consumption characterization is figured out during training

procedure by the set of relative parameters. The parameters are divided into two parts: One

includes the algorithmic parameters which depend on the executed algorithm (typically the

cache miss rate), and the other is consist of the architectural parameters which depend on

the processor configuration settled by the designer (typically the clock frequency). The first

step of the model to characterize the system energy consumption is to select the proper

parameters from the two parts. Then the model moves to the second step, on which various

scenarios are executed with different parameter configurations. The model takes notes of

the energy characterization such as current of each block. Characterization can be

performed either by measurements or by simulation. Finally, the relationship among the

characterization and the selected parameters are figured out. This approach is shown in the

Figure 2-5.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

20

Functional Level Power Analysis

Algorithmic
Parameters

Architectural
Parameters

Procesor

Block 1 Block 2 Block 3

Characterization

Configuration:
F = f(N) Mhz

Procesor

Block 1 Block 2 Block 3

Block 1
Simulation

Itotal

α

*
* *

*

* *
*

*
*

Comsuption Prediction

Algorithmic
Parameters

Architectural
Parameters

Itotal

Processor Model

* * * *

* *
*

*
*

F1

F2

Modelling
Procedure

α

P = F_Model(parameters)

Figure 2-5 Processor Modeling Methodology49

Laurent et al. presented a new approach to characterize energy dissipation on

complex DSPs at functional-level in work [50]: Instruction management unit, Processing Unit

and Memory management unit. The parameters of the model include parallelism/processing

rate, cache miss rate and external date memory access rate by separately simulating each

functional unit with small programs written in assembly language. Based on this

methodology, the SoftExplor51, a tool automatically performs power and energy consumption

estimations, are widely used by lots of research groups. In this case, the model only requires

coarse-grain knowledge on the processor architecture and it achieves a good tradeoff

between the estimation accuracy and the model complexity. However, its main disadvantage

is the complexity of the components determination, the coverage of all significant influencing

parameters and dependency of the corresponding power consumption on the performed

instruction. Furthermore, during the determination period of consumption laws, the issue of

temperature of the system which has an obvious impact on the static power consumption is

not taken into account. The coefficients of the model could be different as the temperature

increased.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

21

2.3.3 Component-Level Power Estimation Models

For a better generalization, system/component-level was proposed in a high

abstraction layer. It considers main system components (e.g, processor, memory,

coprocessor) and leads to more intuitional and feasible models.

Models in high-level abstraction can obtain the static pre-characterized energy

consumption from lookup tables such as spreadsheets. These spreadsheets are very useful

in the early stage of design process to have the first decision with the power issue52. The

spreadsheet-based approach facilitates their users, because the energy consumption of

each component comes from intellectual property (IP) provider or library cell estimates.

Spreadsheet provides a capability to quick estimate on current and power estimation of each

block. User can configure the operating frequency, temperature and other parameters to

estimate his design's power consumption by using the spreadsheet (Figure 2-6). An example

of using spreadsheet is implemented on the BeagleBoard, a commercial prototyping board

based on the OMAP processor in work [53] by Conzález et al. However, this approach can

only provide the final power information extracted from datasheets, thus it is useful for

project planning but may not be able to provide a guidance for block-level hardware power

estimation and energy reduction due to its lack of further adjustments regard to the different

work modes or workloads. This approach is suitable for blocks with regular activity patterns.

However, with the increasing importance of power management techniques, they are limited

in the accuracy.

Figure 2-6 Models Based on Datasheet54

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

22

Later research change the research lane into join together the information from

operating system or hardware events monitor and the measurement by connecting a power

meter between the system and an AC outlet. (Figure 2-7) The measurements are obtained

from the voltage and current drop across different components in the system board or the

whole system, thus some previous researchers also divided the system into component level

which takes the measurement based on each component. From elementary physics, the

current flow is calculable from the voltage drops across the measuring resistor (UR).

Accordingly, the instantaneous power can be calculated as equation 2-4:

 (Resistance: R, Voltage: U, electric current: I and Instantaneous electric power: P):

𝑷 = 𝑼 × 𝑰 = 𝑼 × 𝑼𝑹
𝑹

 (2-4)

Hence, integrating will result in the electrical energy consumption as equation 2-5:

𝑬 = ∫𝑷(𝒕)𝒅𝒕 (2-5)

Figure 2-7 General Structure of High-level Modeling Methodology

Many methods based on the component-level energy estimation have been

investigated in work [55],[56],[57] and [58]. These methods are based on each component in

the design and abstracted as an additive model to get the final energy dissipation of whole

system. Once a model of each component is built, the total energy consumption is computed

by simply summing the energy of all components. In a broad sense, a component can be an

individual functional unit or a block with several similar functional units. The key idea of the

system-level power estimation method is to abstract the power behavior of the system. The

power behaviors of its components are driven by the some specific events. Figure 2-8 shows

a simple diagrammatic sketch of component-level energy estimation model. The hardware

events are the key energy influence factors such as cache misses, retired instructions and

the memory accesses. These events can be monitored by the system available PMCs.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

23

However, for some devices such as I/O peripheral and network devices cannot be directly

monitored by PMCs. Therefore, their requests through the corresponding drivers can be

used to estimation their behaviors.

System
Processor

Power
Model

Hardware
Event

Hardware
Event Hardware

Event

Device
Requests

Device
Requests

Device
Requests

Figure 2-8 Simplest System-Level Power Model

In some complex systems, each component can be described by a simple state

machine containing only information relevant to its power behavior. At different execution

points, each component is in a specific power state, which consumes a discrete amount of

power. To get the total system power usage at a specific time just requires summing up the

current power values for all components within the system. Average or peak power

dissipation can easily be determined by looking at the power usage over time for a given set

of environmental conditions.

However, energy consumption is not only influenced by hardware but also the

software. Some pervious work pointed out that a good software needs to be designed with

power consumption consideration because the processor's power consumption is greatly

dependent on its executing workload, which means that the performance characteristic of

software at runtime can also be used to change the energy consumption 59,60. In modern

microprocessors, there is a set of special-purpose registers build in. They are performance

monitoring counters (PMCs), which are used to record the number of hardware-related

activities occurred in computer systems. Users can supervise and adjust the system

performance through the information provided by those counters. Operating systems

provides many interfaces to access PMCs. For example, the simple Linux command “Sar”

can collect the dynamic data of CPU, disk, network throughput, ect. There are several PMC

tools such as Oprofile61 , Perfctr 62and PAPI63 that freely provide the details of implementing

access to hardware counters on various platforms. PMCs provide the deeper insight of

processor’s functional units, cache and main memory with low-overhead. In addition, their

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

24

wealth of interface can simplify their usage. After Bellosa in work [64] correlated

performance monitoring counters (PMCs) with energy consumption to obtain a good

estimation, the energy consumption modeling combined with PMCs and linear regression

has been widely used in work [59,65,66,67,68,69]. The work such as [65], Li et al. exploited

high-correlation between the number of instruction per cycle (IPC) and power consumption

to estimate the energy dissipation. This work cannot be simply represented into a new

platform with the same accuracy. The reason is that only take account into IPC is not

enough to capture system details. A full-featured system usually consists of different devices

with various functionalities and energy requirements, thus simple PMC set may be one-sided

and easily causes the instabilities. The main challenge of these models is how to choose the

best set of PMCs. Most researchers identified the PMCs based on platform architecture

analysis [59,66,67,68]. In [66], Lively et al. introduced a description of how to choose the

suitable PMCs. They used different PMCs to build models for each application to endure the

application trends were correctly represented. Their work aims to achieve an insight to the

relationship between the performance characteristics and the PMCs, however, this

application-centric method have a high overhead for on-line use if one model is only for one

particular application. In [67], Goel et al. proposed a different approach to choose PMCs.

Their first step was to identify the candidates by manually separating available PMCs into

several categories that impact dynamic power by different issues. Their work can effective

reduce the number of PMCs, however, the priori selection may meet the problem due to the

limitation of PMCs, especially for the embedded processor with small number or PMCs. On

the contrary, Y.Xiao et al. in work [69] built a sub-model of processor without any selection

but repeated the same test case for several times with two different PMCs monitored each

time to obtain all the information provided by PMCs. This method is quite time-consuming,

and it is not suitable to the PM policy since it will cause a long-time delay to get a full

estimation of one application.

There is no doubt that PMC-based estimation results are promising, however, it is not

easy to repeat one model to other systems because of the uniqueness of appropriate PMCs

for each different system. One reason is the types and meanings of hardware counters vary

from one kind of architecture to another due to the variation in hardware organizations.

Therefore, the exact model based on PMCs will also be different for each platform

depending on the availability of native PMCs. Another reason is the number of available

hardware counters in a processor is limited while each cpu model might have a lot of

different events that a developer might like to measure. Each counter can be programmed

with the index of an event type to be monitored, like a L1 cache miss or a branch mispredict.

In the other word, although CPUs typically have multiple counters, each can monitor only

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

25

one type of event at a time, and some counters can monitor only certain events. Therefore,

some CPUs cannot concurrently monitor interesting combinations of events. A challenge of

system/component level model is how to select the most suitable power-model for each

component by making efficiency and accuracy trade-offs. A good system/component-level

can be used by the internal power management system for optimized component usage.

2.4 Discussion

System Level

RTL

Gate Level

Circuit Level

E
ff
ic
i
e
n
c
y
I
n
c
r
e
a
s
e

A
c
c
u
r
a
c
y

I
n
c
r
e
a
s
e

Estimation
TIme

Estimation
Error

Seconds-Mins.

Mins-hours

Hours-days

5%-10%

1%-5%

<1%

Figure 2-9 Power Estimation in Different Design Level

General speaking, the estimation time and the accuracy are inversely proportional to

the abstraction level. As the Figure 2-9 shows, the low-level can reach quite accurate results

of those models based on the design details but they are slow and impractical for analyzing

the power consumption at the early design stage. In addition, low-level power estimation

tools require complete RTL code, and their simulate time range from days to minutes.

Circuit-level power estimation tools, though provide excellent accuracy, have the longest

simulation time, and require more development efforts. Therefore, low-level models cannot

afford to simulate large circuits for long-enough input vector sequences to get meaningful

power estimation because of its simulation speed.

The most important parameters of the low-level estimation models are the input

patterns or waveforms. This is an attractive feature which makes the power consumption

directly relate to the switching activities of the circuits. However, this high pattern-dependent

relationship is a serious problem in power estimation because of the difficulty on obtaining

the input patterns when the other parts of the chip have not been designed or completely

specified.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

26

For the embedded system, a common practiced design concept, intellectual property

core (IP), has been proposed in recent 20 years. Reusing IP blocks without too many

changes of the design and functionalities provide the possibility of fast prototyping, validating,

evaluating and design complexity decreasing. With the increasing IP popularity, hardware

low-level design technologies such as load capacitance, supply voltage, frequency and

threshold voltage become more mature with some conventionalized design experience,

especially for those hard IPs. Therefore, to optimize the energy efficiency from the software

aspect becomes more significant. The optimization includes better application program

writing skills, OS scheduler and PM policy. Usually, the hardware design is transparent to

the software designers, thus to have a better energy estimation for their applications or OS

policies, the higher abstract level for estimating is needed. High-level estimate models can

avoid the disadvantages of low-level models from the software inspect. Besides the

consideration of the accuracy, this energy estimation model is foundation of the energy-

aware operating system scheduler, thus it is important to keep the flexibility and the

efficiency of the model. Based on these reasons, the high-level model, especially at the

component-level is focused. This dissertation gives out the first investigation on this topic. A

model is constructed by utilizing a set of most proper hardware PMCs, which indicates the

energy behavior of the processor and memory.

Although the PMC-based modeling approach has been proposed by different

research groups, most of them are applied to the General Purpose Processor (GPP) and

servers. Isci et al. in work [70] gave out an approach to estimate the power consumption of a

Pentium 4 processor which has 18 PMCs and can monitor up to 59 events without using

circuit-level information. Their model is not applicable to implement on the processor with a

small number of available PMCs such as OMAP 3530. Other work such as Li et al. in [65],

they exploited high-correlation between IPC and power consumption to estimate the energy

dissipation. This work cannot be simply represented into a new platform with the same

accuracy. The reason is that there are differences among components, the same PMCs set

may easily cause the instabilities, so it is necessary to construct a model based on the

different PMC sets of each component. On component-level, the system is firstly divided into

several parts and their own sub-models are built, and then the relationship between sub-

models and whole models is found out through the observation data. In this way, the

accuracy of the model is improved and the power consumption details can also be presented

by each sub-model. Another advantage of component-level model is the good portability

because it is quite easy to add new sub-model for the extensible system. It should be noted

that even though the example presented is for a particular architecture, the methodology can

be applicable to other architectures. Particularly, the PMC set of components are needed to

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

27

be redefined and redesigned in order to fulfill the requirements of the model accuracy. A

third-part software interface PAPI is used to define the relevant available native PMCs on a

given platform.

2.5 Conclusion

The power/energy estimation models implemented in the different levels are

introduced. The low-level methods can obtain quite accurate estimation but suffer with the

hardware details and the expensive time cost, while the high-level methods provide better

portability and efficiency but partly decrease the accuracy. Considering the easy usage and

quick response, the PMC-based approach in the component-level is decided to construct the

estimation model. This approach divides the system into several components based on their

functionalities and builds the sub-model for each component with different set of PMCs.

BACKGROUND: ENERGY/POWER CONSUMPTION ESTIMATION METHODS

28

METHODOLOGY

3 Methodology

METHODOLOGY

30

3.1 Introduction

In this chapter, the introduced methodology will be described in detail. It begins with

the general idea of PMC-based approach. This is the basic framework of this component-

level methodology, and then the specific modeling knowledge of the mathematics will follow.

Finally, the main contribution of this dissertation is focused, which is the two-part modeling

methodology which aims to improve the accuracy, efficiency and independence of the

energy consumption model.

3.2 General Idea

3.2.1 Modeling Flow

To address the need for fine-grained energy consumption on a system, a component-

level model is more suitable with its features such as intuitional, flexible, extensible and

efficient. A full component-level model is based on the power measurement and automatic

synchronization, and provides correlations between system/application typical activities and

system energy consumption.

Characterization
Selection of

Model
Parameters

Training Data

Model
Construction

Enough
Accuracy？

Power/Energy
Model

Y

N

Figure 3-1 Modeling Flow

Generally, a high-level energy estimator has two main steps: parameters

determination and model construction. The Figure 3-1 shows the flow of the modeling

system. A specific target device is called device under test (DUT). To estimate the energy on

METHODOLOGY

31

a DUT, the model inputs, which are the samples of PMCs, are obtained during the

benchmarks’ execution. These model inputs, or model parameters, are selected based on

the extracted features of these benchmarks. Then, in order to fit the energy model, the

current flows of the whole system or the certain component with the supplied voltage have to

be measured. The energy estimation model is constructed by regress method. The model

inputs are independent variables and the measurement values are dependent variable.

Once the coefficient of each independent variable is set, the model is able to estimate the

energy from the model inputs. The regression analysis can be linear or non-linear. Linear

regression has already been proved with the enough accuracy to estimate the component

energy consumption by previous work. In addition, the real measurements are also used to

make an evaluation of the model. Some adjustments would happen if the estimation results

have unacceptable errors, which means the estimation of correlations between system

typical activities and system energy consumption are not well presented. Once a model is

set with the adequate accuracy, this model can be applied to the OS as an independent

application which inputs its estimation result to the OS as a parameter needed by the

energy-optimizing strategies.

3.2.2 Performance Monitor Counters

PMCs have been briefly introduced in the related work. This sub-section will focus on

more details of the PMCs. PMCs count the number of certain types of hardware events such

as instructions executed, cache misses or branched mis-predicted. They are used to provide

information about how well the operating system or an application, service, or driver is

performing. They can help designers to find out system bottlenecks and fine-tune system

and application performance. Implementation of PMCs in different processors could differ

from the quantity or the monitored types of events. However, there are some common basics:

 A cycle counter: This can be programmed to increment on every cycle;

 Event counters: The concept of event counter and event need to be

distinguished. An event counter can be configured to select one specific event

among and increments as this event occur. This means that the behavior of

hardware PMC can be defined by users according to their individual

requirements. Usually, the number of the events is more than the number of

PMCs. Moreover, the number of PMCs is more than the number of PMCs that

can be used simultaneously. In addition, although some processors provide in

the architecture up to large number of PMCs, the actual number is defined by

the implementation.

METHODOLOGY

32

 Controlling counters: There are some counters used to control the according

PMC to finish various operations. The operation of counters includes: enable,

reset, start, stop, flag overflows, and enable interrupts on counter overflow.

Pay attention to the cycle counter, in some platforms, it can be enabled

independently of the event counters.

In a broad sense, PMCs consist of these three counters, but in this thesis, we refer

PMC as the event counter if there is no particular emphasis.

The most important feature of PMC Application Programming Interface (API) is its

extremely low overhead. PMCs can be accessed via special file descriptors. For example, in

the windows 2000 operating system and later ones, network and other devices provide

counter data consumed by applications to provide users a graphical view of how well the

system is performing. The Linux PMC subsystem also provides an abstraction of hardware

capabilities such as perf_event71 which is a Linux kernel API and perfmonX72 which is the

hardware-based performance monitoring interface for reading the PMCs from user space. A

more detailed explanation of Linux PMCs API will be described in chapter 4.

3.2.3 Components Classification

3.2.3.1 Components Classification

Most embedded systems are single-board computers (SBCs) which are completed

computers built on a single circuit board. There are no exact design standards for a

complicated embedded system. An embedded system consists of various physical

components and can be extended easily. General speaking, those devices of an embedded

system can be divided into five main categories: Computation, storage, communication,

buses and I/O (Figure 3-2).

