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This article describes a knowledge-based method for generating multimedia descriptions that summarize
the behavior of dynamic systems. We designed this method for users who monitor the behavior of a
dynamic system with the help of sensor networks and make decisions according to prefixed management
goals. Our method generates presentations using different modes such as text in natural language, 2D
graphics and 3D animations. The method uses a qualitative representation of the dynamic system based
on hierarchies of components and causal influences. The method includes an abstraction generator that
uses the system representation to find and aggregate relevant data at an appropriate level of abstraction.
In addition, the method includes a hierarchical planner to generate a presentation using a model with dis-
course patterns. Our method provides an efficient and flexible solution to generate concise and adapted
multimedia presentations that summarize thousands of time series. It is general to be adapted to differ-
ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep-
resentations. We validated our method and evaluated its practical utility by developing several models
for an application that worked in continuous real time operation for more than 1 year, summarizing sen-
sor data of a national hydrologic information system in Spain.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The management of dynamic systems by means of sensor net-
works is a type of task that usually involves teams of operators
and decision makers. In general, the human teams are interested
not only in the interpretations of the values recorded by sensors,
but also in the description of possible phenomena and the evolu-
tion of these in the time. An example of a dynamic system in the
domain of hydrology is a set of geographically distributed river ba-
sins with river channels and reservoirs. Here, human operators
monitor the state of the rivers and make decisions in the presence
of problems such as floods, water contamination, or unexpected
water needs (for agriculture, hydro-electrical energy or water con-
sumption by end-users). Other examples of this type of dynamic
system are: road traffic networks, public transport systems (by
bus, railway, subway, etc.), electrical energy distribution systems,
physical phenomena related to natural disasters (for example, seis-
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mic or volcano activity), historical records of vehicle behavior (e.g.,
a military aircraft) for maintenance purposes, etc.

Tools that automatically generate descriptions and explanations
about the system’s behavior can help end-users understand and ana-
lyze the meaning of data. This is especially important when the
dimension and complexity of the system is high with large amounts
of quantitative data from sensors that record different types of mag-
nitudes periodically. To generate such type of descriptions, it is nec-
essary to select and abstract automatically relevant sensor data and
generate adequate interpretations. In addition, it is necessary to
dynamically construct discourses at an adequate level of abstraction
that is useful for end-users according to their information needs. The
effective simulation of these reasoning processes requires repre-
senting specialized domain knowledge about the dynamic system
in a practical way, i.e., able to be interpreted efficiently by inference
methods and able to be acquired with acceptable effort.

A number of research projects have paid attention (directly or
indirectly) to this type of problem. For example, SumTime gener-
ates text descriptions that summarize temporal series about weath-
er forecasts (Reiter, Sripada, Hunter, Yu, & Davy, 2005), SumGen
generates text summaries of a set of events from a battle simulator
(Maybury, 1995) and the method of Gautier and Gruber generates
text explanations about the behavior of a space shuttle’s reaction
control system (Gruber & Gautier, 1993). However, a limitation of
these solutions is that they generate only text descriptions. In
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complex dynamic systems, it is important to use also coordinated
illustrations that complement text for a better understanding of
behavior data (e.g., map locations, graphics for temporal series,
etc.). Another problem of existing proposals (as it happens, for
example, in SumGen and SumTime) is that they use specific domain
knowledge bases for data abstraction and text generation that are
difficult to be reused for other dynamic systems.

In this article, we describe an innovative knowledge-based
method to generate descriptions that summarize datasets corre-
sponding to the observed behavior of dynamic systems.1 Our
method is able to generate multimedia presentations about behavior
(with graphics, images, animations) and, also, it is flexible to be
adapted to different dynamic systems. Our method uses a general
and reusable representation for the dynamic system especially de-
signed to support strategies for summarizing data from thousands
of sensors. This representation is based on approximate knowledge
that can be obtained with acceptable knowledge acquisition effort.
We validated our method and showed its practical utility by devel-
oping several models in the domain of hydrology that work in con-
tinuous operation using real-time sensor data from a national
hydrologic information system in Spain.

In the following, we describe the method for generating descrip-
tions that summarize behavior datasets. First, we present the sum-
marization goals describing the general characteristics of the
dynamic system. Next, we present the knowledge-based architec-
ture and, then, we describe in detail the representation for dynamic
systems and other representations and inferences for abstraction
and presentation planning. We also describe how we validated
our method and evaluated its practical utility. At the end of the arti-
cle, we make a comparative discussion with similar approaches.
2. Summarization goals

Our method generates descriptions that summarize the behav-
ior of a certain type of dynamic system. The general characteristics
of such dynamic system are the following:

� Observable. The behavior of the system is observed with the
help of sensors that periodically measure the value of a number
of quantitative properties. There are different types of sensors
that observe different types of quantities. There may be a large
number of quantities whose value change in time.
� Complex. The dynamic system has different types of compo-

nents and relations among components. The system can be
described at different levels of aggregation with parts that, in
turn, can be decomposed in smaller parts.
� Supervised. There are human teams that supervise the system’s

behavior and make decisions accordingly. For example, there
are human operators in charge of control that watch the system
and, if necessary, change its state with the help of actuators. In
addition, there are other types of users that can be affected by
the state of the system. They are interested in the system’s behav-
ior to make decisions about themselves and other related
systems.
� Prefixed goals. The system is controlled according to prefixed

management goals that try to keep certain indicators about
the state of the system close to acceptable values.
� Abstract view for decision. There is an important distance

between (1) the language (and level of detail) in which sensors
measure the quantities of the system and (2) the language (and
level of abstraction) in which users make decisions.
1 Some partial preliminary results related to the research work presented in this
article were previously reported in (Molina & Flores, 2006a, 2006b, 2008).
The input to our method is a set of measures recorded by sen-
sors. Each measure corresponds to an observed quantity of the dy-
namic system (for example the temperature of a particular
component). For each quantity there is a time series with the last
t values (for example, t = 24). We assume that each measure is re-
corded periodically, every Dt (for example, Dt = 15 min). We also
assume that for a particular dynamic system there is a large num-
ber N of sensors (for example, N > 1000).