General
Purpose

Processor

DSP

Bluetooth

Computer Unit

Ethernet

Wi-Fi

Communication Unit

SD Card

Flash

Storage Unit

Display
USB

Serial

I/O Unit

SPI

Figure 3-2 High-Level Overview of the Embedded System Architecture

METHODOLOGY

33

Each of these categories with its own unique objective functionality cannot be

replaced by another one; therefore, each category can be considered as an independent

component to analyze its energy consumption issues.

3.2.3.2 Energy-related Events

In semiconductor technology, static energy is caused by leakage current and

capacitors loading/deloading operations. The leakage current depends on static parameter

such as time, voltage and semiconductor properties. Static energy is beyond the scope of

this dissertation which focuses on the modeling for the dynamic energy. The dynamic energy

consumption depends on the switch frequency of the transistors and the size of the

capacitors. One direct method to identify which components have the significant contribution

to the total energy consumption is to look at those parts containing most of the capacitors or

with higher switching frequencies. However, this method is not suitable for most third-part

manufacturer due to the lack of devices design details. PMCs give another possibility to

qualitatively measure the energy consumption. PMCs monitor the events occurrence during

an application execution. These events are in high abstract level caused by the essential

functional units such as datapath, control and memory. Therefore, the energy consumption

acknowledgement can be obtained by observing the representative events. The

representative events differ from each category in the embedded system; we simply

describe the general energy-related events.

(a)

As the most complicated device, there are many details need to be considered.

Processors have various hardware architectures, instruction set, pipeline depth, specific

accelerate circuits and instruction cycles. These variances have their own contributions to

the whole energy consumption. The significant energy-related factors are: execution cycles

which are influenced by instruction decoder, pipeline, TLB and cache units.

Computation

Instruction Fetch

L1
RAM

L1 Cache
Interface

TLB

Prefetch
&

Branch
Prediction

Instruction Decode

Decode Dependency
Check

Instruction Execute

Flags ALU1

RegBank
ALU2

MAC

Load/Store

Control
L1 Cache
Interface

TLB

L1
RAM

L2 Cache

Figure 3-3 General Core Architecture

METHODOLOGY

34

Figure 3-3 is the general structure of processor Cortex A873. It is divided into 4 parts

which are corresponding to the instruction process. The instruction fetch unit fetches

instructions from the L1 instruction cache based on the prediction of the instruction streams,

then it places the fetched instructions into a buffer for decode pipeline using. After the

instruction decode unit decoding and sequencing instructions, the execute unit starts

operating on them. This unit consists of two symmetric Arithmetic Logical Unit (ALU) pipeline,

a multiply pipeline, and address generator for loading and storing instructions. It also

performs register write back and processes branches and other changes of instruction

stream and evaluates instruction condition codes. The load/store unit includes the entire L1

data side memory system and the integer load/store pipeline. The L2 cache unit services L2

cache misses from both the instruction fetch unit and the load/store unit.

Each instruction process consumes baseline energy. In modern processor, additional

units such as branch prediction, cache and pipelining are implemented to accelerate the

process speed. Therefore, only number of instruction number cannot completely represent

the processor's functionality because the accretion units will cause extra influence on the

energy. For example, pipeline blocking, cache miss and prediction failure will cause the

processor stall and the decrease of the number of issued instruction, but as this time, other

units are active to prepare the execute environment. These additional units’ events will affect

the power consumption. Therefore, more typical events need to be distinguished to each

processor to make higher accurate energy estimation.

(b)

There are the basic power consumption of the different device within its specific state,

such as transferred and traffic. The total energy can be predicted by counting the traffic time

interval and transferred bytes.

Communication

(c)

The total energy can be predicted by transferred data, in other words, the direct

transferred size or the bandwidth multiply the access times. Usually, a complex storage

component may have several states that consumed different energy. A more accurate model

also considers the energy consumption during the states transitions.

Storage

(d)

Due to the fixed bus frequency of the embedded system, buses’ energy can be

estimated by the bus activities times and bus width.

Buses

METHODOLOGY

35

(e)

Most of the I/O devices have several states which consume different amount of

energy. So their energy consumption mainly depends on the number of I/O requests and the

according state. I/O devices do not have uniform factors to influence their energy

consumption, for example, the energy consumption of display almost depends on the

different screen brightness, which does not exist in other device.

I/O devices

To simplify the work, at this moment, only the computation unit and the storage unit

are considered. For the storage unit, the PMC-based approach is also implemented to

estimate its energy consumption because the transfer data size which is determined by the

application itself is not easy to directly obtain. Since the SD card or flash are not as

complicated as the hard disc to have different rotation speeds, we can assume that each

access of the SD card or flash has the similar energy consumption, thus their energy mainly

related with the access times.

3.3 Modeling Methodology

3.3.1 Mathematics Knowledge

3.3.1.1 Spearman Rank Correlation Coefficient

Spearman's rank correlation coefficient (ρ) is a non-parametric statistic parameter

proposed by Charles Spearman. It uses a monotonic function to describe the statistical

dependence, which is also considered as how strong the relationship between two variables

is74. One variable is a strictly monotone function of the other if the Spearman correlation

coefficient is +1 or -1 when there are no repeated values of the sampling data. These tow

values, +1 and -1, are called perfect Spearman correlation.

The correlation coefficient ρ can be calculated by equation 3-1 if there is no repeated

value in the original data samples. Here 𝑑𝑖 is the difference between the ranks of each

observation on the two variables. If no, for a sample of size n, the original variables 𝑋𝑖 ,𝑌𝑖 are

converted to ranks 𝑥𝑖 ,𝑦𝑖, and then.ρ is need to be calculated by equation 3-2 as the Pearson

correlation coefficient.

𝛒𝐬 = 𝟏 − 𝟔∑𝐝𝐢
𝟐

𝐧(𝐧𝟐−𝟏)
 (3-1)

𝛒𝐬 = ∑ (𝐱𝐢−𝐱�)(𝐲𝐢−𝐲�)𝐢

�∑ (𝐱𝐢−𝐱�)𝟐(𝐲𝐢−𝐲�)𝟐𝐢
 (3-2)

METHODOLOGY

36

3.3.1.2 Linear Regression Methods

In statistics, linear regression is a regression analysis method used to construct the

relationship model between one or more independent variables and dependent variable.

This function is a linear combination of one or more model parameters which known as the

regression coefficients. A linear regression equation with one independent variable

represents a straight line.

Given a random sample, s = �𝑦𝑖 , 𝑥𝑖1, … , 𝑥𝑖𝑝|𝑖 = 1, … ,𝑛�� , a linear regression model

allows the imperfect relationship among regress factor yi and regression variables xi1, …, xip.

Usually the model uses an error term εi (also a random variable) to capture any other

impacts beside for xi1,…, xip. Therefore, a multivariate linear regression model is expressed as

the following equation 3-3:

𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏𝒙𝒊𝟐 + 𝜷𝟐𝒙𝒊𝟑 + ⋯+ 𝜷𝒑𝒙𝒊𝒑 + 𝜺𝒊, 𝒊 = 𝟏, …𝒏 (3-3)

Linear regression technique is widely used in many modeling scenarios due to its

generality and statistical properties. Employing a linear regression model to estimate the

energy consumption implies to identify, as independent variables, a set of PMCs with high

correlation to the amount of energy consumption. The energy consumption is assumed to be

a linear function as that given by equation 3-4:

𝑬 = ∑ 𝒄𝒊𝑷𝑴𝑪𝒊𝒌
𝒊=𝟏 (3-4)

where PMCi are the number of monitored events of type i and ci is the corresponding

coefficient computed by a linear regression method.

There are inevitable some outliers or high leverage points in the observations. An

outlier is an observation which is distant from the prediction value based on the regression

equation or markedly far from other sample data75. Outlier points may indicate faulty data,

erroneous procedures or an invalid theory for a specific situation. However, a small number

of outliers is acceptable.

The tendency of the straight line after the linear fitting depends on the spatial

distribution of the samples. Intuitively speaking, the outlier points have a great influence of

the fitting results. Their effects are called leverage effect. Leverage is a term used to identify

those outliers which are far away corresponding average prediction values. Leverage points

are those observations with extreme values of the independent variables which lack of

neighboring sample data to impel the fitted regression model pass as close as possible to

METHODOLOGY

37

them. Outliers and high leverage points bring difficulties to the least-squares regression

which is the simplest linear regression method because there is no sufficient reason to

remove those unusual data unless they can be proved to be a recorded error. The classic

principle least-square regression is not provided with robustness, thus the outliers and high

leverage points will have a devastating impact on the estimation of the coefficients of

regression equations. Robust regression ensures fewer effects of errors on model

coefficients estimation to increase the reliability 76 . Therefore, we employ the robust

regression methods in this dissertation.

3.3.1.3 Principal Components Analysis

In the statistical analysis, principal component analysis (PCA) is an algorithm to

analysis and simplify of data collection. The PCA is often used to reduce the dimension of

the data set, while maintain the data sets which keeps the most contribution to the variance.

This is done by retaining the low-level principle component and ignoring the higher order

principle components. PCA was first proposed by Carl Pearson in 1901 was used to analyze

data and build mathematical models74. This approach is to obtain the main components data

(the eigenvector) and their weights (intrinsic value) by eigen decomposition of the covariance

matrix. PCA is the simplest multivariate statistical method based on eigenvector analysis.

However, there is a serious robustness problem in ordinary statistical PCA based on

eigenvalue decomposition, which will greatly affect the computation accuracy of the PCA.

3.3.2 Methodology

In short, our methodology to produce component sub-models follows the common

modeling steps:

 First, we define the model inputs. In our case, there are the occurrences of

different energy-related events recorded in the corresponding PMCs. Since

the PMCs can be configured to monitor different events, in rest of the

dissertation, PMC and its corresponding event have the same meaning. In

addition, the appropriate events are unique to each individual system. Thus

we define a methodology, PMC-filter, to automatically identify the best PMCs

set from all the platform-available PMCs without any prior analysis.

 Second, we train the model by using the individual benchmark groups

according to each component and collect the PMCs' samples. To avoid the

interference among components, each benchmark group addresses the

characteristics of each component. During the procedure with the modeling

METHODOLOGY

38

research, we find that the accuracy of the estimation is highly related with the

training benchmarks. If the group of benchmarks cannot cover enough

characteristics of an application, the fitting curve will lead to the wrong

prediction. Thus we use the k-fold cross validation to train the model.

 Third, the final system model is built by simply combining the individual sub-

model of each component. Since the components have the different

contribution to the total energy consumption, a method to identify their energy

weights is also needed.

3.3.2.1 PMC-filter

In statistical, the correlation coefficient presents the relationship between two

variables. In other words, if two variables are perfectly correlated, they share all the

features75. Many researchers have made proposals to judge the variable dependence with

the correlation coefficient. However, these proposals are mainly based on the experience77,78.

Table 3-1 lists the explanation of the correlation coefficients.

Value of Correlation Coefficients Explanation

0.8~1.0 Very Strong Related

0.6~0.8 Strong Related

0.4~0.6 Moderately Related

0.2~0.4 Weak Related

0.0~0.2 Very Weak or No
Related

Table 3-1 Correlation Coefficient Explanation

This look-up table evaluates the relationship between two variables, but this rule is

mainly dependent on the subjective judgment. A more accurate method to interpret the

correlation coefficient is to calculate their coefficient of determination (R2). R2 reflects the

percentage of the variance of one variable can be explained by the variance of another one.

For example, if the correlation coefficient between variable X and variable Y is 0.7, namely

ρYX = 0.7, then the RYX
2 = 0.49 which means that 49% of the variance of variable Y can be

explained by the variance of X. The stronger the correlation, the more variance can be

interpreted. Since the variance presents the distribution characteristics of a series of data or

the statistical population, thus the more variance can be explained, the more features shared

METHODOLOGY

39

by the two variables, also, the more information can be represented by another variable.

However, RYX
2 = 0.49 means that 49% of the variance can be explained, it also means that

51% of the information cannot be replaced. This is because that even these two variables

have a strong correlation (ρYX = 0.7), there is still unexplained reasons cause the differences

between them. The idea of the shared variance can be vividly shown in the Figure 3-4. The

gray area stands for the shared variances of two variables. The larger it is, the stronger

correlations the two variances have.

Correlation Coefficient Coefficient Determination Variable X Variable Y

𝛒𝐘𝐗 = 𝟎 RYX
2 = 0 Share 0%

𝛒𝐘𝐗 = 𝟎.𝟓 RYX
2 = 0.25

Share 25%

𝛒𝐘𝐗 = 𝟎.𝟗 RYX
2 = 0.81

Share 81%

Figure 3-4 Shared Variance

In the first case, there is no overlap of the two circles because there is no relationship

between them. In the second case, the two circles begin to overlap because they share the

25% information. In the third case, one circle almost perfectly covers the other one due to

the quite high correlation of them.

It should be noted that the correlation is independent on the cause. In other words,

the variables X and Y increasing (or decrease) together do not mean that the change of one

variable is the reason to cause another variable change. During the model fitting, we use the

correlation information among the PMCs aim to reflect more energy variation features within

fewer PMCs. Let us use an example to better explain this idea:

Consider an accurate energy estimation model with two independent variables Y and

X, namely E = aY + bX. Assume that 75% of the features in Y can be explained by variable X,

thus the variable Y can be estimate by variable X like equation 3-5:

𝒀 = 𝒄𝑿 + 𝜺 (3-5)

METHODOLOGY

40

where the ε is the estimation error due to the 25% unexplained features of Y. Thus

the energy model can be rewrite as equation 3-6:

𝑬 = 𝒂𝒄𝑿 + 𝒃𝑿 + 𝒂𝜺 = (𝒂𝒄 + 𝒃)𝑿 + 𝒂𝜺 (3-6)

If the relationship between X and Y is stronger, the value of item aε is smaller which

means the error caused by representing Y is smaller.

In our case, if an energy estimation model includes all the available non-derived

PMCs in the platform, most of the details of the application are covered. But a large number

of PMCs increases the complexity of on-line modeling and sampling time. Thus, it is

necessary to have a methodology to reduce the number of PMCs without losing too many of

the application behavior features. Therefore, identifying the PMCs which are intimately

related to energy consumption is the first requirement of the modeling process.

Correlation coefficient is used to decide the relationship between two elements as the

discussion before. Therefore, correlation coefficients,ρSi , between each PMC and energy

consumption are first computed. In this dissertation, the Spearman's rank correlation has

been employed considering that the overall distribution of the sample data is unknown.

After the first step, a threshold, α, of ρSi is set to identify the PMCs with the largest

energy correlation and to eliminate, from the initial set of PMCs, those whose coefficients are

below α. It is worth noting that α may vary from system to system because of the different

PMCs availability.

Again, if two PMCs have high cross-correlation, the information kept by one PMC is

also able to be reflected by the other. Therefore, to further reduce PMC redundancy,

correlations between each pair of PMCs, ρ(i,j)are computed to indentify the PMC relationship.

The purpose is to lessen the outlier influence while maintaining the captured application

features. The previous PMC selection set is iteratively refined as follows. First, starting from

a PMCa with the largest correlation, ρSa, those PMCs whose correlation, ρ(a,j), exceed certain

threshold, β, are eliminated. Then, the process continues with PMCb, the second largest

PMC with correlation value, ρSb , and, again, eliminating the PMCs whose ρ(b,j) exceed β.

This process is repeated until there is no more PMC to eliminate. At last, the remaining

PMCs, which form the set named, Pe, are the most important ones, as far as the energy

correlation concerns.

Considering the correlation analysis and the energy model introduced by Lively et al.

in work [66], in this dissertation, the threshold α is set to 0.5 and the threshold β is set to

METHODOLOGY

41

0.90. Threshold β is set quite high in order to ensure that the retained PMCs record most of

the application behavior information to maintain the accuracy of the estimation.

3.3.2.2 K-fold Cross-validation

To make an estimation model with good predictability and generalization, a common

employed technique is the k-fold cross-validation, which randomly partitions the original

samples into k subsamples, then repeats the model training process k times (the folds).

Each time one of the subsample sets is used to test the model and the other k-1 ones are

used as training data. At last, a single estimation result is obtained by averaging the k sub-

models. Figure 3-5 is an example which can better explain how this method works.

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

…...

Sample n

Systematic
Sampling

No. 1

No. 2

No. 3

… ...

No. k

…...

… ...

No. j (1≤j≤k)

No. (j+1 mod k)
(1≤j≤k)

No. 2

No. 3

No. k

Grouping

No. 1

No. 1

No. 1

… ...

No. 2

No. 2

… ...

No. 3

No. 3

… ...

… ...

No. k

No. k

… ...

Sub-Group1

Sub-Group2

Sub-Group3

Sub-Groupk

Modeling
Process

Training

G1,G2,G3,...,Gk-1

Testing

Gk

Training

Testing

Training

Testing

G1,G2,...,Gk-2,Gk

G1,G2,…,Gk-3,Gk-1,Gk

Gk-1

Gk-2

Training

Testing

G1,G2,…,Gj-1,
Gj+1,…,Gk

Gj

Training

Testing

G2,G3,...,Gk-2,
Gk-1,Gk

G1

SubModel 1

SubModel 2

SubModel 3

SubModel j

… ...

… ...

SubModel k

Final Model

Model_F = avg(SubModel1,
SubModel2,…,SubModelk)

Robust
Regress

Figure 3-5 Example of the K-fold Cross Validation Method

This method starts to divide the whole population into several sub-groups. The

partition procedure is simply implemented by systematic sampling. All samples are

numbered cyclically from 1 to k and are selected into the same group with the same number.

For example, samples with number i (1 ≤ i ≤ k) are selected into group i. Afterwards, the

robust regression method is employed to identify the fitting coefficients. Then, these

coefficients are integrated with the corresponding PMCs to generate, for the current training

group, a linear estimation model, named as MPi. This procedure is repeated k times and, at

last, the final model is obtained by averaging all the MPi models.

The fold number k is usually set experimentally. Kohavi in his theoretical work [79]

recommended setting k equals to 10 in order to provide fewer bias during the model training.

METHODOLOGY

42

However, Resende et al. in work [80] have conscioused that the model prediction ability

relates independently to the different values of k. Considering the rotation overhead and the

sampling time for an on-line modeling, the value of k has been set as the cardinal of the

set, Pe, which is always less than 10. K-fold cross validation method uses every sample point

to test the model exactly once, and to train the model k-1 times. Thus it can better reduce

the bias of training the model.

3.4 Discussion

Since the PMC-based model is constructed in the high abstract level, a challenge is if

the PMCs can reflect the different processor architecture features. To confirm this query, the

same benchmarks are executed on two processors: the ARM Cortex A8 and the Intel Xeon

X3450 that have the different instruction set. The Cortex A8 is a 32-bit reduced instruction

set computer (RISC) which is widely used in many embedded system design. X3450 is a

complex instruction set computer (CISC). In CISC, about 20% of the instructions will be

repeatedly used which accounted for 80% of the entire program code. This feature can be

represented by the PAPI_TLB_IM, which monitors the instruction TLB (Translation

Lookaside Buffer) misses. As the Figure 3-6 shows, in most cases, the Cortex A8 processor

has much more misses than the X3450 processor. Note that the TLB misses of different

applications ranges a large scope, so the Y axis which represents the number of TLB miss

occurrence uses the logarithmic scale based on 10.

Figure 3-6 Comparison of TLB Instruction Miss

1

10

100

1000

10000

100000

1000000

TL
B

M
iss

es

Desk A8

METHODOLOGY

43

In computer architecture, there is a term called CPI (clocks/cycles per instruction) can

used to describe a processor’s performance. If the number of cycles is less during an

instruction execution, the more efficient the processor behaves at this period. Assume that

the execution time can be calculated as equation 3-7:

𝑬𝑿𝑬𝑻𝒊𝒎𝒆 = 𝑪𝑷𝑰 ∗ 𝑰𝑵𝑺 ∗ 𝑪𝒀𝑪𝑻𝒊𝒎𝒆 = 𝑪𝑷𝑰 ∗ 𝑰𝑵𝑺
𝑭𝒓𝒆𝒒

 (3-7)

Where the EXETime is the execution time, INS stands for the number of the total

instruction and the CYCTime means the clock time. So the two processors can be compared

like the equation 3-8:

𝑺𝒑𝒆𝒆𝒅 =
𝑬𝑿𝑬𝑻𝒊𝒎𝒆𝑿
𝑬𝑿𝑬𝑻𝒊𝒎𝒆𝑨

= 𝑪𝑷𝑰𝑿
𝑪𝑷𝑰𝑨

∗ 𝑰𝑵𝑺𝑿
𝑭𝒓𝒆𝒒𝑿

∗ 𝑭𝒓𝒆𝒒𝑨
𝑰𝑵𝑺𝑨

= 𝑪𝑷𝑰𝑿
𝑪𝑷𝑰𝑨

∗ 𝑭𝒓𝒆𝒒𝑨
𝑭𝒓𝒆𝒒𝑿

∗ 𝑰𝑵𝑺𝑿
𝑰𝑵𝑺𝑨

 (3-8)

So the comparison of the CPI can be calculated as equation 3-9:

𝑪𝑷𝑰𝑿
𝑪𝑷𝑰𝑨

=
𝑬𝑿𝑬𝑻𝒊𝒎𝒆𝑿
𝑬𝑿𝑬𝑻𝒊𝒎𝒆𝑨

∗ 𝑰𝑵𝑺𝑨
𝑰𝑵𝑺𝑿

∗ 𝑭𝒓𝒆𝒒𝑿
𝑭𝒓𝒆𝒒𝑨

 (3-9)

Substitute the average value of the observations in our tests, then

𝑪𝑷𝑰𝑨
𝑪𝑷𝑰𝑿

=
𝑬𝑿𝑬𝑻𝒊𝒎𝒆𝑨
𝑬𝑿𝑬𝑻𝒊𝒎𝒆𝑿

∗ 𝑰𝑵𝑺𝑿
𝑰𝑵𝑺𝑨

∗ 𝑭𝒓𝒆𝒒𝑨
𝑭𝒓𝒆𝒒𝑿

= 𝟕𝟗.𝟕𝟒𝒔
𝟑.𝟕𝟐𝒔

∗ 𝟒𝟑𝟐𝟔𝟒𝟕𝟒𝟎𝟎𝟏𝟕
𝟖𝟖𝟏𝟒𝟏𝟖𝟔𝟑𝟐𝟎

∗ 𝟔𝟎𝟎𝑴𝑯𝒛
𝟐.𝟔𝟕𝑮𝑯𝒛

= 𝟐𝟑.𝟎𝟗 (3-10)

The result shows that the X3450 processor is 23 times faster than the Cortex A8

processor. However, considering it is a 4-core processor with the frequency 2.67 GHz which

is 4.54 times of the frequency of the Cortex A8, the CPI of X3450 processor is not too much

higher than Cortex A8’s as anticipation. One reason for this observation is that RISC

architecture extensively uses the registers. Its data processing instructions only operate with

registers, and only load/store instructions can access memory in order to improve the

efficiency of instruction execution. On the contrary, CISC architecture needs more

Absolute/Direct addressing mode, while RISC architecture has few instructions in this mode,

thus CISC CPU needs more clock cycles to calculate the effective address. Meanwhile, the

CISC instructions vary in lengths which cause the unified execution cycles. Some

instructions with too many stages lead to rises of waiting time of other idle units.

However, CPI is a very basic and primary indicator to evaluate the performance,

there are many other things need to be consider as the same time. For example, the cache

hit rate and the branch prediction miss rate. Figure 3-7 and Figure 3-8 show the

METHODOLOGY

44

comparisons of these two factors. Note that the cache hit rate here is the sum of the hit rate

of each level as equation 3-11:

𝑹𝒄𝒂𝒄𝒉𝒆𝒉𝒊𝒕 =

𝑹𝒄𝒂𝒄𝒉𝒆_𝑳𝟏_𝒉𝒊𝒕 + 𝑹𝒄𝒂𝒄𝒉𝒆_𝑳𝟏_𝒎𝒊𝒔𝒔 ∗ 𝑹𝒄𝒂𝒄𝒉𝒆_𝑳𝟐_𝒉𝒊𝒕 + ⋯+ 𝑹𝒄𝒂𝒄𝒉𝒆_𝑳𝟏_𝒎𝒊𝒔𝒔 ∗ 𝑹𝒄𝒂𝒄𝒉𝒆_𝑳-𝟐_𝒎𝒊𝒔𝒔 ∗ … ∗

𝑹𝒄𝒂𝒄𝒉𝒆_𝑳-𝒏−𝟏_𝒎𝒊𝒔𝒔 ∗ 𝑹𝒄𝒂𝒄𝒉𝒆_𝑳𝒏_𝒉𝒊𝒕 (3-11)

Figure 3-7 Comparison of the Cache Hit Rate

In the first case, both processors present quite good cache hit capabilities: the X3450

processor nearly 100% hit and Cortex A8 achieves an over 97% hit ratio only except one

with 87%. As the new generation processor with high performance, two processors use

many new techniques to improve their performances. In theory, the size of cache should be

sufficiently large in order to real improve the speed of the processor, so the ARM Cortex A8

increases its level 1 cache to 32KB(data cache)+32KB(instruction cache) and add a 265KB-

size level 2 cache to reduce the frequently delay by accessing RAM. The X3450 processor

provides unified third-level cache shared by all cores in the physical. It is 8MB, 16-way

associated and writeback. The L3 is designed to use the inclusive nature to minimize snoop

traffic between processor cores.

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01

Ca
ch

e
Hi

t R
at

e

Cache_Hit_Rate_DeskPC

Cache_Hit_Rate_A8

METHODOLOGY

45

Figure 3-8 Comparison of the Branch Miss Prediction Rate

In the second case the branch prediction ability is considered. The modern

embedded processors use pipeline to exploit parallelism and improve performance.

Conditional branches in the instruction stream degrade performance by causing pipeline

flushes. Branch prediction mechanisms can overcome this limitation by predicting the

outcome of the branch before its condition is resolved. As a result, instruction fetch is not

interrupted as often and the window of instructions over which ILP (Instruction Level

Parallelism) can be exposed increase. Improving branch prediction accuracy is important

because the new generation of embedded processors have deeper pipelines, which result in

larger mis-prediction penalties/latencies. For example, Cortex A8 is a symmetric,

superscalar pipeline for full dual-issue high performance processor with the 13-depth

pipeline while the X3450 processor, which is based the new technology of Intel’s Nehalem

architecture, its total length of pipeline measured by branch mis-prediction delay is 16

cycles81. In this dissertation, the details of the branch predictor implementation are beyond

the scope, only the prediction result and its relationship with the energy consumption are

focused. When comparing with the branch prediction capacities, these two processors

present a big difference. The prediction accuracy of Cortex A8 ranges from 80% to 99.5% or

a mis-prediction rate of 0.5% to 20% while the mis-prediction rate of X3450 ranges from 0.04%

to 8%. Several new schemes are proposed to save and restore the predictor state on

context switches in order to improve prediction accuracy82. For example, the Cortex A8

processor implements a two-level history predictor: the Branch Target Buffer (BTB) and the

Global History Buffer (GHB) which are accessed in parallel with instruction fetches. The BTB

indicates whether or not the current fetch address will return a branch instruction and its

branch target address. On a hit in the BTB a branch is predicted and the GHB is accessed.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%
Br

an
ch

 M
is-

Pr
ed

ic
tio

n
Ra

te

Desk A8

METHODOLOGY

46

The GHB keeps the direction information of branches. X3450 uses a new second-level

branch target buffer (BTB) to improve branch predictions in applications by predicting the

path of the branch and caching information used by the branch. The new renamed return

stack buffers (RSBs) implemented on this architecture store forward and return pointers

associated with call and return instructions help to avoid many common return instruction

mis-predictions83. The loss in the accuracy can be significant and depends on the predictor

type and size. Considering the more critical on-chip resources in ARM Cortex A8 than that in

the X3450, the later one behaves better in the accuracy than the former one which is the

same as the test results. However, this is a trade-off between the accuracy of the branch

predator and its penalty/latency. In the Cortex A8, it is 13 cycles while in the X3450 has a

long latency of 35-40 cycles. The minimal latency is measured if the frequency ratio between

core and un-core is unity.

All the features mentioned above lead to the different behaviors of energy

consumption. Since the high-level models conceal the details of low-level hardware design,

their features must be represented by the PMCs. As the analysis before, it shows that the

statistics in the PMC can truly present the features of the processor, which means that it is

reasonable to use PMC to construct the relationship between the hardware events and the

final energy issues.

It is worth mentioning that energy consumption estimation model based on PMCs is

also able to apply to software performance examination. Hardware is a cattier of software;

software function is ultimately reflected by the hardware activities. Low-power software

design advocate increase the instructions-level parallelism (LLP) and decrease the

processor idle cycles. Temporal locality and spatial locality are important to good program

performance, thus it is worthy concerning the temporal-spatial-friendly algorithms with the

awareness of memory access, address translation and control transfer which can be

represented by the PMCs.

3.5 Conclusion

It has been realized that the model accuracy is related to the degree of coverage of

the application behavior features by PMCs and training samples. If the PMC set cannot

monitor all the high energy-related activities, the estimation will be out of control. Similarly, if

the training samples do not cover enough application characteristics, the fitting result will be

leaded to a devious tendency. PMC-filter finally identifies a set of proper PMCs, which

means that, on one hand, those PMCs have the strong relations with the energy

consumption to abstract enough features of the applications to construct an accurate model,

METHODOLOGY

47

and on the other hand, they have as little redundancy as possible to reduce the difficulties of

modeling but maintain the accuracy of the estimate result. In addition, the k-fold cross

validation method is used to avoid the bias of sampling to further keep the prediction and the

generalization.

METHODOLOGY

48

IMPLEMENTATION

4 Implementation

IMPLEMENTATION

50

4.1 Introduction

The introduced methodology is implemented on a commercial embedded board. In

this chapter, the details of the experiment environment are first introduced. The environment

includes the hardware platform, the PMC interface implementation, the platform available

PMCs and the components of the platform. Then the model procedure is described with the

benchmarks and the measurement.

4.2 Experiments Environment

4.2.1 Hardware Platform

Our experiments are carried out on the Beagleboard which is a low-cost, fan-less

single computer with laptop-like performance and no-expense expandability 84 . Here, a

general description of the design of the BeagleBoard and its overall architecture is given

(Figure 4-1).

OMAP 3530

TFP410

DVI-D

LCD
E
X
P
A
N
S
IO
N

RESET

USER

JTAG

USB
HOST SD/MMC

SVideo

Stereo
Out

Stereo
In

REG

TPS65950
DC

LVL

RS232

SW

OTG

Figure 4-1 BeagleBoard with High-Level Block Diagram

As Figure 4-1 shown, the BeagleBorad has all the functionality of a basic computer.

The OMAP3530 includes an ARM Cortex-A8 CPU and a TMS320C64x+DSP. Most

operating systems such as Windows CE, Linux, Risc OS and Android have been ported to

this ARM CPU. The DSP core is used for accelerating video and audio encoding/decoding.

Video out is provided through separate S-Video connection and High-Definition Multimedia

Interface (HDMI). A single SD/MMC (Multi Media Card) card slot supports Secure Digital

Input Output (SDIO). The I/O device including a USB On-The-Go (OTG), a RS-232 serial

connection, a joint test action group (JTAG) connection and two stereo 3.5 mm jacks for

IMPLEMENTATION

51

audio in/out are provided. Built-in storage and memory are provided through a Package-on-

Package (PoP) chip that includes 256 MB of NAND flash memory and 256 MB of RAM.

The full Beagleboard specification can be easily divided into four categories:

computation, storage, I/O plus communication and buses. Note that here the communication

unit and the I/O unit are combined together. This is because that there are no physical

interfaces of the communication devices on this board, but the network interconnection can

be implemented through the USB port. There are several adapters including USB to

Ethernet, USB to WiFi and USB to Bluetooth on the market. These devices can easily add

Ethernet, WiFi and Bluetooth connectivity to BeagleBoard by using the USB OTG port in the

host mode. However, in this dissertation, we are trying to find out a methodology to relate

the PMCs to the energy consumption with better generalization. To simplify the work, we will

only focus on the Cortex-A8 CPU and the memory system.

4.2.1.1 Cortex-A8 CPU

ARM architecture is widely used in many embedded system design. Due to the

energy-efficient characteristics, ARM processor is very applicable in the field of mobile

communications, consistent with its primary design goal of the low-cost, high-performance

and low power consumption characteristics. The ARM Cortex™-A8 processor has the key

features list in the following Table 4-173:

Feature Comment

ARM version 7 ISA Based on the ARMv7 architecture with the standard ARM instruction set +
Thumb-2, Jazelle RCT accelerator and media extensions.

L1 Icache and Dcache 16KB, 4way, 64-byte cache line and 128-bit interface.

L2 Cache The L2 cache and cache controller are embedded in the ARM core.

TLB Fully associative and separate ITLB with 32 entries and DTLB with 32
entries.

Branch target address
cache 512 entries

Enhanced Memory
Management Unit

Mapping sizes are 4KB, 64KB, 1MB and 16MB. ARM MMU adds extended
physical address ranges.

Table 4-1 ARM Core Key Features

4.2.1.2 Storage Hierarchy

The Micron PoP (Package on Package) memory is used on the Rev C4 BeagleBoard

and located on top of the processor. It provides a 256MB 16-bit NAND and a 256 MB 32-bit

IMPLEMENTATION

52

MDDR SDRAM. There is no other memory devices on the BeagleBoard but additional

memory can be added by SD/MMC slot , USB Thumb driver or hard driver if there is relevant

drivers are supported in the OS. Beagleboard has a memory hierarchy with several layers.

Each layer is a different type of memory with its own speeds, sizes and usages. Some layers

can be physically integrated on the processer such as the registers and the level 1 cache.

Other types of memory can be located outside of the processor such as ROM, lever 2 cache

and the main memory. The secondary/tertiary memory is the memory that connected to the

board such as floppy drivers or MMC.

TMS 320 DM 64x+ DSP
32K/32K L1 Cache
48K L1 Data RAM

64K L2 Cache
32K L2 RAM
16K L2 ROM

Hardware accelerators

ARM Cortex-A8 TM Core
16K/16K L1 Cache

L2 Cache
256K

Async Async

64 32 64 64

Graphic
Accelerator

32-
Channel

DMA

Dualoutput
3-layer
Display

Processor

HS USB
Host

HS USB
OTG

Serial Parallel TV

AMP

LCD Panel

CVBS or S-Video

L3 interconnect network Hierarchical, performance and power driven

64 32 64 64

32 32 32 3232 32

L4 interconnect

32

Peripherals
2xUART

I2C
5xMcBSP
3xMcSPI
6xGPIO
MS-PRO

MMC/SDIO
12xGPTimers

2xWDT 32K Synctimer
...

System Control
PRCM

2xSmartReflex TM
Control Module

External
Peripherals
Interfaces

\

Emulation
Debug: SDTI,WT,JTAG

…...