The output of the method is a description that summarizes and
explains the behavior of the dynamic system. The description in-
cludes text summaries together with other visualization modes
(2D graphics, maps, animations, 3D images, etc.) that could be pre-
sented using different devices (a computer desktop, a mobile
phone, a fax, etc.). The method must include a solution to coordi-
nate adequately the text and the appropriate illustrations that help
understand quickly the information. This is especially important
for dynamic systems with many components that need to be iden-
tified not only by their name but also by spatial location (for exam-
ple, using a descriptive sketch of an installation, or using a
geographic map). It is also useful to show the temporal change of
different components with comparative graphics for temporal ser-
ies, or using animations (2D or 3D animations) that help to under-
stand the evolution of certain phenomena. To generate such type of
descriptions, we identified the following challenges:

� Relevant information. The generated description must include
the relevant information. Filtering thousands of quantitative
measures to select the relevant information usually requires
specific knowledge about both the historical behavior of the
dynamic system and what is potentially useful for the end-user.
� Meaningful descriptions. The summary must explain the mean-

ing of the measures in a qualitative language close to the end-
user. This requires knowledge to interpret the quantitative data
using appropriate meaningful qualitative linguistic labels.
� Variable level of abstraction. The summary must present con-

densed information as concise as possible. The level of abstrac-
tion to describe the behavior is not prefixed but it is
dynamically chosen according to the input data and length
restrictions on the output description. Condensing information
requires knowledge such as how to generalize similar facts,
how to aggregate facts corresponding to components that are
part of more complex components and how to condense differ-
ent facts corresponding to the same phenomenon.
� Variable discourse. The discourse structure of the descriptions is

not rigid, but is dynamically constructed according to character-
istics of the input data and the desired length of the presenta-
tions. The specific natural language sentences and their order
in paragraphs is dynamically chosen together with the adequate
illustrations that complement the descriptions.
� Convincing descriptions. The presentation needs to include evi-

dence that helps users to trust the generated descriptions. This
is important for users who have to assume the responsibility for
decision-making based on these descriptions. The method
needs to know strategies to select and present appropriate evi-
dences to construct convincing descriptions.

3. The knowledge-based architecture

Our method follows a knowledge-based approach with a set of
general inference steps that use domain specific knowledge. The
method performs two main tasks: (1) abstraction, to abstract the rel-
evant information (i.e., what to inform) and (2) planning, to generate
a presentation plan according to the type of end-user and the com-
munication media (how to present the information). Fig. 1 shows
the components of our method with the two main tasks, abstraction
and planning, together with inputs/outputs and the domain
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knowledge. As the figure shows, the declarative knowledge repre-
sentation is organized in meta-levels with three related layers:

(1) System model. The system model (layer 1) represents knowl-
edge about the structure and behavior of the dynamic
system.

(2) Abstraction model. The abstraction model (layer 2) represents
knowledge about how to generate abstractions. It uses
knowledge representations from layer 1.

(3) Presentation model. The presentation model (layer 3) repre-
sents knowledge about presentation strategies. It uses
knowledge representations from layers 1 and 2.

Briefly, the method works as follows. We generate the presenta-
tion plan in a loop involving the two main tasks (planning and
abstraction). The planning task performs a hierarchical search over
candidate partial presentations using the presentation model. At
each iteration, the planning task generates abstraction goals and
the abstraction task uses the abstraction model to return the abstrac-
tions corresponding to these goals. With this information, the plan-
ning task progressively refines the partial presentations until the
final presentation plan is constructed. In the following, we describe
the three domain models and inference processes in more detail.
4. The system model

The system model is a representation of the behavior and the
structure of the dynamic system. Our method is designed to
simulate summarization tasks performed by professional human
operators with partial and approximated knowledge about the
dynamic system. Thus, the system model is formulated with
a qualitative approach instead of precise mathematical
representations with quantitative parameters. Our representation
for the system model shares certain elements of existing com-
mon representations and ontologies used in qualitative physics
(Bobrow et al., 1996; Borst, Akkermans, Pos, & Top, 1995; Gruber
& Olsen, 1994; Iwasaki & Low, 1993).

Compared to existing qualitative approaches for system model-
ing, our representation is not for simulation but, instead, for sum-
marization, a task that in general requires less details and,
therefore, it uses knowledge that can be obtained with lower
knowledge acquisition effort. Our representation follows an intui-
tive component-based approach to perform abstraction processes
such as aggregation, generalization and qualitative interpretation.
This is done by using hierarchies of components (both part-of
and is-a hierarchies), qualitative states and causal influences.

We formalize the system model in many-sorted first-order logic
(Meinke & Tucker, 1993), an extension of first-order logic where
sorts are specified for each constant, variable, function symbol
and each argument position of each predicate and function symbol.
Our representation for the system model uses the following basic
sorts: component represents a physical object of the system (for
example, a reservoir or a river), quantity is a quantitative property
of a component (e.g., the temperature or the pressure), and sensor
is a device used to measure observable quantities of components.
More specific components are related to more general components
(with the is-a relation) by defining subsorts with the notation sort
s: t (where s is subsort of t). For example, sort reservoir: component
defines the subsort reservoir of the sort component.

To represent qualitative properties we use the following sorts:
state represents the qualitative state of a component at the present
moment (for example, the current state of a reservoir is empty), re-
cent_state represents the state of a component in a recent time
interval (e.g., the last 24 h), trend represents the trend of a state
(for example, with the set of values {increasing, steady, decreasing}),
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and quantification is a sort that quantifies a state in a population of
components (for example, with the set of values {all, many, few,
one, zero}). The recent state is a practical solution to summarize a
recent behavior in a qualitative value and it is usually described
in a more abstract level than the current state.

In order to characterize adequately generalization levels, our
representation also includes the scope of affirmations. For exam-
ple, we want to represent that the affirmation the temperature in
Spain is 32� corresponds to a certain spatio-temporal scope such
as the following: maximum value of the last 24 h and maximum
value of the temperature in the main cities of Spain. For this pur-
pose, we use the concept of relative scope to a specific domain.
We use two sorts: t_scope, which defines a temporal scope, and
c_scope, which defines the scope in a set of subcomponents that
are part of a given component. Table 1 shows possible values for
these two sorts.

Table 2 shows a list of predicates to represent knowledge about
the dynamic system. To represent structural relations, we use the
predicate part_of(x: component, y: component) for the part-of rela-
tion and the predicate observe(x: sensor, y: quantity, z: component)
to represent that a quantity of a component is observed (mea-
sured) by a sensor. According to the part-of relation, component
c1 is complex when there exists another component c2 and it is de-
fined the relation part_of(c2, c1). In contrast, a component is single
when this property is no satisfied. The predicate state_category(x:
component, y: state, z: state) defines general states that correspond
to categories of more specific states.

The model includes also an approximate view of the system
behavior represented with causal relations between quantitative
properties. This intuitive relation is useful to summarizing data
Table 1
Examples of possible values for the sorts t_scope y c_scope.

Sort Value Description

t_scope series(n) A temporal series with the last n values
current The value at present moment
maximum(n) The maximum of the last n values
minimum(n) The minimum of the last n values
average(n) The average of the last n values
sum(n) The sum of the last n values
maximum The historical maximum value
minimum The historical minimum value
average The historical average value
forecast(n) A temporal series with a prediction of the future n

values

c_scope maximum The maximum value in the set of the components
minimum The minimum value in the set of the components
average The average value in the set of the components
sum The sum of values in the set of the components

Table 2
Predicates to represent knowledge about the dynamic system.

Predicate Description

part_of(x,y) Component x is part of component y
observe(x,y, z) Quantity y of component z is observed by sensor x
cause(x,y, z,u, t) Quantity x of component y is cause of quantity z of

component u with the delay t
measurement(x,y, z) Quantity x measured by sensor y has the value z (a

temporal series)
value(x,y, t,v) Quantity x of a single component y with t_scope t has

the value v
value(x,y, t, z,v) Quantity x of a complex component y with t_scope t

and c_scope z has the value v
state(x,y) The state of component x is y
recent_state(x,y) The recent state of component x is y
trend(x,y) The trend of the state of component x is y
quantification(x,y) The quantification of the state of component x is y
state_category(x,y, z) The state z is a category of the state y of component x
corresponding to the same phenomenon and generating explana-
tions that help to understand data. The predicate cause(x1: quan-
tity, y1: component, x2: quantity, y2: component, t: number)
represents a direct causal influence between two quantities. The
relation includes a temporal delay between the cause and effect.

To represent the value of a particular quantity we use the predi-
cate value(x: quantity, y: component, t: t_scope, v: value) for the case
of a single component. This predicate defines the value for the quan-
tity of a component with a particular temporal scope. For example,
value(temperature, tank-T3, current, 120) represents that the temper-
ature of tank-T3 is 120 at the present moment and value(volume, res-
ervoir-R8, minimum(24), 18) represents that the minimum volume of
reservoir-R8 in the last 24 h is 18. The predicate for the case of com-
plex components is value(x: quantity, y: component, t: t_scope, z:
c_scope, v: value). It includes an additional argument for c_scope.
For example, value(rain, Spain, current, maximum, 27) represents
that, at the present moment, the maximum rain in the set of points
where rain is measured that are part of Spain is 27.

To interpret the current state of a component we use the pred-
icates state(x: component, y: state), trend(x: component, y: state) and
quantification(x: component, y: quantification). For example the tu-
ple hstate(Spain, heavy-rain), trend(Spain, decreasing), quantifica-
tion(Spain, few)i represents that there is a decreasing heavy rain
in a few points of Spain. The predicate recent_state(x: component,
y: recent_state) represents the qualitative recent state of a compo-
nent corresponding to a recent prefixed time interval.

5. The abstraction model

The abstraction model includes three submodels: the interpre-
tation model, the relevance model and the validation model. In
the following, we describe these models in detail. Then, we de-
scribe how we generate abstractions by using such models.

5.1. The interpretation model

The interpretation model represents knowledge that helps to
determine the qualitative state of components. For the case of sin-
gle components, their state is determined by conditions about
quantities. The state of single components is similar to the qualita-
tive values used in qualitative reasoning. For instance, the state of a
reservoir may have the set of values {empty, medium, full}. We as-
sume a total order in qualitative values. We obtain the state value
of a single component by interpreting the numerical values of re-
lated quantities of the component, considering the limit points that
define a quantitative space of a quantity (Forbus, 1984). For this,
we use qualitative interpretation rules. The antecedent of such rules
includes conditions about limit points in quantity values. For
example, let consider the following rule:

sort reservoir: component
"x: reservoir, "n, m: number
[value(x, volume, current, n) ^ value(x, volume, maximum, m) ^
(n/m > 0.95) ? state(x, full)]

This rule represents that when the current quantitative value of
volume of a certain reservoir is greater than 95% of its capacity,
then the state of this reservoir is full. For the case of complex com-
ponents, their state is determined by conditions about the state of
simpler components. This is formulated by aggregation rules such
as the following example:

sort point, basin: component,
"x1: point, "x2: basin
[part_of(x1,x2) ^ state(x1, heavy-rain) ? state(x2, heavy-rain)]
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This rule represents that if the state of a spatial point is heavy rain

and it is part of a basin, then the state of the basin is also heavy rain.
Note that at a certain moment, according to these rules, a complex
component could have a number of different states at the same
time, deduced from the states of subcomponents that have different
states. In order to cope with this, we process these rules following a
particular control mechanism based on relevance as it is described
in the next section.

The interpretation model also is used to formulate how the va-
lue of a quantity x is computed based on the values of other quan-
tities y1, y2, . . ., yn (when x is not directly measured by sensors). We
also use rules to represent this type of knowledge.

5.2. The relevance model

The relevance model represents knowledge to determine when
a certain event is relevant to be reported to the operator. In gen-
eral, we define a relevant event that produces (now or in the near
future) a significant deviation of the desired state established by
the goals of the management strategy for the dynamic system.
The implication of this definition is that, in order to evaluate the
relevance of facts, it would be necessary to predict the behavior
of the dynamic system by simulation. However, based on our
assumption for system modeling, we follow here a simplified and
more efficient approach with approximated heuristic knowledge.

We use the predicate normal_state(x: component, y: state) to
establish that the qualitative state of a type of component does
not produce significant deviations of the desired states estab-
lished by the management goals. For example, in hydrology,
one of the management goals is that the water flow in river
channels should not exceed the maximum capacity of channels
in order to avoid floods. Thus, light rain is not relevant because,
normally, it does not produce this problem. This can be repre-
sented as normal_state(point, light-rain). However, if we want to
establish exceptions for this situation, we can write rules such
as the following:

sortpoint : component;8x : point;8y : weather-forecast-region

part of ðx; yÞ^:stateðy;heavy-stormÞ! normal stateðx; light-rainÞ½ �

This rule represents that the state light rain is not relevant at a
certain point, except when the weather forecast predicts heavy
storm in the region of such point (because it may be the beginning
of the storm).

Our notion of relevance gives also criteria to establish relevance
order among events. To represent relevance order, we use the
predicate more_relevant(x,y) where x and y are states.2 For example
more_relevant(state(a, heavy-rain), state(b, light-rain)) represents that
the state heavy rain is more relevant that the state light rain. We use
rules with this predicate in the consequent to consider particular sit-
uations. For example, the state heavy-rain at certain location x can
be more relevant than the same state at location y because, for
example, the capacity of the river channels nearby x is smaller or be-
cause there are populated areas nearby x.