32

D2D
interface

64K
On-chip

RAM

112K
On-chip

ROM

SDRAM
Memory

Scheduler

SDRAM
Memory

Controller

General
Purpose
Memory

Controller

NAND/NOR
Flash,
SRAM

Exernal and Stacked
Memories

32 32 32 64 32

Figure 4-2 OMAP3530 Block Diagram84

From Figure 4-2 we can see the memory hierarchy of OMAP3530 divided into four

layers. First layer is the level 1 cache which includes data cache and instruction cache. In

this level, data and instruction are separated. It is internal to the CPUs. It concerns data

exchange with the internal Level 1 cache memory subsystem, and it is the closest memory

to the microprocessor unit (MPU) core and the IVA2.2 core. Second layer is the level 2

cache which is shared by both data and instruction. Level 2 Cache can be accessed by both

DSP subsystem and the MPU subsystem. The third layer includes on-chip RAM, on-chip

ROM, SDRAM and NAND flash while the forth layer is the external memories such as SD

card. The third and the forth layers also include the according interconnections and the

controllers. These two layers enable communication among the modules and subsystems in

the device. Layer 3 handles many types of data transfers, especially exchanges with system-

on-chip/external memories. It transfers data with a maximum width of 64 bits from the

IMPLEMENTATION

53

initiator to the target. Layer 4 is composed with the different peripheral interconnects and

handles data transfers to peripherals. In addition, it can send an acknowledge signal to

change the peripherals into an idle state.

4.2.2 Platform PMCs

4.2.2.1 Platform Available PMCs

There are four PMCs in the Cortex A8 processor. These PMCs can be accessed in

system control coprocessor (CP15) space. The purpose of CP15 is to control and provide

status information for the functions implemented in the processor. Its main functions of the

system include the overall system control and configuration, the cache configuration and

management, the memory management unit configuration and management, the preloading

engine for L2 cache and the system performance monitoring, which is one function we are

interested in.

In the dissertation, PMCs are configured to monitor and count system events such as

cache misses, TLB misses, pipeline stalls and other related features to enable system

developers to profile the energy-related behaviors of the processor when it executes

different applications. There are many situations where PMCs integrated into the core are

valuable for applications and for application development. Moreover, there is also the

possibility to enable interaction with external monitoring. An implementation might consider

additional enhancements such as:

 Provision of a set of events which can be exported onto the system buses.

However, for very high frequency operation, this might cause an unacceptable

timing requirement. In addition, the different clock frequency between the core

and the buses (or other subsystems) may become a problem. A suitable

approach might be to edge-detect changes in the signals and to use those

changes to increase a counter.

 Provision of the memory-mapped access to the PMCs to monitor and detect

the memory performance, therefore, there is a more effective and accurate

method to know how good the spatial locality is.

 Provision of implementation specific events. Processor architecture usually

defines a set of events to be used, however, there is always a large space

reserved for implementation defined events. There is no requirement to

implement full set of events.

IMPLEMENTATION

54

In the Cortex-A8 architecture, the PMC registers are mapped into part of the CP15

register. Figure 4-3 shows the recommended performance monitor registers encodings of

the register C9, which is a register in the system used to control coprocessor CP15 and the

reserved encodings for implementation defined performance monitors.

CRn Opcode_1 CRm Opcode_2

C9 0 C12 0 PMCR, Performance Monitor Control Register

1

2

3

4

5

0C13

1

2

0C14

1

2

C15 {0-7}

Write-OnlyRead/Write

╪

╪Read-Only Access depends
on the operation

PMCNTENSET, Count Enable Set Register

PMCNTENCLR, Count Enable Clear Register

PMOVSR, Overflow Flag Status Register

PMSWINC, Software Increment Register

PMSELR, Event Counter Selection Register

PMCCNTR, Cycle Count Register

PMXEVTYPER, Event Type Select Register

PMXEVCNTR, Event Count Register

PMUSERENR, User Enable Register

PMINTENSET, Interrupt Enable Set Register

PMINTENCLR, Interrupt Enable Clear Register

Reserved for IMPLEMENTATION DEFINED
performance monitors

Figure 4-3 Recommended CP15 Performance Monitors73

Here, the CRn is the destination coprocessor register, Opcode_1 is a coprocessor-

specific opcode, CRm is an additional destination coprocessor register, and the Opcode_2 is

a coprocessor-specific opcode. If omitted, Opcode_2 is assumed to be 0.

The purpose of the PMNC (Performance Monitor Control) Register is to control the

operation of the four PMCs and the cycle counter register. Enabling or disabling any of the

PMCs, the CNTENSET/CNTENCLR register are needed. The enable-bit in both registers

that reads as 0 indicates the counter is disabled while reads as 1 indicates the enabled

counter. When writing this register, the enable-bit written into CNTENSET with the value of

0 is ignored while written with the value of 1 indicates to enable the counter. Similarly, written

into CNTENCLR with the value of 0 cannot update the counter state while written with the

value of 1 clears the enable-bit to 0 to disable the counter. The purpose of the PMC

PMOVSR (Overflow flag Status Register) is to enable or disable any of the PMCs to produce

the overflow. When read this PMC, any overflow flag of value 0 indicates the counter has not

overflowed while a value of 1 indicates the counter has overflowed. When write into this

PMC, any overflow flag written with a value of 0 is ignored to keep the current state while the

value of 1 clears the counter overflag to 0. The SWINCR (Software Increment) register is

IMPLEMENTATION

55

used to increment the count of a corresponding PMC. When write into the specific bit of this

PMC, the value of 1 increments the specified counter while the value of 0 does nothing. To

select one PMC, writing into the last five bits of the PMNXSEL (Performance Counter

Selection) register with the corresponding number. The CCNT (Cycle Count) register is to

count the number of clock cycles since the PMC was reset. The Cortex A-8 processor has

four registers (PMCNT0 – PMCNT3) to count instances of an event selected by the PMC

EVTSEL. Each PMCNT monitor an event which is selected by writing into the EVTSEL

(Event Selection) register with the according value. Note that accessing to the PMCs in user

space need to enable the user mode of the PMCs. The USEREN (User Enable) register is

used to control this configuration. The purpose of the PMC INTENS/ INTENC (Interrupt

Enable Set/ Interrupt Enable Clear) is to determine if any of the PMCs, PMCNT0-PMCNT3

and CCNT, generates an interrupt on overflow. When reading this PMC, if the overflow-

enable bit is read as 0, it indicates the interrupt overflow flag is disabled. On the contrary, the

bit reading as 1 indicates the interrupt overflow flag is enabled. When write into this PMC,

any interrupt overflow enable bit written with a value of 0 is ignored while any interrupt

overflow enable bit written with a value of 1 sets/clears the interrupt overflow enable bit.

These PMCs can be accessed by reading or writing CP15 with the MRC and MCR

instructions, respectively. For example, to access the PMNC register, read or write CP15

with:

MRC p15, 0, <Rd>, c9, c12, 0; and

MCR p15, 0, <Rd>, c9, c12, 0;

“MRC” instruction transfers a co-processor register to an ARM register with the

format:

MRC <co-pro>, <op>, <ARM reg>, <co-pro reg>, <co-pro reg2>, <op2>

Here <ARM reg> performances as the destination register, < co-pro reg > and <co-

pro reg2> are two source registers. The < co-pro reg> register is written to <ARM reg> by

using operation <op> while < co-pro reg2 > register is written by using operation2.

“MCR” instruction has the same format but it use to transfers an ARM register to a

co-processor register.

The basic use of the PMCs is like this:

IMPLEMENTATION

56

The PMC PMNC controls the operation of the PMCs, with one register used to set up

each counter. They specify the events to be counted, how they should be counted and the

privilege levels at which counting should take place. The four PMCNTx contain the event

counts for the selected events being counted. The MRC instruction can be used by

programs or procedure running at any privilege level to read these counters. One PMC is

started by writing valid setup information in the PMC CNTENS and PMC EVTSEL. The

counters can be stopped by clearing the enable counters flag or by clearing all the bits in the

CNTENC. The Cortex A8 processor provides the option of generating a local APIC interrupt

when a PMC overflows. This mechanism is enabled by setting the interrupt enable flag in

PMC INTENS. The primary use of this option is for statistical performance sampling. An

event monitor application utility or another application program can read the information

collected for analysis of the performance of the profiled application.

4.2.2.2 PMCs Interface Implementation

Although PMCs have been widely implemented in most modern processors, the

direct accesses are limited to the privileged modes, which always need a specific driver or

interface for user space accessing. PMCs can be accessed from the user space by using

several mature high-level interfaces. This means that users can obtain the fine grain through

their own applications without too much interrupt of the operating system. Moreover, many

applications written in a high-level language can run on multiple platforms. Therefore, the

interface implementations of these proprietary counters also need to be portable. However,

there are only a few APIs that allow access to these counters, and most of them are poorly

documented, unstable, or unavailable. In addition, performance metrics may have different

definitions and different programming interfaces on different platforms. Multiplatform

interface such as PAPI can mask some of the differences among platforms. PAPI is the

abbreviation of Performance Application Programming Interface, which is a specification of a

cross-platform interface to hardware PMC on modern microprocessors [63]. This dissertation

uses PAPI as the interface of PMCs.

(a)

PAPI can provide a set of API’s for accessing PMCs from applications. A

considerable characteristic of PAPI is that it includes both high-level and low-level sets of

interfaces for accessing PMCs. The high-level interface includes start, stop and read sets of

PMCs, and other simple operations which can obtain accurate measurement of applications.

The fully programmable low-level interface provides the possibility to control the counters.

PAPI has been implemented on a number of Linux platforms. The latest release now builds

PAPI’s Characteristic

IMPLEMENTATION

57

for using the libpfm4 interface by default and provides new supports for AMD Bobcat, Intel

SandyBridge and ARM Cortex A9 and A8 which is the MCU in our embedded system.

Performance Analysis Tool
Feedback Directed Compiler
Adaptive Run-time Library
Application Measurement & Timing

PAPI Low Level
PAPI

High LevelMultiplex Overflow

Timer Interrupt

PAPI Machine Dependent Substrate

Kernel Extension

Operating System

Performance Counter Hardware

P
or
ta
bl
e
La
ye
r

M
ac
hi
ne
 S
pe
ci
fic

 L
ay
er

Figure 4-4 PAPI Architecture

The PAPI architecture uses a layered approach including portable and machine-

dependent layers, as shown in Figure 4-463. The highest layer is a portable one consists of

the high and low level PAPI interfaces. This layer is completely machine independent and

requires little porting effort. It contains all of the API functions as well as numerous utility

functions such as perform state handling, memory management, data structure manipulation

and thread safety guarantee. In addition, this layer provides advanced functionalities such as

event profiling and overflows handling which is not always provided by the operating system.

The highest layer calls the substrate, which is the internal PAPI layer. It handles the

machine-dependent specifics of accessing the counters. The substrate uses appropriate

methods to facilitate counter access. The machine specific layer defines and exports a

machine independent interface to machine- dependent functions and data structures. These

functions are defined in the substrate layer, which uses kernel extensions, OS calls, or

assembly language to access the PMCs. PAPI chooses the most efficient and flexible one of

the three methods if they are all available. Moreover, most modern microprocessors have a

very limited number of events that can be counted simultaneously, thus only a few events

can be measured at once. This limitation severely restricts the amount of performance

information that the user can gather during a single run. It is not a good solution to repeat

large applications which can run days or weeks several times to gather enough information

IMPLEMENTATION

58

for energy profiling. This limitation can be overcome by multiplexing the counter hardware.

Multiplexing usage provides the users with the view that many more hardware events are

countable simultaneously. Some platforms may support multiplexing of a counter by

subdividing the usage of the PMCs over time, which gives the user the illusion of a larger

number of registers. On the ARM platforms, PAPI implements the multiplexing by swapping

events in and out of the counters based on a timer interrupt. It provides the possibility of

multiplexing implementation through the interval timer if the operating system or kernel-level

PMC interface does not support multiplexing. It is unavoidable to cause a small amount of

overhead and adverse effects of the accuracy; however, the multiplexing method has been

proven useful in commercial kernel level PMC interfaces.

One note is that there are two kinds of events PAPI supports. One are “preset”

events that try to abstract away all hardware differences. Things like “PAPI_TOT_CYC”

which should give you total cycles no matter where the user runs it: Intel, AMD, ARM, etc.

Then PAPI has another idea of “native events” which are the underlying events. These will

differ from machine to machine. So a native event such as “RETIRED_INSTRUCTIONS” on

an AMD machine will not work on Intel or ARM, even though the preset event

“PAPI_TOT_INS” will. The PAPI library names a number of pre-defined or preset events.

This set is a collection of events typically found in many CPUs that provide performance

counters. Usually, a PAPI preset event name is mapped onto one of the countable native

events on each hardware platform, but in rare cases, to maintain the generality, a preset

event is calculated by more than one native event.

(b)

PAPI can be considered as a black-box that masks the details of the variance of

different processor architectures. PAPI tries to provide a uniform environment across

platform. It implements some features that the hardware does not support in software,

therefore the interface of PAPI remains constant, but how it is implemented can vary. So the

usage of the PMCs through PAPI is portable and machine-dependent. PAPI supports two

PMC drivers, “perfctr” and “perf_event”, with the same event names on each, so it does not

matter what underlying driver used.

PAPI’s Implementation of PMC Driver

These PMC drivers work as a kernel patch on Linux, but one thing need to pay

attention is that one PMC driver may not support all the processors. For the processors in

the ARM family, the following Table 4-2 lists the supports of PMC driver in detail.

IMPLEMENTATION

59

Name Family Perf_event Perfctr Libpfm3 Libpfm4 PAPI

XScale 1 ARMv5 2.6.38 Yes No No No

XScale 2 ARMv5 2.6.38 Yes No No No

N/A* ARMv6 2.6.34 No No No No

Cortex A5 ARMv7 3.1 No No No No

Cortex A8 ARMv7 2.6.34 No No Yes Yes

Cortex A9 ARMv7 2.6.34 No No Yes Yes

Cortex A15 ARMv7 3.1 No No Soon Soon

Table 4-2 Supports of PMC Drivers on ARM Family (Last Update 6th 2011)85

The “perf_event” column tells which Linux kernel first supported the chip using the

perf_event subsystem. The “perfctr” column says whether the current “perfctr” patch

supports this chip. The “libpfm3” and “libpfm4” columns say whether those respective

libraries support the events for the chip. The “PAPI” column says whether the current version

of PAPI supports a processor. PAPI has the possibility to choose which PMC driver to use.

Although “perfctr” is the one most commonly used, unfortunately, it does not support the

Cortex A8, so for this processor, PAPI is implemented with the perf_event driver with Linux

kernel 2.6.34 or later version.

The PMC “perf_events” driver was first merged into the Linux kernel in version 2.6.31.

The driver accessed PMCs through special file descriptors. Each virtual counter has its own

file descriptor and is enabled or disabled through ioctl or prctl. When a PMC is disabled, it

does not count but maintain its previous count value. PMCs work in two ways: counting and

sampling. A “counting” PMC is one that is used for counting the number of a specific event

that occurs. The application needs to read these counters to obtain their values. A read

operation on a PMC returns the current value of the counter as an unsigned 64-bit integer.

“Perf_event” was specifically designed to hide which events end up in which counters. In

general, if the multiplexing is not used, perf_event should be almost consistent about which

PMC gets which event. Sampling PMCs periodically interrupt the processor to collect the

execution information. In this dissertation, we use PMCs as the counting way.

* The name is not provided in the reference.

IMPLEMENTATION

60

Note that the “libpfm4” is not a driver. It is a library for taking event names and

converting them to values used by the various drivers. It is used by PAPI to translate the

event names for use by the perf_event driver. This means that “libpfm4” only provides some

assistant methods for PMC driver using. Part of the addition is that there is another driver,

“perfmon2”, which PAPI also supports as an external patch that needed to be applied for

using. It was written by the same person who wrote libpfm3 and libpfm4, however, libpfm4

can be used independent without this driver 72.

In our case, we choose to use the Linux kernel 2.6.34. In order to use the PMCs, we

need to do some specific configuration when kernel configures (Figure 4-5).

Figure 4-5 Enable Kernel Support for PMCs

The Linux Performance events sub-system provides an abstraction of these software

and hardware events by using interface tools. The first step is to set the

"CONFIG_PERF_EVENTS" during the kernel configuration to enable the kernel supports for

various performance events.

Figure 4-6 Enable Debugging Hardware

IMPLEMENTATION

61

The second step (Figure 4-6) is to include the OMAP3 debugging peripherals to

enable the according hardware on OMAP3530.

(c)

There are two ways to use the functions provided by PAPI. The main and simplest

approach of PAPI to event counting is the caliper mode which reads the PMCs before and

after a performance-critical region of code. Another approach is the performance counter

sampling. In this method, one or several specific are configured to have their sampling

thresholds. One a PMC's count value exceed its threshold, it causes an interrupt to record all

the PMCs' values and reset all the PMCs. One application could be interrupted several times.

Since we will use some home-made functions won’t run in a long time, we can simply insert

the PMC start function before execute the application and the PMC stop as well as the PMC

read functions once the application finishes.

PAPI’s Usage

Figure 4-7 shows the producer to use PAPI.

 Record the time
before executing
the benchmark

(Timeb)

PAPI_get_real_usec;

Initialize PAPI PAPI_library_init;
PAPI_get_hardware_info;

Configure PAPI

 PAPI_multiplex_init;
PAPI_create_eventset;
PAPI_set_multiplex;
PAPI_overflow;
PAPI_add_event;

Start PAPI

PAPI_start;

Benckmark
Execution

Stop PAPI

Record the time
after executing the
benchmark (Timea)

Data Record PAPI_list_events;
fprintf(PAPI_values);

PAPI_stop;

PAPI_get_real_usec;

Figure 4-7 Procedure of Using PAPI

The main PAPI functions we use are:

IMPLEMENTATION

62

 PAPI_library_init(int version): Initialize the PAPI library;

 PAPI_get_hardware_info(void): To get information about the system

hardware. Such as the number of CPUs in the entire system, cupid family,

PAPI memory hierarchy description and cycle time of this CPU.

 PAPI_multiplex_init(void); To initialize multiplex support in the PAPI library.

 PAPI_create_eventset(int *EventSet): To create a new empty PAPI event set.

 PAPI_set_multiplex (int EventSet): Convert the already existed event set to a

multiplexed event set;

 PAPI_get_real_usec(void): Return the total number of microseconds since

some arbitrary starting point. This function is inserted before and after one

benchmark to get its the execution time;

 PAPI_overflow(int EventSet, int EventCode, int threshold, int flags,

PAPI_overflow_handler_t handler): Set up an event to begin registering

overflows;

 Note that currently, PAPI only supports thread level monitoring. That means

that PAPI will not inherit the counting information or values from the parent

threads. This feature is helpful to distinguish individual thread, it does not

confuse the parent thread with the child thread.

 PAPI_start (int EventSet): Start counting hardware events in an event set;

 PAPI_stop (int EventSet, long long *values): Stop counting hardware events

in an event set and return current events;

The accuracy of the model depends on the features of the application abstract by the

energy-related events. Thus there is no reason to delete any of the events at the beginning.

The event set is filled up with all the available non-derived events in the experiment platform.

The following functions are used:

 PAPI_get_event_info (int EventCode, PAPI_event_info_t *info): Get the name

and description for a given preset or native event code;

IMPLEMENTATION

63

 PAPI_add_event(int EventSet, int Event): Add single PAPI preset or native

hardware event to an event set. Not that the native/preset events may be the

derived events, but we only add those non-derived events;

 PAPI_enum_event (int * EventCode, int modifier): Return the event code for

the next available present or native event.

Here two functions are used to label the data get from PAPI:

 PAPI_list_events(int EventSet, int * Events, int * number): Decomposes an

event set into the hardware events it contains;

 PAPI_event_code_to_name(int EventCode, char * EventName): To translate

a 32-bit integer PAPI event code into an ASCII PAPI event name. Either

preset event codes or native event codes can be passed to this routine.

Native event codes and names differ from platform to platform.

The simple “switch-case” pattern is used to execute a benchmark each time as

shown in the Figure 4-8. The name of the benchmark is passed through the command line

arguments.

IMPLEMENTATION

64

Figure 4-8 “Switch-case” Pattern to Execute a Benchmark

switch(funcN)
{
 case(Dir_oper_Int_test): do_flops_M(Dir_oper_Int_test,atoi(argv[3])); break;
 case(Dir_oper_Flo_test): do_flops_M(Dir_oper_Flo_test, atoi(argv[3])); break;
 case(do_conv): for(i=0; i<atoi(argv[3]); i++) do_conver (); break;
 case(Dir_oper_Flo): do_flops_M(Dir_oper_Flo,atoi(argv[3])); break;
 case(Dir_oper_Int): do_flops_M(Dir_oper_Int, atoi(argv[3])); break;
 case(do_sort): sort(atoi(argv[3]),argv[4]); break;
 case(MM_Miss_oper): do_flops_M(MM_Miss_oper,atoi(argv[3])); break;
 case(do_misse): do_misses(atoi(argv[3]),atoi(argv[4])); break;
 case(do_Slgq): do_SLGQ(atoi(argv[3]),(double)atof(argv[4]),

(double)atof(argv[5])); break;
 case(do_Slq3): do_SLQ3(atoi(argv[3]),atoi(argv[4]),
 (double)atof(argv[5]),(double)atof(argv[6])); break;
 case(do_sqrt): do_usqrt (atoi(argv[3])); break;
 case(do_Greedy): do_greedy(atoi(argv[3]),(double)atof(argv[4])); break;
 case(do_Rank): do_RANK(atoi(argv[3]),atoi(argv[4])); break;
 case(do_Dhrt): do_DHRT((double)atof(argv[3]),(double)atof(argv[4]),
 (double)atof(argv[5]),atoi(argv[6])); break;
 case(do_Queen): do_queen(atoi(argv[3])); break;
 case(do_Lgr): do_LGR(atoi(argv[3]),atoi(argv[4]),

(double)atof(argv[5])); break;
 case(do_Pqs): do_PQS(atoi(argv[3]),atoi(argv[4]),
 (double)atof(argv[5]),(double)atof(argv[6])); break;
 case(do_Lgr3): do_LGR3(atoi(argv[3]),atoi(argv[4]),
 (double)atof(argv[5]),(double)atof(argv[6])); break;
 case(do_Spl): do_SPL(atoi(argv[3]),atoi(argv[4]),atoi(argv[5]),
 (double)atof(argv[6]),(double)atof(argv[7])); break;
 case(do_Hmt): do_HMT(atoi(argv[3]),atoi(argv[4]),
 (double)atof(argv[5]),(double)atof(argv[6])); break;
 case(do_Pir1): do_PIR1(atoi(argv[3]),atoi(argv[4])); break;
 case(do_solcubic): do_solcecubic((double)atof(argv[3]),(double)atof(argv[4]),
 (double)atof(argv[5]),(double)atof(argv[6])); break;
 case(do_Chir): do_CHIR(atoi(argv[3]),atoi(argv[4])); break;
 case(do_lis): do_LIS(atoi(argv[3])); break;
 case(do_Atk): do_ATK(atoi(argv[3]),atoi(argv[4]),
 (double)atof(argv[5]),(double)atof(argv[6])); break;
 case(MM_Miss_oper_test): do_flops_M(MM_Miss_oper_test, atoi(argv[3])); break;
 case(do_LlUu): do_LLUU(atoi(argv[3])); break;
 case(MM_oper): do_flops_M(MM_oper, atoi(argv[3])); break;
 case(MM_Miss_oper2): do_flops_M(MM_Miss_oper2, atoi(argv[3]));break;
 case(MM_oper_test): do_flops_M(MM_oper_test,atoi(argv[3])); break;
 default: do_flops_M (Dir_oper_Int, atoi(argv[3]));
}

IMPLEMENTATION

65

The other modifications have been done in the makefile. In software development

under the Linux, Make is a tool that automatically builds and maintains the programs and

libraries from source code by reading files called makefiles which specify how to derive the

target program. Compiling the source code files can be tedious, especially when you want to

include several source files and have to type the compiling command every time you want to

do it. Makefiles are special format files the together with the make utility will help you to

automatically build and manage your projects. How to write makefile is beyond the scope of

this thesis, here we only introduce some modifications. The “multiplex2.c” is the main

function to run one benchmark every execution by calling those benchmarks as the sub-

functions. So we need to identify all the object files of these benchmarks (Figure 4-9), add

them as the target when you want to compile the multiplex2.c file (Figure 4-10), and indicate

the path to find the source code of these benchmarks (Figure 4-11).

Figure 4-9 Identify all the Object Files of Benchmarks

Figure 4-10 Add Compile Targets

The makefile defines the path to the include file and lib directories, and places the

object files in an obj subdirectory within the source directory. Here the items, which are in

form of “$(*)”, are the defined variables which are in the name of compiler parameters. The

other items begin with “-l” stand for the local library, whose name are given by the words

followed “-l”. “-lm” is the math library to support some complex math functions such as pow(),

sqrt(), floor(), ect. “-lpthread” is a library that support the multi-threads. Note that there is an

item named “$(PAPILIB)”, this is the path of the library of PAPI. Since it is not a local library,

multiplex2: multiplex2.c $(NUTILOBJS) $(PAPILIB)

 $(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) multiplex2.c $(NUTILOBJS) $(PAPILIB)
$(LDFLAGS) -lm -lpthread -o $@

NUTILOBJS= ../testlib/do_test.o ../testlib/test_utils.o ../testlib/dummy.o ../testlib/do_sorts.o ../testlib/do_arra
yMulti.o ../testlib/do_FFT.o ../testlib/do_greedy.o ../testlib/do_Huffman.o ../testlib/do_LIS.o ../testlib/do_qu
een.o ../testlib/do_root.o ../testlib/basicmath.o ../testlib/do_dijkstra.o ../testlib/do_patricia.o ../testlib/do_TcM
ul.o ../testlib/do_MatrixRInv.o ../testlib/do_SSgi.o ../testlib/do_SDet.o ../testlib/do_RANK.o ../testlib/do_LL
UU.o ../testlib/do_MAQR.o ../testlib/do_MUAV.o ../testlib/do_GINV.o ../testlib/do_GSDL.o ../testlib/do_G
RAD.o ../testlib/do_GMQR.o ../testlib/do_GMIV.o ../testlib/do_GAUS.o ../testlib/do_BINT.o ../testlib/do_G
JDN.o ../testlib/do_CGAS.o ../testlib/do_CJDN.o ../testlib/do_DHRT.o ../testlib/do_NEWT.o ../testlib/do_A
TKN.o ../testlib/do_PQRT.o ../testlib/do_HHBG.o ../testlib/do_HHQR.o ../testlib/do_QRRT.o ../testlib/do_S
RRT.o ../testlib/do_LGR.o ../testlib/do_LGR3.o ../testlib/do_PQS.o ../testlib/do_HMT.o ../testlib/do_ATK.o
../testlib/do_SPL.o ../testlib/do_SPL3.o ../testlib/do_SLQ3.o ../testlib/do_SLGQ.o ../testlib/do_PIR1.o ../testl
ib/do_CHIR.o ../testlib/inputOutput.o

#../testlib/do_dhry1.o ../testlib/cpuida.o ../testlib/cpuidc.o

IMPLEMENTATION

66

it is required to identify the path manually; otherwise the compiler does not know where to

find this library.

Figure 4-11 Indicate Source Code Path

../testlib/test_utils.o: ../testlib/test_utils.c ../testlib/papi_test.h ../testlib/test_utils.h
cd ../testlib && $(MAKE)

../testlib/do_loops.o: ../testlib/do_loops.c ../testlib/papi_test.h ../testlib/test_utils.h
cd ../testlib && $(MAKE)

../testlib/do_test.o: ../testlib/do_test.c ../testlib/papi_test.h ../testlib/test_utils.h
cd ../testlib && $(MAKE)

../testlib/dummy.o: ../testlib/dummy.c
cd ../testlib && $(MAKE)

../testlib/basicmath.o: ../testlib/basicmath.c ../testlib/papi_test.h ../testlib/snipmath.h ../testlib/sniptype.h ../testlib/round.h ../testlib/pi.h
cd ../testlib && $(MAKE)

../testlib/do_RANK.o:../testlib/do_RANK.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_LLUU.o:../testlib/do_LLUU.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_ATKN.o:../testlib/do_ATKN.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_PQRT.o:../testlib/do_PQRT.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_LGR.o:../testlib/do_LGR.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_PQS.o:../testlib/do_PQS.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_HMT.o:../testlib/do_HMT.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_ATK.o:../testlib/do_ATK.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_SPL.o:../testlib/do_SPL.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_SPL3.o:../testlib/do_SPL3.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_SLQ3.o:../testlib/do_SLQ3.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_PIR1.o:../testlib/do_PIR1.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_CHIR.o:../testlib/do_CHIR.c ../testlib/papi_test.h
cd ../testlib && $(MAKE)

../testlib/do_sorts.o: ../testlib/do_sorts.c ../testlib/papi_test.h ../testlib/test_utils.h
cd ../testlib && $(MAKE)

../testlib/do_greedy.o: ../testlib/do_greedy.c ../testlib/papi_test.h ../testlib/test_utils.h
cd ../testlib && $(MAKE)

../testlib/do_LIS.o: ../testlib/do_LIS.c ../testlib/papi_test.h ../testlib/test_utils.h
cd ../testlib && $(MAKE)

../testlib/do_queen.o: ../testlib/do_queen.c ../testlib/papi_test.h ../testlib/test_utils.h
 cd ../testlib && $(MAKE)

IMPLEMENTATION

67

Similar, all the object files of the benchmarks are generated and managed by another

makefile which manage all the benchmarks. Due to the various functions of benchmarks,

each benchmark may need different compiler or compiler options (Figure 4-12).

Figure 4-12 Compiler Options

PAPI interfaces deal with a group of PMCs which are configured to monitor the

according system events. These events are called EventSets. Combine more than one

do_LLUU.o: do_LLUU.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_LLUU.c -lm

do_ATKN.o: do_ATKN.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_ATKN.c -lm

do_PQRT.o: do_PQRT.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_PQRT.c -lm

do_LGR.o: do_LGR.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_LGR.c -lm

do_LGR3.o: do_LGR3.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_LGR3.c -lm

do_PQS.o: do_PQS.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_PQS.c -lm

do_HMT.o: do_HMT.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_HMT.c -lm

do_ATK.o: do_ATK.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_ATK.c -lm

do_SPL.o: do_SPL.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_SPL.c -lm

do_SPL3.o: do_SPL3.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_SPL3.c -lm

do_SLQ3.o: do_SLQ3.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_SLQ3.c -lm

do_SLGQ.o: do_SLGQ.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_SLGQ.c -lm

do_PIR1.o: do_PIR1.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_PIR1.c -lm

do_CHIR.o: do_CHIR.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_CHIR.c -lm

do_test.o: do_test.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_test.c -lm

do_sorts.o: do_sorts.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_sorts.c -lm

do_arrayMulti.o: do_arrayMulti.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_arrayMulti.c -lm

do_LIS.o: do_LIS.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_LIS.c -lm

do_queen.o: do_queen.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_queen.c -lm

do_root.o: do_root.c papi_test.h test_utils.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c do_root.c -lm

basicmath.o: basicmath.c papi_test.h snipmath.h sniptype.h round.h pi.h
$(CC) $(INCLUDE) $(CFLAGS) $(TOPTFLAGS) -c basicmath.c -lm

IMPLEMENTATION

68

events can reflect the system behavior or the application features. For example, relating the

level 1 cache misses to the accesses can indicate locality performance of memory

management. In addition, PAPI can automatically fill the event set with as many non-derived

events as possible.

(d)

The following

Platform Available PMCs

Table 4-3 lists the events that can be counted with the PMCs and read

with the RDPMC instruction for the Cortex A8 processor. All of these performance events

are model specific for this processor and may not available in other processors.

PAPI_EVENT EVENT Measured

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_ICM Level 1 instruction cache misses

PAPI_L2_TCM Level 2 total cache misses

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TLB_IM Instruction translation lookaside buffer misses

PAPI_STL_ICY Cycles with no instruction Issue

PAPI_BR_TKN Conditional branch instructions taken

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_TOT_INS Total instructions executed

PAPI_LD_INS Load instructions executed

PAPI_SR_INS Store instructions executed

PAPI_BR_INS Total branch instructions executed

PAPI_TOT_CYC Total cycles

PAPI_L1_DCA Level 1 data cache access

PAPI_L1_ICA Level 1 instruction cache accesses

PAPI_L2_TCA Level 2 total cache accesses

Table 4-3 Events Measured by setting the environment variable PAPI_EVENT

Note that the events listed here are native events which can be obtained directly from

a single event. Derived events that use more than one event at same time could intensify the

limitation of the simultaneous PMCs number. Considering with the overhead of multiplex and

complexity, we only use the native events.

IMPLEMENTATION

69

4.2.3 Components

Based on the Beagleborad architecture which has been discussed before, to simplify

the work, the energy estimation in this dissertation focuses on two components: on one hand,

the processor system and, on the other hand, the outer-MPU hierarchical memory system.

The rationale for the component division is that they both are two indispensable parts in any

system consumes large proportion of the whole energy and encompasses the highest

complexity. Note that the processor model also consists of the cache memories. This

partition mainly because that cache is a MPU exclusive device which has high relationship

with MUP activities.

A simple method to determine the weights of the two model components is

expressed in equation 4-1. The method considers the memory system weight as a

percentage of the STORE and LOAD instructions compute with the bottom level cache

memory miss rate, while the processor system weight is its complementary. The STORE

and LOAD instructions are access operations that occur in any level of the storage hierarchy,

since there is no direct PMC to monitor and count the storage components except the cache

memory, thus, bottom level cache miss rate is used to presume the possibility of the main

memory or MMC card access.

𝝎𝑺 = 𝑷𝑺𝑹+𝑳𝑫 × 𝑳𝟐_𝑴𝑰𝑺𝑺_𝑹𝑨𝑻𝑬 = 𝑺𝑹_𝑰𝑵𝑺+𝑳𝑫_𝑰𝑵𝑺
𝑻𝑶𝑻_𝑰𝑵𝑺

 × 𝑳𝟐_𝑴𝑰𝑺𝑺
𝐋𝟐_𝑨𝑪𝑪

,𝝎𝒑 = 𝟏 −𝝎𝒔 (4-1)

4.3 Modeling

The modeling process involves several steps:

 To measure subsystem-level power using subset of workloads.

 To automatically choice PMCs from all the PMCs which are supplied by a

specific platform. A proper PMC set can avoid the insufficient accuracy

caused by a pool of candidate PMCs;

 To confirm the coefficients of PMCs. The remained PMCs are the most

relevant ones to the subsystem energy consumption; however, the training

process also affects the model accuracy. Training the model only once may

not achieve the sufficient accuracy; an appropriate iteration is needed to avoid

the bias. The k-fold cross validation method is employed to tune the final

model.

IMPLEMENTATION

70

 To compare modeled versus measured energy of each benchmark by the

related error to assess the accuracy.

In this sub-section, two points, the benchmarks and the measurement are discussed.

4.3.1 Benchmarks

Several C-written simple applications are used as the benchmarks. They includes

numerical computations such as matrix inversion, rank, decomposition, eigenvalue or

eigenvector calculation, linear/nonlinear algebraic equation solving as well as interpolation

and approximation methods, along with some classical algorithms, sorting, eight queen

problem and greedy algorithm, for instance. These programs are basic algorithms in science

and engineering computing or software design. Although they are not as long-time-last or

computation-intensive as the real implementations, they can reflect the relationship between

PMCs and application features. Some test programs to address one event such as cache

miss and MMC load/store operation are also involved in order to better understand event's

contribution and influence to the whole energy consumption.

4.3.2 Measurement

To find out the correlation of PMCs and energy consumption and to evaluate the

accuracy of the estimation model, direct measurements of current and voltage are needed

while the decoder executes. To avoid waiting for the battery recharge, a model of the

platform battery has been developed and a battery emulator has been implemented using a

power supply. The power supply has a digital voltmeter to provide the measurements of the

voltage drop across the internal resistance to simulate the behavior of the real battery based

on the pre-defined battery model.