The relevance model plays the role of control knowledge in
the complete model. The aggregation rules of the interpretation
model are used to determine the state of complex components
based on the state of single components. However, these rules
need to be applied according to a certain control mechanism be-
2 In order to use a formula of first-order logic using the predicate more_relevant
(x, y), then state(x, y) must be a term and not a predicate. We use here the technique of
reification McCarthy (1979), which in general consists of making a formula of first-
order language L1 into a term of another first-order language L2. We make atoms of
L1 into terms of L2. We treat the predicate symbol of state(x, y) in L1 as a function
symbol in L2 (whose sort is, for example, state_predicate). Then in L2, state(x, y) is a
term.
cause the same component can have different states. The rele-
vance priority is used here for this purpose taking into account
that rules that interpret qualitative states with higher priority
are applied first.

5.3. The validation model

In real life, the measures recorded by sensors that monitor the
behavior of dynamic systems present sometimes errors due to
occasional malfunctions of devices or communications. For this
purpose, it is important to have a model that represents knowledge
able to detect typical situations that correspond to these faults. We
use the predicate error(x: sensor, y: malfunction) to represent that a
particular sensor is out of order (here, the sort malfunction repre-
sents a prefixed malfunction). The validation model contains vali-
dation rules with this predicate in the consequent. The
antecedent of such rules includes conditions that analyze the val-
ues of the quantity recorded by the sensor.

This process can detect errors corresponding to certain properties
of the quantity (maximum value, minimum values, maximum
change in a time interval, etc.). A typical fault in the field of hydrology
is a pluviometer that records a constant value for a long period.
According to the behavior of the rain, it is expected a certain random
behavior of the values. We can easily detect this error with a rule
with this condition in the antecedent. In addition, validation rules
can include conditions that analyze the coherence of sets of nearby
sensors based on redundancy of measures and/or causal influences.

5.4. Abstraction inferences

The abstraction model also includes a prefixed set of goals that
correspond to specific abstraction inferences. Each inference goal is
identified by a predicate. For example, the predicate abstract(x)
represents an inference goal that generates x (an ordered list of
qualitative states) by abstracting the quantitative sensor measure-
ments. Other examples of predicates are the following: details(x,y)
represents an inference goal that generates a list of states y that are
the details of the state x, causes(x,y) generates the list of states y
that are cause of the state x, and effects(x,y) generates the list of
states y that are effects of the state x.

We describe below the algorithms for the abstraction goals cor-
responding to the predicates abstract(x) and details(x,y). These
predicates are representative examples of abstraction goals (the
other abstraction goals are implemented with small variations of
these main algorithms or they correspond to simple inferences).
The algorithm for the predicate abstract(x) performs a linear se-
quence of the following steps:

(1) Interpret measurements. Each sensor measurement is inter-
preted to generate quantity values of single components.
This process filters measurements that correspond to sen-
sors that present malfunctions. Here, we use the predicates
observe(x,y,z) from the system model and the rules with
the predicate error(x,y) in the consequent from the valida-
tion model.

(2) Interpret quantities. For every single component its qualita-
tive state and its trend is computed. We use the qualitative
interpretation rules with the predicate state(x,y) in the con-
sequent from the interpretation model. Let R1 = {S1,S2, . . .,Sn}
be the result of this interpretation where each element Si is a
pair hstate(ci, ai), trend(ci, ti)i where ci is a component, ai is a
state and ti is a trend.

(3) Select relevant states. Relevant states from R1 are selected.
For this purpose, we use rules with the predicate nor-
mal_state(x,y) in the consequent from the relevance model.
Let R2 be the set of relevant states.



OPERATOR: text_template_current_flow
GOAL: elaborate_with_quantity(x, q) 

CONDITIONS: (x: river-section)  (q = flow) value(q, x, current, v) 
EFFECT: add-text ({“there is a flow of ”, v, “ m3/s at ”, x}) 

OPERATOR: text_template_flow_variation

∧ ∧

2764 M. Molina, V. Flores / Expert Systems with Applications 39 (2012) 2759–2770
(4) Sort states. The states of R2 are sorted according to the prior-
ity for relevance. For this purpose, we use rules with the
predicate more_relevant(x,y) in the consequent from the rel-
evance model. Let R3 be the resulting ordered set. More rel-
evant states are located first in R3.

(5) Filter states. States corresponding to the same phenomenon
are removed. We assume that this happens when a state is
cause of another state. For each state Si in R3 (following
the priority order in R3) a second state Sk (less relevant than
Si because Sk is located after Si in R3) is removed if Sk is cause
or effect of Si (through the causal relation established the
predicate cause(x,y,z,u,v) from the system model). Let R4
be the resulting filtered set.

(6) Condense states. We condense states from R4 to generate a
new set with a small number of more abstract states. As con-
trol criteria, we condense first the states according to the
order in R4 with guarantee that the most relevant states
are condensed first. In this process, each time a condensed
state is generated, we also generate a link that relates the
condensed state and the states of single components that
it abstracts. Two strategies are used for condensation:

(a) State generalization. We generate a new state of a component
that generalizes a set of states of the same component. For
example, the states heavy_rain and moderate_rain are gener-
alized by the state rain. For this purpose, we use the predi-
cate state_category(x,y) from the system model. We look
for the most specific category that generalizes all the states
of components of the same class.

(b) Component aggregation. The goal is to condense states of sin-
gle components c1; c2; . . . ; cn of the same class to generate
the state of a complex component c. The complex compo-
nent c is the smallest component that includes all the single
components c1; c2; . . . ; cn through the relation established by
the part_of(x,y) predicate from the system model. We deter-
mine the state of the component c with the rules from the
interpretation model that include the predicate state(x,y)
in the consequent. In addition, the trend and the quantifica-
tion are evaluated. The quantification is calculated by com-
paring the size of the set of states to condense and the size
of the set that includes all single components that are part
of the component c. As a result, this condensation produces
a tuple with the following format hstate(c,s), trend(c, t), quan-
tification(c, q)i.