Due to the sampling frequency limitation and the difficulties of the synchronism

between the device under test (DUT) and the battery emulator, the average power during the

decoder execution is used to provide the energy consumption as the product between the

average power and the execution time. It is needed to point out that this average power can

hardly reflect the instantaneous power variations and, therefore, action sequences are

periodically summed up as individual PMC samples.

4.4 Conclusion

In this chapter, the implementations of the estimation model are particularly

introduced. The platform runs a Linux operating system with the kernel 2.6.34, which is the

IMPLEMENTATION

71

first Linux kernel version that supports the PAPI release for PMC measurement purposes85.

PAPI, known as the performance application programming interface, is a cross-platform

interface to PMCs on MPUs. There are several profiling tools to measure and analyze the

performance and behavior of application programs. PAPI is finally selected as the profiling

tool because of its friendly user interfaces and its PMCs multiplexing implementation. For the

sake of the simplicity, the model focuses on two components: the processor and the outer-

MPU hierarchical memory system. A basic metric to combine the two components, the

benchmarks and the measurement are also introduced.

IMPLEMENTATION

72

VALIDATION AND EVALUATION

5 Validation and
Evaluation

VALIDATION AND EVALUATION

74

5.1 Introduction

The energy consumption model needs an offline calibration phase. In this phase, the

purpose is to relate the real energy measured by the multimeter with the modeling metrics

represented by the events of interests. Once the relationship is found out, the continuous

values from the corresponding PMCs can be used to estimate the energy. The calibration

phase is run only once for each system. In this chapter, the progress of the model during the

research will be described. The results of each model are analyzed to know how the

improvements of the accuracy of the estimation are achieved. In addition, the model

limitations and the future work are also introduced.

5.2 Progress of Model

During the modeling study, we found that the accuracy of the model is quite sensitive

with the collected statistics of each PMC. It means that an accurate model should use the

information kept by the PMCs as much as possible. In this subsection, we will show the

progress of the second and the third steps of modeling method described above to see how

the two aspects, proper set of PMCs and the Linear Regress Method, influence the accuracy

of the model.

In order to have a better explanation of the model results, we have some definition in

this dissertation:

𝐓 = {𝐭𝟏, 𝐭𝟐,⋯ , 𝐭𝐧} (5-1)

𝐓𝐌𝐤 = �𝐭𝐢,⋯ , 𝐭𝐣|𝟏 ≤ 𝐢 ≤ 𝐧,𝟏 ≤ 𝐣 ≤ 𝐧�,𝟏 ≤ 𝐤 ≤ 𝟓 (5-2)

𝐍𝐓𝐌𝐤 = �𝐭𝐩,⋯ , 𝐭𝐪|𝟏 ≤ 𝐩 ≤ 𝐧,𝟏 ≤ 𝐪 ≤ 𝐧�,𝟏 ≤ 𝐤 ≤ 𝟓 (5-3)

𝚨𝐓𝐌𝐤 = {𝛂(𝐭𝐢)| 𝐭𝐢 ∈ 𝐓𝐌𝐤},𝟏 ≤ 𝐤 ≤ 𝟓 (5-4)

𝚨𝐍𝐓𝐌𝐤 = {𝛂(𝐭𝐢)| 𝐭𝐢 ∈ 𝐍𝐓𝐌𝐤},𝟏 ≤ 𝐤 ≤ 𝟓 (5-5)

where the 𝑇 is the set of all the benchmarks, 𝑇𝑀𝑘 is the set of each training group and

𝑁𝑇𝑀𝑘presents the Non-training group. The 𝑇𝑀𝑘 ∪ 𝑁𝑇𝑀𝑘 = 𝑇 and 𝑇𝑀𝑘 ∩ 𝑁𝑇𝑀𝑘 = ∅, 𝛼(𝑡𝑖)

are set as the metrics to evaluate the model accuracy of each individual test application, in

this dissertation, we consider the relative errors. The simplest metric to compare two models

is their average errors calculated as equations 5-6 and 5-7.

VALIDATION AND EVALUATION

75

𝑬𝑻𝑴𝒌 =
∑ 𝜶(𝒕𝒊)𝒕𝒊∈𝑻𝑴𝒌
𝑪𝒂𝒓𝒅(𝑻𝑴𝒌)

 (5-6)

𝑬𝑵𝑻𝑴𝒌 =
∑ 𝜶(𝒕𝒋)𝒕𝒋∈𝑵𝑻𝑴𝒌

𝑪𝒂𝒓𝒅(𝑵𝑻𝑴𝒌)
 (5-7)

5.2.1 PMC Accuracy

The platform-supported PMCs provide approximately accurate performance

information. To keep the implementation and validation cost low, a reasonable degree of

inaccuracy in the counts is acceptable. There is no exact definition of reasonable degree of

inaccuracy, but there are some recommended guidelines:

 Under normal operating conditions, the counters must present an accurate

value of the count;

 In exceptional circumstances, such as changes in security state or other

boundary conditions, it is acceptable for the count to be inaccurate.

 Under very unusual non-repeating pathological cases counts can be

inaccurate. These cases are likely occurring as a result of asynchronous

exceptions, such as interrupts.

As the results of benchmark shows, the values of the PMCs are sensitive to some

other issues such as the interrupts, OS system calls and the threads scheduling. Thus even

for the same application, the values of PMCs are not exactly equal. The following three

tables, Figure 5-1, Figure 5-2, and Figure 5-3 show the rate of variation of the same

benchmark when it is repeated several times. The rate of the PMCi is calculated as the

equation 5-8:

𝑹𝒊,𝒋 = �𝑷𝑴𝑪𝒊,𝒋−𝒂𝒗𝒈(𝑷𝑴𝑪𝒊)�
𝒂𝒗𝒈(𝑷𝑴𝑪𝒊)

 (5-8)

VALIDATION AND EVALUATION

76

Figure 5-1 PMCs Variation of Do_Queen

Figure 5-2 PMCs Variation of Do_READ

Figure 5-3 PMCs Variation of MM_MISS

From the results, the PMCs' statistics all remain in the acceptable range of the

variations. However, the variations also reflect the different features of the three applications.

0.00%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

1 2 3 4 5 6 7 8

Ra
te

 o
f V

ar
ia

tio
n

Samples

PAPI_TOT_INS PAPI_TOT_CYC

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

1 2 3 4 5 6 7 8

Ra
te

 o
f V

ar
ia

tio
n

Samples

PAPI_TOT_INS PAPI_TOT_CYC

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

1 2 3 4 5 6 7 8 9 10

Ra
te

 o
f V

ar
ia

tio
n

Samples

PAPI_TOT_INS PAPI_TOT_CYC

VALIDATION AND EVALUATION

77

Do_queen is a program to solve the eight queen problem. It is computation-intensive, and it

does not need too many operating data from other resource, it may keep the data in

registers or have more push-pop instruction because of its main recursion algorithm, so the

number of instruction and cycles are more stable. Do_READ is a program mainly read the

data from the MMC card, it reflects a slight jolt because the address translation operation.

The MM_MISS is program intentionally generate many cache misses, from the Figure 5-3

there are two obvious variations occur in number 1 and 9. No. 1 is first to execute this

program after finishing several other benchmarks and NO. 9 are to run it as the first

application at the first time after the OS booting. Because the cache-filling and data-

preparation, it is easily understanding such a distinct variation.

From the information shown in figure Figure 5-1, Figure 5-2 and Figure 5-3, it implies

two advantages:

 PMCs have the ability to capture the applications' features. Once the

operations or functionality of the benchmarks changes, the PMCs also have

the according variation with reasonable explanation;

 It is important to choose the PMCs to model. It means that we need to

indentify the essential PMCs which have the most closed relationship with the

energy consumption to maintain the accuracy with the PMCs variations.

5.2.2 First Model

It is easy to understand that the total instruction number reflects the tendency of

energy consumption.

Figure 5-4 shows a very good relationship between the total instructions and the

energy consumption with the coefficient of determination (R2) nearly to 1. R2 is used in the

context of statistical models to predict the future outcomes on the basis of other related

information. It is the proportion of variability in a data set that is accounted for by the

statistical model. It provides a mechanism to judge how good the predictive ability of the

model is. In addition, instruction number is the commonest event which is implemented on

most modern processors. The first model is built based on the total instruction number

performance counter.

VALIDATION AND EVALUATION

78

Figure 5-4 Relationship between Energy and TOT_INC

From Figure 5-5 , it is can be seen that the results of this model. Among the 36

benchmarks, 38.9% of them have the error larger than 50% and several ones even exceed

100%. This result is unacceptable.

Figure 5-5 Proportional Error of the First Model

R² = 0.9802

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500

En
er

gy

(J)

TOT_INS x 100000000

0

50

100

150

200

Ra
le

tiv
e

Er
ro

r (
%

)

VALIDATION AND EVALUATION

79

Figure 5-6 Real Energy Consumption VS. First Model Estimation

This result shows that the model only based on the total instruction number is very

inaccurate. In Figure 5-6, the intuitive observation is shown. The energy consumption refers

to the principal axis in the left side and the IPC (instruction per cycle) refers to the secondary

axis in the right side. This figure shows that the IPC is a primary factor influencing the

deviation. When the IPC is larger than 1, in most case the model estimations are higher than

actual measurements. This is because the model mistakenly considers the system is busy

with less percentage of the idle time. On the contrary, when the IPC is smaller than 1, the

model estimations are lower. In this situation, the model again improperly states the system

in a less-usage case. This is caused by the different microinstructions (uops) of each

instruction. For example, in a RISC instruction set, a single ADD instruction may implement

within different sources and destinations. A source may fetch a value from memory, a

register or an immediate. Therefore it is composed of different uops. This model only uses

the IPC means that it assumes all the instruction consume the same amount of energy, so it

simply misses other operation units' effects during the instruction execution. From the

previous work [66], this model could be a simple and accurate one for estimating the

processor's energy consumption, but it is incompetent to profile the energy behaviors of

other components because this dominating model only obtains limited information from one

PMC

5.2.3 Second Model

Taking into account the defects of the first model, we consider to construct the model

to obtain as much information as possible from the whole set of PMCs. The excessive

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

100

200

300

400

500

600

700

800

900

1000
En

er
gy

 (J
)

E_measure
E_model
IPC

VALIDATION AND EVALUATION

80

number of PMCs will increase the needless complexity of linear regression fitting without any

screening. For a multiple linear regression model, it is difficult to avoid the dependence of

the variables, thus the model may become not precise enough if the number of the

independent variables is large74. The main idea of the second model is to reduce the number

of the impendence variables. As we discussed in section 3.2.1.3, PCA is a commonly used

method to reduce the elements meanwhile retain most of the data information. So we will

use PCA to re-associate the information recorded by all the PMCs. In addition, we also want

to observe the relationship between the model accuracy and the training samples, so we use

three ways to select the training samples.

5.2.3.1 Random Selection

There is no specific rule to choose the samples, so all the samples have an equal

probability of selection. This minimizes selection bias and simplifies analysis of results. It is

not necessary to partition all the samples, because there is no relationship among each

application, so we list the PMCs values as their execution order and select elements at

regular intervals through that ordered list. In our case, the components are the 16 PMCs.

The population is the 36 benchmarks. It is needed to randomly select half of samples from

the population to produce the principal components because that the PCA requires the

number of samples larger than the number of the components. Thus we do the sample with

a skip of 2, the set of selected samples is {1,3,5,7...}. Figure 5-7 shows the results of the

second model with the random-selected samples. The energy consumption refers to the

principal axis in the left side and the relative error refers to the secondary axis in the right

side. Since the variation of the energy consumption of the benchmarks, the principal axis is a

2-base logarithmic scale. The result shows a great improvement. In most cases, the errors

are less than 50%, nearly quarter of the benchmarks have the error less than 4% and 80%

less than 30%.

VALIDATION AND EVALUATION

81

Figure 5-7 Real Energy Consumption VS. Second Model Estimation(a)

However, the random selection method can be vulnerable to sampling errors

because the randomness of the selection may result in a sample that does not reflect the

features of the population. For example, suppose we wish to sample the applications with

different execution time. A simple random selection could easily end up with too many

applications with short execution time and too few ones with long execution time (or vice

versa). This situation will lead to an unrepresentative sample. An attempt to overcome this

problem is to use the information about the population to choose a more representative

sample. Two trials discussed below are used to test the results.

5.2.3.2 L2-Miss-Rate Selection

The level 2 cache miss is supposed to cause the CPU stall and the memory

accesses, both of which effect a lot the system energy consumption. Therefore, we hope to

evenly sample applications with the different level 2 cache miss rate. So in this procedure,

we sort all the sample refer to the level 2 miss rate from lowest to the highest. This means

that whole population is spread evenly along the level 2 miss rate and the training samples

can cover the different degree of this rate. The level 2 miss rate is calculated from

PAPI_L2_TCM and PAPI_L2_TCA, and the sampling interval also equals to 2.

0

10

20

30

40

50

60

70

1

2

4

8

16

32

64

128

256

512

1024

Di
r_

op
er

_I
nt

_t
es

t

Di
r_

op
er

_F
lo

_t
es

t

do
_c

on
ve

r

Di
r_

op
er

_F
lo

Di
r_

op
er

_I
nt

se
le

ct
io

nS
or

t

in
se

rt
So

rt

sh
el

lS
or

t

M
M

_M
iss

_o
pe

r

 d
o_

m
iss

es

do
_s

lg
q

do
_s

lq
3

do
_u

sq
rt

do
_g

re
ed

y

do
_r

an
k

do
_d

hr
t

do
_q

ue
en

 d
o_

lg
r

do
_p

qs

do
_l

gr
3

do
_s

pl

do
_h

m
t

he
ap

So
rt

do
_p

ir1

do
_s

ol
ce

cu
bi

c

do
_c

hi
r

do
_L

IS

bu
bb

le
So

rt

do
_a

tk

 M
M

_M
iss

_o
pe

r_
te

st

qu
ic

kS
or

t

do
_l

lu
u

co
un

tS
or

t

M
M

_o
pe

r

M
M

_M
iss

_o
pe

r2

M
M

_o
pe

r_
te

st

En
er

gy
 (J

)
Model
E
Err%(Random)

Relative Reeor (%
)

VALIDATION AND EVALUATION

82

Figure 5-8 Real Energy Consumption VS. Second Model Estimation (b)

Figure 5-8 shows the results of the second model with the samples based on their

level 2 cache miss rate. The same, energy consumption refers to the principal axis which is

a 2-base logarithmic scale in the left side and the relative error refers to the secondary axis

in the right side. It is not simple to say this is better than the previous one, the model based

on the random selection because in rare cases the error exceeds 100% which mean the

model totally deviate from the expectation. However, in this case, 89% errors are less than

30% and 39% errors are less than 4%. General speaking, in most cases, the model's

behavior is better than the previous one.

5.2.3.3 IPC Selection

Similar to the procedure described in the sub-section (b), we sort the samples by IPC

derived from PAPI_TOT_INS and PAPI_TOT_CYC.

0

20

40

60

80

100

120

1

2

4

8

16

32

64

128

256

512

1024
En

er
gy

 (J
)

Model
E
Err%(L2M)

Relative Reeor (%
)

VALIDATION AND EVALUATION

83

Figure 5-9 Real Energy Consumption VS. Second Model Estimation (c)

Figure 5-9 shows the results of the second model with the samples based on their

IPC with the same axis’s configuration: the left 2-base-logarithmic-scale principal axis to

represent the energy consumption and the secondary axis in the right side to show the

relative error. It is not quite different to the two models in sub-section (a) and (b). The

percentage of the error less than 4% is 25% which is less the that of model(a) and model(b),

and the maximal error is 77.87% which is larger than model(a), however, in this case the

error less than 30% is 91.7% which is the largest one among the three model. General

speaking, this model is better than model (b) in capture the tendency of energy consumption

and slightly ahead than model (a).

Compare with the three models, it is a little difficult to choose a better one from the

model (a) and model (c), but they both behave better than model (b). However, we can know

that the accuracy of a model is influenced by the representativeness of the samples from the

population. In another word, this simply selection method is vulnerable, it may get a better

accuracy by chance and maybe it is hard to repeat the same accuracy with other

applications.

The second model is promising when we increase the information recorded by the

PMCs. However, when we added some computation-intensive applications with short

0

10

20

30

40

50

60

70

80

90

1

2

4

8

16

32

64

128

256

512

1024

Di
r_

op
er

_I
nt

_t
es

t

Di
r_

op
er

_F
lo

_t
es

t

do
_c

on
ve

r

Di
r_

op
er

_F
lo

Di
r_

op
er

_I
nt

se
le

ct
io

nS
or

t

in
se

rt
So

rt

sh
el

lS
or

t

M
M

_M
iss

_o
pe

r

 d
o_

m
iss

es

do
_s

lg
q

do
_s

lq
3

do
_u

sq
rt

do
_g

re
ed

y

do
_r

an
k

do
_d

hr
t

do
_q

ue
en

 d
o_

lg
r

do
_p

qs

do
_l

gr
3

do
_s

pl

do
_h

m
t

he
ap

So
rt

do
_p

ir1

do
_s

ol
ce

cu
bi

c

do
_c

hi
r

do
_L

IS

bu
bb

le
So

rt

do
_a

tk
 …

qu
ic

kS
or

t

do
_l

lu
u

co
un

tS
or

t

M
M

_o
pe

r

M
M

_M
iss

_o
pe

r2

M
M

_o
pe

r_
te

st

En
er

gy
 (J

)

Model
E
Err%(IPC)

Relative Reeor (%
)

VALIDATION AND EVALUATION

84

execution time (e.g, countSort), we receive significant relative error, it means that there had

to be some "flaw" in our methodology. One reason could be caused by the PCA method.

There are two main aspects of the PCA robustness considerations:

 Consideration of the independence between each principle components.

From the theory of probability, each principle component is independent if and

only if the input x subject to zero mean and the covariance matrix is an n-

dimensional Gaussian distribution. When the input dose not obey the

Gaussian distribution, the traditional PCA algorithm only consider the second-

order characteristic of covariance matrix, therefore the obtained principle

components are only satisfied to be uncorrelated with each other but not

independent.

 Consideration of the outliers in the sample data. It is worthy to considering

how to remove or weaken the impact of outliers in the limited training sample

to follow the accurate main direction. Outliers make cause a large error in

PCA calculations. In addition, since the number of samples is limited, even all

the samples are generated from the same data distribution. Several "outliers"

may caused by the inadequate number of samples. Outliers are a major

aspect influence the PCA robustness.

Since the PMCs which configured to monitor several events are considered as the

components, it is difficult to avoid the dependency among the PMCs, moreover and some

outliers, moreover, the benchmarks are various with their behaviors and functionalities,

which will bring difficulties to figure out the common principal components for all the

applications. As the results shown, when we used this model to estimate the applications

which were not used G3 for PCA analysis, the estimation errors are much larger. We

believed that the principal components decided by the 36 benchmarks were on longer

suitable for others. So we probably did not get enough information to reflect their energy

behaviors.

5.2.4 Third Model

Because the real world applications have various behaviors and the values obtained

by the PMCs are impressionable by many other factors, static principal components with the

fixed eigenvector may cause the larger estimation errors. So a methodology used to decide

the proper PMCs based on their relationships with the energy consumption was tried this

time. In this model, the PMC filter which is introduced in the section 3.3.2.1 to select the

VALIDATION AND EVALUATION

85

PMCs is implemented. Table 5-1 lists the correlation coefficients of each pair of one PMC

and the energy consumption.

L1_DCM L1_ICM L2_TCM TLB_DM TLB_IM STL_ICY BR_TKN BR_MSP

0.56 0.92 0.57 0.53 0.63 0.71 0.83 0.52

TOT_INS LD_INS SR_INS BR_INS TOT_CYC L1_DCA L1_ICA L2_TCA

0.90 0.88 0.72 0.83 1.00 0.88 0.91 0.71

Table 5-1 The Correlation Coefficients between PMCs and energy

The scatter diagram can be used to intuitively observe the relationship between one

PMC and the energy. Figure 5-10 show the plots with the relationship strength from the

highest to the lowest. In case (a), which has the correlation coefficient nearly to be 1, the

energy consumption can be reflected by the total cycles as the straight line. With the

decrease the correlation coefficients, the relationship lines are not as straight as case in

case (a), however, we still can find out the increased tendency of the energy with the raised

occurrence of the according PMCs.

(a). Relationship between Energy & TOT_CYC (b). Relationship between Energy & BR_TKN

(c). Relationship between Energy & STL_ICY (d). Relationship between Energy & L2_TCM

Figure 5-10 Relationship between Energy and PMC

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000

En
er

gy
 C

on
su

m
pt

io
n

(J
ou

le
)

TOT_CYC x 100000000

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

En
er

gy
 C

on
su

m
pt

io
n

(Jo
ul

e

BR_TKN x 100000000

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150

En
er

gy
 C

on
su

m
pt

io
n

(Jo
ul

e

STL_ICY x 100000000

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000

En
er

gy
 C

on
su

m
pt

io
n

(Jo
ul

e

L2_TCM x 100000

VALIDATION AND EVALUATION

86

Under the Beagleborad environment, five PMCs, PAPI_L2_TCM, PAPI_TLB_IM,

PAPI_BR_TKN, PAPI_SR_INS and PAPI_TOT_CYC are finally decided to use. These

selected PMCs monitored different events, which reflect the different heavily energy-hungry

activities:

 PAPI_TOT_CYC: the number of cycles always shows positive and high

correlation with the energy cost. It presents a basic principle that the

application energy tendency is depend on its execution time. However, this

prediction is quite coarse.

 PAPI_L2_TCM: The total cycle of an application also includes the stall cycles

which are the cycles without instruction issue. A significant percentage of stall

cycles might be attributed to cache missed. L2 cache misses, which means

that the necessary data will be obtained from the memory, will cause more

energy cost, thus PAPI_L2_TCM is a key energy-related issues.

 PAPI_TLB_IM: Level 2 cache reflects effects of both instruction and data

misses, however, TLB misses by themselves, have greater influences on

energy consumption since the processor needs to handle memory page table.

In this case, the instruction TLB misses are needed to be taken into account.

 PAPI_BR_TKN: Branch prediction is other key issue of CPU stalls. If the

branch prediction fails, the pipeline will stop to wait for the new instructions

filling. This effect of energy consumption is also significant.

 PAPI_SR_INS: The store instructions will give a direct observation to data-

relate operation include the write operation in any layer. Since the write

operation are more complex than read operation such as how to keep the

data consistency, the store instructions will have further impact on energy

consumption. The Robust Regression method (Figure 5-11) is employed to

build the model.

VALIDATION AND EVALUATION

87

Figure 5-11 Real Energy Consumption VS. Third Model Estimation

Figure 5-11 shows the results of the third model with the Robust Regression method.

In this figure, the energy consumption refers to the 2-base-logarithmic-scale principal axis in

the left side and the relative error refers to the secondary axis in the right side. The

percentage of the benchmarks with the error less than 4% is 44.4%, error less than 5% is

58.3%. A good improvement is that the largest error fall down to 15.1%. The third model with

the robust linear regression obtain not bed results, it means that:

 Even limited number of PMCs with enough information from the entire PMCs

can built an accuracy model. It implies that it is an important step to filter the

PMCs.

 The correlation of the elements pairs will affect the accuracy of the model.

Stepwise method is superior the Robust regression because that the former

method further removed the elements that not significantly contribute to the

energy consumption which make the model is more concise with smaller

disruption.

0

2

4

6

8

10

12

14

16

1

2

4

8

16

32

64

128

256

512

En
er

gy
 (J

)
Model(R)
E
Error

Relative Reeor (%
)

VALIDATION AND EVALUATION

88

5.2.5 Fourth Model

Briefly, the third model obtained a fairly good result, but this model considers the

processor and the outer-chip memory as the same target to construct a general model. Two

groups of the benchmarks are use to comparison the energy consumption. The benchmarks

from the two groups with the same name have the same functionalities. The only differences

are how to get the source data and how to hand with the results. The data used in the

"WITH_MMC" group is read from a file saved in the SD card and the results are written back

to the SD card. However, the data used in the "WITHOUT_MMC" group is the randomly

generated by the processor and the results are not saved.

Figure 5-12 Measurement Energy Comparison

Figure 5-13 Estimation Energy Comparison

1

2

4

8

16

32

64

128

256

512

1024

2048

En
er

gy
 (J

)

M_WITH_MMC

M_WITHOUT_MMC

1

2

4

8

16

32

64

128

256

512

1024

2048

En
er

gy
 (J

)

E_WITH_MMC

E_WITHOUT_MMC

VALIDATION AND EVALUATION

89

Figure 5-12 shows the comparison of the directly measurements of the two groups. It

is significantly shown the more energy required by the applications which operated with the

SD card. However, Figure 5-13 shows the energy estimation of the two groups with tiny

difference. This result implies that a model with more accurate results should dividedly

consider each component.

In addition, the memory access behaviors also change the relationship of each pair of

the energy consumption and the PMC. Figure 5-14 shows the Spearman Rank Correlation in

different cases are also changed. For example, when the application is computation-

intensive, the coefficients of the level 1 cache data cache miss and level 2 cache miss are

much lower than the memory-intensive applications and the applications with high overload

of both computation and memory access. It is reasonable because that the operating data is

not frequently translated between processor and memory. This means that different

component will have different factors which significantly influence the energy consumption.

This may be one reason to cause the result of the third model is in-and-out.

Figure 5-14 Correlation Coefficients in Different Cases

In order to improve the results, we will build sub-models for each component,

processor and outer-chip memory, as the method introduced in section 4.2.3.

As the same way, the PMC-filter is used choose the PMCs as the third model. Since

this estimation model focuses on processor and outer-chip memory, to address the two

system components, the benchmarks are also divided into three categories that depend on

their characteristics: computation intensive (G1), data-transfer intensive (G2) and both (G3).

0

0.2

0.4

0.6

0.8

1

1.2

Co
rr

el
at

io
n

Co
ef

fic
ie

nt
s

Both
Only P
OnlyM

VALIDATION AND EVALUATION

90

In addition, G1 and G2 are further divided into training and non-training groups. The training

groups are used to build the processor model and memory model, respectively.

Although the PMC-filter works as a black-box to produce PMCs selection, the result

should be reasonable to represent the realistic scenarios. The set of PMCs shows that PMC-

filter presents more concentrate on the memory related PMCs. This observation corresponds

to the conclusion form Jimenez et al. in work [86] that the memory-intensive application

causes the system to consume more power. However, it is also noted the difference

between the final PMC set of processor and memory components. The PMC-filter only

retains PAPI_BR_TKN and PAPI_TOT_CYC to build the memory estimation model. One

possible reason is the benchmarks. In order to address the memory access, the benchmarks

focus on reading or writing data into different files with only limited computation operations

like loop control. In this case, all the benchmarks have the similar features, in other words,

issues including PAPI_L2_TCM, PAPI_TLB_IM and PAPI_SR_INS will be proportional with

the total cycles. Based on the PMC-filter method, information kept by these three PMCs can

be represented by the total number of cycles.

Figure 5-15 Model Comparison

Figure 5-15 shows the comparison of the fourth model and the third model. Here the

benchmarks with the memory access behavior are listed. Generally, the forth model improve

the average accuracy. In most cases, the forth model decrease the error to acceptable

values, however, there are rarely situation that the forth model increase the predication

accuracy but the error still keep in the acceptable area.

0

2

4

6

8

10

12

14

16

18

20

Re
la

tiv
e

Er
ro

r (
%

)

Forth_Model

Third_Model

VALIDATION AND EVALUATION

91

5.2.6 Final Model

Compare the previous four models, there is a great improvement from first one the

forth one. It is observed that the key of keeping the accuracy and stability of the model is to

choose the proper PMCs before curve fitting. However, since the sampling method is

vulnerable to the benchmarks used to training the model, to make an estimation model with

good predictability and generalization, we will use the k-fold cross-validation introduced in

the section 3.3.2.2 to construct the final model. Table 5-2 lists the G1 and G3 relative

percentage errors of estimations and measurements in different cases. To balance model

efficiency and accuracy, the k-fold selector is only applied to the processor component

because of its complexity.

 PM1 PM2 PM3 PM4 PM5 M

G1_Tr 2.188 3.696 4.185 3.575 1.79 -

G1_nT 3.78 4.184 3.249 6.243 4.334 -

G1_Av 3.382 3.968 3.483 6.125 4.209 4.233

G3_Av 2.528 1.937 5.012 7.89 6.655 4.804

Table 5-2 Relative Errors in Different Cases

The k-fold selector is applied five times to obtain five sub-models, from PM1 to PM5.

Model M gives the averaged estimation. The results of the memory model provide a similar

accuracy, with an average relative error of 1.384% for the training group and 3.402% for the

non-training group. Since benchmarks in G3 are computation and data-transfer intensive,

they are employed to test together the processor and memory model.

The results of rows G1_Tr and G1_nT show that there are no significant variations

between training and non-training groups and, in addition, the errors are limited in 6.5%.

Therefore, the model is able to keep a good stability. Rows G1_Av and G3_Av give out the

average relative errors of each PM and the final model. There are two conclusions: First, the

errors of final model of G3 and G1 are in the same grade, this shows that weight-based

combination can capture both the processor and memory activities to keep the model

accuracy. Second, comparing errors in G1_Av and G3_Av of the same PMi, it is noted that

the model with the highest accurate prediction of group G1 may not be the most suitable one

for group G3. This observation reflects the different prediction abilities of each PMi.

Therefore, averaging all the PMi results generated with the k-fold selector produces a

credible result.

VALIDATION AND EVALUATION

92

Figure 5-16 and Figure 5-17 show the relative errors of benchmarks G1 and G3,

respectively. In Figure 5-16, the largest error is 6.8% and for most benchmarks (65%) there

is a good matching (<5%). In Figure 5-17, most of the benchmarks with the estimation error

around 6% include the extra MMC card accesses operations (first six ones in Figure 5-17,

do_spl3 is the interpolation, differential coefficient and integration of the cubic spline function,

arrayMulti is a function to deal with the matrix multiplication and do_patricia is a function use

the data structure Patricia tries to represent routing tables in network applications. All the

inputs of data for these benchmarks are read from the files recorded in the MMC card and

their results are written back to according files). This observation shows that energy

estimation for external memory using PMCs is not as precise as the estimation for the

processor. The main reason is the limitation of the PMCs, which suffer the lack of

performance events to trace the memory transactions executed on the outer-MPU memory

layers. However, the methodology introduced in the dissertation is proven to keep the model

accuracy in an acceptable area (<7%).

Figure 5-16 Average Relative Error of G1

0

1

2

3

4

5

6

7

Re
lat

ive
 Er

ro
r (

%)

VALIDATION AND EVALUATION

93

Figure 5-17 Average Relative Error of G3

5.3 Model Limitation and Future Work

5.3.1 Model Limitation

In the last sub-section, we show the improvements of the energy consumption

estimation model in detail. The final model we obtained is promising to relate the PMC

statics with the energy estimation without previous knowledge of the details of the hardware.

However, this model has met several limitations:

 First, this model only involves two main parts, the processor sub-system and

the memory sub-system. As the prosperous developments of the battery-

powered devices, their functionalities require more ancillary equipments,

which consume non-neglected energy. A more helpful energy analysis tool

should be extended to the whole system including other components such as

communication, I/O peripherals, buses and even multi-cores, thus the

information from PMC measurement should be available not only on the

processor but also the chip and system.

 Second, a static model is limited. Although the k-fold cross validation method

is used to enlarge the coverage of the application features, the estimation

error of a static model still has the possibility to be divergent due to the

always-changeable operations of users. Thus it is necessary to add some

feedback into the model in order to adjust the estimation direction during the

users’ behaviors.

0

1

2

3

4

5

6

7

8

Re
la

tiv
e E

rr
or

(%
)

VALIDATION AND EVALUATION

94

 Furthermore, the model makes the estimation based on the history of the

applications. It lacks of the metrics to predict the future behaviors of the

applications which are important for the PM policy. As we know, the basic

idea of the commonly used PM policy tires to scale the voltage or frequency

of the components based on their idle period. It meets a problem called over-

prediction/under-prediction which means the predicted idle period is

longer/shorter than the actual one. The over-prediction cause the high

overhead of the state transition, usually from the sleep state to the run state,

while the under-prediction limits the possibility of energy saving87. Therefore,

if the model can provide the PM unit information about the future workload,

the PM policy would be more efficiency.

5.3.2 Future Work

In the future, we will try to overcome the weak points mentioned above gradually.

For the first extension point, a possibility is by means of the interface. PAPI recent

trends toward massively parallel multi-core systems with often heterogeneous architectures

present new challenges for the measurement of hardware performance information. Good

news are that PAPI is recently extend into Component PAPI, or PAPI-C in which multiple

sources of performance data from I/O systems, memory or disks can be measured

simultaneously via a common software interface 88 . This work is necessarily somewhat

dependent on the underlying hardware. It is more practicable to have an easier method to

estimate the energy consumption of I/O peripherals or network devices through their

corresponding drivers. Some heuristic assumptions can also be used to model the peripheral

equipment requirements. For example, low memory activities and IPC could cause by

frequent I/O interrupts. So, combine the extended PAPI and some necessary assumption

may indicate a new direction to obtain the energy estimation model for the whole platform.

Aim to the second point, a simple and accurate feedback usually comes from the on-

chip thermal sensors or internal ADCs to detect the current or voltage. For example, the

hardware platform we are using now, Beagleborad, has an according block, TPS65950, to

supply several key functions on the power and reset functions. In the boards there is a

resistor which can be used to measure the Beagleboard’s current. This resistor is connected

to a 10-bit ADC and the measurement result can be passed to the processor via an I2C bus84.

However, a feedback methodology for the platform in which no ADC is available should also

be considered.

VALIDATION AND EVALUATION

95

The last point is the most important issues in the whole project. It will be the heart of

the future research stage to focus on how to provide the estimation result to the PM unit to

have a more efficient power management strategy.

5.4 Conclusion

In this chapter, the validation and evaluation of the estimation model is discussed.

The results are evaluated based, on one hand, the relative errors by comparing the model

results with the real measurements, and on the other hand, the scalability of the model,

which denotes that the model should be accurate in various scenarios. The progresses of

the model improvements are introduced to figure out the most important issues for the

accuracy: a proper set of PMC to gather useful information of the system and the training

method to avoid the bias of sampling. Both of the two issues aim to extract good

representativeness. Our final model shows a good stability in different scenarios and a

robust estimation result with an average relative error less than 5%

VALIDATION AND EVALUATION

96

CONCLUSION

6 Conclusion

CONCLUSION

98

With the increasing gap between the complexity of the battery-powered devices and

the battery capacity, the effort of energy optimization plays more important role in system

designs. As a premise of the energy-optimizing strategies, this dissertation aims to provide a

platform-independent methodology to estimate the energy.

This methodology relies on performance monitoring counters (PMCs) to gather

relevant energy-related information from the system. PMC indicates the performance

monitoring counter, which is widely implemented on most of the modern processors as a

hardware register. PMCs can be configured to monitor the key energy-influencing events

such as the total executed instructions and cache misses with the simple implementation

and low overhead via the PMC interfaces. Moreover, PMCs can provide a future insight of

the power bottleneck of the system. Considering the uniqueness of the PMC set of each

platform and the limitation of the PMC that can be used simultaneously, a two-part

methodology is proposed to build the estimation model. The first part is a PMC-filter, which

identifies the most appropriate PMCs. It has two steps. First, it identifies the strong energy-

related PMCs by figuring out the relationship between PMCs and energy. Second, it reduces

the PMC redundancy to decrease the complicacy of the robust linear regress method by

considering the relationship between each pair of the PMCs. Both of the relationships are

determined by the Spearman’s correlation coefficients. The second part of the model is to

improve the predictability and the generalization. It is a k-fold cross validation method to

ensure each benchmark has the chance to be used to training the model.