The output of this abstraction process is an ordered set with the
following format R = {hstate(c1,s1), trend(c1, t1), quantifica-
tion(c1,q1)i, hstate(c2,s2), trend(c2, t2), quantification(c2,q2)i,. . .,
hstate(cn,sn), trend(cn, tn), quantification(cn,qn)i}. The elements of
the set R are ordered by relevance. In addition, as mentioned, each
state of a complex component is linked with the set of single com-
ponents that it abstracts. These links make possible to perform an
inverse inference, represented by the predicate details(x,y). Thus,
when this predicate is invoked with a value for x (the state of a
component), it looks for the corresponding link and returns the va-
lue y with the states of single components.
GOAL: contrast_to_previous(x, q)
CONDITIONS: (x: river-section) ∧ (q = flow) value(q, x, current, v1)

value(q, x, previous , v2)  (d = v1 – v2)  (d > 0)
EFFECT: add-text({“which is an increase of ”, d, “ m3/s”})

OPERATOR: text_template_average_flow
GOAL: contrast_to_average(x, q)

CONDITIONS: (x: river-section)  (q = flow) 

∧
∧ ∧ ∧

∧ ∧ value(q, x, average, v)
EFFECT: add-text({“the average value at this point is ”, v, “ m3/s”}) 

… 

Fig. 2. Examples of planning-operators in the presentation model.
6. The presentation model

The presentation model is used to automatically construct pre-
sentation plans, i.e. the final output description to be presented to
the end-user. The presentation model represents knowledge about
strategies that express how to present abstracted information. We
use a knowledge-based hierarchical planner that constructs the
presentation plan through a search directed by hypotheses of
partial strategies that are progressively refined until the final
presentation is generated. The knowledge base of the planner
contains a set of operators that represent atomic presentation
operations.

Fig. 2 shows a set of operators. In this example, operators gen-
erate text using templates (it is also possible to have graphic oper-
ators, as it is explained below). Each operator includes a set of
conditions. In this example, the conditions establish that the oper-
ators are applicable for a particular type of component (a river sec-
tion) besides other conditions about the values of quantities. In
addition, the operator defines its effect with one or several presen-
tation actions that generate part of the presentation. We consider
actions to generate text and actions to generate illustrations
(images, animations, graphics, etc.). In this example, the actions
generate text using the action add-text(x) that incrementally con-
structs the text summary.

Each specific operator is associated to a general communicative
goal. For example, the goal of the last operator is contrast_to_aver-
age(x,q), i.e., to show an average value that contrast to a previous
reported value. In general, there are several candidate operators
for a given communicative goal. Each communicative goal is de-
fined according to certain rhetorical relations that establish the
structure of discourse (Mann & Thompson, 1988). We have identi-
fied a set of rhetorical relations applicable in our context of dy-
namic system surveillance that include relations such as:
elaboration, contrast, exemplify, list, cause, preparation, etc. Table 3
shows a list of communicative goals that implement such relations.
The table includes examples of text sentences for these communi-
cative goals.

To generate a presentation, the planner searches for applicable
operators. We use a hierarchy of discourse patterns to direct this
search. The hierarchy makes more efficient the search process
and helps to generate coherent presentations. Our presentation
planner uses a simplified version of Hierarchical Task Network
(HTN) planning (Ghallab, Nau, & Traverso, 2004). Besides opera-
tors, an HTN planner includes planning-tasks and planning-meth-
ods. In our approach, each planning-task corresponds to a
communicative goal (what to present) and each planning-method
corresponds to a discourse pattern (how to present it). In our mod-
el, a discourse pattern is a presentation template that helps to keep
the coherence of the presentation. Each pattern defines a partial
presentation strategy at certain level of abstraction.

Fig. 3 shows examples of discourse patterns. The first extract
illustrates a discourse pattern for the communicative goal in-
form(x). In general, several different patterns can be associated to
the same goal. The pattern defines four sub-goals: summa-
rize_state(x), elaborate_state(x), elaborate_causes(c) and elabo-
rate_effects(e). The pattern includes also conditions similar to the
conditions for operators whose purpose is to establish when the
pattern is applicable. Conditions can include logical expressions



Table 3
Examples of communicative goals associated to text templates.

Communicative goal Example of generated sentence (translated into English)

summarize_state(x) High flow in some parts of the river Ebro
elaborate_with_quantity(x,q) The flow of river Ebro at Tortosa is 1285 m3/s
elaborate_with_count(x) High flow in three rivers of the Ebro Basin
elaborate_with_enumerate(x) High flow in the river Ebro, the river Jucar and the river Segura
list_maximum (x,q) The river Ebro has the maximum flow
list_next_maximum(x,q) The river Arga is the next river with maximum flow
contrast_ to_average(x,q) The average flow at this point of the river is 309 m3/s
contrast_to_previous(x,q) Compared to the previous value, this means an increase of 130 m3/s
contrast_to_maximum(x,q) This value corresponds to the 78% of its capacity
exemplify_with_quantity(x) For example, the flow of river Ebro at Tortosa is 1285 m3/s
exemplify_with_next_quantity(x) Also, the flow of river Ebro at Asco is 973 m3/s
prepare_causes The following behavior upstream can be highlighted
prepare_effects The following behavior downstream can be highlighted
summarize_behavior(x) Light rain in the Ebro basin in the last 24 h
elaborate_with_quantity_behavior(x,q) In the last 24 h, the accumulated rain at Algemesí is 27 mm
list_maximum_behavior(x,q) In the last 24 h, the place with maximum accumulated rain is Algemesí
list_next_maximum_behavior(x,q) The place with next maximum accumulated rain is Albalat

pattern-1

goal-2 goal-4 goal-5

…

goal-1

…

goal-3

…
<y / Canal>
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with predicates related to the structure and behavior of the
dynamic system (for example, value(x,y,z, t), part_of(x,y), etc.). In
the examples, value(q,x,current,v) is used to identify the current
value of a quantity, single_component(y) indicates that y must be
a single component and quantity(y,q) represents that q is a quan-
tity of the component y. In addition, conditions also could include
predicates related to previous decisions about presentation ele-
ments (such as the decision about the layout). Conditions can also
include predicates that invoke abstraction goals. These predicates
gather additional information about the dynamic system (for
example, the predicates causes(x,c) and effects(y,e)). Abstraction
goals are invoked backwards when the presentation planner
checks the conditions of a candidate pattern.

Using a presentation model as a knowledge base with opera-
tors and patterns is fairly flexible. It permits the discourse plan-
ner to consider different types of presentation strategy, and it
can be easily extended to include new strategies. As the examples
illustrate, the discourse patterns are domain independent so that
they can be reused (wholly or partially) for different dynamic sys-
tems. In contrast, operators are domain dependent. For example,
they define specific text templates using specific words and sen-
tences that are domain specific and need to be defined with the
help of domain experts. In order to have more general operators,
natural language generation (NLG) techniques could be used in-
stead of templates (as it is done for example in Molina & Stent,
2010) and further research could help to identify common pre-
sentation strategies at operator level that could be generalized
for different dynamic systems.
PATTERN: describe_with_causes_and_effects 
GOAL: inform(x) 

CONDITIONS: causes(x, c) ∧ effects(y, e)  
DISCOURSE: {summarize_state(x), elaborate_state(x), 

 elaborate_causes(c), elaborate_effects(e)} 

PATTERN: describe_state_of_single_component 
GOAL: elaborate_state(x) 

CONDITIONS:  (state(y, s) ∈ x) ∧ single_component(y) ∧ quantity(y, q) 
DISCOURSE: {elaborate_with_quantity(y, q),  

 contrast_to_previous (y, q), contrast_to_average(y, q)} 

PATTERN: describe_state_of_complex_component 
GOAL: elaborate_state(x) 

CONDITIONS:  (state(y, s) ∈ x) ∧ ¬ single_component(y)  
DISCOURSE: {elaborate_with_count(x), exemplify_with_quantity(x)} 

… 

Fig. 3. Examples of discourse patterns in the presentation model.
To construct a presentation plan our planner searches the space
of possible plans using the discourse patterns (Fig. 4 and Table 4).
During the search, the presentation planner repeatedly (a) selects a
candidate discourse pattern for the current goal, (b) checks if the
conditions of the candidate discourse pattern are satisfied and
sometimes, as a consequence of this, gathers additional abstracted
information, and (c) refines the communicative goal with sub-
goals. This process continues for each communicative goal until
it can be carried out by an operator that satisfies its conditions.
Each operator produces a certain part of the presentation. The
whole presentation is formed as the sequence of all design deci-
sions done by the operators.

As mentioned, operators can include other type of actions to
generate multimedia presentations. For example, it is possible to
generate 3D animations in a virtual terrain by using specific pre-
sentation primitives that a viewer for virtual terrains can interpret.
g5

g5

pattern-2

operator-1 operator-2 operator-3

“there is a flow of 256 m3/s at Canal” “which is an increase of 18 m3/s” “the average value at this point is 45 m3/s”

goal-6 goal-7 goal-8

… … …

<q / flow>

<v /256> <d /18> <v /45>

Fig. 4. Example of partial search tree developed during the presentation planning
process. The tree includes several nodes whose content is shown in Table 3. This
example uses the operators and patterns shown in Figs. 2 and 3 respectively. Some
of the variable substitutions are shown in the figure (e.g., hd/18imeans that variable
d is substituted by the value 18, as it is done, for example, by unification in
automated theorem proving).



Table 4
Content of nodes corresponding to the tree shown in Fig. 3.

Node Content

goal-1 inform(hstate(Canal,high-flow),trend(Canal,increase)i)
goal-2 summarize_state(hstate(Canal,high-flow),trend(Canal,increase)i)
goal-3 elaborate_state(hstate(Canal,high-flow),trend(Canal,increase)i)
goal-4 elaborate_causes (hstate(Canal,high-flow),trend(Canal,increase)i, . . .)
goal-5 elaborate_effects (hstate(Canal,high-flow),trend(Canal,increase)i, . . .)
goal-6 elaborate_with_quantity (Canal, flow)
goal-7 contrast_to_previous(Canal, flow)
goal-8 contrast_to_average (Canal, flow)
pattern-1 describe_with_causes_and_effects
pattern-2 describe_state_of_single_component
operator-1 text_current_flow
operator-2 text_flow_variation
operator-3 text_average_flow
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Primitives locate certain elements in a 3D map (points, areas, point
sets) and, also, text can be presented in information globes associ-
ated to certain locations. Examples of these primitives include loca-
te_point(x), locate_area(x), locate_point_set(x), show_distance(x,y),
show_section(x,y), show_text_globe(x,y), show_orography(x), etc.
The viewer uses a cartographic database with raster and vector
data corresponding to digital elevation models about terrains,
orto-photographies, etc. An example of planning operator with this
type of presentation primitives is the following:
OPERATOR:
 current_flow_on_virtual_terrain

GOAL:
 elaborate_with_quantity (x,q)
CONDITIONS:
 (x: river-section) ^ (q = flow) ^ value(q, x,
current, v)
EFFECT:
 {locate_point(x),
show_text_globe(x, {‘‘there is a flow of ’’,
v, ‘‘ m3/s at ’’, x})}
7. Evaluation

In order to evaluate our method, we used a real world domain
with enough complexity and available data to experiment with dif-
ferent models. We used the domain of hydrology to evaluate the
validity of our method and its practical utility. This domain is espe-
cially appropriate because (1) there are available large sets of mea-
sures (historical databases and in real time) about the rivers’
behavior in Spain thanks to a national information system called
SAIH (SAIH: Spanish acronym for Automatic Information System
in Hydrology), and (2) this information is used to make decisions
according to different goals such as flood alerts, water manage-
ment, hydroelectric energy, sensor validation, etc.

The SAIH system includes a sensor network to record hydrologic
measures such as rainfall at certain geographical points, flows and/
or water level of river channels, water levels of reservoirs, etc. The
SAIH system consists of nine control centers in Spain, one for each
main river basin (Ebro, Tajo, Júcar, Segura, etc.). Control centers re-
ceive in real time hydrologic data recorded by sensors. Control cen-
ters process and store this information in databases. The Ministry
of Environment of Spain coordinates and integrates part of the re-
corded data in a global database. Besides other information, the
database includes time series with values of the last T hours
(T = 24 h and DT = 1 h or 30 min).

We developed three different models for this domain according
to three different management goals: flood risk, water manage-
ment, and sensor validation. For example, the flood risk manage-
ment goal is to avoid river floods. In this case, control actions are
oriented to operate reservoirs to avoid problems produced by
floods and, when problems cannot be avoided, to send information
to public institutions in order to plan defensive actions. For this
management goal, the behavior summaries report relevant
information of the river basin from the point of view of potential
or existing floods such as the presence of significant rain or high
flow at certain locations. We constructed two versions for the flood
risk model. The first version includes a presentation model com-
bining text (in the form of headlines and text globes) and 3D ani-
mations on a virtual terrain. The second version includes a
presentation model combining text with interactive maps and
graphics with time series.

We formulated a common model for the dynamic system
shared by the rest of the models. This includes different types of
sensors (e.g., pluviometers, flow-sensors, level-sensors) and compo-
nents (e.g., river section, reservoir, rain point, river, basin, region
and nation). These components are related with structural relations
(e.g., part-of). In addition, causal relations describe the water behav-
ior from rain components to downstream components. The result-
ing model includes 14,337 elements distributed in the following
way: 1864 values of sort sensor, 2230 values of sort component,
2229 instances of predicate part_of(x,y), 1864 instances of predi-
cate measure(x,y, z), 2068 instances of value(x,y, t, v) (e.g., maxi-
mum value and average value), 2295 instances of cause(x,y,z,u, t)
for pluviometers, 687 instances of cause(x,y,z,u, t) for river
channels.

To develop such a model, we applied a semi-automatic knowl-
edge acquisition process supported by software tools (developed in
our own research group) using different information sources.
Examples of these information sources include (1) geographic infor-
mation such as raster files with digital elevation models and vector
data files with rivers, reservoirs, basins, dams, administrative lim-
its (provinces, regions, etc.), and (2) web applications with publicly
available information, such as web pages with hydrologic informa-
tion provided by local SAIH control centers, and the web site http://
www.geonames.org that provides names for geographical loca-
tions. In this process, we performed certain operations (spatial
analysis, statistical analysis and text processing) to capture and
represent knowledge from the different information sources.

We developed three abstraction models and three presentation
models corresponding to the three management goals (flood risk,
water management and sensor validation). The domain abstraction
models include in total 206 logic clauses. The domain presentation
models include 294 logic clauses. The most complex presentation
model is the model for the case of flood risk. The first version of
the presentation model includes 38 operators and 42 patterns,
which generates 3D animations on a virtual terrain (Fig. 5). The
second version of the presentation model for text and, 2D maps
and graphics includes 103 operators and 142 patterns.

We evaluated the models with data corresponding to measures
of SAIH sensors. This evaluation was done in two phases. In the
first phase, we prepared a set of representative cases with a simu-
lator that covered different hydrologic episodes of 24 h. The meth-
od was applied every hour to generate the corresponding
summaries. For example, one of these episodes included data for
57 pluviometers, 117 flow sensors and 71 volume sensors (since
we have 24 measures for each sensor, this includes a total number
of 5880 measures). A representative sample of the generated sum-
maries was evaluated with the help of a human expert in hydrol-
ogy. For this evaluation, we used a method post-edition method
(as it is done for example in Turner, Sripada, & Reiter, 2009). For
each generated summary, we asked the expert to write a new text
summary describing the hydrologic situation by reusing our gener-
ated summary. Then, we compared the generated summary and
the summary written by the expert. We computed the percentage
of generated text for each generated summary that was present in
the summary written by the expert. The result of this evaluation
generated an average value of 83% which was considered satisfac-
tory. Some of the differences between summaries were related to
verb tenses and syntax rules about specific names of locations.

http://www.geonames.org
http://www.geonames.org


Fig. 5. Example of image corresponding to a 3D animation on a virtual terrain. The animation shows a sequence of relevant places related to flood risks together with
explanatory text globes with details.
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For the second phase, we validated the models by developing a
web application, called VSAIH (Fig. 6), that operated on line with
sensor data provided by the SAIH system. The application includes
the three models (flood risks, water management and sensor vali-
dation) and generates summaries by processing every hour 44,736
numerical measures. This corresponds to 1864 sensors and, for
each sensor, a time series for the last 24 h (one value per hour).
The method generates summaries for each hour in less than 30 s.
The method was implemented in Prolog language, both inference
procedures and knowledge bases. We validated the correctness
of the models by continuous operation of this application for more
than 1 year with the help of three experts in hydrology who refined
details of the summaries.

We estimated the practical utility of this application by compar-
ing the VSAIH application with existing web applications about
hydrologic information. For this purpose, we selected 10 represen-
tative summaries provided by VSAIH and measured the effort (in
time) to get the reported information by other web sources. We
mainly used three different types of web sources: (1) the web site
of the Ministry of Environment of Spain with information about the
measures recorded by sensors, (2) the web site of the National
Agency of Meteorology of Spain, and (3) the web site of SAIH con-
trol centers about river basins, which includes additional and more
detailed information about sensors (historical values, detailed
maps, etc.). The result of this evaluation produced a maximum va-
lue for the estimated effort of about 5 h (exactly, 4 h and 46 min).
This represents the time that operators could save by using the
VSAIH application, which is a significant value, especially in the
presence of hydrologic emergencies.
8. Related work

Our method integrates various types of artificial intelligence
techniques related to different fields: system modeling, explana-
tion systems, summarization, and generation of multimedia pre-
sentations. In the following, we compare our method with
related work in each one of these fields. We designed our represen-
tation for the system model to capture qualitative descriptions as it
is done in physical reasoning. In general, physical reasoning uses
qualitative descriptions that contrast to scientific computing that
usually aims at achieving a high degree of numerical accuracy
(Davis, 2008). The qualitative approach is used in qualitative sim-
ulation (de Kleer & Brown, 1984; Forbus, 1984; Kuipers, 2001), rep-
resentation languages such as CML (Bobrow et al., 1996) and DME
(Iwasaki & Low, 1993) and ontologies for physical systems (e.g.,
(Borst et al., 1995; Gruber & Olsen, 1994). As a main difference
with these approaches, we designed our representation to simulate
abstraction reasoning (by qualitative interpretation, aggregation
and generalization) instead of other tasks that usually require
more precision (e.g., diagnosis or prediction). Thus, compared to
other representation for physical reasoning our representation is
simpler and, therefore, more efficient for both inference and
knowledge acquisition.

Our method is also related to automatic tools that generate
explanations about the behavior of dynamic systems. As men-
tioned, the method of Gautier and Gruber is a representative exam-
ple of this type of tool (Gruber & Gautier, 1993). This tool uses a
system model represented in DME language (Iwasaki & Low,
1993) to generate text explanations in a dialog with the user that
help to understand the behavior a space shuttle’s reaction control
system. The main difference with our method is that this tool gen-
erates explanations of single events, with limited capabilities for
abstraction. Instead, our method includes a model-based abstrac-
tion component, which is useful to generate descriptions that ab-
stract large amounts of related events. The method of Gautier
and Gruber defines relevance based on qualitative state transitions.
Our method also uses qualitative states to distinguish relevant sit-
uations. However, our method includes an additional definition for
relevance. Our method uses a notion of relevance based on the dis-
tance between the system state and the management goals. This
provides a clear criterion to establish degrees of relevance. Also,
it is used as control criteria to use abstraction knowledge for
summarization.



Fig. 6. Screen presented by the web application VSAIH. This application combines a text summary (on the left) and interactive maps and graphics to show details about
geographical location and temporal evolution. The text is related to the map in such a way that the map shows the corresponding locations when the user clicks relevant
words in the text.
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Our method is also related to data-to-text systems that use
techniques for summarizing time series data. For example, our
work presents commonalities with the SumTime project in the do-
main of weather forecast (Reiter et al., 2005). The SumTime ap-
proach has been applied to the domain of medicine (Hunter,
Gatt, Portet, Reiter, & Sripada, 2008) and gas turbines (Yu, Reiter,
Hunter, & Mellish, 2007). The FOG system (Goldberg, Driedger, &
Kittredge, 1994) is a previous data-to-text system that converts
weather data into forecast text.

Our method and SumTime generate descriptions that summa-
rize time series. The main difference is that SumTime is restricted
to text generation, while our system can generate also descriptions
with 3D animations and other multimedia presentations. SumTime
includes a natural language generation module for text generation.
Instead, our method uses a hierarchical planner with operators
that follow a template-based approach for text generation (Reiter,
1995). Our planner can combine efficiently text with other media
which is important for complex and large systems with thousands
of time series.

In the field of summarization, abstraction techniques go from
domain dependent approaches to domain independent solutions
based on more general approaches (e.g., clustering or statistic anal-
ysis) (Maybury, 1993). For example, SumTime follows a domain
dependent approach that abstracts time series based on a general
pattern matching method (Knowledge-based Temporal Abstrac-
tion) (Shahar, 1997). SumGen is another case of data-to-text sys-
tem (Maybury, 1995). This approach receives as input data a set
of events (e.g., events produced by a battle simulator) and pro-
duces text descriptions that summarize the events. SumGen uses
a general representation of events and a domain model to abstract
events. As SumTime and SumGen, our approach for abstraction is
also domain dependent but it uses a more specific representation
for dynamic systems (e.g., components, states, quantities, etc.).
Therefore, it can be easier reused for different dynamic systems,
and it can be more efficient than general approaches. In contrast,
the applicability of our method is limited to a certain type of dy-
namic systems that can be described with a component approach.

Our method is also related to multimedia presentation systems.
For example, our method shares some general ideas about presen-
tation planning and rhetorical relations as it is done by WIP (André
& Rist, 1993; Wahlster, André, Finkler, Profitlich, & Rist, 1993) and
COMET (McKeown & Feiner, 1990). The system of Kerpedjiev in the
field of meteorology (Kerpedjiev, 1992) follows a similar planning
approach. The goal of COMET and WIP is to generate text explana-
tions accompanied with static illustrations that help users to
manipulate a device (e.g., a radio receiver-transmitter or a coffee
machine). We designed our method for a different task: generating
text explanations and interactive illustrations that help users to
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understand the behavior of a complex dynamic system (e.g., a net-
work of river basins). Compared to the planners used by these sys-
tems, our presentation planner follows a different approach. WIP
constructs a presentation based on an explicit representation of
the presenter’s intentions and the effects on the receiver. In con-
trast, our approach is closer to design planners used for configura-
tion tasks (Agosta, 1995; Brown & Chandrasekaran, 1989). Our
planner constructs a presentation based on partial design decisions
in a search directed by partial discourse strategies. Our experience
in the domain of hydrology shows that our solution is efficient to
construct automatically presentations for dynamic systems. In
addition, it is flexible enough to easily change parts of the strate-
gies for presentation according to new requirements.

A different approach for presentation generation is followed by
ILEX (O’Donnell, 2000). ILEX generates presentations about pieces
of a museum with text summaries and images. ILEX uses a seman-
tic network to represent knowledge about pieces of art and con-
structs a presentation using a particular notion of relevance. ILEX
uses degrees of relevance based on the distance between facts
through relations (such as generalization, contrast, etc.). Our meth-
od and ILEX generate presentations that combine text and illustra-
tions. However, they are designed for different tasks with different
knowledge representation and summarization procedures (for
example, ILEX does not summarize behavior).
9. Conclusions

In this article, we have described a method for generating
descriptions that summarize the behavior of a dynamic system.
We have designed this method for a type of dynamic system that
is monitored with the help of sensors to help human operators to
make decisions according to certain management goals. The gener-
ated descriptions include both text and graphics such as maps, 3D
animations on virtual terrains and 2D graphics for temporal series.
Our method integrates various types of artificial intelligence tech-
niques related to different fields: system modeling, explanation
systems, summarization, and generation of multimedia presenta-
tions. The main original contributions of the method are the
following:

� To our knowledge, our method is the first method for the task of
generating descriptions with coordinated text and graphics that
summarize thousands of quantitative measures of the behavior
of a dynamic system. Our method has been validated in a real
world domain. Other related methods correspond to different
tasks or partial solutions (e.g., they generate only text, they
abstract data from few sensors or they are experimental
prototypes).
� We designed a general representation for dynamic systems

(e.g., sensors, components, quantities, states, etc.) to support
abstraction and presentation planning. This provides generality
of the method (it is applicable to different dynamic systems)
and it also provide reusable declarative expressions that make
it easier for a developer to build the domain models for a new
application. For example, the representation provides reusable
predicates and axioms to describe the dynamic system and gen-
eral rules and planning operators for abstraction and presenta-
tion. In contrast, the applicability of our method is limited to a
kind of dynamic system that can be modeled with our
representation.
� We also designed specific algorithms for inference. For example,

we designed original procedures to generate efficiently abstrac-
tions by using the representation of the dynamic system. Here,
we defined a particular notion of relevance (based on the dis-
tance between the system state and the management goals)
that plays a role of control knowledge in the global abstraction
inference. In addition, we used and adapted existing planning
algorithms (e.g., planning algorithms for design tasks and HTN
planning) to define an efficient solution for the generation of
multimedia presentations.
� The application that we developed in the hydrologic domain

showed that our method was able to generate efficiently useful
summaries by using approximate knowledge that was possible
to acquire with acceptable effort. We especially confirmed this
by building several real-world models using available informa-
tion sources and semi-automatic procedures. Our representa-
tion was also flexible enough to easily change parts of the
strategies for presentation according to changes in the
requirements.

One of the practical results of this work is the web application
VSAIH that we developed for the Ministry of Environment in Spain
(Dirección General del Agua, Ministerio de Medio Ambiente, Medio
Rural y Marino). This application uses the method described in this
article to generate in real time summaries of data from thousands
of hydrologic sensors. Part of our future work includes to extend
our method (for example, by including flexible dialog mechanisms
that improve the user-system interaction) and to apply our repre-
sentation for other types of dynamic systems. For example, we plan
to use this solution to summarize data related to aircrafts and ra-
dars in the context of battle scenarios (simulated or real) during
military missions.
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