For the sake of the simplicity, the implementation is based on two main components:

the processor system and the outer-MPU hierarchical memory system, both of which are

indispensable in any system and encompass the highest complicity. The two components

are combined by their weights which are simply defined as their utilization ratios during the

execution. The Linux 2.6.34 operating system is employed because it is the first Linux kernel

version that supports the PAPI release. PAPI means the Performance Application

Programming Interface. It is a cross-platform interface providing fully programmable

interface to control the PMCs. The real measurement is taken to evaluate the accuracy of

the model. It has been noted that the accuracy is highly related to the coverage of the

system features abstracted by the selected PMCs and the training data. The final results

show that the model can keep a good stability in different scenarios and provides a robust

estimation result with an average relative error less than 5%.

This methodology works as a black-box which is able to automatically expose the

energy estimation issue on any PMC-available battery-powered system. For the future work,

CONCLUSION

99

this methodology will be extended to the full system and applied to the power management

unit to optimize the energy efficiency.

CONCLUSION

100

REFERENCE

7 Reference

REFERENCE

102

[1] M. Weiser, B. Welch, A. J. Demers and S. Shenker, “Scheduling for reduced CPU energy”,
Proceeding of the 1st USENIX conference on Operating Systems Design and Implementation, pp. 13-
23, 1994.

[2] D. C. Snowdon, E. L. Sueur, S. M. Petters and G. Heiser, “Koala: A Platform for OS-Level Power
Management”, 4th EuroSys Conference, Nuremberg, Germany, pp.289-302, Apr.2009.

[3] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey III and M. Neufels, “Policies for dynamic clock
Scheduling”, In 4th OSDI, pp. 73-86, Oct. 2000.

[4] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power management and dynamic voltage scaling:
Myths and facts”, In 2005 WS Power Aware Real-time Computer, Sep 2005.

[5] T.K. Tan, A. Raghunathan and N.K. Jha, “EMSIM: An Energy Simulation Framework for an
Embedded Operating System”, In Proc. ISCAS 2002, May 2002.

[6] A. Genser, C. Bachmann, J. Haid, C. Steger and R. Weiss, “An Emulation-Based Real-Time
Power Profiling Unit for Embedded Software”, Proceedings of the 9th international conference on
Systems, architectures, modeling and simulation, pp.67-73, 2009.

[7] S. M. Kang, “simulation of power dissipation in VLSI circuits”, IEEE J. Solid-State Circuits, vol. SC-
21, pp. 889-891, Oct. 1986.

[8] G. Y. Yacoub and W. H. Ku, “An accurate simulation technique for short-circuit power dissipation
based on current component isolation”, IEEE Int. Symp, on Circuits and Systems, pp. 1157-1161,
1989.

[9] R. Burch, F. Najm, P. Yang, and D. Hocevar, “Pattern-independent current estimation for reliability
analysis of CMOS circuits”, In Proceedings of the 25th ACM/IEEE Design Automation Conference,
1988.

[10] F. Najm, “Transition density, a stochastic measure of activity in digital circuits,” In Proceeding of
the 28th ACM/IEEE Design Automation Conference, pp.644-649, Jun. 1991.

[11] R. Marculescu, D. Marculescu, and M. Pedram, “Logic level power estimation considering
spatiotemporal correlations,” In Proceeding of the IEEE International Conference on Computer Aided
Design, 1994.

[12] J. Monteiro, S. Devads, B. Lin, C-Y Tsui, M. Pedram, “Exact and approximate methods of
switching activity estimation in sequential logic circuits,” In Proceedings of the 1994 International
workshop on low-power design, pp.117-122, Apr.1994.

[13] B. J. George, G. Yeap, M. G. Wloka, S. C. Tyler, and D. Gossain , "Power analysis for semi-
custom design", In Proceedings of the IEEE Custom Integrated Circuits Conference, 1994.

[14] C. X. Huang, B. Zhang, A. Deng, and B. Swirski, “Design and implementation of PowerMill”, in
Proceedings of the International Symposium on Low Power Design (ISLPED ’95), pp. 105–109, Apr.
1995.

[15] F. Najm, “A survey of power estimation techniques in VLSI circuits,” IEEE Trans. VLSI Syst., vol.
2, pp. 446–455, Dec. 1994.

[16] R. Burch, F. N. Najm, P. Yang and T. Trick, “A Monte Carlo approach for power estimation”, IEEE
Trans. VLSI syst., vol.1, pp. 63-71, Mar. 1993.

[17] F. N. Najm, R. Burch, P. Yang, and I. N. Hajj, “Probabilistic simulation for reliability analysis of
CMOS circuits,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 439–450, Apr. 1990.

REFERENCE

103

[18] F. N. Najm, “Transition density: A new measure of activity in digital circuits,” IEEE Trans.
Computer-Aided Design, vol. 12, pp. 310–323, Feb. 1993.

[19] A. A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of average switching activity in
combinational and sequential circuits,” in Proc. 29th Design Automation Conf., pp. 253–259, June
1992.

[20] T. Chou and K. Roy, “Accurate power estimation of CMOS sequential circuits,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 4, no. 3, pp. 369–380, 1996.

[21] C. Ding, C. Tsui, and M. Pedram, "Gate-Level Power Estimation Using Tagged Probabilistic
Simulation", IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol. 17,
No. 11, Nov. 1998.

[22] Synopsys, Inc., “Synopsys products”.

[23] EECS Department of the University of California at Berkeley, “Spice”.

[24] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan,
“Temperature-aware micro architecture: Modeling and implementation,” ACM Transactions on
Architecture and Code Optimization, vol. 1, no. 1, pp. 94–125, Mar. 2004.

[25] J. Frenkil, “Tools and Methodology for low power design”, Proceedings of the 34th annual Design
Automation Conference, pp.76-81, June 1997.

[26] D. Brooks, and V. Triwari, “Wattch: A Framework for Architectural-Level Power Analysis and
Optimizations”, Proceedings of the 27th annual international symposium on Computer architecture,
vol.28, no.2, May 2000.

[27] T. Mudge, “Power: A First-Class Architectural Design Constraint”, Published in Journal computer,
vol.34, no.4, Apr.2001.

[28] N. S. Kim, T. Austin, T. Mudge and D. Grunwald, “Challenges for architectural level power
modeling”, Published in book power aware computing, pp.317-337.

[29] S.Wilton, and N.Jouppi, “An Enhanced Access and Cycle Time Model for On-Chip Caches”, 1994.

[30] G. Jochens, L.Kruse, E.Schmidt, and W.Nebel, “A New Paramiterizable Power Macro-Model for
Datapath Components”, Proceedings of the conference on Design, automation and test in Europe,
1999.

[31] M. B. Kamble, and K. Ghose, “Analytical Energy Dissipation Model for Low-Power Caches”,
Proceedings of the 1997 international symposium on low power electronics and design, pp.143-148,
Aug. 1997.

[32] A. Bogliolo, L. Benini, and G. D. Micheli, “Regression-based RTL Power Modeling”, Published in
Journal ACM transactions on design automation of electronic systems (TODAES), vol.5, no.3, pp.337-
372, July 2000.

[33] M. M. Khellah, and M. I. Elmasry, “Effective Capacitance Macro-Modeling for Architectural-Level
Power Estimation”, Proceedings of the Great Lakes Symposium on VLSI, pp.414, 1998.

[34] C. Z. ping, K. Roy, and E. K. Chong, “Estimation of Power Dissipation Using a Novel Power
Macromodeling technique”, 2000.

[35] S. Powell and P. Chau, “Estimating power dissipation of VLSI signal processing chips: the FA
technique”, in proceedings IEEE workshop on VLSI Signal Processing, vol.4,pp.250-259, 1990.

[36] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven behavioral synthesis for low-
power VLSI systems”, Published in Journal IEEE Design & Test, vol.12, no.3, May 2010.

[37] D. Liu and C. Sevensson, “Power consumption estimation in CMOS VLSI chips", 1994.

REFERENCE

104

[38] P. E. Landman and J. M. Rabaey, “Activity-sensitive architectural power analysis for the control
path”, proceedings of the 1995 international symposium on low power design, pp.93-98, Apr.1995.

[39] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clustering”,
proceedings of the 33rd annual design automation conference, pp.701-707, Jun. 1996.

[40] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir, T. Li and et al,
“Using complete machine simulation for software power estimation: the softWatt approach,” in
Proceedings of the 8th International Symposium on High-Performance Computer Architecture, pp.
141–151, Feb. 2002.

[41] D. Brooks, V. Tiwari, and M.Martonosi, “Wattch: a framework for architectural-level power
analysis and optimizations,” SIGARCH Computer Architecture News, vol. 28, no. 2, pp. 83– 94, 2000.

[42] V.Tiwari, S.Malik and A.Wolfe, “Power Analysis of Embedded Software: A First Step Towards
Software Power Minimization”, IEEE Trans on VLSI Systems, pp. 437-445, Dec. 1994.

[43] M. T. C. Lee, V. Tiwari, S. Malik and M. Fujita, “Power Analysis and Minimization Techniques for
Embedded DSP Software”, IEEE Transaction on VLSI Systems, pp. 123-135, Mar.1997.

[44] V. Tiwari, S. Malik, A. Wolfe and M. T. C. Lee, “Instruction Level Power Analysis and Optimization
of Software,” Journal of VLSI Signal Processing, pp. 1-18, 1996.

[45] C. H. Gebotys and R. J. Gebotys, “An Empirical Comparison of Algorithmic, Instruction and
Architectural Power Prediction Models for High Performance Embedded DSP Processors,”
Proceedings of the 1998 international symposium on Low power electronics and design, pp 121-123,
Aug. 1998.

[46] M. T. C. Lee, M. Fujita, V. Tiwari, and S. Malik, “Power Analysis and Minimization Techniques for
Embedded DSP Software”, IEEE transactions on VLSI systems, vol.5, no.1, pp.123-135, Mar 1997.

[47] B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling inter-instruction energy effects in
a digital signal processor,” in Proceedings of the Power Driven Microarchitecture Workshop in
Conjunction with International Syymposism Computer Architecture, June 1998.

[48] A. Sama, J. F. M. Theeuwen, and M. Balakrishnan, “Speeding up power estimation of embedded
software,” in Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED ’00), pp. 191–196, 2000.

[49] N. Julien, J. Laurent, E. Senn and E Martin, “ Power consumption modeling and characterization
of the TI C6201”, IEEE Micro, vol.23, no.5, pp.40-49, Sept-Oct, 2003.

[50] J.Laurent, N.Julien, E. Senn, E. Martion, “Functional level power analysis: An efficient approach
for modeling the power consumption of complex processor”, proceedings of the conference on Design,
automation and test in Europe, vol.1, pp.10666, Feb.2004.

[51] J.Laurent, “SoftExplorer: Estimation, characterization and optimization of the Power and Energy
Consumption at the Algorithmic Level”, IEEE power and timing modeling, optimization and simulation,
2004.

[52] W. Wolf, “Household hints for embedded systems designers,” IEEE Computer Society Press,
2002.

[53] G. González, E. Juárez, J. J. Castro and C. Sanz, “Energy Consumption Estimation of an OMAP-
Based Android Operating System”, VLSI Circuits and systems conference, pp.18-20, Apr.2011.

[54] OMAP3530 Power Estimation Spreadsheet,

http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet

REFERENCE

105

[55] L. Benini, R. Hodgson, P. Siegel, “System-level Power Estimation And Optimization”,
Proceedings of the 1998 international symposium on low power electronics and design, pp.173-178,
Aug. 1998.

[56] L. Benini, and G. Micheli, “System-Level Power Optimization: Techniques and Tools”, ACM
transactions on design automation of electronic systems, vol.5, no.2, Apr.2000.

[57] D. Sunwoo, H. Al-Sukhni, J. Holt and D. Chiou, “Early Models for System-level Power Estimation”,
8th International Workshop on Microprocessor Test and Verification, 2007.

[58] Y. Cho, Y. Kim, S. Park and N. Chang, “System-Level Power Estimation using an on-chip Bus
Performance Monitoring Unit ”, Proceedings of the 2008 IEEE/ACM international conference on
computer-aided design, pp.149-154, 2008.

[59] G. Contreras, M. Martionosi, “Power Prediction for Intel XScale Processor Using Performance
Monitor Unit Events”, In proceedings of the International symposium on low power electronics and
design, pp. 221-226, 2005.

[60] A. S. Dhodapkar and J. E. Smith, “Managing Multi-Configuration Hardware via Dynamic Working
Set Analysis”, Proceedings of the 29th annual international symposium on computer architecture,
vol.30, no.2, May 2002.

[61] Oprofile, http://oprofile.sourceforge.net/about/.

[62] Perfctr, http://www.ale.csce.kyushu-u.ac.jp/~satoshi/how_to_use_perfctr.htm.

[63] PAPI, http://icl.cs.utk.edu/papi/.

[64] F. Bellosa, “The benefits of event-driven energy accounting in power-sensitive systems”, In
proceedings of the 9th ACM SIGOPS European Workshop, pp.37-42, Sept. 2000.

[65] T. Li, and L. K. John, “Run- time Modeling and Estimation of Operating System Power
Consumption”, In Proceedings of the ACM SIGMETRICS international conference on Measurement
and modeling of computer systems,pp160-171, vol.31, no.1, June 2003.

[66] C. Lively, X. F. Wu, V. Taylor, S. Moore, H. Chang, and C. Su et al, “Power-Aware Predictive
Models of Hybird (MPI/OpenMP) Scientific Applications on Multicore Systems”, International
Conference on Energy-Aware High Performance Computing, Sept. 2011.

[67] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati, “Portable, scalable, per-
core power estimation for intelligent resource management”, In Proceedings of the 2010
International conference on Green Computing, pp135 –146, Ago. 2010.

[68] V. Jimenez, F.J. Cazorla, R. Gioiosa, M. Valero, C. Boneti, E. Kursun, et al, “Characterizing
Power and Temperature Behavior of POWER6-Based System”, Published on Emerging and Selected
Topics in Circuits and Systems, pp.228-24, Sept. 2011.

[69] X. Yu, R. Bhaumik, Z.Y. Yang, M. Siekkinen, P. Savolainen, and A. Ylä-Jääski, “A System-level
Model for Runtime Power Estimation on Model Devices”, IEEE/ACM Int’l Conference on & Int’l
Conference on Cyber, Physical and Social Computing, pp.27-34, Dec.2010.

[70] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: methodology and
empirical data,” in MICRO-36: Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, IEEE Press, pp. 93–104, Dec.2003.

[71] Vince Weaver, “perf_event programming guide”,

http://web.eecs.utk.edu/~vweaver1/projects/perf-events/programming.html.

[72] perfmon2, http://perfmon2.sourceforge.net/docs_v4.html.

[73] Cortex A8 Technical Reference Manual, Revision r2p2, 2008.

REFERENCE

106

[74] N. J. Salkind, “Statics for People Who (Think They) Hate Statistics”, SAGE Publications, Inc.

[75] F. E. Grubbs, “ Procedures for detecting outlying observations in samples”, Technimetrics 11,
pp.1–21,1969.

[76] R. Gnanadesikan, and J. R Kettenring, “ Robust Estimates, Residuals, and Outlier Detection with
Multiresponse Data”, Published on International Biometric Society, pp. 81-124, Mar.1972.

[77] J. Cohen, "Statistical power analysis for the behavioral sciences (2nd ed.)," Hillsdale, NJ:
Lawrence Erlbaum, 1988.

[78] A New View of Statistics, Hopkins, Will G., electronic edition:

http://www.sportsci.org/resource/stats/index.html.

[79] R. Kohavi, "A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model
Selection," 14th international joint conference on Artificial intelligence, pp.1137-1143, Aug. 1995.

[80] M. F. R. Resende, J. P. Munoz, M. D. V. Resende, D. J. Garrick, R. L. Fernando and J.M Davis et
al, “Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine”, GENETICS,
Apr.2012.

[81] The Architecture of the Nehalem Processor and Nehalem-EP SMP Platforms

[82] S. Pasricha, A. Veidenbaum, “Improving Branch Prediction Accuracy in Embedded Processor in
the Presence of Context Switches”, 2003.

[83] White Paper, Intel Next Generation Microarchitecture (Nehalem)

[84] BeagleBoard System Reference Manual Rev C4”, Dec.2009.

[85] http://web.eecs.utk.edu/~vweaver1/projects/perf-events/support.html

[86] V.Jimenez, F.J.Cazorla, R. Gioiosa, M. Valero, C. Boneti, E. Kursun and et.al, “Characterizing
Power and Temperature Behavior of POWER6-Based System”, IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol.1, no.3, pp. 228-241, 2011.

[87] L. Benini, A. Bogliolo, G. Micheli, “Survey of Design Techniques for System-Level Dynamic
Power Management”, IEEE transactions on VLSI systems, vol.8, no.3, pp.299-316, 2000.

[88] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Performance Data with PAPI-C”,
Published in Tools for High Performance Computing, pp.157-173, 2010.

	MISSSI
	MISSSI_Primera hoja_Trabajo Fin de Master
	blank

	Power_Models_V10.5_2

	Título: Energy/Power Consumption Model for an Embedded Processor Board
	Autor: Rong Ren
	Tutor: Eduardo Juárez Martínez
	Ponente:
	Presidente: César Sanz Álvaro
	Secretario: Jose Fernán Martínez Ortega
	Vocal: Mariano Ruiz Gonzalez
	Fecha de lectura:
	Calificación:
	VB:

