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It matters not how strait the gate, 

How charged with punishments the scroll. 

I am the master of my fate: 

I am the captain of my soul. 

 

Extract from Invictus, by William Ernest Henley. 
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ABSTRACT 
After the extraordinary spread of the World Wide Web during the last fifteen years, engineers and 

developers are pushing now the Internet to its next border. A new conception in computer science and 

networks communication has been burgeoning during roughly the last decade: a world where most of 

the computers of the future will be extremely downsized, to the point that they will look like dust at its 

most advanced prototypes. In this vision, every single element of our “real” world has an intelligent tag 

that carries all their relevant data, effectively mapping the “real” world into a “virtual” one, where all the 

electronically augmented objects are present, can interact among them and influence with their 

behaviour that of the other objects, or even the behaviour of a final human user. This is the vision of the 

Internet of the Future, which also draws ideas of several novel tendencies in computer science and 

networking, as pervasive computing and the Internet of Things. 

As it has happened before, materializing a new paradigm that changes the way entities interrelate in 

this new environment has proved to be a goal full of challenges in the way. Right now the situation is 

exciting, with a plethora of new developments, proposals and models sprouting every time, often in an 

uncoordinated, decentralised manner away from any standardization, resembling somehow the status 

quo of the first developments of advanced computer networking, back in the 60s and the 70s. Usually, a 

system designed after the Internet of the Future will consist of one or several final user devices 

attached to these final users, a network –often a Wireless Sensor Network- charged with the task of 

collecting data for the final user devices, and sometimes a base station sending the data for its further 

processing to less hardware-constrained computers. When implementing a system designed with the 

Internet of the Future as a pattern, issues, and more specifically, limitations, that must be faced are 

numerous: lack of standards for platforms and protocols, processing bottlenecks, low battery lifetime, 

etc. 

One of the main objectives of this project is presenting a functional model of how a system based on 

the paradigms linked to the Internet of the Future works, overcoming some of the difficulties that can be 

expected and showing a model for a middleware architecture specifically designed for a pervasive, 

ubiquitous system. 

This Final Degree Dissertation is divided into several parts. Beginning with an Introduction to the main 

topics and concepts of this new model, a State of the Art is offered so as to provide a technological 

background. After that, an example of a semantic and service-oriented middleware is shown; later, a 

system built by means of this semantic and service-oriented middleware, and other components, is 

developed, justifying its placement in a particular scenario, describing it and analysing the data 

obtained from it. Finally, the conclusions inferred from this system and future works that would be good 

to be tackled are mentioned as well. 
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RESUMEN 

Tras el extraordinario desarrollo de la Web durante los últimos quince años, ingenieros y 

desarrolladores empujan Internet hacia su siguiente frontera. Una nueva concepción en la computación 

y la comunicación a través de las redes ha estado floreciendo durante la última década; un mundo 

donde la mayoría de los ordenadores del futuro serán extremadamente reducidas de tamaño, hasta el 

punto que parecerán polvo en sus más avanzado prototipos. En esta visión, cada uno de los elementos 

de nuestro mundo “real” tiene una etiqueta inteligente que porta sus datos relevantes, mapeando de 

manera efectiva el mundo “real” en uno “virtual”, donde todos los objetos electrónicamente aumentados 

están presentes, pueden interactuar entre ellos e influenciar con su comportamiento el de los otros, o 

incluso el comportamiento del usuario final humano. Ésta es la visión del Internet del Futuro, que 

también toma ideas de varias tendencias nuevas en las ciencias de la computación y las redes de 

ordenadores, como la computación omnipresente y el Internet de las Cosas. 

Como ha sucedido antes, materializar un nuevo paradigma que cambia la manera en que las entidades 

se interrelacionan en este nuevo entorno ha demostrado ser una meta llena de retos en el camino. 

Ahora mismo la situación es emocionante, con una plétora de nuevos desarrollos, propuestas y 

modelos brotando todo el rato, a menudo de una manera descoordinada y descentralizada lejos de 

cualquier estandarización, recordando de alguna manera el estado de cosas de los primeros 

desarrollos de redes de ordenadores avanzadas, allá por los años 60 y 70. Normalmente, un sistema 

diseñado con el Internet del futuro como modelo consistirá en uno o varios dispositivos para usuario 

final sujetos a estos usuarios finales, una red –a menudo, una red de sensores inalámbricos- 

encargada de recolectar datos para los dispositivos de usuario final, y a veces una estación base 

enviando los datos para su consiguiente procesado en ordenadores menos limitados en hardware. Al 

implementar un sistema diseñado con el Internet del futuro como patrón, los problemas, y más 

específicamente, las limitaciones que deben enfrentarse son numerosas: falta de estándares para 

plataformas y protocolos, cuellos de botella en el procesado, bajo tiempo de vida de las baterías, etc. 

Uno de los principales objetivos de este Proyecto Fin de Carrera es presentar un modelo funcional de 

cómo trabaja un sistema basado en los paradigmas relacionados al Internet del futuro, superando 

algunas de las dificultades que pueden esperarse y mostrando un modelo de una arquitectura 

middleware específicamente diseñado para un sistema omnipresente y ubicuo.  

Este Proyecto Fin de Carrera está dividido en varias partes. Empezando por una introducción a los 

principales temas y conceptos de este modelo, un estado del arte es ofrecido para proveer un 

trasfondo tecnológico. Después de eso, se muestra un ejemplo de middleware semántico orientado a 

servicios; después, se desarrolla un sistema construido por medio de este middleware semántico 

orientado a servicios, justificando su localización en un escenario particular, describiéndolo y 

analizando los datos obtenidos de él. Finalmente, las conclusiones extraídas de este sistema y las 

futuras tareas que sería bueno tratar también son mencionadas. 
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1.1 The concept of ubiquitous computing. 
It was Mark Weiser, now considered the forerunner and father of this field of computer science who first 

coined the term “ubiquitous computing” [Berkeley 99]. In his view, tiny computers would be added to all 

the common objects, utilities and tools used in a daily routine (from blankets to televisions, machinery, 

furniture, etc) to the point that this tiny computer grid would become “ubiquitous” and “pervasive”, that 

is, be present simultaneously everywhere within an area that can be as big as the very planet Earth, or 

even beyond. This tiny computers, better considered as nodes of a network, harvest information from 

the entities they are attached to, distributing and sharing it either with other components of the grid or 

sending them to a final human user, depending on the nature of the service that is going to be provided. 

In a way, ubiquitous computing can be compared to the top of an iceberg: it is possible because there 

are many other developments and technologies below (in a layered architecture fashion) and behind (in 

a timeline) it. In Mark Weiser´s own words: “Ubiquitous computing names the third wave in computing, 

just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal 

computing era, person and machine staring uneasily at each other across the desktop. Next comes 

ubiquitous computing, or the age of calm technology, when technology recedes into the background of 

our lives” [Berkeley 99]. 

Ubiquitous computing has also been characterized by J. York and P.C. Pendharkar as “machines that 

fit the human environment instead of forcing humans to enter theirs” [York 03]. This definition has an 

important shade of meaning: ubiquitous tiny computers scattered in an environment will demand as little 

user interaction as possible; rather than providing human-to-machine interfaces for communication with 

human users, they will rely just on machine-to-machine interfaces to interact with other ubiquitous 

computers without annoying people. In any case, given that they are very small, it would be impractical 

to provide then with keypads or monitors, and the final user would not be able to pay attention to all the 

data collected at the same time. 

Commonly, a ubiquitous architecture will be consisting of several pieces of hardware, that is, the 

ubiquitous computers that will be operating as nodes. These nodes usually belong to either a Wireless 

Sensor Network or WSN (occasionally, they can be named as WSAN, Wireless Sensor and Actuator 

Networks, to stress the idea that there may be actuators taking actions based on the content instead of 

just harvesting it) or they are pieces of equipment attached to the final user (in fact, if they have several 

pieces of equipment on them, they might be composing a Personal/Body Area Network or PAN/BAN). 

Over this wireless network level there will be a middleware architecture receiving all the gathered 

content and abstracting all the heterogeneity of the Wireless Sensor Network components, turning 

content into homogeneous information units that can be easily managed by an application with human-

to-machine access interfaces for the final user. In the end, components will be deployed as the way 

they are shown on next page: 
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Figure 1: a model showing the places where every component is placed. 

1.1.1  Foundations of ubiquitous computing. 
Although ubiquitous computing can be described or found under different names (pervasive computing, 

everyware) its main features were suggested by Mark Weiser, and thus virtually all the other given 

names refer to the same core concepts: 

1. “The purpose of a computer is to help you do something else”. As it has been asserted 

before, computers in a ubiquitous environment should remain unnoticed. The concept of usage 

of a computer under these new rules differs from the traditional wired or wireless networks: the 

computer is not accessed explicitly by a human so as to obtain a service, but ubiquitous 

computers establish connections and communications among themselves in order to silently 

guarantee the provisioning of a service. Thus, the computer is not self-centred, and actually, 

requires the interaction with other computers –or more likely, nodes- from the wireless network 

to achieve its part of the demanded service. 

2. “The best computer is a quiet, invisible servant”. If, for example, a user does not demand 

constant interactions with a lamp or a telephone, the lamp or the telephone will remain idle and 

will not require any attention from the user. So, in the case they were electronically augmented, 

their operational behaviour should remain the same: computers attached to everyday´s 

elements must remain unnoticed and latent, even when they are providing any service (as 

ubiquitous computers cooperate to offer a service instead of having the final user to ask for it 

on a particular terminal), with the final aim of offering a holistic integration with the environment, 

where electronically-augmented devices are just like the non-augmented regular ones, without 

any other further notification for the final user. 

3. “The more you can do by intuition the smarter you are; the computer should extend your 
unconscious”. True holistic, seamless integration of ubiquitous components, as if they were 
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interweaved with the environment, requires that usage and interaction with them is done in a 

natural and unconscious-like manner, the same way driving or other activities as reading and 

writing are done. 

4. “Technology should create calm”. Meaning by this statement that technology should provide 

a flow of relevant information to the final user but not in an intrusive and noisy fashion (asking 

for user intervention every other time, transcending the usual functionalities of the object the 

ubiquitous computer is embedded in, etc.) 

In addition to those principles formulated by Mark Weiser, several other ideas can be added according 

to the experience gained by all the developments made up to this date: 

5. An ambient intelligence can be enabled. Thanks to the data retrieval and due to the fact that 

same requests are managed the same repeated way, the environmental nodes of an 

architecture can come to gain some intelligence, meaning by that learning how to best tackle a 

task; for example, if sensors are present in a smart home and the system has a profile 

associated for each of the residents, when one of them arrives the system can foresee what 

time the resident will be taking a bath or what luminosity level prefers after having the resident 

stating their requests with the same parameters several times. 

6. Context awareness is present. Somewhat linked to the idea of an ambient intelligence, context 

awareness is what allows a ubiquitous system to acknowledge under which precise and current 

conditions the system is carrying out its main duties. This is usually achieved by the readings 

given by the sensors of system; for example, if there is a system in charge of watering a variety 

of crops, if it is able to distinguish between a sunny or a rainy day (and therefore, the varying 

amount of water required by the plants) or what crop is the one they are monitoring (wheat, for 

example, will not require the amount of water that corn does), then the system is context-

aware. 

7. User intention can be easily inferred. As it happened on the two features before this, if a task 

is repeatedly done the same way through many times under similar conditions, the system will 

be able to deduct what next task the final user is going to try; going on with the smart home 

example, if a resident arrives at a certain hour and likes watching a TV series on Thursday 

night, the system can anticipate to the resident and suggest that service by its own; the system 

could even react to TV timetable changes in order to keep the resident informed about any 

variation on the expected parameters. 

8. Wireless Sensor Networks are a cornerstone for developing ubiquitous systems. Because of 

their abilities to locate sensors in almost every imaginable place and the low power-consuming 

devices they use to provide services, Wireless Sensor Networks are usually heavily implicated 

in ubiquitous systems. More often than not, Wireless Sensor Networks will have some sort of 

gateway between the ubiquitous environment and a wired, more conventional one that will be 
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used to share the information either with the final user or with other systems with a different 

paradigm. 

 

Figure 2: a Wireless Sensor Network architecture. 

1.1.2  Challenges of ubiquitous computing. 
As this is a new field in communications, there are new issues and constrains that were not present 

before. Usually, they appear around the same key points: 

• Nodes of the Wireless Sensor Networks implied in the communications are not like regular 

routers of Wireless Access Points: they have severe limitations related to their inherent nature 

of wireless nodes (power is not unlimited in time and energy cannot be easily harvested, radio 

transmissions have to be reduced and their area of coverage shrunk). Also, the most 

widespread nodes –or more accurately, motes- that are marketed, being way smaller than their 

wired counterparts, are not as small as to be ignored once they are attached to an object, so 

the seamless integration of them is a task yet to be achieved with affordable costs. 

• Related with costs comes up the problem of having a Wireless Sensor Network ranging from 

the dozens to the thousands of nodes, so any increase in the cost of the motes, as small as it 

may be, may have a significant impact in the cost of the whole network if it is replicated for all 

the other motes. And should the motes be from different manufacturers, there may be 

additional trouble implementing a satisfactory middleware architecture that can accomplish its 

expected functionalities. 

• Commonly, middleware architectures are not built to implement a brand new model in 

ubiquitous computing but they are usually designed after a very specific need, thus preventing 

any real standardization of all the proposals of middleware architectures. This is a serious issue 
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because every time that a middleware architecture has to be put forward in almost has to be 

built from scratch, or at least using developments of earlier architectures that are not 

necessarily done under the premises of ubiquitous computing. This is just a symptom of the 

immaturity of many middleware proposals, which in fact until very little time ago were not built 

after specifically thought ubiquitous environments. 

• Compared to a “conventional” scenario, a ubiquitous architecture is usually less reliable and 

more prone to errors and node failures. This is due to the ever-shifting nature not only of the 

services (they can be dependent on nodes that may be out of commission, or the data required 

by them to work can be outdated) but also to the fact that the final devices that are carried by 

the user have much more mobility than the conventional ones, who are fixed on a very precise 

spot of a room. Self-healing mechanisms are even more welcomed here than in conventional 

networking.  

• Traditional communication models are difficult to be used here; other alternative models based 

on agents, which will provide some autonomy over the middleware and the infrastructure below, 

or based on events, that will trigger some nodes or some services, may come in handy for 

future developments. 

1.2 Motivations, objectives and contributions. 
The motivations behind a Final Degree Dissertation like this grow from the idea that a contribution to 

the developing field of the Internet of the Future, in a moment when technologies and developments in 

this field are not rock solid yet, and therefore can be shaped to an extent with the work or researchers, 

developers and engineers, is something stimulating and rewarding. An acquisition of know-how and 

experience in the fields related to the system that will be presented later (software engineering, 

programming, embedded systems) are desirable too. 

Besides, the leading objectives of this Final Degree Dissertation are: 

• Undertaking a profound State of the Art regarding middleware architectures, not only to get a 

grasp of the middleware architectures that have been used in the past, but also of the different 

alternatives of the present, along with the open issues that challenge the development of 

legacy and avant-garde middleware subsystems. Besides, a survey on novel tendencies in 

middleware computing is shown for its usability value. 

• Making use of EUITT´s semantic and wearable-oriented middleware architecture (nSOM) to, 

after describing it thoroughly and making clear all the user component´s and behaviour, create 

a system where the principles of pervasive, ubiquitous and wearable computing are put into 

practice, especially regarding services composition, network deployment and the information 

that can be retrieved from them.  
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• Using the possibilities that a lightweight service description language as JSON (JavaScript 

Object Notation) offers to provide and study the communication performed between nodes and 

elements from a Wireless Sensor Network, along with its most important parameters (network 

deployment, simple and composed services, differences between unicast, multicast and 

broadcast messages, etc.). 

• Hinting what additions and improvements could be codified into the nSOM semantic 

middleware architecture for future developments, given the experience acquired after its usage 

in a real scenario. 

1.3 Technological framework. 
This Final Degree Dissertation is encased within the research project “LifeWear - Mobilized Lifestyle 

with Wearables” [Lifewear 12b] (ITEA2, TSI-040200). This project is funded by the program Avanza 

Competitividad from The Spanish Ministry of Industry, Tourism and Commerce, with partners from both 

inside Spain and Europe. The objectives of this project are increasing the quality of life of a user by the 

usage of wearable sensors and devices [Lifewear 10], as well as making wearable devices, and their 

supporting technologies, more acceptable and popular in everyday´s life. 

1.4 Structure of the report. 
This Final Degree Dissertation can be broken into several sections in order to make the extensive 

considerations and concepts on it more manageable: 

• Chapter 1: here, an introduction has been made on the concepts that are pivotal to the 

understanding of this Final Degree Dissertation: wearable computing, ubiquitous and pervasive 

computing, where their foundations lie or the special conditions and challenges to be dealt with 

when creating a system based on the proposals of wearable computing. 

• Chapter 2: a state of the art in wearable-oriented middleware is shown here.  A statement of 

the problem of porting middleware to these architectures in made first, followed of an 

engineering perspective, how the middleware is –and has been- managed and developed 

under these new circumstances and both what open issues are currently crippling the 

development of ubiquitous, pervasive middleware and how the new approaches regarding 

middleware are bent on tackling them. 

• Chapter 3: a thorough exposition of the semantic middleware developed by the GRyS research 

group of the Universidad Politécnica de Madrid, called nSOM (nanoService Oriented 

Middleware). The architecture is exposed in a general overview, along with all its components 

one by one. Along with it, the distinctive functionalities that are offered, and the procedures 

used to offer them to the final user and the networking nodes when it is required are also 

described. 
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• Chapter 4: a system was deployed using a group of hardware (motes, PCs, etc.) and software 

components (an ESB, nSOM, etc.), citing all the system actors and the user cases this scenario 

would offer. In addition to this, a description of the validation scenario and an analysis of the 

validation scenario results were also provided. 

• Chapter 5: a final chapter has been written noting all the conclusions that can be extracted 

from this development, along with the future works that would be interesting to carry out in the 

short and mid-term future. 

• Finally, two annexes are provided, one with the most notorious APIs of the nSOM components 

and another one with a compelling chart of all the currently available nodes for a Wireless 

Sensor Network. Right after that, Bibliographic References are shown. 
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2.1 Problem statement. 
It can be argued that adding a new layer on a model that already has a few of them will bring unwanted 

complexity to the whole system and new issues when trying to solve the relations between the layers 

that are kept either below or above the new one. Besides, middleware does not provide any tangible 

functionality by itself: it does not give shape to user interfaces, nor it does collect information from 

elements of the environments that are going to be studied. At a first glance, it just looks like a waste of 

time and resources. 

However, this notion makes no sense for various reasons. First of all, nowadays computers –and 

especially, wearable, ubiquitous-related computers- are extremely unlikely to work isolated one from 

another. On the other hand, computers involved in a communication are extremely unlikely to be 

perfectly equal machines as well, so information obtained by them by any means will be shared 

according to how their hardware has been designed (for example, little endiand and big endiand figure 

representations) and finally, with no further intervention, it is extremely unlikely that results will be 

understandable for users and, before them, for computers involved in the communication. An additional 

layer used to adapt all the information coming from hardware-based layers and having it usable for any 

other computer of the network –a functionality assumed by middleware today- is a challenge that 

computer scientists and engineers had to face way before the dawn of the era of ubiquitous, pervasive 

middleware or architectures. In fact, the concept of middleware first appeared as early as 1968 [Ironick 

05], referred to as “software used to adapt generic file system functionality to specific application 

functionality needs” and became popular later in the 1980s as a way to solve the issues inherent to link 

newer applications to old legacy systems [Weiderman&97]. 

Unfortunately, under the conditions where the systems that interest this Final Degree Dissertation 

perform their duties, a “regular” middleware will find it difficult to fit. Although reasons for claiming so will 

be developed later, they can be firstly introduced here: many non-ubiquitous middleware solutions 

belong to an environment created before the specific needs of ubiquitous and pervasive computing 

were formulated, or even conceived. Therefore, although some of their ideas can be borrowed, usually 

conventional middleware architectures are unable to be adapted into the environment mentioned 

before, leaving them powerless to accomplish their expected middleware functionalities. 

Because of that, if applications and utilities are to be developed in the context of the Internet of the 

Future, Internet of Things or by using Wireless Sensor Networks, a ubiquitous, pervasive middleware 

must be implemented to ensure a correct performance of the whole system. 

2.2 Engineering in middleware for wearable services. 
Consequently, as a result of the issues mentioned before, another layer of software was created. How 

this layer works, its motivations and how it is applied to a ubiquitous environment is a great deal of what 

this chapter is going to be about. 
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2.2.1 Main objectives of middleware 
Traditionally, middleware has retained a critical functionality within the domain of electronic systems 

and appliances -that is, separating the layers above middleware- with its presence justified by a) The 

need of further development of the software embedded in the actual device into applications and b) 

Human operators, from programmers to end users, need an high level layer to interact with the whole of 

the device- from the heterogeneity and peculiarities of the lower, more hardware-oriented layers, and by 

doing so, providing higher levels with an homogenous and abstract environment. This functionality is 

overall kept as far as wearable computing is concerned, taking into account the expectable adaptations 

that must be faced in order to have a middleware layer performing seamlessly under new conditions 

and rules 

Besides, some other objectives can be considered as typical in middleware computing: since it enables 

developers to make use of a high abstraction level, they can focus on interactions between 

applications, as their communications are guaranteed by the middleware layer just by making sure that 

regardless of the system or the electronics put to a use physically, all this heterogeneity will be 

insulated, enabling interactions among applications on high levels easily (in a networking environment 

and according to [Marsden, 1991], middleware implements the Session and Presentation Layers of the 

OSI Reference Model.) as it is said in [Emmerich&02].  

 

Figure 3: different kinds of middleware adapt the layers below them. 

Given the particularities of wearable devices and ubiquitous computing, some adaptations will have to 

take place inevitably. These adaptations have been carried out given the foreseeable challenges that 

may be faced in a ubiquitous computing-oriented context: 

• Dramatic miniaturization of hardware and software characteristics. Some already 

established devices which, in one way or another, are constrained to low power consuming or 

narrow bandwidth necessities, as motes in ubiquitous networking, are sure to be smaller than 

domestic computers, so services need to be provided at their minimum possible capabilities of 

transmission, energy storage, etc. This radical shrinking in hardware (and consequently, in 

software) will take its toll when creating new services and experiences, but without it wearable 

devices and ubiquitous computing would be meaningless.  
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• Human intervention is preferably nonexistent. As new paradigms in computing (Internet of 

Things, Service Oriented Computing) are developed under the ideas of Mark D. Weiser, it 

becomes crystal clear that if an everyday augmented element is to become part of a service 

provided by a Wireless Sensor Network, that supposedly is as quiet and discrete as it can be, 

intrusion and attention from a human being must be kept at their lowest rates (unless the end 

user is willing to be told about any datum related to the service) in order to have the wearable 

device turning into –or remain as- a silent, non-attention demanding electronic piece naturally 

integrated within its environment –or embedded in an object that is already like that-, which will 

not add extra duties or discomfort to its human beneficiaries. 

 

• Ever-shifting nature of the ubiquitous content. Should OSI or TCP/IP architectures be 

considered as the components architecture of a service found in wearable computing, with a 

physical layer at the bottom and an application layer at the top, any wearable device is likely to 

find a huge number of its kind scattered through those layers: personal computers´, wireless 

nodes´ or smart phones´ electronics as hardware and almost any imaginable idea as 

applications. Not only must an efficient wearable-based computing middleware layer abstract 

the general working conditions and offer a usable interface to higher levels, but also has to deal 

with the changing status of applications: if the wearable device is working in combination with 

any piece of clothes, services will change as the user walks, drives, etc. In this way, some 

services will be lost, rendering the application built to exploit them useless, and some other 

services will be discovered, activating applications already existing or downloading new ones. 

Middleware should be designed properly to face this possibility and not leaving the user with 

only a set of applications available in just a few places. 

 

Consequently, if middleware is going to run on machines designed for this ubiquitous context, it must 

fulfil a series of new requirements not found in a better-known area: 

1. High flexibility and adaptation skills. Unlike conventional networks, whose number of 

members, configuration, topology and general features change from time to time in a slow 

pace, wearable devices and ubiquitous networks are way more dynamic, as it has been learnt. 

A middleware capable of disabling obsolete applications, dropping connections with 

unreachable nodes or, on the contrary, enabling new applications and discovering new pieces 

of hardware in the ubiquitous network is a must. 

 

2. Reusability for existing pervasive applications. In an area changing its appearance and its 

utilities in an accelerated fashion, many applications (and the means to support them) could 

rapidly become outdated and, what is worse, unusable. One of the critical functionalities of the 

middleware layer will be making sure that a generous grade of compatibility and retro-

compatibility is present and not just the latest versions of an application are the only functional 

ones (It has to be considered that many -if not most of- users will not renew them as soon as 
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an update or an upgrade is available). After all, one of the main reasons for designing early 

middleware platforms was the correct performance of new applications coexisting with old 

legacy systems [Saif&01]. 

 

3. Interoperability among different platforms. Obviously, if one of the most important missions 

of middleware is negating the complexity of the physical layer and providing a generic 

abstraction to engineers, the differences and boundaries between platforms that may be 

present will have to be dissolved so as to develop new applications which are not limited in 

their scope by the final hardware device that is behind them. Note that since hardware is 

primarily controlled by the operating system of each electronic device, any interaction with the 

former will imply requests to the latter, so the complexity of the different operating systems 

must be born in mind. 

 

Basically, there are two different directions to get a grasp of how to develop middleware in this field: a 

regular vision (albeit increasingly deemed outdated) with legacy solutions in the ubiquitous computing 

area and another one based on emerging research results, such as Service Oriented Computing and 

Semantic Management Knowledge. In addition, a quick look at regular distributed middleware solutions 

will be taken, although efficiency and usefulness are thwarted by the failure in adapting to a ubiquitous 

environment. 

 

Figure 4: a taxonomy of the middleware solutions analysed in this state of the art 

2.2.2 Requirements in wearable services 
Several concepts have been suggested to achieve a satisfactory middleware solution even before the 

latest paradigms, like Service Oriented Computing and Semantic Knowledge, made their first 

appearance. The easiest was developing a port of already existing solutions to a ubiquitous 
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environment, while other research projects suggested an entirely new system to cope with an entirely 

new area. It is interesting noting that as a middleware layer will be present in all the devices of a 

ubiquitous environment, middleware developments must be aware that whatever the device is (a 

wearable computer, a sensor node) other devices present in the network have to be considered. 

Despite its peculiarities and different adaptations for each service, wearable-oriented middleware will be 

generally composed by the same several modules in almost all of the implementations: 

• A lower-layer communication module. This is a foreseeable part of any conceivable 

middleware, as their leading mission is retrieving the heterogeneous data poured from lower 

layers with fragmented, different technologies (hardware, operating systems, etc) and turn it 

into a common format, comprehensive for the higher layers of any implemented device (in this 

case, a wearable appliance), as a regular Object Request Broker would do. Although either 

high or low layer may differ from what a traditional middleware would deal with, the underlying 

functionality remains the same.  

 

• A context manager module. As it has already been explained, context is a core concept in 

ubiquitous computing, since it will determine not only whether a collection of services will be 

available or not, but also the precise moment of this availability –or unavailability-. In order to 

have an accurate idea of this fact, a context manager module is needed so that a 

categorization of the different contexts and an arranged list of services for each context will be 

composed. In the end, the context manager will deploy the reachable services for the final user 

as long as the current context allows them to be available. 

 

• A service manager. Working closely with the context manager, once it has approved the 

suitable collection of services, the service manager will tackle the common actions related to 

the performance of a service: registry, login, logout, download or deletion. Plus, the service 

manager will be responsible for the discovery of existing services in a context, previously made 

known by the context manager. 

 

• A distributed data transfer module. Once the input data (obtained from lower levels and 

converted into an understandable format by higher ones) has been processed, it will be 

transported to the ending point in charge of broadcasting the input data to the interested 

receiver. To accomplish this task, a module dedicated to the information transfer will be 

designed; nevertheless, this module will be related to a classic functionality of any sort of 

middleware, so it will not require a complete new development (except adaptations to a 

ubiquitous environment). Commonly, it will also provide information from the application layer 

that may come in handy for Context and Service managers. 
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Figure 5: different modules of the middleware layers, along with their relationships among them. 

In order to have a global yet detailed view of the most prominent aspects of the middleware 

architectures that are going to be reviewed, a classification of the main middleware ubiquitous platforms 

that have achieved some sort of relevance is offered below these lines, inspired by the one suggested 

as an orthogonal classification of middleware technologies by Noha Ibrahim [Ibrahim 09]. In this 

conception, there are two views comprised on the same classification:  

• A “horizontal” one, where already developed and deployed middleware architectures are 

present in a layer called Middleware of Types, and new layers have been incorporated under –

Middleware of Sensors- and over –“Middleware of Middlewares”- it, thus building a stack of 

differentiated middleware components.  

 

• A “vertical” one, where a collection of features is gathered under self- or ubiquitous middleware; 

the focus will be driven to ubiquitous middleware, since self-middleware functionalities 

according to Ibrahim´s classification are either successfully dealt with in a ubiquitous 

environment by ubiquitous middleware, or out of the scope of this Final Degree Dissertation. 

 

The resulting classification is as follows: 
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Figure 6: classification of the components for the middleware layer. 

Middleware of Middlewares will offer the needed abstraction from the lower levels (in this case, the type 

of middleware itself), in a four-staged way, reminiscent of the needs of Service-Oriented Architecture or 

SOA: a first phase devoted to the development of the application, another one of deployment of the 

already developed application on the environment, a third phase for execution (which will be focused on 

the correct performance of the application) and a fourth one where the interaction capabilities of the 

application are taken care of. 

The Middleware of Sensors deals with different suggestions about middleware commonly designed for 

Wireless Sensor Networks or WSNs. A middleware on this level will usually manage the issues related 

with the wireless network directly (for example, should a node have a failure, this layer will try to find 

another one to keep the data flowing) with minimal user interaction. 

The Middleware of Types layer is where the different approaches that have become fruitful and turned 

into different middleware platforms, suited to ubiquitous environments, are located. This project will 

bend its efforts on a proposal encased in the Middleware of Types layer, so the following reviewed 

middleware architectures can be placed within the domain of this level. 

2.2.3 Legacy solutions in middleware. 
These solutions have been proven to be of great help in traditional networking (equally in wired and 

wireless elements, since they will behave the same way in a link, network, transport or application 

context) but they are effectively unusable in services with wearable devices and ubiquitous networks at 

both of its ends, mostly because these solutions were implemented well before the Internet of Things 
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and Ubiquitous Computing paradigms were even conceived. Therefore, despite of faring quite well in 

environments where power supply is taken for granted or at least is reliable enough, and the nodes 

taking part of them being robust and well-known, when dealing with the new model, some issues almost 

impossible to get around spring up. 

To begin with, Remote Procedure Call (RPC) has been discarded for a long time as an employable 

middleware in the context this Final Degree Dissertation is located. Among its multiple flaws, it is said 

about it that “RPC semantics of a synchronous, blocking invocation on a statically typed interface are 

overly restrictive, inflexible, and fail to provide an efficient unifying abstraction for accessing and 

modifying state in ubiquitous systems” [Saif&01]. The general feeling about RPC in the research 

community is that it is too rigid and unable to deliver a good performance in a dynamic behaviour as a 

ubiquitous environment demands; for example, it is unable to offer the result of a request to other host 

or process different from the one that originated it, something that could be needed if a service is to 

carry some data to a wearable device belonging to a Personal Area Network which is not the source of 

the request, or if the node that originated the request is down and the response has to be redirected 

somewhere else.  

Alas, an issue as critical in pervasive computing and services based on wearable devices as power 

consumption is unmanaged in RPC by any means; due to the facts that a) RPC works with a request-

answer model employing potentially numerous request-answer transactions and b) Delay in RPC is 

about 100 milliseconds long [Wei 11], it is sure that RPC will consume much of the power a wearable 

device or a node in a ubiquitous network are able to store, severely limiting the amount of time they can 

be operational. 

Remote Method Indication (RMI) switches to a more object-oriented perspective, but essentially it is a 

Java implementation of RPC, with the corollary of hampering any effort to make it work in a more 

flexible way. Additionally, RMI has the problem of providing a Java-only codification, so additional 

efforts in porting the code to other programming languages would be needed if wearable devices and/or 

nodes were alien to Oracle manufacturer.  

Finally, Common Object Request Broker Architecture (CORBA) is strong in allowing a plethora of 

hardware (multiplicity of platforms) and software (multiplicity of programming languages) products to 

interact in a more or less seamless manner. This would be of an interest in the context of the Internet of 

Things and Ubiquitous Computing; unfortunately, CORBA will simply exceed the computing limits in 

most of the deployed electronic appliances in an ubiquitous environment [Roma&00], making it 

unhelpful for the purpose of services provided by wearable devices and, by proxy, mirroring many of the 

issues that have been found when trying to use the other middleware implementations. Nevertheless, 

the holistic approach that CORBA takes is actually inspiring, and it will not be rare to learn about 

ubiquitous middleware architectures that actually are a CORBA implementation hacked to its minimum, 

less resource-demanding features. 
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Considering all the trouble that discourages the use of unmodified middleware solutions already 

developed for traditional networks, it becomes clear that new, specific middleware approaches must be 

attempted if they are to perform successfully under these new circumstances and constrains. 

2.1.2.1 Middleware based on the family of standards ISO/IEEE 11073. 

ISO/IEEE11073, also known as X.73, is a medical and health device communication set of standards 

that made possible the appearance of middleware that successfully carries out the duty of 

interconnecting devices related to the field of Health Informatics, usually named Personal Health 

Devices (PHDs) [Yao&05]. Since these PHDs are often wearable and wireless by its own nature 

(badges, patches, etc.) they become potentially part of a ubiquitous environment, although the family of 

functionalities belonging to this standard are strictly encased on the medical hardware, therefore 

crippling its usefulness for any other kind of services. This family is strongly based on the standard 

IEEE 1073, which has been around in industry since the 1980s [24X7 07]. 

The main objectives that motivated the development of this suite were the need of interchanging data 

about a final user –or more specifically, a patient- by using standardized interfaces, thus avoiding the 

trouble that a lack of a common, established implementation may take along (communications hindered 

by dissimilar working equipment from varied vendors, forced bonding with a small number of 

manufacturers, etc.) while keeping three key features: 

• Real-time. The monitoring and event-driven actions can take place at every moment, a 

reasonable goal judging from the sort of final user that will benefit from the services gained via 

a wearable device. This feature involves all the data harvesting, compiling and transferring from 

all the PHDs that while worn by the patient, may or may not be composing a PAN on their own. 

 

• Plug and play. In accordance with the idea of merging the wearable computers within the 

environment they are placed, PHDs have to be managed by the patient or the staff of 

paramedics the least possible. Thus, the only action that paramedics should care about is 

plugging and connecting physically all the required appliances, leaving the more logical tasks 

(detection, configuration and communication) to be tackled by the devices on their own. 

 

• Efficient exchange of data. This implies that intercommunication must be executed with the 

least cost possible, mostly in terms of energy usage and speed. We already know that slow and 

power over-consuming systems do not stand a chance in a ubiquitous environment. 

 

As an overview of the family of standards, it can be stated that they will work under the principle of 

Agent/Manager Application Processes, in a way, resembling client-server architecture: the agent will 

usually provide all the data collected from the wearable devices, and the manager will carry out some 

other tasks; the simplest of them will be storing a copy of the data delivered by the agent, but the 

manager will also react to update events related to the worn devices by the patient, and will even trigger 
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events on an agent if necessary. Almost always, the manager is an electronic device, like a computer or 

a smart phone, which can display the data on a monitor with a format that is understandable for a 

human operator. 

The different components of this middleware architecture are the following: 

 

Figure 7: architecture of a ISO/IEEE 11073-based service [Yao&05]. 

As it is displayed, the elements belonging to the architecture are: 

• Agent/Manager Application Processes. A part of the middleware not defined by this set of 

standards which is used as the interface between the protocol of the local machine and the 

ISO/IEEE object environment. 

 

• MDIB (Medical Data Information Base). An object oriented database where the objects 

typical of this architecture (MMOs, Managed Medical Object) are kept safe in a hierarchical 

tree-like distribution called Domain Information Model or DIM, which is of great importance 

because it defines the storage of the objects containing the information of the vital signals. 

Besides, in order to ease the access to the data structure, it is split into different areas of 
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content named packages:  Medical package, Alert package, System package, Control package, 

Extended Services package, Communication package, Archival package and Patient package. 

 

• ACSE (Association Service Control Element). This element is an implementation of 

standards ISO/IEC 15953 and ISO/IEC 15954, and is responsible for the establishment and 

disestablishment of connections, with no further data interchanged. 

 

• CMDISE (Common Medical Device Information Service Element) and ROSE (Remote 
Operation Service Element). These elements are created in order to exchange MMOs. 

Services provided by means of CRUD operations such as CREATE, UPDATE or DELETE 

create, update or delete this MMOs. Reports are used to activate different operations on the 

agent or manager side. CMDISE is complemented by ROSE for services that usually imply 

remote operations. 

 

• Communication System (Presentation layer, Session layer, Transport system). All the 

layers below the middleware that unable communications, with its local particularities. 

 

Overall, family of standards ISO/IEEE 11073 can be used when implementing four different kinds of 

features in a service provided in a ubiquitous environment, each one treated by a different 

specialization of the standards: device data, general application services, Internetworking and gateway 

and transports (cable, wireless).  

Nonetheless, in spite of its solid structure and careful design, standard ISO/IEEE 11073 has enjoyed a 

very limited success. Among the leading manufacturers of wearable PHDs, only Philips has taken a 

limited interest in it (and it has to be considered that Philips manufactures many other electronic 

appliances, unrelated to ubiquitous computing). Several reasons for this have been quoted: this set of 

standards may have a too complex structure and, perhaps more significantly, ISO/IEEE 11073 is a 

standard preceding all the development of ubiquitous health devices, rather than following it. This is a 

good idea in order to offer a framework for brand new developments, but in this case it may ignore the 

incipient ubiquitous products that are being made and alienate manufacturers from that standard. 

As a consequence, although creating a predefined pattern for applications to be developed is quite 

useful and foresight-like, it has had no previous usage in the industry, and vendors are more likely to 

stick to their own proprietary, trusted and already deployed solutions until a standard appears and 

becomes dominant [24X7 07].  

2.1.2.2 Aura.  

According to its creators, the main goal of the Aura project, which was developed in 2002, is keeping 

services available for the user no matter where they are currently placed, even and especially if that 

means reconfiguring dynamically a task already interacting with a human user. The first glimpses of this 
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architecture appeared while conducting research activities driven to create some sort of middleware 

architecture capable of a successful performance in a ubiquitous computing environment [Aura 02]. 

Having chosen Aura as the name of choice is not devoid of meaning: this middleware architecture will 

create an area around the user (the Aura) wherein information and computing services will become 

persistent, in spite of their location, and therefore executable at any place. Obviously, as there are 

many different areas in a ubiquitous environment, with electronic devices of potentially very different 

nature and performance, if the current and running services are desired to be kept accessible, the Aura 

will have to adapt to the available resources of the environment, thus moving around the representation 

of the task, thus adding a self-tuning feature to this middleware architecture. What is more, Aura also 

aims to anticipate to the actions of the user, enabling service prevision to a degree. 

There are several specific components in this middleware architecture [Campo 04], which are: 

1. Intelligent networking at the lowest level, where depending on the duties from a holistic point 

of view (the service the ubiquitous network is allegedly suppose to offer), monitoring data 

transfer from one node to another one will be taking place. 

 

2. Linux kernel, governing a particular piece of hardware upon the whole architecture has been 

mounted and programmed. 

 

3. Coda, a file access system that will allow the usage of the supplied contents on different 

modes, depending on the bandwidth available and the mobility of the device that made the 

request in the first place, with an added offline option. 

 

4. Odyssey, in which the main tasks to be performed are resource management and ensuring 

support to context adaptation for applications. 

 

5. Spectra, a component providing a remote execution mechanism that will make use of user 

context so that the best way to deal with a remote petition will be chosen. 

 

6. Prism, a task manager acting as the embodiment of the Aura concept. Its lead functionalities 

are capture and management of user intentions, and in order to achieve them there are several 

sub-modules aiding Prism: a context observer, an environment manager, and the abstract 

service suppliers –since merging all these services will compose a task dealt by Prism-. When 

a task provided by the abstract service suppliers is encased in an environment where there is a 

determinate working context for a user, the user intention can be inferred with ease (for 

example, if a logging in a computer –the task- at the office –the environment- on a working day 

in the morning with a valid username –the context- has to be done, it is clear what a worker 

who has been assigned the username has planned to do for the next minutes, regarding the 

computer, when they arrive at the office) 
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In addition to all these components, as the expectable limitations of this ubiquitous environment have 

been taken into consideration, another feature is put to a use here: the “cyber foreign” usage of 

hardware appliances, such as a Personal Computer, embedded in the system, to delegate the more 

resource-demanding (both in terms of computational and energy power) software-related activities to 

other devices that will not overload the network or the nodes. Once the embedded appliance has 

obtained the needed output, it will be either stored or retransmitted to the ubiquitous Wireless Sensor 

Network.  

A global vision of Aura middleware architecture is represented right at the start of the next page: 

 

 

Figure 8: disposition of the components of Aura middleware architecture. 

Finally, it should be remarked that Aura is capable of implementing some security services which are 

dependent on location user information, along with all the other functionalities [Txarramendieta 06]. The 

idea behind these is that security will be provided in a specific moment and place, to a specific person, 

in a specific level. Thus, groups of users will be created to gather all the people with common security 

features. 
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2.1.2.3 Gaia. 

This middleware architecture appeared in its current form in 2005 [Kjaer 07]. It shares many of the 

concepts conceived by Aura architecture, especially the ones related to the challenge of adapting data 

and applications to the possibilities of the current devices that are providing them.  For example, where 

Aura made use of an Aura to name the place in space where all the services would be stored and 

interfaced, Gaia is implementing a “Smart Space” where once it is active –turning into what is called an 

Active Space-, the applications and services will be dynamically mapped according to the available 

resources of the device that uses them, as it was done when using Aura. An Active Space is composed 

of a cluster of devices that have a strong relation with the final user and all their software capabilities 

and resources available, from operating systems to applications.   

This middleware approach makes an extensive use of ontologies and context awareness [Hung&04]. 

An ontology can be defined as a structure that organizes into a standardized hierarchy a collection of 

concepts referring to elements bound to a domain, defining relations among them and offering the 

possibility to reason and infer behaviours between these entities of the domain. Among the available 

ontology languages, Gaia makes use of DAML+OIL (that is, a combination of DAML, DARPA Agent 

Markup Language and OIL, Ontology Inference Layer) to generate ontologies, although this language 

has been superseded currently by OWL (Ontology Web Language), which will be discussed later. 

The most remarkable components of this Active Space which is at the core of the middleware proposal 

are the following: 

1. A hardware devices collection or a hardware cluster bound to greater or a lesser extent to the 

final user. Depending on the scope of the usage of this middleware approach, the cluster will be 

integrated by regular-sized electronic appliances (PCs, printers, etc.), or oriented towards a 

Body Area Network. As usual, the nature of the hardware components can be expected to be 

fairly heterogeneous. Should the hardware cluster have a greater scope than a person, a 

human hardware administrator may be needed. 

 

2. A collection of software components.  

 

3. A context provided in varied ways: either by an external device or by a context observer (in a 

not dissimilar way to Aura´s). 

 

4. A set of applications depending on the context provided and the particular devices from the 

hardware cluster. As far as this approach is concerned, applications are little more than context 

consumers, given that applications are supposed context-aware. Often, an application 

framework is available to develop brand new applications for the hardware cluster. 

 

A figure with all the features related to Gaia´s active space is shown on the next page: 
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Figure 9: components in the Active space of the Gaia Architecture. 

2.1.2.4 Oxygen. 

This middleware ubiquitous architecture was started to be developed in 2001 by Larry Rudolph with the 

idea of providing a human-centric middleware platform where all the interactions were possible by using 

the “natural” perceptual human interfaces (speech and vision), rather than typical computer interfaces, 

such as keyboards or point-and-clicking gadgets [Rudolph 01]. It is an example how even more than 

ten years ago there was a very specific vision of what a ubiquitous system should be: a system that 

blends computation into people´s common life in a quiet way, by just elongating the usual features of a 

human being. 

Rather than using a set of new components, Oxygen makes use of many popular existing elements 

which are in wide use, aiming to integrate a number of technologies in; particularly, the Oxygen platform 

distinguishes three core components within its architecture: 

• A handheld device, which is supposed to have the common functionalities of a mobile phone: 

cellular-type connection, wireless Internet connection, pager, radio and a music-and-video 

player/recorder. According to Larry Rudolph, it is referred to as H21. The idea is that this device 

will be the hub from where the final user will make all its requests and interactions. 

 

• A network, capable of supplying user data easily as long as the user is willing to allow it. In 

order to guarantee that, there are two different subsystems used: a self-certifying file system 

(SFS) and a location system called Cricket. SFS will deal with key management and file 

security separately, thereby making possible sharing the file system without intrusion inside the 
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user domain by alterations in their private keys. Cricket, on the other hand, will have several 

beacons in the wireless interface emitting radiofrequency and infrared signals that, unlike other 

location systems, will not request location information, but will broadcast information that can 

be received by the elements present in the network. The key difference in this case is that it will 

be that a final user device will be aware of its location, instead of the system, giving the final 

user the option of revealing their location or not. Oxygen documentation names this subsystem 

as N21.  

 

• A sensor-rich environment capable of receiving information from either H21 or N21 and take 

actions consequently from the collected data so as to regulate ambient parameters. It is named 

E21 by Rudolph. 

 

An example of how the layout of an Oxygen deployment with all its expected components would look 

like can be observed in the next figure: 

 

Figure 10: an example of an Oxygen scenario. 

Once the elements of the scenario have already been installed, they will interact with each other 

according to their respective roles. Oxygen tries to implement some security measures: one of its 

objectives is creating the simplest possible human-machine interface in order to make the devices 

easier to use and, therefore, more secure. It also tries to put an effort in achieving the communication 

needed by the human input interfaces referenced before (vision and speech) by suggesting a set of 

appliances to be installed –notably, an array of microphones and cameras for speech processing-, 

while output interfaces will be more conventional ones –namely, large displays-. 

In addition to that, Oxygen suggests a communication-oriented language and a built-in middleware 

[Rudolph 01b]. Although Java could be easily used as the programming language since all the devices 

used can offer Java interfaces, the idea of this communication language is that it will be trimmed to its 

unavoidable mandatory tasks, distinguishing four different kinds of components: nodes (anything that 



 

Chapter 2                                                     State of the art in ubiquitous middleware 

 

26 

 

can use a name and communicate via sockets), edges (a directed connection between two nodes), 

messages (the entities interchanged in an edge connection), and actions (a pair trigger-consequence, 

where the trigger is an event such as the creation or destruction of a node, and the consequence is 

another event activated by the trigger, such as deactivating some nodes or establishing new edges). As 

for the middleware, it will be the entity that will execute the code uploaded on the different elements of 

the architecture. The intention of Larry Rudolph was to create a decentralized, fault-tolerant middleware 

that interacted with the system by performing events that would trigger actions.  

An example of how the whole system would work is offered by Rudolph himself: when dealing with a 

computer-mediated seminar presentation, several actions will be carried out, where the different parts 

of the system will get involved: 

1. When the person who is to carry out the seminar presentation (hereinafter, the presenter) 

enters the room, handheld H21 should communicate with the environment E21 embedded in 

the network N21 so as the presenter is acknowledged by the environment. This E21 

environment will have all the nodes required to materialize and manage the presentation 

(camera, LCD or laptops with the intelligence and the electronics capable of becoming part of 

the environment). 

 

2. Once E21 has recognized the presenter, human interfaces as speech will make possible that 

the presenter operates with the presentation (moving slides forward, backward, jumping from 

one to the other, adding notes) by using one command chosen from a small collection (“next”, 

“back”, “go to 13”). This can be used in order to assume the functionalities that would require a 

wireless mouse or a laser pointer, too. 

 

3. The audience may want to watch the files the presenter is using (slides, documents) in their 

own laptops or mobile phones. Thus, they may have to sign in E21 or, if they were previously 

on N21, N21 itself will take care of that operation. 

 

4. In case that any other document useful for the presenter that is not part of the current slides is 

required, they should be accessed without giving away their placement (in the mobile of the 

presenter rather than in their laptop, etc.) as the signing and acknowledgement of the process 

gave the system access to any available repository, provided that there are no security issues. 

 

All in all, the Oxygen goal of merging already developed technologies and appliances into a system in 

compliance with the paradigm of the Internet of Things is enriching as a sandbox, where existing 

elements integrate with each other, but it offers only a half-hearted ubiquitous ambition, as the only 

added value of this middleware approach is the integration of the components instead of innovating with 

new ones, either of hardware or software nature. Plus, its focus on the technologies of the moment can 

turn the architecture into an obsolete one as soon as a new, incompatible technology turns up.  
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2.1.2.5 One.world. 

This middleware architecture appeared first in 2004. It was launched by Professor Robert Grimm, from 

the New York University [Grimm 04]. Its main target was creating a framework for the development of 

pervasive applications for buildings, with a stress on self-adapting the rapidly changing conditions of a 

ubiquitous network. As it happens with the other architectures, Grimm tries to accomplish the idea of 

creating an environment where all the data can be accessed seamlessly throughout any room of a 

building (he uses a digital biology laboratory as an example) without any need of configuring portable 

devices -such as laptops or mobile phones to access wireless networks-, or to log in and out, closing 

and restarting applications and, in a nutshell, explicitly interacting with the carried electronic device to 

do any operation different than retrieving or consulting data. 

One.world tries to cope with typical issues related to ubiquitous and pervasive computing that have 

been self-named and trimmed to three: the change of the context as the user moves by, ad hoc 

connections among devices and the readiness to share information. When dealing with them, this 

architecture will find support in the four pillars that make it possible: 

1. A virtual machine. Since all the code of the One.world architecture runs on the Java Virtual 

Machine (JVM), the existence of a virtual machine is mandatory. In addition to that, it is a 

feature that turns to be quite useful if the unpredictable heterogeneity of the different devices 

that may take part in the ubiquitous architecture is considered: a virtual machine can hamper 

the differences among devices and provide a homogenous foundation for higher levels, as if it 

was a middleware by its own. 

2. Tuples, in a technical context, a tuple is an ordered list of elements used as a mean of data 

representation [English 11]. In this case, tuples are self-describing records with named and 

(optionally) typed fields; they will be used to store data under a common data model, including 

a type system as well, for all the applications available. 

3. Asynchronous events. They are the vehicle used to notify any change in the runtime context 

to the applications. 

4. Environments. They are what processes are to operating systems: the element that runs the 

host applications which is also isolating them from one another. Furthermore, they store 

persistent data that, since it is likely to be used by several different applications, can easily 

generate application clusters based on persistent data sharing. Finally, environments can be 

nested within wider environments, allowing the “super-environment” to modify the course of a 

whole “sub-environment”, according to the hierarchy. 

 

Another central concern for the creators of this architecture is what the application requires in order to 

successfully perform its duties. The actions required, as well as their implementation in the scenario of 

One.world are as follows: 
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Application requirement One.world service 

Communicate Remote events 

Fault-protect Check-pointing 

Locate Discovery 

Move Migration 

Search Query engine 

Store data Structured I/O 

 

Figure 11: requirements for an application running on One.world and mapped services. 

According to Robert Grimm, the most compelling services of the architecture are Discovery and 

Migration. The Discovery service will get resources –that is, event handlers- by paying attention to their 

descriptions. It will support a set of options, including early and late binding, unicast and multicast 

communications. By definition, Discovery service must be self-managing, as it will have to adapt almost 

constantly to shifty context environmental circumstances in order to be efficient enough. Migration 

service, on the other hand, will essentially copy an environment –that is, including all its components- to 

another mobile device, in this way reducing the effort to port an already working application to a brand 

new mobile machine, and facilitating its use in a context where the user has an appreciable mobility. 

When dealing with the issues presented before (change of context, ad hoc connections, information 

sharing), several parameters will be considered: completeness (capability to build complete programs), 

complexity (hardness to program application with this middleware architecture below), performance 

(ability to support system loads) and utility (usefulness to build pervasive applications using One.world 

as middleware architecture). This middleware architecture was tested employing several services 

specifically created for One.world: a replication service (to gain access to ubiquitous information), a 

user-application manager (to have the user handle and manage an application on their own like, for 

example, transferring from one device to another), a text and audio messaging system and a graphic 

laboratory project called Labscape. Regardless of their very different functionalities, some underlying 

conclusions could be extracted: 

• The applications tend to use nesting environments in order to have the applications working in 

several different devices (as when the replicated data are accessed or the applications are 

managed by the users). 

 

• The applications can be accessed in almost every device present in the environment, in 

accordance to the paradigms this middleware architecture is based on. 
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• Mobility of the user is not a threat for them; in fact, it is encouraged as a way to better 

interchange data and information context from one environment to the other. 

 

Despite the approach and the implementation of measures closely related to the paradigms that will be 

reviewed later, like Service Oriented Computing and The Internet of Things, this architecture has some 

limitations, as Grimm himself pointed out. The problem at its core is that One.world puts its efforts in the 

Java code generated in the programming stage, rather than in the data that is interchanged –One.world 

is conceived as a “code-centric” middleware architecture, not as a “service-centric” or “used-centric” 

one-, which can be a problem when the system is confronted with any non-Java coded component, 

forcing to do some porting in order not to spread that problem to higher layers. To counter this issue, 

Grimm suggested the change to a “data-centric” perspective, where data would be interchanged by 

using already existing standards centred in data, such as XML Schemas, so that the elements 

interchanged are not Java code but metadata. 

In addition to that, One.world is using its own protocols for the wireless communications among nodes. 

Although it is comprehensible because of the technological constrains that are found in this sort of 

environments, Grimm admits that its use should be discouraged, as nonstandard protocols will become 

a source of nuisance when the architecture is expected to integrate with other distributed systems 

(most notably, Web-based applications) outside One.world. 

2.1.2.6 PCOM/BASE.  

PCOM (acronym created after Component System for Pervasive Computing) was first introduced in 

2004 by Christian Becker et al. at the University of Stuttgart [Becker&04]. The main point of view behind 

this architecture is that the components in a pervasive, ubiquitous environment, when interacting to 

each other, reveal a series of dependencies satisfied by other components when making those very 

interactions. These relations of dependency can be considered as contracts. Therefore, distributed 

applications can be specified in this context as long as they are made up of inner components designed 

explicitly with dependencies modelled using contracts as a template. 

Apart from this middleware ubiquitous architecture, PCOM will rely on an integrated, flexible 

communication middleware named BASE, which has been programmed in J2ME and makes use of the 

Connected Limited Device Configuration (CLDC). BASE provides an important support at the 

communication level by dynamically choosing among the different available communication protocol 

stacks the best possible one, even for a communication that is taking place at that precise moment. 

What is more, it will offer the application developers dynamic mechanisms to ensure device discovery 

and service registration, which are critical in a ubiquitous scenario –where the amount and kind of the 

devices present is often fluctuating due to crashing of nodes, energy shortages, installation of new 

elements without notice, building of brand new services on the spot, etc.-. Finally, BASE is structured 

as an extensible micro-broker that will adapt itself to the allocated resources of the network, seeking the 
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goal of being able to run on devices with poor resources and taking advantage of the devices rich on 

them, offering generic, automatic adaptation support at the communication layer. 

On the other hand, the role of supporting adaptation for an application at a higher stage (typically, 

application layer) will be undertaken by the PCOM architecture throughout the study of three possible 

solutions:  

• Manual adaptation lead by the final user (the user is offered several options and it is up to them 

to choose what suits better for them). This option is criticized for being against the principles of 

pervasive computing, as it requires the final user make an interaction and the application 

cannot do without it. What is more, since in a ubiquitous environment services may become 

rapidly unavailable, user input may be needed at an unacceptable pace. 

 

• Application-specific automatic adaptation, where the duties related to adaptation are tackled by 

the application itself; typically, the application will signal changes in the environment and will 

reorganize its parameters according to them. This option, although attractive on paper, is 

resource-costly and, according to Becker is “[…] leading to complex and error-prone adaptation 

routines”. 

 

• Generic automatic adaptation, which can be considered as a middle way between the other 

options. Parameters for an input and/or output service will be specified by the programmers 

and while in runtime, the system will try to find service with a good enough quality. This is the 

option that will be used by PCOM to ensure adaptation support at the application layer, while 

BASE will be using it as well for the communication layer. BASE will also be the host for the 

PCOM components that makes PCOM´s runtime system possible. 

 

 

Figure 12: general architecture of PCOM/BASE. 
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As it can be seen in the previous picture, there is a hierarchy with several elements of the architecture. 

The most relevant are two: 

• PCOM Container, where sub-elements are encased, such as a) A container interface in order 

to operate with other PCOM containers, b) Several components used to inter-articulate into an 

application, c) An anchor, which is no more than a component but since it is the root one will 

have some additional features (it will identify the resulting application) and d) An adaptation 

element that will carry out the necessary duties to either signal any alteration in the availability 

and quality on notified components throughout the network, or any user strategies already 

programmed to deal with the changing components. 

 

• BASE middleware, a critical part of the system as it is responsible for the communications at 

the network level and it also select services among the present ones. 

 

The components in the network work providing services determined and standardized in this 

environment by the usage of contracts, as it has been learnt before. Also, these components perform 

their tasks in a component lifecycle defined by the PCOM container, consisting of two different states, 

STARTED and STOPPED. In this way, the container will load the representation of a contract that, at 

the same time, is representing the features and requirements of an object. If this component is able to 

fulfil the needed requirements, then the component will be embedded into an application, and when all 

the required dependencies are fulfilled, the component will change from STOPPED to STARTED state. 

At this point, the loaded component will provide its functionalities until they are either depleted or no 

longer need, therefore reverting to the STOPPED state until the moment this component may be 

required again.  

Service selection, on the other hand, will be made both by the PCOM container and BASE, although 

PCOM, as it is at a higher level than BASE, will select services via components. This fact has prevailing 

consequences: components add more flexibility and adaptation than the simple services, but they will 

introduce a delay and will have a slightly lower performance when they are compared with BASE 

results, although BASE is not operating at the application layer. That is why, despite the huge effort 

made in solving the main challenges of a ubiquitous environment and its applications made by this 

architecture, and providing an initial solution for mobility, update and reliability issues, it somewhat blurs 

those achievements by introducing some redundancy with inconclusive usability: the idea of having two 

layers competing to solve the same task is not consistent with the concept of a layered architecture, 

where the lower layers provide functionalities to the higher ones, and in addition to that, additional costs 

in performance -adding a small delay in PCOM service reselection- and resources -according to the 

scientific paper composed by Christian Becker et al., the inclusion of PCOM container asks for 

additional 30-40 Kb of memory on top of the 90-120 Kb already required by BASE, one more reason for 

not having two separated layers performing similar tasks sometimes-. 
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2.1.2.7 Jini. 

Jini was put forward as a model for ubiquitous middleware architectures by S. Ilango Kumaran in 2005. 

The goal of Jini is providing a middleware that will cope with all the troubles of having different 

hardware, protocols, drivers or operating systems using a principal called “spontaneous networking”. 

Due to its design, components or nodes within this model do not need to acknowledge the existence of 

any other element, being the only prerequisite that the participants have a functional Java Virtual 

Machine mounted as part of them. In order to make any non-Java-based component usable by the 

community, they will be wrapped in Java code, in an attempt to make the system application-centric 

rather than language-centric. 

One of the core concepts of Jini architecture is the lookup service. They are self-managing Jini services 

that, unlike all the others, have governing functionalities within the architecture. Lookup services will 

organize the published services as well as answering requests done by clients, and references to them 

will be obtained by either multi or unicast Jini communication protocols.  

Another one of the core principles of Jini is the idea of “leasing a service” to the community of devices 

present in a Jini deployment. When a service provider wants to register a service in the community, it 

will begin a service registration process with a lookup service. In order to complete it, the lookup service 

will grant a lease to the service provider regarding that particular service. This lease must be renewed –

lookup services make multicast announcements of their presence from time to time in other to ensure 

this-, or else the service will be de-registered. In addition to that, clients and servers in the Jini 

community can register for events related in a way or another in one lookup service (as new or 

discarded lookup services); clients can even subscribe to events related with functional, modified or 

discarded services. All these event registrations are also leased into the federation, so they can be 

used as a tool for updating the service layout of the system. 

A chart with the components of a Jini architecture is below [Hariha 05]: 

 

Chart 1: Jini architecture and comparison with Java functionalities. 

As far as the Jini architecture is concerned, there are three main components:  
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• Infrastructure, built on Java´s Remote Method Invocation (RMI), despite its poor capabilities 

for this sort of context. It provides the discovery and joint protocols used to federate the 

potential elements of the architecture, whether they are hardware of software-based. The 

discovery protocol will come in handy when clients or servers are searching a lookup service –

which eventually will answer with a TCP-based unicast response to their requests-, and the join 

protocol. Besides, as in fact Jini is based on a network of Java Virtual Machines, all the 

functionalities of a Java Security environment can be put to a use in a distributed environment, 

thus having Distributed Security all throughout the architecture. Finally, the core concept of a 

lookup service will enable a client interested in joining a Jini federation to find present services 

and make sure of their usability, not in a dissimilar way to CORBA or DCOM, which are 

distributed but not ubiquitous-based. 

 

• Programming Model, with the idea of extending to a distributed and ubiquitous environment 

Java elements such as JavaBeans, an Events Delegation model and a Swing Graphics Toolkit 

for graphics generation. The other core concept mentioned before, service leasing, is used not 

only as one of the main functionalities of the system in order to enforce the normal behaviour of 

the Jini architecture, but also as a mechanism of self-healing and updating after a partial 

network crash –which are much more common in environments with the scope this Final 

Degree project is disserting about than total and complete network failures- as it will multicast 

itself with all of its services under different conditions –functional, outdated, etc.-. Plus, 

transactions will have to be employed as well. Jini defines a transaction model where there are 

two stages needed for completing a transaction but does not give any detail on how to 

implement them; in a way, leasing can be considered a transaction mechanism as well. Thirdly, 

a Distributed Events model, based on a Java Event Model in JavaBeans will support event 

remote registration and propagation by using a distributed event protocol that will let know any 

object in the federation if there have been any change in a singular service or even in another 

object. 

 

• Services. The approach intended to be taken by Jini is that services –and by proxy, the 

applications that provide them- are the main focus or the architecture, with the pretension of 

regarding everything as if it was a service. One more time, lookup services are used in a 

recursive way to find services that will offer different functionalities according to the needs of 

the registered object. 

 

Jini tries to use the idea of service and application-centric architecture to its advantage: it will usually 

give the same treatment to hardware and software components, as in a pervasive environment, it is the 

service they provide what Jini is interested in. As for mobile devices, since sometimes they will be too 

resource-constrained, Jini provides some initiatives (Jini Surrogate Architecture for networking, 
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ServiceUI for interaction in pervasive environments or even a Jini Mobile Edition for a easier handling of 

codification tasks) to accommodate its utility. 

In theory, Jini offers a series of concepts very appealing: its view of the architecture as a service-centric 

network, or a distributed transaction model as a way to communicate the elements among them are in 

harmony with the principles of the novel tendencies in wearable computing. Unfortunately, it often feels 

as if they are mostly a theoretical pretension: sometimes the line separating an application-centric 

architecture and a service-centric architecture is used in a diffuse manner, and it can have serious 

consequences in the performance of a Wireless Sensor Network or any other component of a 

ubiquitous environment (as it is not the same making the centre of the architecture applications, that are 

usually useful for final clients, than services, that can be used for internal purposes, as it is proved by 

our own semantic middleware architecture, nSOM). Moreover, although objects not based in Java 

implementations can be wrapped into one codified in Java, it is not explicitly mentioned, nor there is an 

implementation of it, how it is done within a Jini context. Finally, the idea of having to take into account 

computing capabilities of the devices involved in a Jini system is not consistent with the idea of 

abstracting hardware and/or software components in a pervasive environment. 

2.1.2.8 UPnP. 

UPnP (which stands for Universal Plug and Play) is a Microsoft architecture first issued in 2006 in order 

to make its own contribution in pervasive, distributed environments. Initially conceived as an extension 

of the plug and play concept into a networked, wireless environment, it ensures an unusual degree of 

openness and independence: UPnP is an open source, open architecture which does not depend on 

platforms or languages for its right performance, while following and making use of some of the best 

known standards of industry, such as HTTP, SOAP and XML. The target context for UPnP is mostly 

either a home or a SME environment, where all the devices belonging to the building they are present 

are interconnected by means of this architecture [UPnP 06]. UPnP intends to integrate all the devices 

found in these scenarios seamlessly, without making any intervention from the user necessary (if so, in 

a plug-and-play interaction fashion).  

There are three main components behind UPnP [Intel 11] which characterize the architecture: 

• Devices, entities capable of establishing connections among other devices by making use of 

the UPnP-defined communication protocol. Despite their name, they can be either of hardware 

or software nature. 

 

• Services; usually offered by the devices, they are actions that can perform duties that will result 

in a benefit for the final user. Since UPnP is taking part in a consortium constituted by the 

industry (the UPnP implementers Corporation), some of this services are already fixed and 

defined for some of the devices typical of UPnP, as they are already existing in the market 

place. Services will usually provide one or more actions related to their functionalities. 
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• Control points, an element of the architecture that will extensively manage the relations 

between the devices and the requests done towards their services. Control points will discover 

and invoke service actions associated to devices, and are able to subscribe to events and 

actions provided by services. 

 

A representation of an effective data interchange under UPnP requirements is as follows: 

 

Figure 13: interactions between Control Point and device elements of UPnP. 

The depicted process can be explained like this: a) A device connects itself to a UPnP network, thus 

starting a discovery process aimed to get to know which other devices and services are present in the 

network. For this discovery process to take place b) A control point will perform queries to the network 

using Simple Service Discovery Protocol (SSDP), identifying devices and their hosting services. 

Therefore, c) A device offering a service will send an answer to the control point with a URL containing 

the device description and the service that it can offer. This will be a file written in XML that can be 

looked upon so as to obtain information to understand facts as the make or the services offered by the 

device –for example, input and output methods used by services-. In the end, d) The control point will 

make use of SOAP protocol to invoke actions on one or more services, as it may be required in the 

context of a request. 

In a nutshell, UPnP is an architecture offering interesting concepts, and a huge effort in overcoming the 

stereotype of Microsoft preference for proprietary solutions and closed architectures. In addition to it, 

UPnP is backed by a consortium of a considerable amount of manufacturers and vendors, aiming for its 

acknowledgment as the architecture to use in smart home or SME environments. However, due to the 

fact that its only pretension is to universally connect devices, regardless of their ubiquitous, pervasive 

building or not, in a very specific environment, some of its features cannot be of any use for new 

devices and solutions complying with the novel tendencies in wearable computing, such, as semantic 

knowledge management or the Service Oriented Computing.  

What is more, there is no mention of context awareness, which is a key concept in the scope of this 

Final Degree Dissertation, and adaptability is not as flexible as it should be, as it is not mentioned either 

how UPnP copes with failing networks nodes or service errors. Moreover, UPnP is rather focused on 
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the devices rather than the services, which contradicts with the idea of using middleware to isolate 

different, even discordant, hardware architectures. Finally, the correct performance of this architecture 

in a fully ubiquitous environment is dubious, as it makes use of standards that are not designed for an 

environment under the conditions usual in ubiquitous and pervasive computing and, as it had been 

seen in the problem statement part of this Final Degree Dissertation, that usually renders the standard 

useless against these new circumstances (constrained resources, high mobility rate, dynamic 

adaptation to changing network conditions, etc.). 

2.1.2.9 CoolTown. 

This middleware architecture was elaborated and put forward in 2001 (although first efforts on it date 

back to 1999) by Tim Kindberg and John Barton –who would become part of the staff working at 

Hewlett-Packard labs, the company that would use this architecture for interconnectivity among their 

own devices- to address the issues and challenges that proliferated in a ubiquitous environment. The 

pretension of this middleware is providing an infrastructure to what their creators refer to as nomadic 

computing; in Tim Kindberg´s words [Kindberg 12]: “the goal of the Cooltown project was to provide 

infrastructure for nomadic computing, a term the project used for human-oriented mobile and ubiquitous 

computing”. Under this context, this is an idea similar of more contemporary pervasive or ubiquitous 

concepts. Also, many of the ambitions of this architecture were shared among the other ones, namely 

creating a “real-world wide web” where all the existing entities of the “real” world would be mapped into 

a web from where the entities´ functionalities would be characterized and accessible, usually via URL –

which is a simple way for providing access to the features belonging to an element present in the 

system -, that would serve as a web presence in this web-enabled environment.  

To face the previous challenge, CoolTown makes use of a method called eSquirt for collecting links –

that is, URLs- from infrared beacons attached to different devices like walls, printers or radios 

[Kindberg&01]. By using infrared beacons CoolTown aims to abstract itself to the kind of device they 

are attached to (regardless they are a printer, a RFID tag or a barcode), and implementing an URL for 

each device makes it accessible for any other entity in the network that has HTTP-capable devices, as 

it can be observed on the next page: 
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Figure 14: a general view of a CoolTown-based system. 

When it is put on a use, should all the devices be present in a room, each of them counting with their 

own URL, as well as providing the room with one of them for characterizing purposes, a portable HTTP-

capable device, such as a PDA, can request the URL belonging to the room that will be containing all 

the other URLs associated with the other present devices, therefore using the URL as an interface to 

the room. The context information will usually be offered by other web-services based on the piece of 

equipment that has been attached an infrared beacon. Types of context will be not only about the 

physical world (where, when, who, what, how), but also about relationships among components 

(contains, isContainedIn, isNextTo, isCarriedBy). 

This middleware architecture, enriching as it is, has a concerning amount of limitations that jeopardize 

its usability in a ubiquitous, pervasive environment. The performance of infrared technology in this kind 

of wireless communications is likely to be very poor, as infrared interfaces have very limiting 

requirements as far as distances and obstacles go. Also, it has to be born in mind that this middleware 

was developed by a single manufacturer rather than a standardization organism or a consortium of 

several companies; it is only natural that it was focused on solving one particular problem for the 

manufacturer (mainly, communication between user and printing devices in a nomadic way, from a 

laptop, a PDA, etc.), but it does not look like it can handle all the trouble behind having ubiquitous 

devices belonging to different companies operating in a full-scale ubiquitous environment, with different 

functionalities, context data, etc. Finally, partly due to the time it started its development, CoolTown 

makes use of technologies alien to a wearable-oriented middleware (to begin with, IP “as is”, without 

any modification to ensure its functionalities in a pervasive, ubiquitous environment), which have 

already been discarded for the trouble and malfunctioning risks inherent to its usage. 
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Some of the issues present in this architecture were tackled with another Hewlett-Packard development 

in this same area called JetSend, which later is mentioned as other wearable-oriented middleware 

possible architecture. 

2.1.2.10 A.U.R.A. 

A.U.R.A. (acronym loosely based on application-aware and user-interaction aware energy optimization 

middleware framework) [Donohoo 11] is a middleware architecture whose main lying idea is saving 

energy and optimizing the good usage of resources (according to the main objectives of this 

middleware architecture) and in order to achieve this goal, every single moment that the wearable 

device is rendered idle,, the architecture will be put to this use. This piece of middleware is unrelated to 

the Aura architecture described before, so it has to be considered that they have next to nothing in 

common. For example, there are three kinds of processes recognized by its creators, which are 

consecutive and will have a user interaction with a wearable device as a consequence: perceptual 

(perception of an event considered as input from the environment by the user), cognitive (decisions 

taken by the user depending on the perceived event) and motor processes (the execution of the 

decision taken before). As there is some little time of inactivity at the terminal between the ending of 

one of these processes and the start of the other (which is named interaction slack), these small 

periods of time can be used to the human actor´s advantage: the CPU power and other features will not 

be needed, so they could be, if not stopped or switched off, at least slowed down. 

As long as the middleware architecture overview is concerned, there are three components critical to its 

performance, which coexist with two more components with emulation and storage functionalities. The 

place they are located can be observed in the following picture: 

 

                                                Figure 15: AURA middleware architecture and placement 

As it is present on the picture, the three most notorious components of this middleware architecture are: 
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• A runtime monitor to interact between the operating system (experiments were run using 

Android devices) and the applications accessible via user interface. Usually, the monitor will be 

focused of several foreground, global applications (e.g. whether a hard keypad is used on the 

mobile device or not, or a particular application that is being extensively in use), either 

dynamically adapted to the context of the environment or behaving the same way regardless –

or in spite of- it. These applications will send broadcasts whenever a triggering-application 

event takes place (a touch on the screen, sliding open a mobile device, etc.). Since the runtime 

monitor will be tracking the applications in use, the mobile state and the interaction events, if it 

is detected that a new application has gained foreground, the runtime monitor can easily save 

information from the no-longer-in-use application in the application profile database, and 

recover previously saved data of the new application in use, should they exist. Also, the MDP 

power management module can be used to the device´s advantage if the new application has 

already been classified. 

 

• A MDP (Markov Decision Process) power management module. Its work methodology is 

based on the idea that if a statistic record is made of the user interactions with the mobile 

device, it will be inferred how the device is both the most and the least frequent way used, and 

thus the resources consumed by it can be managed in a more efficient way. The module 

establishes five parameters in order to achieve a successful performance; two of them are 

based on statistics, -the probability of an event going from a high to a low threshold 

(hereinafter, Phlt) and the probability of an event going from a low to a high threshold 

(hereinafter, Plht)– whereas the other three are closely related to the utilization of the CPU -

Utilization from high to low threshold or Uhlt, Utilization from low to high threshold or Ulht and 

low-to-medium utilization or Ulmt-. Typically, when the system is used below the value of Uhlt 

and the probability of an event to happen falls below Phlt as well, the system will enter in a 

Below Nominal mode, where the brightness of the screen present in a mobile device is reduced 

and the processor frequency level switches to the lowest supported. Once the device has 

entered this stage, either a reception of an event or the rise of the probability of receiving an 

event will revert the system to its Nominal, “regular” mode. A third possibility is present if the 

processor surpasses the value of Ulmt: within the Below Nominal mode, the processor 

frequency will be sped up. 

 

• A Bayesian application classifier, which will perform its duties according to the principle of 

Bayesian learning of using both prior outcome probabilities and present events in order to get 

probabilities of a future event to happen. In this module, three different levels of user interaction 

are defined (low, medium and high interaction) and applications will become members of each 

of the levels by analysing the standard deviation and the mean of the passing time between 

events launched as a result of user interaction. 
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• Furthermore, there are two more elements that should be noted: an event emulator, used in 

AURA middleware to emulate interaction events, and an application profile database storing 

all the data related to the previous foreground applications –should these data be required by 

an application returning to the foreground-, as well as the level of user interaction of many of 

them (the Bayesian application classifier will be used in case the level interaction is undefined). 

 

To summarize, the AURA middleware architecture offers an array of options in order to improve the 

usage of the constrained resources of a mobile device. However, it must be highlighted that AURA has 

been tested with mobile devices that exceed the usual capabilities of a mote, like a mobile telephone 

with a popular operating system such as Android, so it could possibly become useless in a ubiquitous 

environment with electronic devices with lower capabilities (as they usually are). In addition to that 

disadvantage, AURA, unlike Aura, is strongly focused on one single task –energy saving-, and 

somewhat neglects many of the other functionalities typical of a ubiquitous middleware (context 

awareness, service management, etc.). 

2.1.2.11 Other ubiquitous-oriented middleware architectures. 

Besides the middleware architectures previously presented, there is an additional number of them 

which were either not as popular or have been regarded as nearly useless for the time being. However, 

given the still early state of the research and development of the Internet of Things and other ubiquitous 

paradigms, their contributions are noteworthy and may even be considered as forerunners for other 

middleware architectures. 

RKF is a ubiquitous middleware implementation that appeared in 2003 as the work of Stephen S. Yau 

and Fariaz Karim [Yau&03]. Contrary to many other implementations, RKF is not a holistic ubiquitous 

middleware but a lightweight component –or as their developers name it, a building block- meant to be 

embedded as a part of a wider middleware, presumably based on RCSM (Reconfigurable Context 

Sensitive Middleware, developed by Stephen S. Yau and Fariaz Karim as well from 2001 on), thus 

providing an enhanced ubiquitous middleware with little more software and hardware requirements. Its 

structure is built around the idea that an interface of an object becomes a communication endpoint 

when associated with one of the many methods of the object. These communication endpoints (also 

known as IM_PAIR, for Interface and Method Pair) are not only interchanged between members of a 

ubiquitous network such as the wearable device or a ubiquitous node, but also are advertising the 

objects of the device acting as a host that are executable in the current context. In this way, IM_PAIRs 

will broadcast information and link components of a distributed architecture in two possible ways: either 

in a regular client-server mode or in a ubiquitous-like context-sensitive mode. 

MARKS (Middleware Adaptability for Resource Discovery, Knowledge Usability and Self-healing) 

appeared in 2006 as the result of the research carried out by Moushumi Sharmin, Shameem Ahmed, 

and Sheikh I. Ahamed [Sharmin&06]. In their view, there were some aspects of middleware ubiquitous 

computing that were not being correctly addressed (knowledge usability, resource discovery or self-
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healing on the systems) and this misdirection could affect some of the assumed features of ubiquitous 

computing (Context-sensitivity, Situation-awareness, Ad hoc communications). In order to tackle this 

alleged weaknesses, they designed MARKS with several core components (Universal Service Access, 

Trust Management and a module for resource discovery) and some other interacting with the objects 

belonging to the application layer (a context service Module, a knowledge usability service module, a 

self-healing service and some free room for other service modules) which are using an Object Request 

Broker layer as the cornerstone of the architecture. In an experiment conducted by the designers of the 

middleware architecture, a number of Dell Axim pocket computers were used. These devices had 

Windows Mobile as their operating system, and therefore, a suite of technologies closely related to 

Microsoft (like, for example, Visual Studio .NET). The obtained results were good enough, and two 

further versions were created: a secure one, with security taken into account from its very first design, 

called S-MARKS, and a lighter one, called −µ MARKS, conceived to be used by motes as part of a 

virtual wellness assistant that merges use of ubiquitous computing with e-health. 

JetSend is a protocol developed by Hewlett-Packard. It was created with the purpose of having a peer-

to-peerstructure and becoming a machine and media-independent communications technology, without 

any need of device drivers. Rather than using infrared beacons (although infrared interfaces are 

supported, too), JetSend employs what their developers call e-material, that is, an electronic material 

used for surfaces, or representationa of any job that has to be tackled (for example, if a page has to be 

printed, the surface will be that particular page) [Hewlett-Packard 12]. Surfaces can act as well as a 

shared medium for capabilities advertisement of each device present in the architecture. Again, 

however, although it aims at the usual electronic consumer goods that can be present in an office or a 

domestic environment, it does not go further than that and does not implement any functionality related 

to lower capability devices or context information –in addition, it still uses technologies, such as TCP/IP 

that do not specifically belong to the domain of wearable–oriented middleware-. Nevertheless, clearly it 

does not target the kind of nodes that can be found on a Wireless Sensor Network, either as part of it or 

as a final user intelligence-augmented common wearable, so it cannot be considered entirely as an 

unwanted flaw. Another development somewhat reminiscent from JetSend is TransferJet, but its utility 

in a ubiquitous environment or a Wireless Sensor Network is practically none, since the devices to be 

connected need to be either touching or being brought very closely together. 

iROS application model tries to create a middleware system for interactive workspaces 

[Ponnekanti&03], such as any room or space technologically augmented where people gather for 

collaborative work. iROS consists of three different subsystems: an Event Heap for application 

coordination (a programming model based on entities communicating via message passing or events, 

with an Event Heap client library claimed to be easily portable to multiple hardware platforms and 

software programming languages), a Data Heap for data movement and transformation (which is used 

for semi-permanent data storage in an interactive workspace, regardless of being either proper data or 

metadata) and the ICrafter, a framework for services, or in a more accurate way, for any sort of 

hardware or software component that can be managed throughout the network as if it was a service. 
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The model put forward by iROS uses application parts which will communicate by using the Event 

Heap, using tuples as the structure for communication; in addition, if a requested functionality is not 

present at that specific moment, an aging mechanism will be implemented in order to dispose of that 

request. As for other middleware ubiquitous architectures, iROS seems to direct itself just for indoor, 

very limited environments, such as offices or rooms with a varying degree of pervasive components. 

DCOM (acronym for Distributed Component Object Model) is a middleware architecture developed by 

Microsoft [DCOM 12] that, unlike already-presented UPnP, is a proprietary technology. Its initial 

purpose was to extend the functionalities of Microsoft´s COM under a distributed environment, in a way 

trying to solve the limitations that COM architecture had found, which were marshalling (serialization 

and de-serialization of return values from requests done by method calls over the wire, or more 

accurately, methods that have sent directly to the user the result of their request), distributed garbage 

collection (making sure that the references held by clients and/or applications are released when 

something abnormal regarding the network performance has happened, such as a crash or a client 

disconnection) and an escalating amount of references. This can be considered one of the first –if not 

the very first- steps taken by Microsoft in order to materialize an approach towards ubiquitous 

computing. However, the perspective of having a proprietary solution as a means to solve, or at least 

try to solve, the challenges related to an environment such as the one presented here can be deemed 

as rather unappealing, as the amount and heterogeneity of the devices implied in a ubiquitous 

communication can expand beyond the speed the architecture can be adapted, and a proprietary 

solution would require to pay a royalty to a third company, which is not a good business for the other 

manufactures. This architecture was superseded by Microsoft´s .NET Remoting first and by Windows 

Communication Foundation after some more time [Microsoft 12]. 

2.2.4 Open issues and new approaches towards 
middleware. 
The State of the Art in middleware ubiquitous architectures has an underlying weakness from where all 

the other can be considered to come: it is still at a very early stage of development, due to the fact of 

using many technologies and paradigms (Wireless Sensor Networks, Service Oriented Computing, 

Semantic Knowledge Management, motes...) that either are also in early stages of development or are 

mature enough but are not widely used yet. Several issues are pointed out in the following pages of this 

Final Degree Dissertation. 

2.2.4.1 Lack of standardization and integration of middleware 
architectures. 

The status quo in middleware ubiquitous, pervasive architectures (and, to a greater or a lesser extent, 

in most of the areas related with the new paradigms linked to these architectures) can be compared to 

the one that was prevalent in the computer packet switching industry in the late 60s or early 70s: a 

mosaic of proposals with very sparse utilization areas, where there is not a dominant solution above all 
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the others. Wearable middleware architectures presented here have all made their contributions to the 

development of the others, or to the development of newer ones, but none of them have had a 

preponderant position in the market or for telecommunications and computer science researchers, and 

while some of them may have global consortiums of companies behind them (such is the case of 

UPnP), their original purpose or even their final objectives may not be directed towards the consecution 

of a middleware architecture properly conceived for paradigms as the Internet of Things, but just taking 

a part of it in a rather accidental way.  

 

Figure 16: a IEEEXplore search for “ubiquitous middleware architectures” returns 443 results. 

This can be explained as the evolution of the different services and products that had been marketed by 

the companies or research institutions implied in all these works; often, the creation of a middleware for 

a ubiquitous environment was just a small step forward in their former communication solutions –that 

were still carrying most of the particularities coded before, rather than having to start a new 

development from scratch-. This model may have been useful in the adoption of new paradigmatic 

ideas with little effort, thus guaranteeing a smooth transaction from a distributed middleware to a 

ubiquitous one, but it is nothing but a burden when the development demands to be pushed to its limits 

in order to have a fully pervasive, ubiquitous middleware, as many early traits will be kept and, what is 

worse, with their own particular and abundant differences: though ubiquitous middleware architectures 

tend to share some entities (a management hub, hardware-abstraction tools, peripheral nodes) their 

inner architectures and hierarchies are unrelated one to the other, making any effort to integrate all of 

them a titanic task. And even if they are integrated, there could be concerning consequences about 

composing a system with subsystems not defined to work together that should be measured -for 
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example, having a database with user information and a Wireless Sensor Network to transmit data-; 

implementations that are able to work seamlessly without conflict must be integrated [Greenfield 06]. 

As far as it can be seen, this problem can be tackled in two different directions: either a centralised 

initiative is carried out by institutions or consortiums above all the smaller companies, but with their 

support and commitment, to define an ultimate model for a middleware suitable enough for the new 

paradigms –which could solve once and for all  middleware integration problems, but with the cost of 

having to modify all the already existing ubiquitous middleware architectures to conform the new 

standard-, or a particular integration solution is implemented any time several different middleware 

architectures are put to work together –and therefore an integration effort has to be done every time 

that a compromise solution has to be obtained, albeit on a much smaller scale and just for a particular 

solution which will require re-thinking any other time a similar challenge is tackled-.  

2.2.4.2 Lack of focus on security and privacy. 

There does not seem to be any concern in making the presented middleware architectures at least as 

secure and privacy-concerned as their non-ubiquitous partners are. However, since the network traffic 

that can be generated is potentially much larger under ubiquitous conditions than in more conventional 

scenarios (it has to be taken into account, for example, a smart city with thousands of sensors scattered 

throughout all its buildings or green areas; such a project is already a tangible reality and can be easily 

exported, providing that enough interest and funding are available for local administrations, as for the 

SmartSantader case [SmartSantande 12]) not only because of the infrastructure used for obtaining 

information but also for its processing and share, huge steps towards enforcing more strict security 

measures should be taken. Unfortunately, none of these middleware architectures makes any effort in 

becoming security-aware, let alone implementing any effective treatment to counter any possible 

security thread. It can be argued that legacy solutions were too busy struggling to have a kind of 

architecture ubiquitous enough in the first place, so developing any security effort could have been an 

unbearable challenge for that time; however, the general consensus around this topic, even years 

before the arrival of Wireless Sensor Networks –that are clearly spearheading the efforts in ubiquitous 

computing- is that any network or piece of software that is not secure is effectively unusable, for it 

creates a vacuum of insecurity where disadvantages and risks of using networking and middleware 

technology overweight the advantages and benefits that they may offer. 

Furthermore, the middleware architectures presented before find its natural field of usage within 

technologic environments, where data obtained will usually be network directions, device descriptions 

or indoor readings. The idea is that the collected information usually poses no interest for a hacker –or 

in fact, any third party not being part of the ubiquitous network- because it is bound to be used as part 

of a low-level utility. However, as it has already seen before, and as it will be exposed in chapter 4, 

ubiquitous middleware architectures could have at their ends sensors and devices that are actually 

reading critical and very private information about one person, from an identity card number to their 
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body temperature; it becomes crystal clear that such data must be preserved from any external or 

unwanted agent.  

Finally, the nature of the sort of networks that ubiquitous middleware may be embedded in makes them 

more vulnerable to attacks: ideally, a pervasive and ubiquitous system could require that it must remain 

operational 24 hours per week, 365 days per year, thus exposing critical information under a much 

wider time window that many conventional networks will do. That is not any imaginary device; right now 

there are many research projects with appliances with such applications born in mind when designed. 

 

Figure 17: ubiquitous device from the University of Lübeck [Lübeck 12]. 

In order to solve this problem, a two-way solution must be conceived. First of all, security must be 

greatly improved by the side of ubiquitous computing in general and middleware in particular. Several 

steps are being taken in order to accomplish this: nSOM middleware architecture incorporates a 

security subcomponent which proves that adding security on ubiquitous middleware is possible and 

desirable. Plus, some other initiatives are taking place to secure sensitive data in the field of ubiquitous 

health care [Rosslin&11]. 

Secondly, final users of ubiquitous technology are expected to be people who do not necessarily have a 

good grasp of any sort of technology. Therefore, in case that the ubiquitous systems needs user 

intervention any time (of course, the less times the better, since a ubiquitous and pervasive system 

should require as little attention from the final user as possible), the user should have been educated 

before in its own usage as it is done under conventional networking environments, not revealing more 

information that the strictly required and being conscious of the possible presence of malware in their 

everyday ubiquitous products. 

2.2.4.3 Struggle to adapt to present and future component 
heterogeneity. 

One of the key functionalities of middleware is abstracting any higher layer from the heterogeneity and 

complexity of the underlying components of the architecture. It is a feature that is taken for granted in a 

regular networking environment, but, although it is usually done so under ubiquitous conditions, 
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sometimes it feels as if some of the devices used in the systems need to be taken into account when 

the capabilities or the architecture are quoted. When this issue happens, it cannot be said that 

middleware is abstracting the heterogeneity of the hardware below the application layer, as it has to be 

considered when an application is developed. It is so because there is a certain degree of ambiguity 

about how to define and what to include as an element properly belonging to this paradigm: what 

makes a gadget or any other hardware appliance wearable or not (for example, while a mobile phone is 

universally regarded as a wearable device, a netbook is not granted the same status, despite being 

designed for being portable), what can be considered ubiquitous or not (a mote is clearly a device 

design with ubiquitous applications in mind, but then again, a mobile phone may not be considered as 

such, because its energy requirements, capabilities and functionalities surpass the ones expected on a 

device involved in a pervasive, ubiquitous system).  

In spite of having proposed exact definitions of these concepts, in many cases they are either too 

narrow or become rapidly obsolete –one of the most widely accepted, Professor Steve Mann´s 

definition of what a wearable computer is [Mann 98], “a computer that is subsumed into the personal 

space of the user, controlled by the user, and has both operational and interactional constancy, i.e. is 

always on and always accessible” was done back in 1998 and can be challenged today under a 

ubiquitous and pervasive perspective, or can be considered just too imprecise-. An updated, accurate 

definition of what is wearable, ubiquitous and/or pervasive would come in handy under these 

conditions, and if it is done by an international standardization organism or consortium, it will become a 

good start point to define terms accurately.  

Besides, subsystems involved in a so-called ubiquitous system must keep its functional and non-

functional requirements on a minimum level. In order to achieve this, a policy could be followed where 

the performance of the middleware is dependent on the least electronically capable of all the devices 

involved in the architecture; that is, having as the performance and functional and non-functional 

requirements the ones determined by the bottleneck of the system. 

2.2.4.4 New approaches towards middleware. 

Thanks to the research efforts put during last years, and to the lessons learned from the legacy 

solutions in middleware as well, today there are current new approaches to the sort of middleware that 

can be fully exploited in the sort of environment this Final Degree Project is interested in. Although 

these tendencies are mostly theoretical schemes, unwilling to name the elements or the hierarchy of 

modern ubiquitous middleware architecture, they have several critical points in common, and are put 

into practice whenever a new middleware is designed: 

• De facto, not just de jure, abstraction from hardware-related layers. In the former 

middleware architectures, even if hardware devices do not have to be taken into account when 

describing their architectures, their capabilities and restrictions are present in the expositions of 

their performance or their general layout (pervasive devices or hardware energy depletion is 

mentioned, for example). However, new trends abstract themselves for any consideration: 
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middleware architectures will just consider components and entities, where it is usually difficult 

to recognize when an element is a piece of hardware or software, as it was done before, albeit 

in a shy way, with middleware architectures that tried to be service-centric. Thus, it is simpler to 

ensure the portability of the ubiquitous middleware from one placement to another, and it even 

may be possible to have different pieces of equipment assuming different roles each time, or 

interchanging roles in case one the components of the ubiquitous middleware architecture has 

a power failure or is disabled for any other reason (security loopholes, etc.).  

 

• Bolder and wider view of ubiquitous (and middleware) architectures. Rather than having 

an architecture for a very specific purpose (enabling ubiquitous printer capabilities, energy 

management) in a tiny environment (a room, an office), new approaches tend to think of 

ubiquitous middleware as something almost unlimited in its deployment and its extension; their 

position is that if the conventional Internet started with only several nodes and it expanded as 

the Internet as we know it today, ubiquitous architectures (and being part of them, ubiquitous 

middleware) should dare to suggest solutions and functionalities than can be applied to a 

varying amount of scenarios: outdoor surveillance, indoor sports, facility monitoring, etc. In 

addition to it, architecture must prove to have a share of features that can be regarded as 

unusual or reserved for conventional networking: Quality of Service measurement, scalability, 

reliability and robustness, security, etc. For its performance must be, if not as fast in data 

delivery as a conventional cabled or wireless network architecture, at least offering an 

equivalent degree of guarantees.  

 

• Enriched information as an improvement and a necessity. New functionalities regarding the 

treatment of information (Semantic Web, Web Ontology Language) are open for any kind of 

environment; however, ubiquitous, pervasive middleware architectures will benefit the most, 

because the more efficient, the more data-refined and the more accuracy they are capable of 

showing when handling a client request, the less further requesting, resource consumption and 

wireless sensor network information interchange will be needed, resulting in a better overall 

performance and a higher degree of availability of the ubiquitous middleware resources. 

 

In order to study the more recent approaches towards ubiquitous middleware, it has to be taken into 

account that they will often overlap with the idea of programming models for Wireless Sensor Networks. 

 

Figure 18: taxonomy of programming models [Hadim&06]. 
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As for programming Wireless Sensor Networks, there are two different programming points of view that 

can be observed in the previous taxonomy: one is programming support, named like that because it 

manages the provision of systems, services and execution time mechanisms, along with the reliable 

code distribution, safe code execution and other application-specific services. The other point of view 

would be programming abstraction, which is related with the way the Wireless Sensor Network is 

perceived externally, introducing concepts and notions about sensor data and the nodes belonging to 

the network. 

Along with these major categories when programming Wireless Sensor Networks, there are some 

others that can be included within the former wider two [Vicente 10], [Familiar 09], more particular in 

their approach. The five ones encased in the category of programming support are the following: 

1. Virtual machine: this point of view is composed by Virtual Machines, mobile agents and code 

interpreters. Compared with the other points of view, they stand out for their flexibility, allowing 

the programmers and developers the implementation of applications divided into smaller 

modules that are able to be distributed throughout the network by the system. The paths of 

distribution will be taken by previously designed algorithms, bent on reducing energy and 

resource depletion.  

There are many modern implementations that can be displayed as examples. For example, the 

Maté initiative is been operational since 2002 in an effort to provide a bytecodes interpreter that 

runs on TinyOS as the operating system. Written in the already mentioned nesC, it makes use 

of a model that will trigger an execution of an action after an event has been received. In 

addition to that, capsules downloaded to the network nodes with numbered versions make it 

possible to better update the code. The Squawk Virtual Machine can be exemplified as another 

virtual machine-based solution; however, it has been designed keeping in mind mostly Sun 

SPOT motes. 

2. Database: this point of view regards the network as a virtual database. In this view, a very 

simple interface is offered for information exchange, using queries to extract information from 

the sensors placed in the Wireless Sensor Networks. However, it has an important drawback: 

this point of view does not offer any support for real-time applications, providing only estimated 

data, making impossible the inferring of relations between space and time between events. 

An implementation of this kind of programming support is Cougar, for the whole Wireless 

Sensor Network is just a relational database under this programming model. Operation 

management of the wireless Sensor Network is carried out with a query language similar to 

SQL. Cougar is able to characterize any node of the network as a database generating 

structured registries with several fields. Abstract data types are used to model signal 

processing functions, and an energy saving system based on request distribution among the 

nodes will be employed as well. Another case is TinyDB, developed by Madden et al. in 2010, 

which makes use of a queries processing system in order to get the data from the Wireless 
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Sensor Network. It is not a coincidence that it shares part of its name with TinyOS, as this is the 

operating system this programming model is mounted upon. TinyDB keeps a virtual database 

with information about the kind of sensors that is put into a use, node identification and the 

battery charge that still remains for each of them. Furthermore, TinyDB will employ an interface 

similar to SQL´s so as to better extract the required data. However TinyDB is limited by its 

mandatory use of TinyOS; no other operating systems are allowed, and the code uploaded to 

the motes must be written in C as the programming language. 

3. Modular programming (agents). This approach uses the mobile nature of the code under its 

principles to its advantage. As it happened with the Virtual Machine approach, the modularity of 

the applications makes it easier to inject and distribute mobile code, and propagating small 

modules throughout the network make them less energy-demanding. 

As examples of this programming model, Impala and the Smart Messages Project can be put 

forward. Impala was first shown by Liu et al. in 2003 as an architectonic model that offered 

mobility, transparency and quality changing from one protocol to another and adapting 

applications in real-time, thus preventing many node failures and runtime errors. However, 

Impala was only available for Linux-based IPAQ and Pocket PC devices from Hewlett-Packard 

and Compaq, making its used too narrow in this context. Smart Messages Project, on the 

other hand, was developed by Kang and other researchers circa 2004 and puts forward a 

distributed model called Cooperative Computing, where migratory execution units called smart 

messages are defined to cooperate for a common goal. 

4. Application driven. Here, unlike the other points of view, an architecture following a stack 

model is offered. This is advantageous for the developers, as it offers them the chance to tune 

up the application to a level unthinkable with other solutions. Since the network management is 

done by the very applications, Quality of service or QoS can be improved, according to the 

needs of the application. 

An application driven programming models is MiLAN (Middleware Linking Applications and 

Networks), developed by Murphy and Heinzelman in 2002 [García-Hernando&08]. MiLAN 

focuses on high-level details, using a characterized interface, and allowing network applications 

to specify their particular needs of Quality of Service (QoS) and trim network features in order 

to optimize its performance without ignoring the needs of them. Commonly, MiLAN will select 

the group of nodes that are compliant to the specifications of the QoS required by the 

application running at that moment by means of network plug-ins that will determine the group 

of nodes that better accomplish the requested duties. Under MiLAN, networks can be 

configured in a very accurate way, due to the fact that the group of nodes is chosen by making 

use of its extended architecture (comprising the network protocol stack, the abstraction layer 

and the network plug-ins) and specialized graphics responsible for adding changes based on 

the needs of the applications.  
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5. Message-Oriented Middleware (MOM). This is the model that probably best suits 

programming under Wireless Sensor Networks conditions. A mechanism of publication and 

subscription to services (publish-subscribe model) is put into practice in order to facilitate 

communications between nodes and base stations. Plus, this model enables asynchronous 

communication, allowing for a flexible model of communications between information creator 

and receiver. 

Two representative implementations of this kind of model are Mires and SensorBus. Mires was 

developed by Souto and other researchers in 2004; it makes use of activation messages to put 

to a use a communication infrastructure based on a component of publication and subscription 

(or more accurately, a publish subscriber service). This component will synchronize 

communications among middleware services and will make the system work properly. In 

addition to this, a routing component and data aggregation service are offered; this latter 

service let the user point out both how the data is going to be added, along with the relation 

between harvested and added data. As it happened in TinyDB case, Mires makes use of 

TinyOS as the operating system and C as the programming language. SensorBus was 

designed in 2005 by Ribeiro et al. It also implements the publication-subscription paradigm (this 

time, this mechanism is anonymous, asynchronous and multicast). SensorBus makes use of a 

key component called events producer that will publish the kind of events that are going to be 

available for the event-consuming components of the system. The event-consuming 

component will just subscribe to it and will receive notifications from the event generators about 

that kind of subjects that will be taking place.  

On the other hand, other categories falling under the orbit of programming abstraction are: 

1. Global behavior or macroprogramming. This point of view tries to consider the global 

behavior of the whole Wireless Sensor Network. Instead of programming having only individual 

nodes in mind, the wireless Sensor Network is programmed as whole, black-boxed subsystem, 

with its expected behavior as a whole according to a high-level specification that generates 

automatically the code that enables the behavior of every node, thus freeing application 

development from treating the low architectural levels of the nodes that compose a network. 

Two examples can be put forward belonging to the macroprogramming perspective: Kairos and 

Semantic Streams. Kairos was developed by Gummadi et al. in 2005; it makes use of the 

concept of “divide and conquer”: the global behaviour of the whole network will be broken into 

entities called subprograms, and these latter can be executed locally in every node. Since this 

process will be carried out not only in compilation time, but also in running time, the developer 

is left charged just with handling a few primitives. According to the expectable middleware 

functionalities, Kairos manages to insulate higher layers from lower level details. Besides, 

Kairos provides three important abstractions for the programming language that can be 

regarded as tools: a) Manipulation of the behaviour of the network nodes by abstracting them 
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individually, b) An updated list of the neighbouring nodes of a particular node, by defining a 

collection of all the other nodes at one radio-jump of distance and c) The reading of variables 

from specific nodes thanks to a data access mechanism. Finally, Kairos makes possible the 

selection of the way the processes of each node are synchronized: either in a more flexible 

manner (loose synchronization) or in a strictly defined one (tight synchronization). It is up to the 

programmer to decide how to use these processes to have an efficient network without any 

system overload. 

Semantic Streams, on the other hand, proves to have a little more intelligent than the other 

programming perspectives: it enables the user to make declarative requests about semantic 

interpretations of the information gathered by the sensors, where data has a meaning inside a 

context. 

2. Local behavior (or geometric, data-centric). This point of view takes the opposite path: 

nodes are taken into account individually, inside the distributed network. This local behavior is 

focused on two features: firstly, the nature of the data info obtained by the sensors; secondly, 

the specific location of the network element. Any request for a data reading (moisture, 

temperature, luminosity) of a particular spot inside the environment could be an example of this 

category. 

Another two examples following local behavior programming paradigm can be offered here: 

Abstract Regions and EnviroTalk. Abstract Regions was conceived by Welsh and other 

researchers in 2004; it is nothing more than a group of communication, general-purpose 

service primitives that provides data aggregation, addressing, data sharing and data reduction 

in the local regions of the network. Other of the main ideas behind Abstract Regions is shifting 

the focus on local computation to the detriment of radio communication, thus reducing the 

bandwidth used in communications (at the expense of requiring more processing activity). Data 

processing and aggregation are done at the local level by a group of cooperative nodes that 

communicate among them. As far as a hierarchy is concerned, data are sent from the nodes to 

the base station without any go-between, in another effort to reduce bandwidth depletion. Any 

object that requires a very precise tracking, which will aggregate readings from all the nodes 

nearby, is an example of how a system could benefit from this implementation. EnviroTalk, on 

the other hand, was designed by Abdelzaher et al. in 2004. It tries to create a data-centric 

inspired naming system called “attribute-based naming” that makes use of context labels. This 

paradigm is original in the fact that addressing and routing are not based on the destination 

node, but on the content of the requested data. The dynamic behavior of a mobile object and 

the nodes that belong to the network as well can be accurately followed, making this system 

fairly suitable for tracking or environmental monitoring solutions. However, as it happened in 

other examples of programming paradigms, enviroTalk makes use of TinyOS as the operating 

system, and therefore it is limited in the usage of programs.  
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Finally, all new perspectives and contributions that were mentioned before, along with the way they are 

integrated in the environments of interest, will be reviewed in depth in the following parts of this Final 

Degree Dissertation. 

2.3 Novel tendencies in ubiquitous computing. 
The main difference of these tendencies with “conventional” or “regular” computing is that they offer a 

completely new perspective to build up middleware architectures, without using almost any of the 

legacy ideas (and therefore, without almost any use of legacy middleware systems) introduced before. 

Also, they are focused on providing some extra intelligence to the systems and the middleware layer: 

data is no longer a stream of chunks of something alien to the network; on the contrary, it will be 

accessed and consulted by the network itself and the semantics of the content it will make a difference 

for its treatment.  

It is also worth mentioning that component-centric computing is on the decline; more abstract 

paradigms that are centred on interchangeable software components and services are gaining 

momentum in the field of ubiquitous computing.  

2.3.1 Pervasive Computing and the Internet of Things. 
These terms, along with ubiquitous computing and the Internet of the Future, are often used 

interchangeably. They refer to a final goal and a sort of idea of how systems are supposed to be in the 

mid or long term, rather than a solid, well-defined paradigm. Commonly, pervasive computing and the 

Internet of Things are referred to the same core concept: providing an environment of a variable -but 

usually wide- size with nodes, sensors, and electronically augmented devices so as a virtual map of the 

physical world is obtained, learning not only the location of an object (or “thing”), but also their most 

prominent features (temperature, luminosity, battery levels, etc.) and in general terms, getting an idea 

of everything that can be measured from an element at a electronic level (relatively unchanging data as 

size, weight and height of the object the sensor is attached to, the kind of garment that the object has 

been manufactured with, etc. are data that can be hardcoded in the device as repeated readings or 

events are unlikely to give varying lectures).  

Again, when talking about pervasive computing and the Internet of Things, it is mandatory to mention 

Mark Weiser (1952-1999). In a 1996 presentation, Weiser predicted that computing would become 

increasingly ubiquitous, with an inexorable shift of focus from a computer-centric scenario (mainframes 

used by many people as a way to interact with computers), to a human-computer equality one 

(Personal Computers, laptops) and finally to arrive to a human-centric scenario where there would be 

many computers used by each person, although not necessarily in an attention-demanding way. 
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Figure 19: foreseen computing trends by Mark Weiser [ISGTW 07]. 

This conclusion has been acknowledged by other people as well, some of them not even belonging to 

the field of technology but sociology: Manuel Castells argues in his book The Rise of the Network 

Society that the shift from one paradigm to another is already taking place, from already-decentralised 

computers towards entirely pervasive computing, as the Internet best exemplifies [Castells 96].  

The Internet of Things, of the other hand, has received many overlapping definitions that go beyond the 

idea of having a piece of environment fully augmented with miniaturized electronics; for example, it has 

been labelled by the CASAGRAS (Coordination and support action for global RFID-related activities 

and standardisation) project, part of the CORDIS (Community Research and Development Information 

Service, an informational portal supportive of European research and innovation cooperation) initiative 

as “A global network infrastructure, linking physical and virtual objects through the exploitation of data 

capture and communication capabilities. This infrastructure includes existing and evolving Internet and 

network developments. It will offer specific object-identification, sensor and connection capability as the 

basis for the development of independent cooperative services and applications. These will be 

characterised by a high degree of autonomous data capture, event transfer, network connectivity and 

interoperability” [CORDIS 08], and a company as important as SAP has described it as “A world where 

physical objects are seamlessly integrated into the information network, and where the physical objects 

can become active participants in business processes. Services are available to interact with these 

'smart objects' over the Internet, query and change their state and any information associated with 

them, taking into account security and privacy issues” [Haller 09]. At the hardware level, there is an 

important degree of heterogeneity because of the already mentioned ambiguity over the definition of 

what is “wearable” or “ubiquitous”. Wireless Sensor Networks, with all their radio protocols, motes and 
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architectures are well-represented, but there are also other technologies that are considered to forerun 

the efforts of spreading the Internet of Things, notably RFID (Radio Frequency IDentification). RFID has 

often paved the way for other visions related with Internet of Things. It can be defined as a generic term 

used to describe a system that transmits the identity of an object or a person wirelessly, using radio 

waves [Aimglobal 12]. An RFID system will usually be composed by a RFID tag or transponder 

containing all the relevant data from the device the tag is attached to, an antenna or an interrogating 

device that will either request data or wait for an event (for example, a RFID tag passing nearby) to be 

triggered, and, more often than not, an infrastructure composed by a computer and software that will 

treat the data received if the interrogating device asks for it or receives as an event. 

 

Figure 20: a RFID infrastructure. 

All in all, the Internet of Things is expected to expand rapidly in the next years, thanks to the possibility 

of successfully solving the challenges that new services demand to be solved at a reasonable pace in 

time, as it can be seen on the graph located below:  

 

Figure 21: roadmap for the Internet of Things, from [SRI 08]. 
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2.3.2 Service Oriented Computing and Service Oriented 
Architecture. 
Service Oriented Computing or SOC is another novel paradigm in the world of middleware that has a 

particularly strong saying over matters in the most recent proposals of middleware for Wireless Sensor 

Networks. It is based on Service Oriented Architecture, a paradigm also extended to non-ubiquitous 

scenarios, based on the publication and discovery of interfaces that can be used to communicate 

devices with each other. 

The main focus of Service Oriented Computing is in using very basic services in order to develop and 

implement the most efficient possible distributed applications (meaning by that being simple, fast and 

low-cost) under heterogeneous environments [York 03]. These very basic services are not dependent 

on any hardware condition or any other purpose; they are autonomous entities that may –or may not, 

depending on the requirements of the network or the user at the moment any service is requested- be 

discovered and published by the environment where they are taking place, and once this happens they 

usually will interchange data by means of request/response mechanisms.  

What is more, code already present from the application may be reused by these services so as to 

compose brand new services, independent on their own. This offers a chance to develop new services 

and, by proxy, new applications created upon the new services discovered, instead of having to start 

the work on them from scratch. 

A huge improvement over many other paradigms is that Service Oriented Computing does not use any 

particular programming language or operating system; SOC usually uses protocols and standardized 

languages based on XML, and implements interfaces capable of abstracting programmers from lower 

layers. Therefore, developments can be undertaken equally under by using C, Java, TinyOS or Contiki. 

This independence makes its way for internetworking protocols, regardless if they are related to the 

Internet or the TCP/IP stack or are deeply dissimilar in all their parts (UMTS, xDSL, Bluetooth). 

One kind of the most developed services under the paradigm of Service Oriented Computing is the idea 

of a Web Service. Web Services are used for development and execution of network-distributed 

negotiation processes, and are accessed in a standardized way, with the usage of regulated interfaces 

and protocols. Their resources to get the information served to the final user are vast:  

• Web Services can use IP with other transport protocol as their mean of communication, along 

with open standards such as Simple Object Access Protocol or SOAP (although it is being 

increasingly pushed back by Web Services based on REST -REpresentational State Transfer-).  

• Standard service description language as WSDL (Web Services Description Language) can be 

used for service publication and definition, along with BPEL (Business Process Execution 

Language) for service orchestration. 
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In order to better acknowledge the Service Oriented Computing paradigm, a model of the Service 

Oriented Architecture is provided below. According to the view of Mike P. Papazoglou and van den 

Heuvel, who exposed a joint model in 2007, there are three main members in SOA architecture: service 

provider, service discovery agencies and a client or service requester. These three members will 

engage in three operations: publishing, finding and binding. The interaction will occur between two 

software agents called service requesters or clients (software agents that must be able to find the 

description of the requested service and bind it) and service providers (software agents responsible for 

publishing a service description when clients request for service distribution), being able to behave 

simultaneously as clients and providers, and it will be done with message interchanges. 

 

Figure 22: a representation for a basic Service Oriented Architecture. 

Following the most notorious features of SOC and SOA paradigms several middleware architectures 

have been developed, focused mostly on their implementation on Wireless Sensor Networks. Because 

of the key role that WSNs usually play in systems based on the Internet of Things, two them are being 

described. 

2.3.2.1 Persistent queries-oriented SOC. 

The main goal of this middleware implementation is minimizing the number of persistent queries done 

during the service composition process in order to save energy. Thus, a selection of composed services 

that can guarantee the least possible energetic depletion must be ensured.  

Under this perspective, a routing protocol is put forward for query transmission under a Service 

Oriented Architecture. This routing protocol must define not only a certain path throughout the Wireless 

Sensor Network from a regular mote to the sink/base station (usually, WSNs have just one mote as the 

base station) but the route must also include the service providers. In addition to this, persistent 

queries-oriented SOC proposes two algorithms designed to optimise the Wireless Sensor Network 

performance: 
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• An algorithm used in order to trim to its minimum the number of service requests in a service 

composition, a feature that should come in handy to reduce the energy consumption in the 

nodes of the network. 

• A dynamic programming algorithm deployed with the purpose of reducing the whole cost of the 

service composition (in terms of energy, time, in a holistic view of the needed resources), with 

the expectable drop in query transmission time. 

In this kind of development, the deployed architecture has three different levels: a service query level, a 

proper service level and a service composition level. When the system has to perform any required 

action, once the required services have been identified, the routing protocol will find a route between 

the nodes capable of providing the services and the nodes that requested them, in addition to a path 

between two adjacent service providers. During the time used for the request a new necessity could 

spring up: the service composition procedure could need a change if any essential node has reverted to 

an idle state or is down. Should this happen, the query will be taken again once an alternative node 

capable of providing the service has been located. 

2.3.2.2 Oasis. 

As middleware architectures do, Oasis is a Service Oriented Architecture designed for Wireless Sensor 

Networks that makes an effort in insulating all the technical heterogeneity that can be expected from a 

Wireless Sensor Network. Although locally synchronous, Oasis makes use of a general asynchronous 

framework complemented with a user-friendly environment that allows the service composition to be 

treated as if services were complete applications [Hadim&06]. Any activity present on a WSN, along 

with the behaviour of its components, will be treated as an independent service, and the services will be 

offered by accurately defined interfaces. 

The offered services by the middleware services package offer and wide range of operations supporting 

the inner functionalities of the Wireless Sensor Network that receives them: internal operations between 

nodes, discovery and communication of services and maintenance of them. On the other hand, Oasis´ 

framework can be used to develop data stream applications which, given the fact that Oasis will be 

usually mounted upon a ubiquitous environment system, can be programmed with many purposes: 

vehicle location, fire detection, etc.  

2.3.3 Semantic Knowledge Management and the Semantic 
Web. 
Semantic Knowledge Management is another new paradigm used both for ubiquitous and non-

ubiquitous environments. Usually, the content that is sent through a Wireless Sensor Network (and a 

more conventional network as well) has a very little chance to be interpreted, there is no “intelligence” 

to understand its meaning or learn from it. On the contrary, under a Semantic Knowledge system the 

information from the network can be managed more efficiently, and the data extracted is not “raw” 
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information, but “refined” information that has a meaning by itself. Service Knowledge Management can 

also be defined as a collection of practices that seeks to classify the transiting information by taking 

account of the knowledge contained in the pieces of information, transforming it (using standardized 

technologies in the process) and delivering it to the users that requested it in the first place. This 

content will be classified according to a format, which will usually be related to the XML suite 

[Davies&08]. 

Semantic Knowledge Management is critical for the construction and maturation of the Semantic Web. 

This term was first coined by the father of the World Wide Web, Sir Tim Berners-Lee, in 2001; he 

defined the Semantic Web as “a web of data that can be processed directly and indirectly by 

machines”. The idea supporting its development is that until now, despite their mobile or ubiquitous 

nature, applications won´t share or publish the acquired data, and will even discard it if a composed 

service that requires several pieces of information has one or some of them corrupted or unusable 

(according to W3C, the World Wide Web Consortium, “For example, I can see my bank statements on 

the web, and my photographs, and I can see my appointments in a calendar. But can I see my photos 

in a calendar to see what I was doing when I took them? Can I see bank statement lines in a calendar? 

Why not? Because we don't have a web of data. Because data is controlled by applications, and each 

application keeps it to itself” [W3C 12]). With the Semantic Web, data will be shared among applications 

under a common framework, not unlike a ubiquitous Wireless Sensor Network, that will surpass any 

boundary artificially created by applications, enterprises or communities. 

Like other paradigms, the Semantic Web will manage the semantic content with a Stack model that 

looks like this: 

 

Figure 23: Semantic Web stack, as it appears on [Obitko 12]. 
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The components of this model are, from the bottom to the top layer: 

• URI (Uniform Resource Identifier) as the sort of identifier of a resource. This is a stream of 

characters that is giving a description of the object (usually a web page, but it could be another 

resource in a ubiquitous, pervasive environment), including both the location of the resource 

(URL or Uniform Resource Locator) and its name (URN, Uniform Resource Name). Characters 

used to display the information will be in Unicode, a format aiming to support all the different 

writing systems of the world. 

• A syntax written in XML (eXtensible Markup Language). This is a meta-language used for 

description of the information regarding documents. Its wide use and its standardization 

purposes make it a good choice for this architecture 

• A single layer for data interchange that makes use of RDF (Resource Description Framework), 

a W3C specification originally meant to be a metadata data model but used as a general 

method for conceptual description and modelling of information. RDF uses subject-predicate-

object expressions (also known as triples) for its modelling of contextual approaches, where the 

subject is denoting the resource and the predicate displays features from the resource and the 

relationship between the resource and the object [Sikos 11].  

• Taxonomies based on schemas of RDF or RDFS. RDFS is the vocabulary description language 

for RDF, a semantic extension of RDF itself that provides several mechanisms for the 

description of a cluster of resources, and the relationships built around them [W3C RDF, 2012]. 

As it will be seen later, RDF Schemas, along with OWL, are able to provide languages for 

expressing ontologies in the Semantic Web. 

• A query language that makes use of RDF facilities called SPARQL (or the recursive acronym 

for SPARQL Protocol and RDF Query Language). This language, which is a direct equivalent of 

a query database language (to the point that Sir Tim Berners-Lee, currently the director of the 

W3C, claimed that “trying to use the Semantic Web without SPARQL is like trying to use a 

relational database without SQL” [W3C 12f]) has been designed to generate queries that will 

hide the details of data management, in an effort to lower costs and increase the robustness of 

data integration on the Web.  

• Another crucial component from the architecture is a language to generate ontologies. While 

applications within a Semantic Web context can be implemented without ontologies [W3C 12], 

some other may need an agreement on common terminologies or even complex reasoning 

procedures that will require their use [W3C 12b]. As it was defined before, an ontology is a 

group of concepts and relationships used to describe and represent a field of knowledge. In this 

context of Semantic Web, ontologies are useful for classifying the terms present in an 

application, fix relationships among them and define possible limitations in those relationships. 

Along with RDF Schemas, the language most common to define ontologies and their 
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relationships is OWL (Web Ontology Language). The second version of OWL defines itself as 

an ontology language for the Semantic Web with formally defined meaning. According to W3C, 

OWL 2 ontologies provide individuals, properties, classes and data values that can be stored 

as Semantic Web documents. OWL 2 ontologies are closely related to RDF: they can be used 

along documents written in RDF language, and the very OWL 2 ontologies are exchanged as 

RDF documents [W3C 12c]. 

• The next component makes reference to the need to define some rules for the 

intercommunication of applications. It is expected to become standardized sooner than later, 

but right now there are two main recommendations by the W3C: RIF and SWRL. RIF (Rule 

Interchange Format) is an XML-based language for expressing rules that computers can 

understand and execute [W3C 12e]. As it happens with other recommendations from W3C 

(such as OWL), RIF features a plethora of dialects for the design of a rule language in a 

particular implementation. SWRL (Semantic Web Rule Language), on the other hand, differs 

from RIF in the fact that RIF was designed, at least at first, as an interchange format for 

exchanging rules between rule systems, whereas SWRL is a rule language that was designed 

as a syntactic extension of OWL and does not take into account such facts [W3C 12d]. 

• Other layers that are present but do not necessarily make use of any already developed 

technologies are a Unifying logic layer and a Proof layer. They are expected to add robustness 

and homogeneity to the whole architecture, but are not accurately implemented yet. Along with 

them, a Trust layer can be added just below the application layer as well, in order to make 

requests about the service offered by the application. 

• A transversal Cryptography layer for the communications is offer throughout almost all of the 

architecture layers to guarantee a minimum level of security. 

It is expected that in the next years all these new concepts will be incorporated in ubiquitous computing 

as they are very close to the idea of pervasive and seamless integration of all imaginable applications 

and entities of the Semantic Web. 

2.3.4 Open issues. 
The issues that can be mentioned here, either related to the Internet of Things or the semantic 

Knowledge Management are related primarily to two facts: these new approaches are still under a 

mainly theoretical perspective and their development into actual implementations is still limited. In 

addition to that, it looks like a difficult task to change the already developed middleware architectures 

under other paradigms to make them compliant with these new ideas, although their usage is less 

frequent that other wider architectures that are under deep processes of change (for example, update 

from IPv4 to IPv6), which will make it somewhat easier to shift the focus. 
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There is some criticism regarding the achievements made by the Semantic Web so far. It is stated that 

the hype and expectations of 2001, when the term was first used, have largely waned, and the 

evolution that was foretold is a target yet to be accomplished (in 2006, Sir Tim Berners-Lee was quoted 

saying “This simple idea... remains largely unrealized”). Perhaps due to its underdevelopment, there 

are still some components of the Semantic Web that are not completely standard (RIF and SWRL) and 

others that right now are not even fully realized (Unifying logic, Proof), which adds unwanted 

uncertainty in an architecture that is supposed to be used as a pattern for the building of applications 

and the retrieval of other resources in a Semantic web context. In addition to it, the many versions –or 

dialects- of several W3C recommendations, such as OWL or RIF, could jeopardize the process of 

standardization and mutual understanding of the different applications present in the Semantic Web. 

Finally, there is some concern over the censorship and the privacy policies that could be enforced by 

entities unrelated with pure technologic facets of the Semantic Web (governments, corporations). In a 

web where text-analyzing techniques are easy to be implemented, a much tighter control of the data 

flowing through a network can be sought; plus, the use of geo-location metadata reduces the privacy of 

the final user requesting a service. 

2.4 Hardware platforms. 
Many different kinds of user platforms can be considered as part of a ubiquitous system; however, the 

features mentioned before as typical of pervasive and ubiquitous devices must be relevant in the 

building of the platform and in the way its functionalities are carried out. Even though this may refine the 

search for ubiquitous hardware platforms, it is still an extremely wide field. In this Final Degree 

Dissertation stress will be placed in the most developed and relevant hardware platforms: motes usually 

found as part of Wireless Sensor Networks, along with some other examples of wearable devices that 

can be found as part of a final user component. 

2.4.1 Classes of hardware platforms and manufacturers. 

To begin with, a survey has been done regarding the most relevant manufacturers of motes. Motes will 

be playing a very important role in this Final Degree Dissertation, as they have been combined into a 

Wireless Sensor Network from where information will be harvested and processed in order to obtain 

several different services, as it will be shown. Besides, Wireless Sensor Networks are the most 

developed and most mature subsystem of the new paradigms previously seen: they provide a 

pervasive source of data, usually service-oriented, where semantic knowledge and management can 

be added; in addition to that, their small size and low energy requirements (compared to some other 

counterparts, like smart phones or tablets) make them suitable for an implementation of a system 

following the Internet of Things principles. 
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2.4.1.1 Sentilla. 

Sentilla (previously known as MoteIV) used to manufacture, among other variety of products, a mote 

model, but as of 2012 their hardware production has been discontinued an only offer software solutions 

focused on data and power management and performance [Sentilla 12].  

 

Figure 24: Sentilla company logo [Sentilla 12]. 

Their last mote development, Sentilla Tmote Create, was in fact a mote with what Sentilla called 

“Sentilla Point Runtime”, a runtime featuring Java technology, so in the end as far as software is 

considered, they were not much dissimilar to Oracle Sun SPOT motes, which will be reviewed in depth 

later. However, before that last development, Sentilla manufactured a different piece of hardware that 

deserves to be looked upon as a legacy solution: Tmote Sky mote. 

2.4.1.1.1 Tmote Sky 

Developed initially in the University of California, Berkeley, Tmote Sky motes were marketed as 

wireless, ultra-low powered devices especially advisable for tasks like application monitoring, Wireless 

Sensor Networks or fast-application prototypes. Also, they used a standardized USB interface in order 

to improve and facilitate application codification and debugging, a solution that has been adopted by 

other vendors (Sun Microsystems, for example, before being purchased by Oracle had already added a 

mini-USB interface to their own Sun SPOT motes). Tmote Sky motes had an integrated antenna with a 

125 meters long coverage area, and a flash memory with a built-in software image that can be replaced 

in case the mote was malfunctioning. 

 

Figure 25: Tmote Sky mote and components [González 10]. 

A chart with its most relevant technical features is presented following the previous figure: 
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Central Processing Unit 
Interfaces 

Microcontroller MSP430F1611 
 Digital 

6 GPIO 
 

RAM 10 KB RAM Analogical 6 ADC 
 

ROM 48 KB (Flash) 
 Serial I²C, SPI, USB 

 

Speed 8 MHz 
 Sensors Humidity, light and 

temperature 
Operating System TinyOS, Contiki-

compatible. 
Gateway 

Infrastructure Ethernet 

Radiofrequency Others 

Transceiver Chipcon CC2420 
 Battery 2 X AA Batteries 

Band 2400 – 2483.5 MHz 
 Consumption (idle) 

5.1 uA 
 

Data speed 250 Kbps 
 

Consumption 
(Rx/Tx) 

19.5 mA / 21.8 mA 
 

Modulation O-QPSK 
 Price 

As of 2008, 130 $ per 
unit (780 $ 10 units pack) 

 

Range 125 m. (outdoor), 50 m. 
(indoor) 

 
Gateway 

Tmote Connect 
 

Protocol 802.15.4 
 License BSD Operating System 

 

Security Proper of 
802.15.4 

 
Extras None 

 

Chart 2: Tmote Sky technical features. 

2.4.1.2 ETH-Zurich. 

The Swiss Federal Institute of Technology, located in Zurich, has developed a mote design and 

implementation especially focused on the duties related with the Internet of Things and Pervasive 

Computing objectives [ETH 08b]. They are the result of the combined effort of the Computer 

Engineering and Networks Laboratory (TIK) and the Research Group for Distributed Systems. They are 

named BTNodes, and currently the third review of their hardware and software capabilities is being 

marketed, thus giving its name to the mote. 
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Figure 26: ETH logo [ETH 08b]. 

2.4.1.2.1 BTNode rev3 

ETH claims that their BTNode motes are nothing but “an autonomous wireless communication and 

computing platform based on a Bluetooth radio and a microcontroller”, stressing their value as 

demonstration platforms for research in mobile and ad-hoc connected networks (MANETs) and 

distributed, wireless sensor networks. Their internal architecture relays on the idea of using radio and 

Bluetooth interfaces in the same device. 

 

Figure 27: up, BTNode; down, BTNode parts [ETH 08]. 

It should be noted that both radio systems can be turned on and off separately, in order to reduce the 

power consumption of the device when it is under idle conditions. Alas, the low-power radio used here 

is the same that the one mounted in Mica2 Motes from Berkeley. The open source community is offered 

as a means of support.  

BTnode rev3 most relevant characteristics are as follows: 
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Central Processing Unit 
Interfaces 

Microcontroller 
Atmel ATmega128L Digital 

GPIO 
 

RAM 64+180 KB Analogical ADC 
 

ROM 128 KB (Flash) Serial I²C, SPI, UART 
 

Speed 8 MHz 
 Sensors 

Humidity, visible light, 
infrared light, 

microphone, 2 axis 
accelerometer and 

temperature 
Operating System BTnut, TinyOS-

compatible. 
Gateway 

Infrastructure None 

Radiofrequency Others 

Transceiver 
Chipcon CC1000 

 
Battery 

2 X AA Batteries, 
external DC source (3,8-

5V) 

Band ISM Band 433-915 MHz 
 Consumption (idle) 

9.9 mA 
 

Data speed 76.8 Kbps 
 

Consumption 
(Rx/Tx) 

105.6 mA 
 

Modulation FSK 
 Price 215 $ per unit 

 

Range +100 meters outdoor 
(with antenna attached) 

 
Gateway 

None 
 

Protocol Not defined 
 License Propietary license 

 

Security Not defined 
 Extras 

Radio Bluetooth 1.2 
Zeevo  BTSense plugin 

 
 

Chart 3: BTNode technical features. 

2.4.1.3 Libelium. 

Libelium is a company originated in 2006 as a spin-off company from the University of Zaragoza, that 

currently is bent on products and services related with the Internet of Things; especially hardware ones. 

According to their web page, “Libelium designs and manufactures hardware technology for the 

implementation of wireless sensor networks so that system integrators, engineering and consultancy 

companies can implement reliable Smart Cities solutions to end users within the minimum time to 

market” [Libelium 12c]. 
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Figure 28: Libelium logo [Libelium 12]. 

Among their group of offered services and products, there is one mote design within the scope of this 

Final Degree Dissertation: the Waspmote. 

2.4.1.3.1 Waspmote. 

As the products of their competence, Waspmotes are been developed looking for the varied scenarios 

where the Internet of the Future is likely to have a say, as part of their Top 50 Sensor Applications for a 

Smarter World [Libelium 12]: applications in smart cities (noise urban maps, structural health), water 

treatment (water quality, water leakages), industrial control (indoor air quality, temperature monitoring) 

Among other achievements, Libelium claims that Waspmotes can work without being recharged for as 

long as one year, providing that the energy-saving Hibernate mode is enabled. 

 

Figure 29: a Waspmote with its modules and top and bottom views of it [Libelium 12b]. 
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A chart with its most relevant technical features has been placed below; it has to be born in mind that 

Waspmotes are conceived as modular: the subsystems used for radio transmission or data detection 

can be interchanged and up/downgraded. Therefore, depending on the subsystem mounted, great 

variations in output and performance may spring up. 

Central Processing Unit 
Interfaces 

Microcontroller 
Atmel ATmega1281 Digital 

8 GPIO 
 

RAM 8 KB Analogical 7 ADC 
 

ROM 128 KB (Flash) + 4 
EEPROM Serial 

I²C, USB, PWM, 2 X 
UART 

 

Speed 8 MHz 
 Sensors 

Accelerometer and 
temperature; specific 

sensor boards available 
Operating System Not defined. Gateway 

Infrastructure 
Waspmote Gateway (to 

PC) 
Radiofrequency Others 

Transceiver Xbee modules 
(manufactured by Digi) 

 
Battery Battery 3.3 V - 4.2V, 

Auxiliar battery of 3 V. 

Band 868, 900 MHz, 2.4 GHz 
(depending on module) 

 
Consumption (idle) 0.7 uA (hibernate mode) 

 

Data speed 38.4 Kbps  
 

Consumption 
(Rx/Tx) 

9 mA 
 

Modulation AFH (79 channels, 
1MHz bandwidth each) 

 
Price 

From 130 to 233 € per 
unit (depending on 

module) 
 

Range 
500 meters -12 Km. 

outdoor (depending on 
module). 

 

Gateway 
None 

 

Protocol 802.15.4, ZigBee-Pro, 
Radiofrequency  License GNU 

 

Security 
Proper of 802.15.4, 

ZigBee-Pro. AES 128 for 
data ciphering. 

 

Extras 
2 Gb SD card 

 

 

Chart 4: Waspmote technical features. 

2.4.1.4 MEMSIC. 

Crossbow Technologies was once the leading marketer on the field of motes and devices for Wireless 

Sensor Networks, due to its widespread variety of products and solutions; however, on 3rd June 2011 it 

was purchased by another company called Moog Inc. to form the conglomerate Moog Crossbow Inc. 
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and let the former company “focus on its high-performance inertial products for defence and security” 

[Moog-Crossbow 12]. Their former Wireless Sensor Networks commercial lines where sold during 2009 

and 2010 to MEMSIC Inc, the company that has retaken the efforts of development in this field. 

 

Figure 30: left, Moog Crossbow logo [Moog-Crossbow 12], right, MEMSIC logo [MEMSIC 10]. 

Given these circumstances, it should come not as a surprise that MEMSIC products are almost 

completely equal as the motes that Crossbow Technologies had, with the exception of the Lotus 

platform, which is somehow an evolution of Crossbows Imote2, among others (Lotus is quoted as “an 

advanced wireless node platform developed around the low power ARM7 Cortex M3 CPU and 

incorporates the best of IRIS, TelosB and Imote2 onto a single board” [MEMSIC 10]). 

2.4.1.4.1 Lotus 

Lotus is the more advanced development of MEMSIC. It is supposed to have been built on a stackable, 

modular design, even with connectors in case expansion boards are required. Many of its features are 

related to the former Crossbow´s Imote2 platform. 

 

 

Figure 31: top (left) and bottom (right) views of Lotus mote main module [Lotus 12]. 

A chart with the most important data regarding this mote is below: 

Central Processing Unit 
Interfaces 

Microcontroller 
ARM 7 Cortex M3 32-bit Digital 

GPIO 
 

RAM 64 KB Analogical ADC 
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ROM 512 KB (Flash) + 64 Mb 
serial Flash Serial I²C, I²S, SPI, 3 X UART 

 

Speed 10-100 MHz 
 Sensors 

None in the platform, 
expansion connector for 
Light, Temperature, RH, 

Barometric 
Pressure, 

Acceleration/Seismic, 
Acoustic, Magnetic and 
other MEMSIC Sensor 

Boards. 

Operating System 

RTOS (Real Time 
Operating System), 

other options available 
are: MEMSIC Kiel, 

RTOS, IAR Systems, 
Free RTOS, 

MoteRunnerTM and 
TinyOS 

Gateway 
Infrastructure Not mentioned. 

Radiofrequency Others 

Transceiver Atmel RF231 IEEE 
802.15.4 Compliant 

 
Battery 2 X AA Battery, external 

power 2.7 V - 3.3 V. 

Band 2.4 GHz  
 Consumption (idle) 10 uA 

 
Data speed 250 Kbps  

 
Consumption 

(Rx/Tx) 
50 mA 

 

Modulation ISM Band (1MHz steps) 
 Price 

Not mentioned, former 
Imote2, 404 $ per unit. 

 
Range 100 meters (outdoor). 

 Gateway 
None 

 
Protocol 802.15.4.  License Not mentioned. 

 

Security Proper of 802.15.4. 
 Extras 

Not mentioned. 
 

 

Chart 5: Lotus technical features. 

2.4.1.4.2 Iris 

When this platform first came out, it was claimed to be aimed to low-powered Wireless Sensor 

Networks above other applications. MEMSIC offers this mote either as a lone platform or a mote with 

sensor boards already mounted. Compared to the previous MICA Motes, it offers twice as much 

program memory and three times as much radio range. 

Since the acquisition of all former Crossbow´s developments, MEMSIC is delivering IRIS motes with a 

new software platform invented by IBM computer scientists in Zurich called Mote Runner. 

 



 

Chapter 2                                                     State of the art in ubiquitous middleware 

 

70 

 

 

Figure 32: top (left) and bottom (right) views of Iris mote [Iris 12]. 

The most relevant data of Iris motes appear in the following chart: 

Central Processing Unit 
Interfaces 

Microcontroller Amtel  
ATmega1281  

 
Digital DIO 

 

RAM 8KB  
 Analogical ADC 

 
ROM 128KB (Flash)  

 Serial I²C, SPI, UART 
 

Speed 8 MHz 
 Sensors 

None in the platform, 
expansion connector for 
Light, Temperature, RH, 

Barometric 
Pressure, 

Acceleration/Seismic, 
Acoustic, Magnetic and 
other MEMSIC Sensor 

Boards. 
Operating System TinyOS Gateway 

Infrastructure Not mentioned. 

Radiofrequency Others 

Transceiver XM2110CB Battery 2 X AA Battery, external 
power 2.7 V - 3.3 V. 

Band 2405 MHz -2480 MHz  
 Consumption (idle) 

8 uA 
 

Data speed 250 Kbps  
 

Consumption 
(Rx/Tx) 

16 mA 
 

Modulation ISM Band (1MHz steps) 
 Price 155 $ per unit. 
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Range >300 metres (outdoor), 
>50 metres (indoor)  

 
Gateway None 

 

Protocol 802.15.4.  License Open-source. 
 

Security Proper of 802.15.4. 
 Extras 

Measurement 512K 
bytes 

serial Flash  
 

Chart 6: Iris mote technical features. 

2.4.1.4.2 MICAz/MICA2 

These are a third generation development of the motes that were manufactured by Crossbow 

Technologies. Actually, they were the first motes ever manufactured and marketed by the company. 

Their hardware and components are basically the same; the only difference is that MICA2´s radio 

module consumes less energy when receiving a radio signal. MICAz and MICA2 motes are also sold as 

base stations: motes without batteries that are plugged to a PC via an interface (usually a USB one) 

and that may be used to send commands from the PCs themselves. This is a kind of product that other 

manufacturers also commercialize (like Oracle) and it will come in handy for our own ubiquitous system. 

MICAz mote looks like this: 

 

Figure 33: top view of a MICAz mote (left) its base station MIB520CB counterpart (right) [MICAz 12]. 

Whereas MICA2 mote, along with its twin base station has a slightly different appearance: 
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Figure 34: top view of a MICA2 mote (left) its base station MIB520 counterpart (right) [MICA2 12]. 

A chart comprising all the most relevant features of MICAz mote can be seen below: 

Central Processing Unit 
Interfaces 

Microcontroller Amtel  
ATmega128L  

 
Digital DIO 

 

RAM 4KB  
 Analogical 8 X ADC 

 
ROM 128KB (Flash)  Serial I²C, SPI, 2 X UART 

 

Speed 7.37 MHz 
 Sensors 

None in the platform, 
expansion connector for 
Light, Temperature, RH, 

Barometric 
Pressure, 

Acceleration/Seismic, 
Acoustic, Magnetic and 
other MEMSIC Sensor 

Boards. 

Operating System TinyOS Gateway 
Infrastructure 

USB/Serial for local PC, 
Ethernet for base 

stations. 
Radiofrequency Others 

Transceiver CC2420 Battery 2 X AA Battery, external 
power 2.7 V - 3.3 V. 

Band 2.4 GHz  
 Consumption (idle) 

16 uA 
 

Data speed 250 Kbps  
 

Consumption 
(Rx/Tx) 

27,7mA/25,4mA  
 

Modulation O-QPSK 
 Price 134 $ per unit. 

 

Range 75-100 metres (outdoor), 
25-30 metres (indoor)  

 
Gateway None 

 

Protocol 802.15.4.  License BSD (operating system). 
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Security Proper of 802.15.4. AES 
128 for data ciphering 

 
Extras 

Measurement 512K 
bytes 

serial Flash  
 

Chart 7: MICAz mote technical features. 

Whereas MICA2 mote most relevant technical data is displayed here: 

Central Processing Unit 
Interfaces 

Microcontroller Amtel  
ATmega128L  

 
Digital 

DIO 
 

RAM 4KB  
 Analogical 8 X ADC 

 
ROM 128KB (Flash)  Serial I²C, SPI, 2 X UART 

 

Speed 7.37 MHz 
 Sensors 

None in the platform, 
expansion connector for 
Light, Temperature, RH, 

Barometric 
Pressure, 

Acceleration/Seismic, 
Acoustic, Magnetic and 
other MEMSIC Sensor 

Boards. 

Operating System TinyOS Gateway 
Infrastructure 

USB/Serial for local PC, 
Ethernet for base 

stations. 
Radiofrequency Others 

Transceiver CC1000 Battery 2 X AA Battery, external 
power 2.7 V - 3.3 V. 

Band 
868/916MHz 

(MPR400CB), 433MHz 
(MPR410CB),  

315 MHz (MPR420CB)  

Consumption (idle) 
16 uA 

 

Data speed 38.4 Kbps  
 

Consumption 
(Rx/Tx) 

18 mA/35 mA  
 

Modulation FSK 
 Price 155 $ per unit. 

 

Range 
Outdoors: 152.40m 
(MPR400), 304.8m 

(MPR410 y MPR420)  
 

Gateway 
None 

 

Protocol Not defined.  License BSD (operating system). 
 

Security Not defined. 
 Extras 

Measurement 512K 
bytes 

serial Flash  
 

Chart 8: MICA2 mote technical features. 
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2.4.1.4.3 MICA2dot 

This model of mote is essentially a MICA2 mote dramatically shrunk to the size of a quarter-dollar coin 

(25 mm diameter); due to that feature, its energy consumption is lower than its bigger counterpart. 

Mica2dot is expected to be useful in environments where especially non-intrusive measurement 

devices are required, or as it is said by MEMSIC, “Deeply Embedded Wireless Sensor Networks”. 

 

Figure 35: top and bottom views of a MICA2dot, compared with a quarter dollar coin [MICA2Dot 12]. 

A chart with its most relevant technical data is as follows: 

Central Processing Unit 
Interfaces 

Microcontroller Amtel  
ATmega128L  

 
Digital 

DIO 
 

RAM 4KB  
 Analogical 8 X ADC 

 
ROM 128KB (Flash)  Serial I²C, SPI, 2 X UART 

 

Speed 7.37 MHz 
 Sensors 

None in the platform, 
expansion connector for 
Light, Temperature, RH, 

Barometric 
Pressure, 

Acceleration/Seismic, 
Acoustic, Magnetic and 
other MEMSIC Sensor 

Boards. 

Operating System TinyOS Gateway 
Infrastructure 

USB/Serial for local PC, 
Ethernet for base 

stations. 
Radiofrequency Others 

Transceiver CC1000 Battery  
 Low-Mass battery. 
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Band 868/916MHz, 433MHz,  
315 MHz  Consumption (idle) 

<15 uA 
 

Data speed 38.4 Kbps  
 

Consumption 
(Rx/Tx) 

8 mA  
 

Modulation FSK 
 Price 142 $ per unit. 

 

Range Outdoors: 152.40m-
304.8m  

 
Gateway 

None 
 

Protocol Not defined.  License BSD (operating system). 
 

Security Not defined. 
 Extras 

Measurement 512K 
bytes 

serial Flash  
 

Chart 9: MICA2dot mote technical features. 

2.4.1.4.4 TelosB 

TelosB is an open-source platform especially designed for research and development in the community 

of the Internet of Things. In order to enlarge its target to this kind of consumer, TelosB mote is marketed 

with several characteristics to make development easier: a USB port for uploading/downloading code 

to/from the mote or TinyOS as an open-source operating system. 

 

Figure 36: top view of a TelosB mote and a block diagram [TelosB 12]. 

Its most interesting technical features can be observed here: 

Central Processing Unit 
Interfaces 

Microcontroller 
TI MSP430 Digital 2 X DAC 
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RAM 10KB  
 Analogical ADC 

 
ROM 48KB (Flash)  

 Serial I²C, SPI, UART 
 

Speed 8 MHz 
 Sensors 

Integrated Temperature, 
Light and 

Humidity Sensor 
Operating System TinyOS Gateway 

Infrastructure USB for local PC 

Radiofrequency Others 

Transceiver CC2420 Battery  
 2 X AA. 

Band 2,4 MHz -2483,5 MHz  
 Consumption (idle) 

5.1 uA 
 

Data speed 250 Kbps  
 

Consumption 
(Rx/Tx) 

1.8 mA  
 

Modulation ISM band 
 Price 174 $ per unit. 

 

Range 
75-100 metres 

(outdoors), 20-30 metres 
(indoors)  

 

Gateway None 
 

Protocol 802.15.4.  License Open source. 
 

Security Proper of 802.15.4. 
 Extras Not mentioned.  

 

Chart 10: TelosB mote technical features. 

2.4.1.4.5 MCS Cricket 

This mote has a very unique characteristic among MEMSIC commercial line of motes: it features an 

ultrasound transmitter/receiver that can be used, for example, to measure the difference of arrival time 

between two signals, when the ultrasound transmitter/receiver is combined with the regular 

radiofrequency technology. Other than that, their hardware is pretty much that of the MICA2´s, as it can 

be seen on the next page: 
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Figure 37: top view of a MCS Cricket mote and its block diagram [Cricket 12]. 

Their most important technical features are: 

Central Processing Unit 
Interfaces 

Microcontroller Amtel  
AVR  

 
Digital DIO 

 

RAM 4KB  
 Analogical 8 X ADC 

 
ROM 128KB (Flash)  Serial I²C, SPI, 2 X UART 

 

Speed 7.37 MHz 
 Sensors 

None in the platform, 
expansion connector for 
Light, Temperature, RH, 

Barometric 
Pressure, 

Acceleration/Seismic, 
Acoustic, Magnetic and 
other MEMSIC Sensor 

Boards. 
Operating System TinyOS Gateway 

Infrastructure Serial DB9. 

Radiofrequency Others 

Transceiver CC1000 Battery 2 X AA Battery, external 
power 2.7 V - 3.3 V. 

Band 
868/916MHz 

(MPR400CB), 433MHz 
(MPR410CB),  

315 MHz (MPR420CB)  

Consumption (idle) 16 uA 
 

Data speed 38.4 Kbps  
 

Consumption 
(Rx/Tx) 

18 mA/35 mA  
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Modulation FSK 
 Price 263 $ per unit. 

 

Range 
Outdoors: 152.40m 
(MPR400), 304.8m 

(MPR410 y MPR420)  
 

Gateway None 
 

Protocol Not defined.  License BSD (operating system). 
 

Security Not defined. 
 Extras 

Measurement 512K 
bytes 

serial Flash  
 

Chart 11: MCS Cricket mote technical features. 

2.4.1.5 Oracle. 

Although Oracle was traditionally known for its software and certification businesses, especially the 

ones around databases, in 2010 they purchased the Java creator and developer Sun Microsystems, 

which had been doing developments in the field of motes for a time (Sun SPOT model). Therefore, now 

it has to be considered as another manufacturer with an interest for the scope of this project [Oracle 

12]. 

 

Figure 38: Oracle corporation logo with the Sun logo above it [Oracle 12]. 

2.4.1.5.1 Sun SPOT 

The importance of Sun SPOT (Sun Small Programmable Object Technology) motes is huge in this 

Final Degree Dissertation, as they are the model of motes that has been put to a use in our model for a 

ubiquitous system. Sun SPOT motes are 802.15.4 compliant and, as a unique feature among most 

motes, it uses a downsized version of the Java Virtual Machine typical of Java developments, called 

Squawk, thus using Java 2 Micro Edition as the programming language of choice. This reduced virtual 

machine will work as the mote operating system as well. Apart from the battery-powered motes, 

development kits are sold with base station motes, used for communication purposes from USB-

capable devices (Sun SPOT motes use mini-USB as a gateway with the outside) to battery-powered 

motes. 
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Figure 39: a Sun SPOT mote with its safety lid on (left), without it (right) [Sun SPOT 12]. 

Its most relevant technical features are as follows [Sun SPOT 12]. It can be observed that some of 

them, especially regarding RAM and ROM values are particularly impressive, at the cost of having an 

energy consumption rate a little higher than some of the other motes: 

Central Processing Unit 
Interfaces 

Microcontroller AT91SAM9G20  
 

Digital 
GPIO 

 
RAM 1Mbyte  

 Analogical ADC 
 

ROM 8Mbytes (Flash)  Serial I²C, SPI, UART 
 

Speed 400 MHz 
 Sensors Light, Temperature, 

Accelerometer 

Operating System None, Squawk virtual 
machine performs that 

role. 

Gateway 
Infrastructure 

Mini USB for 
upload/download of code 

and communication. 
Radiofrequency Others 

Transceiver CC1000 Battery 770mAhr Li-Ion 
Rechargeable Battery 

Band 
868/916MHz 

(MPR400CB), 433MHz 
(MPR410CB),  

315 MHz (MPR420CB)  

Consumption (idle) 30 uA 
 

Data speed 38.4 Kbps  
 

Consumption 
(Rx/Tx) 

105.6 mW  
 

Modulation FSK 
 Price 

630 € per kit (two motes 
and a base station). 

 

Range 
Outdoors: 152.40m 
(MPR400), 304.8m 

(MPR410 y MPR420)  
 

Gateway 
None 
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Protocol Not defined.  License Open source. 
 

Security Not defined. 
 Extras None  

 

Chart 12: Sun SPOT mote technical features. 

2.4.1.6 Other kinds of ubiquitous hardware. 

Given that motes and elements from Wireless Sensor Networks are the most mature and notorious 

among ubiquitous computation, other pieces of equipment have to be considered that, while are not 

common as part of a Wireless Sensor Network, can easily be regarded as belonging to a Internet of the 

Future infrastructure; usually, they are in the place close to a end user, or are taking part in a wireless 

communication in different terms. 

Wearable computers focused on the final user are a field even more heterogeneous than motes. In 

this case, by wearable computers it is meant computers that have been designed to be worn as if they 

were a non-electronic device, such as a piece of garment or a bracelet. This kind of computer is already 

in use nowadays, although not always with ubiquitous purposes. Nevertheless, the fields where they 

are employed (logistics, body monitoring) can be ported to a ubiquitous stance with ease. Unlike motes 

or devices that interact with others, these wearable computers must offer a machine-to-human interface 

for data to be understood, like a screen or a low-capacity printer, and a human-to-machine interface in 

order to input data (like the amount of a set of products on an inventory, etc.). Vendors like Honeywell 

[Honeywell 12] or Sony [Yanko 10] are manufacturing their own devices. 

 

Figure 40: Honeywell HX2 device (left), and Sony Nextep prototype. 

Despite their small dimensions, it is often considered that a mobile phone is not bond to be a wearable 

computer per se, because they were not designed to have functionalities of a wearable computer 

designed for a pervasive, ubiquitous environment and in their manufacturing processes it is very 

unlikely to have such objectives in mind. Nevertheless, due to their features, they can be used as a final 

user wearable computer if applications related to specific scenarios are codified and there is a human 

user who can take advantage of them in a ubiquitous environment. Larger electronic appliances, like 

laptops or netbooks, are less likely to be part of a scenario with these features as wearable computers. 
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Finally, it should be mentioned that in wearable computing, one of the most daring proposals is 

electronically augmented clothes. Rather than having a machine-to-human interface in order to 

inform about data (usually physical data, like body temperature or skin sweat levels), cases where 

electronics integrated in clothing will notify this data to a monitoring entity (like a hospital or a fire 

station), ideally in real time, are the most dominant tendency. Thus, a much more efficient effort can be 

put in taking care of the final user of the electronic apparel [Northeastern 10]. 

 

Figure 41: data logging shirt [Northeastern 10]. 

2.4.2 Embedded software in hardware platforms. 
When referring to this kind of software, it is meant to say the built-in software that will be found in the 

devices used for ubiquitous systems, especially motes belonging to a Wireless Sensor Network. It will 

usually be an operating system, as the ones that have already been reviewed before or, in the case of 

Sun SPOT motes, a middleware platform (Squawk Virtual machine) that will take over the functionalities 

expected from an operating system. Often, though, the line delimiting the functionalities from one layer 

to other (operating system, middleware, application) are not entirely precise; cross-layer optimization 

could be taken in order to optimize the overall performance of the system [Vicente 10], despite 

somewhat breaking with the idea of having a solution as a stack of separated layers. As in all the other 

features, operating systems and embedded software in these platforms especially prepared for the 

special working conditions of a ubiquitous, pervasive system. 

One of the most relevant operating system for Wireless Sensor Networks devices is Contiki. This is a 

C-codified operating system for memory-constrained embedded networks systems, such as our 

Wireless Sensor Networks case, that is used in many low-power processors and devices. It was 

designed by Alam Dunkels in the Swedish Institute of Computer Science (SICS). Contiki is a highly 

portable operating system that runs under an open source BSD-like license that allows it to be freely 

downloaded. It offers concurrence support, along with IPv4 and IPv6 support, and low-power standards 

such as 6loWPAN, RPL or CoAP as well [Contiki 12]. 
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Figure 42: SICS logo. 

In a hardware system, typical memory requirements for a Contiki implementation are 2Kb of RAM and 

40 Kb of ROM. Contiki makes use of a event-directed kernel, where programs and applications are 

uploaded and downloaded dynamically in real time. In order to tackle concurrence issues, Contiki will 

employ processes that are using protothreads (very light threads) on the previously quoted kernel. 

Contiki will communicate one process to another by means of events and a subsystem with a user 

graphic interface for interconnected terminals, locally or via network (Telnet, VNC´s virtual display). 

In order to guarantee interconnectivity between conventional networks (either in a wireless environment 

or not) and pervasive, ubiquitous ones, Contiki makes use of two different communication stacks, uIP 

and Rime. uIP is used for processes related with TCP/IP architecture (it can even communicate with 

UDP-enabled entities) and therefore is able to communicate with other machines throughout the 

Internet. Rime, on the other hand, is used for low-powered networks, providing varied communication 

possibilities, from local broadcasts with best-effort quality of service to running over uIP and mapping all 

the communications below to a ubiquitous, pervasive environment [Österlind 09]. 

 

Figure 43: Contiki´s communication stacks and how they interrelate [Österlind 09]. 

As another example of how software is embedded on low capabilities platforms the operating system of 

BTNode motes, that is BTNut, can be introduced. In fact, BTnut consists of three major components: a 

general purpose operating system called Nut/OS, able to communicate with a TCP/IP stack (and most 

of its related user protocols: HTTP, UDP, ICMP, ARP...), specific drivers for the BTnode mote, and the 
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Bluetooth stack for Bluetooth communications [BTNode 09]. BTnut can be compiled from a native UNIX 

target, and provides APIs for its most relevant modules: Nut/OS, Nut/Net (for network communications), 

FileSystem, Device drivers, runtime library and even offers support for Nut/OS mods. As Contiki, BTNut 

is written using C as the programming language. 

Perhaps the most widely known operating system for low-capabilitiy devices is TinyOS. As others, 

TinyOS is an open-source, component-based operating system focused on the development of 

software and hardware targeting Wireless Sensor Networks above all other electronic systems, and has 

been designed as such from its very beginning. The evolution and support for TinyOS seems assured 

as there is a consortium, the TinyOS Alliance, with a strong interest in its development. 

 

Figure 44: TinyOS logo. 

Instead of making use of multithreading, TinyOS is based on event-driven programming, which is a 

much more useful approach given the ever-shifting nature of Wireless Sensor Netowrks, often disturbed 

by events (new nodes, node failures, etc.). It is an operating system written in the C-based 

programming language nesC (network embedded systems C); this language is also used by application 

developers for programming software on TinyOS. TinyOS has a wide library of components including 

sensor handlers, network protocols, distributed services, and data acquisition tools than can be used 

either as they are by default or modified to best suit the developers. 

As it was mentioned before, TinyOS has a modular structure [Familiar 09]. Each of the modules can be 

broken into three different mandatory parts (they can be void in a component implementation but must 

be present in any component to be TinyOS compliant):   

• Configuration. This part will always be present, but unless the component is made by 

composition of other previously created components, will be void. 

• Implementation. This part will define the connections between the different components used 

by the application. 

• Module, the largest section because the application behaviour is programmed here. It is 

subdivided into three more parts: uses (interfaces used by the component), provide (interface 

supplied by the component) and implementation (business logic of the component). 

On the other hand, using nesC as the programming language seems like a wise choice because it is 

partially based on Object-Oriented Programming: it has an event handler proper of languages as Visual 
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Basic, it is interface and event-based, and it still resembles C (the programming language most widely 

used in embedded systems) enough to get familiar with it.  

It is common for a TinyOS application to take control of the whole system it is installed upon. Here, 

some of the functionalities expected from one layer may be tackled by other one for the good of the 

application, then making use of the principle of cross-layer optimization. In this way, the memory 

required to store the code will be smaller than expected, but a complete image will be required to be 

uploaded to the mote every time it has to be reprogrammed. 

 

 

 

 

 

 
 

Figure 45: application structure with TinyOS below; red and orange layers are TinyOS-based. 

 

Finally, a mention should be done to Oracle´s Squawk Virtual Machine. It is mostly written in Java 

code, unlike all the other motes and middleware architectures, usually codified in C/C++ or in 

lightweight versions of these languages. Due to this, a seamless integration with objects programmed 

under an Object-Oriented Paradigm is done in a more comfortable way, especially if they are Java-

based. What is more, Mobile Editions of Java (and particularly, J2ME) have a very small memory 

footprint and memory usage can be kept to a minimal. As a positive result, Squawk allows one or more 

applications to run over the same Virtual Machine, keeping them isolated one from the other.  

 

Application above TinyOS) 

Hardware abstractions (ADC, LEDs, UART) 

Actuators         Sensors                   Communications 

Main (tasks 
programmer) 
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Figure 46: comparison between a Java VM and the Squawk VM [JVM 12]. 

2.4.3 Open issues. 
As it can be figured out, the main issues about the hardware platforms shown before are gravitating 

around the size and the cost of the nodes. Ideally, the smaller the node, the more advantageous is its 

usage: a lesser amount of materials are used for its manufacturing, they introduce less disturbances in 

the scenarios they are placed in, and they become more pervasive and ubiquitous for a final user 

perspective. However, as it has been said before, downsizing the used devices implies a huge 

investment in Research and Development and in human resources, so although considerable 

downsizing is expected to happen sooner than later, it will not be something that will happen suddenly, 

but as a gradual effort. As far as pricing and costs are concerned, as soon as the Internet of the Future 

becomes as widespread as the “regular” Internet, mass-production of motes and end user wearable 

computers, while already taking place, will be intensified in the mid-term future and therefore prices 

should decrease, although it is not expected that it will be done right away; rather, new developments, 

with improved characteristics (more RAM/ROM memory, interfaces, etc.) and even more shrunk in size 

will appear at usually mid-to-high pricing, thus forcing the former state-of-the-art devices of the market 

to drop their prices. 

Other concern about hardware platforms is their energy management. Since one of the main objectives 

of the Internet of the Future is having electronic devices as seamlessly integrated as possible, any 

piece of equipment that has to be frequently charged will not be that transparent to the final user. 

Currently there are two different directions to solve this problem: 

• Extending node usable time before recharging. Here, research is focused on improving the 

lifetime of the battery, either when the power depends on AA batteries or Li-Ion rechargeable 

ones, and reducing the power consumption of the node itself (and while they are on it, giving 

feedback on the miniaturization efforts tackled before). 
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• Providing means of self-recharging the nodes. Energy harvesting is one of the top research 

topics as well; currently there are some ideas that are being shyly implemented, like solar-

powered Wireless Sensor Networks [Yastrebova&07]. Furthermore, kinetic and mechanical 

energy generated by objects under movement (for example, a bridge or a city structure 

expected to have certain quantities of vibration) or thermal currents generated by the difference 

of temperature between two junctions of conducting material can be used in energy harvesting 

as well [Seah&09]. Even trees can generate electricity that can be used for recharging motes 

from pH differentials between the tree and the soil [de Castro 11]. 

 

Figure 47: components of a solar energy harvesting mote [Yastrebova&07]. 

Another complain that can be raised is regarding the radio frequency systems in motes. Wireless 

Sensor networks need antennae able to receive signals from uncorrelated (not varying together at the 

same time and quantity) sources; an efficient and normalized protocol would be very useful to ensure 

an expectable behaviour and improved data transfer rates for the different applications. Radio 

communication protocols in a Wireless Sensor Network should be improved too, though. 

Finally, security and Quality of Service capabilities should be improved in order to become at least 

comparable with a wired or Wi-Fi system, as it was pointed out when reviewing the open issues of 

middleware architectures. In particular, fixing certain Quality of Service for ubiquitous networks as a 

standard could be really beneficial, for these systems are usually more prone to errors and failures, and 

it would become a way to make them compliant with minimum functionalities. 
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3.1 nSOM architecture: an introduction. 
nano Service-Oriented Middleware (hereinafter, nSOM) is a semantic middleware architecture 

developed by several researchers at the GRyS (Grupo de Redes y Servicios de próxima generación) 

group, belonging to the EUITT (Escuela Universitaria de Ingeniería Técnica de Telecomunicación) from 

the UPM (Universidad Politécnica de Madrid). It has been designed to be used in a ubiquitous 

environment, especially as a middleware for a Wireless Sensor Network. It takes into account the latest 

ideas in ubiquitous computing, in order to create a middleware architecture updated enough for the 

purposes shown in this Final Degree Dissertation. Its general features are the following: 

• It is a middleware architecture designed for low-capability devices. It has been created 

with the idea of uploading it on motes part of a Wireless Sensor Network, so any device with 

mote-like or higher capabilities with interconnection functionalities will be able to execute it with 

very little trouble 

• It is a software-centric middleware. nSOM does not consider what devices are on the 

physical layer, except for its obvious middleware objectives related with hardware abstraction. 

Instead, it is composed by a series of modules with delimitated tasks within its architecture, as 

it will be seen later. 

• It makes use of agents. nSOM communicates with and governs hardware devices by 

deploying agents on them. Each agent has different duties that, although usually dissimilar, can 

be federated to have a cooperation grid among several of them, seeking the successful delivery 

of a composed service. These agents are closely linked to what the place they are present 

(usually a mote) can offer –that is, either data collected from sensors: temperature, luminosity, 

etc. or the possibility to trigger an actuator, like a loudspeaker, LEDs, etc. 

• It is part of a bigger framework based on Service-Oriented Architecture and Service-
Oriented Computing principles. The main goal of nSOM is providing services to a final user; 

to accomplish this, it will be part of layer that can be named as the Service-Oriented Software 

Platform, placed in a model for service and semantic middleware with layers above and below, 

as it can be observed on the next figure: 
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Figure 48: abstraction layers for service and semantic middleware [Lifewear 12]. 

It can be learnt from figure 48 that nSOM is included as a part in an already mentioned Service-

Oriented Software Platform, along with a significant nano Service-Oriented Framework with the 

agents that are taking part in the services that are going to be offered, and a Device integration 

Abstraction Layer that is converting and homogenizing the information delivered by the 

hardware-based layer under it.  

This latter layer (or more accurately, the Physical Device Platform) comprises all the hardware-

related parts of the whole reference model: the hardware platform supporting all the higher 

levels, the operating system that is managing the behaviour of that hardware platform and the 

networking stack that is ruling the networking procedures of the hardware (that hardware will be 

a mote, more often than not).  

On the other hand, the layer over the Service-Oriented Software Platform (In-Local Service 

Composition and Deployment Platform) will be taking part in giving shape to the services in 

use; in order to do that, tiny service building blocks (tiny as long as the capacities used are born 

in mind) will be devised. These tiny components will be composed by two subcomponents: a 

nano Service-oriented Container and the software Application contained by the former 

subcomponent. 
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Once nSOM has been located in a reference model to get a good grasp of where it is and what is 

expected from it, it can be studied not only from a black-boxed perspective, but also having a look at its 

inner components. A more specific figure with the Service-Oriented Software Platform is shown here: 

In-Network Service Composition and Execution Platform

DIAL (Device Integration Abstraction Layer)

nSOM
(nano Service-Oriented Middleware)

Low Level Services

Real-Time 
Management Communication

Context 
Discovery 

Management

High Level Services

Query In-node Service 
Configuration Command

Control Services

Eventing 
Service

nContainer

Cross-Layer 
Services

Security

Portable Code 
Execution 

Environment

Reasoning

nSOF
(nano Service-

Oriented 
Framework)

Service 
Brokering 

Composition 
and 

Orchestration

Physical Device Platform (HW + OS + Networking Protocol)
 

Figure 49: nSOM components [Lifewear 12]. 

nSOM is done by merging four different groups of services, with their different missions and 
procedures: 

1. High level services. These services are just under the In-Local Service Composition and 

Deployment Platform, so they can be accessed by the tiny components at that level. This 

access will be made from a system point of view that takes into account the needs of the In-

Local Service Composition and Deployment Platform, thus making compulsory for the 

middleware to adapt to different conditions and giving an added value to the mote and the 

Wireless Sensor Network it is part of. There are three different services encased in this high 

level: query (in-node and inter-node management of service messages during a 

communication), in-node service configuration (configuration support for middleware services: 

acquisition context configuration, routing configuration, reasoning and knowledge management 

issues, security policies, aggregation functions, hardware setting-up, etc.) and command 

(command creation and addition possibilities for the middleware, so as to better manage tiny 

applications at the In-Local Service Composition and Deployment Platform). 

2. Low level services. Services at this level are working in close cooperation with the Physical 

Device Platform, so consequently their functionalities are pivotal for the correct performance of 

the whole system. They are given tasks that are related to the processing of data obtained by 

the hardware devices of the Wireless Sensor Network. The services present in this 
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subcomponent are: real-time management (support for the configuration of the real-time 

capabilities available in the operating system, according to the requirements of the tiny 

components of the higher layer), communication (it provides an interface to abstract the 

functionalities typical of the network layer, as encapsulating and routing) and context discovery 

management (discovery capabilities and management services, capable to be used by the 

application layer so that it will find service providers and synchronize the business logic among 

the agents deployed in the ubiquitous pieces of hardware of the system). 

3. Cross-Layer Services. Unlike the other subsystems, the services provided in this case are 

orthogonal, and both low level and high level services will use them to their advantage. What is 

more, not only the local device nSOM is mounted on will use them, but also the whole Wireless 

Sensor Network will benefit from them. The presented cross-layer services are three:  

reasoning (dynamic modification of the behaviour of the wearable device and its deployed 

services, according to a collection of specifications defined by an inference engine. This 

inference engine is the thinking part of the nSOM architecture, charged with providing global 

context awareness to the system under a distributed conception), portable code execution 

environment (support for execution of portable code from other ubiquitous pieces of hardware) 

and security (it defines the needed mechanisms to offer confidentiality, integrity and 

authentication of the data flowing through the architecture at both ends of the communication. 

To have it working, it is necessary to define the security services available in the WSN and the 

security mechanisms that will prevent attacks on the WSN, or in case an attack happens, that 

will reduce as much as they can the damage taken by the network). 

4. Control services. These services are controlling the middleware architecture. They manage 

the deployment of the components and their lifetime cycle, as well as enabling event-based 

inter-component communication, thus relieving from that task other components that belong to 

other layers, and improving their own performance. There are two control services: nContainer 

(lifetime cycle management of the middleware components, offering dispatching capabilities 

and scheduling) and an eventing service (publishing and subscription capabilities for 

middleware and tiny components, taking care of dispatching and event management as well). 

3.1.1 Internetworking model overview. 
After describing the different components and functionalities of nSOM it would be of great use to know 

how all these components are deployed in a Wireless Sensor Network. It should be noted that these 

components can be uploaded in almost any wearable device (smart phones, etc.), but given that in the 

next chapter it is going to be described how a system using Sun SPOT motes has been deployed, 

usually the nodes of the WSN will be considered motes.  

The internetworking model will be making use of a hierarchy; when there is a request from a service to 

be retrieved it will not be done as an ad hoc action; but a series of ordered messages will be sent from 
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the user, within the motes of the WSN and the node able to provide the service. The elements present 

are shown in the next figure: 

 

Figure 50: internetworking model [Lifewear 12]. 

It is of critical importance to understand that the nodes presented here (wearable sensors and personal 

devices, Broker, Orchestrator and Sink) are playing those roles because there are agents deployed on 

them (Orchestrator agent, Broker agent, etc.) that fulfil the tasks expected from their kind. What 

determines the functionalities of motes in a Wireless Sensor Network is not the mote, but the software 

uploaded on it regardless of other considerations (for example, it is possible to have several agents 

uploaded on a mote, but if one of the agents is the Orchestrator agent, the mote will assume the role 

and the responsibilities of an Orchestrator node, apart from whatever tasks are associated to the other 

deployed agents on the mote). 

The agents and their functionalities are the next topic this Final Degree Dissertation is going to deal 

with. 

3.1.1.1 Base station/ Gateway/ Sink. 

The base station plays a role similar to a gateway in other kinds of networks. Effectively, it will be the 

bridge between the Wireless Sensor Network and the conventional network. Under a more physical 

point of view, the Gateway (also named as Base station and Sink) will be sharing features from the two 

worlds: it will usually be a ubiquitous device capable to interact with a non-ubiquitous device in charge 

of processing the data retrieved from the Wireless Sensor Network; as an example, the device used in 

the scenario that will be introduced in Chapter 4 is a Sun SPOT base station, a special mote that, while 

is able to communicate with all the other deployed motes, it also makes use of the code that is located 

in a PC, and is attending requests coming from an ESB deployed at the same Personal Computer.  In 

this case, the base station is plugged to the PC via a USB interface, and since it has no power on its 

own, must remain connected all the time to attend requests. 
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This is a unique case in the nSOM architecture in the sense that there is not a particular agent 

deployed at one mote, and the hardware is playing a more prominent role than in all the other elements 

from the Wireless Sensor Network. However, judging from the fact that this element has no other 

functionality that working as a gateway (from a paradigmatic point of view, carrying data from one 

environment to another), sink (from a data perspective, since it is going to receive all the information 

from the WSN) or base station (from a system point of view, as one of the elements involved in it) it 

does not look as necessary to upload an agent, since the required data conversions are done by using 

hardware rather than software. 

3.1.1.2 Broker agent. 

The Broker agent is probably the most important element of the WSN once it is loaded with the nSOM 

middleware architecture. This is due to two reasons: 

• Any new service that springs up in the Wireless Sensor Network will register itself against the 

Broker, so it keeps all the available services registered. If any request for a service is done by 

the user, it will have the Broker as their first (or second, if the base station is taken into 

account) step in the WSN, as the Broker agent redirects the request towards the mote that is 

capable of providing the service. It also happens the other way around: when the answer is 

leaving the WSN, the Broker will direct it back to the base station as the last (or second to last) 

stage of the communication. 

• When a composed service is requested, as it will be seen in the next part, the Broker agent will 

manage all the inner interchange of messages that may be needed, not requiring any further 

work from the human user. 

Therefore, according to its functionalities it can be imagined that if the Broker agent becomes 

incapacitated, the whole middleware architecture will be unable to work normally, so the Broker agent 

must always be uploaded to the mote in best conditions (best radio signal, highest battery level, etc.). 

3.1.1.3 Orchestrator agent. 

Orchestrator agent is critical to correctly provide composed services; without it, they simply cannot be 

delivered. Usually, the Orchestrator Agent assumes the role of publishing the composed services 

present in the Wireless Sensor Network. So, when there is a request of a composed service, the Broker 

agent will re-route it to the Orchestrator agent. In fact, though, the Orchestrator does not collect any 

data required for a composed service, but it is aware of the simple services that are needed, so it will 

ask for them to the Broker agent until it has all the required data, calculates the value from them, and 

sends it back to the Broker. 

An explanatory definition of these actions is provided in section 3.2.4, and a conceptual description for 

simple and composed services in sections 3.2.1 and 3.2.2. 
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3.1.1.4 Data providing motes (other agents). 

These are the agents located on the nodes of the Wireless Sensor Networks devoted to information 

harvesting. Although these agents are still pieces of software, the services they represent are 

dependent on the data that is collected from the environment; therefore, they are closely linked to the 

sensors that the device they are uploaded on has mounted (unlike the Broker and Orchestrator agents, 

that were performing purely software functionalities regarding data request and delivery, with no 

mapping of any service from the “physical” world).  

It is important to note that although these agents collect data from sensors, they can use actuators to 

offer information too –if that is compliant with the intentionality of the systems is another story-. Sun 

SPOT motes, for example, have an array of 8 LEDs that can be used to offer information to one human 

user, thus performing actuator functionalities. 

All in all, they will provide readings from data belonging to the context they have been placed. In our 

scenario, context information regarding indoor temperature was collected (although depending on the 

used mote, luminosity, humidity and other information can be retrieved too), as well as data provided by 

an agent used to port Bluetooth-formatted information from an electronic belt, as it is developed in 

Chapter 4. 

3.1.2 Service Discovery Message Specifications. 
In order to have messaged interchanged properly, a generic PDU (Protocol Data Unit) has been 

defined for the nSOM middleware architecture. As it is usual, this PDU consists of two elements: a part 

named PCI (Protocol Control Information) as the header of the PDU, that will be providing information 

about the nature of the communication (the protocols being used, the type of message that is being 

sent –next to this part are all the possible messages that can be used- and the length of the payload) 

and a SDU (Service Data Unit) that will incorporate all the payload content. The payload is composed 

by a certain number of Objects, where an object is a field with a piece of information about the 

procedure (for example, if the serial number of the mote has to be included in the communication, it will 

be carried by an object) that has its own header (with a key value describing the object payload, and 

the length of the payload of the object itself) and payload (the actual relevant content of the object). 
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Figure 51: layout of a PDU and an object inside [Lifewear 12]. 

Objects can be responsible for very different tasks, as it can be learnt from the next chart: 

Object acronym Extended text 
DCDO Disconnection Code Description Object 
DIO Device Identifier Object 
DMNAO Device Model Name Object 
DMNUO Device Model Number Object 
DMO Device Manufacturer Object 
DMURLO Device Model URL Object 
DNO Device Name Object 
DSNO Device Serial Number Object 
DTDO Device Type Description Object 
EDO Event Description Object 
SDO Service Description Object 
SEO Service Event Object 
SIO Service Identifier Object 
SOIO Service Operation Invocation Object 
SQO Service Query Object 
SSDO Service Subscription Description Object 

 

Chart 13: objects used in nSOM messaging procedures. 

There are different messages that will be sent from one node to another, depending on the actions that 

have to be taken. Note that this messages are sent and received at the network layer; it is important to 

make a difference between these and the JSON requests and answers that are going to be sent at the 

application layer. These messages are: 
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1. Hello message, used for the advertisement of the features present in the wearable device and 

the description of the services that can be provided. 

Source: Wearable/WSN node 
Destination: Broker agent 
Transmission 
mode: Multicast 

Objects required:  DMO, DTDO, DSNO, DNO, DMNAO, DMNUO, DMURLO,  SDO (as 
many as present services) 

 

Chart 14: main features of the Hello message. 

2. Bye message, used to announce the disconnection of the wearable device. The payload will 

include a code with information about the disconnection (normal or abnormal). 

Source: Wearable/WSN node 
Destination: Broker agent 
Transmission 
mode: Multicast 

Objects required:  DCDO 
 

Chart 15: main features of the Bye message. 

3. Service Subscription Notification message, used by the Orchestrator agent to subscribe to 

the services that are going to be announced by the other nodes. 

Source: Orchestrator agent 
Destination: Broker agent 
Transmission 
mode: Multicast 

Objects required:  SSDO (as many as present services) 
 

Chart 16: main features of the Service Subscription Notification message. 

4. Service Availability Notification message, used by the Broker to notify (taking into account 

the subscriptions already formalized by the Orchestrator agent) that a requested service has 

been published by a node. 

Source: Broker agent 
Destination: Orchestrator agent 
Transmission 
mode: Unicast 

Objects required:  SIO, SSDO (as many as present services) 
 

Chart 17: main features of the Service Availability Notification message. 
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5. Service Un-subscription Notification message, used to cancel a previous service 

subscription. It is transmitted on the opposite direction than a Service Availability Notification 

Message. 

Source: Orchestrator agent 
Destination: Broker agent 
Transmission 
mode: Unicast 

Objects required:  SIO (as many as present services) 
 

Chart 18: main features of the Service Un-subscription Notification message. 

6. Service Shutdown Notification message, used to announce that a service that the 

Orchestrator was subscribed to is not available, at least for the time being. 

Source: Broker agent 
Destination: Orchestrator agent 
Transmission 
mode: Unicast 

Objects required:  SIO (as many as present services) 
 

Chart 19: main features of the Service Shutdown Notification message. 

7. Service Registering message, used to declare the features and services provided by a 

device, from the Broker agent to the mote that acts as the Gateway. 

Source: Broker agent 
Destination: Gateway node. 
Transmission 
mode: Unicast 

Objects required:  DMO, DIO, DTDO, DSNO, DNO, DMNAO, DMNUO, DMURLO,  SIO, 
SDO (as many as present services) 

 

Chart 20: main features of the Service Registering message. 

8. Service Unregistering message, used to announce a controlled service disconnection. 

Source: Broker agent 
Destination: Gateway node. 
Transmission 
mode: Unicast 

Objects required:  DIO, SIO (as many as present services) 
 

Chart 21: main features of the Service Unregistering message. 
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9. Probe message, used to search for a service in the ubiquitous domain. An object unused in 

any other message is required in this case: Service Query Object or SQO. 

Source: Broker agent 
Destination: Wearable/WSN node 
Transmission 
mode: Multicast 

Objects required:  SQO (as many as services are searched) 
 

Chart 22: main features of the Probe message. 

10. Probematch message, used as an answer for a Probe message when the requested service 

is found.  

Source: Wearable/WSN node 
Destination: Broker agent 
Transmission 
mode: Unicast 

Objects required:  SDO (as many as present services) 
 

Chart 23: main features of the Probematch message. 

11. Service Data Request message, used to request a service. This message is usually re-routed 

to the mote that is offering the service. 

Source: Gateway, Broker, Orchestrator 
Destination: Broker, Orchestrator, Wearable/WSN node (respectively). 
Transmission 
mode: Unicast 

Objects required:  SDO, SOIO 
 

Chart 24: main features of the Service Data Request message 

12. Service Data Response message, used as an answer to the previous message. Service 

Event Objects are used here; each of them will contain data about the requested service. 

Source: Wearable/WSN node, Orchestrator, Broker 
Destination: Orchestrator, Broker, Gateway (respectively) 
Transmission 
mode: Unicast 

Objects required:  SDO, SOIO, SEO 
 

Chart 25: main features of the Service Data Response message. 
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3.2 Functionalities of nSOM. 
Conceptually, there are two main functionalities that nSOM provides: simple and composed services. 

While simple services are quite self-explanatory, composed services require to define what sensor 

virtualization is about, in order to have a more accurate knowledge of the whole concept. 

3.2.1 Simple services. 
A simple service is a service that is offered by an existing agent, usually uploaded in a Wireless Sensor 

Network node. It is related with a piece of information provided by a sensor, and will just deliver it when 

the agent is requested to do so. The information provided is not stored in any intermediate component, 

but it will be delivered to the agent that requested it in the first place; it will be a process where the 

sensor will try a reading at the environment and will take the result to the operating system (or in our 

case, the mini Java Virtual Machine Squawk) which is the entity that will send it to the middleware as 

the answer that is expecting the application layer, in a fashion resembling the model that appeared in 

the figure number one of this Final Degree Dissertation. 

Examples of simple services all the data that a sensor mounted on a mote can provide that have been 

mentioned before: temperature, humidity, etc. 

3.2.2 Composed services and sensor virtualization. 
A unique feature of the nSOM middleware architecture is that it is able to offer one single service based 

on different readings collected by the Wireless Sensor Network. In this case, the service will not get 

provided as a result of a request to an agent that, in the end, is consulting a sensor, but as the result of 

a data processing action, where the data to be processed has been collected by doing several inner 

requests for different simple data, without further user intervention. These inner requests are necessary 

because the response that is going to be delivered is dependent on the values of the readings that have 

been gathered as the data from the simple inner requests, and the service that is attended like this is a 

composed service 

For the final user, the service is provided as if it was a simple service with no difference with the others. 

Furthermore, when the Broker agent directs the request for this service to the Orchestrator agent, it is 

done like this because the Orchestrator agent has published the composed services as if they were 

simple services that would be attended by “listening” a sensor reading. Thus, for the final human user 

and even for part of the Wireless Sensor Network, the request will be attended the same way as if there 

was a “virtual” sensor to deliver the data that will solve the request, although in fact there is none like 

that and the response is offered by a different way. This is how sensor virtualization can be defined. 

It can be understood by having a look at the next figure. At the left side of it the answer for a simple 

service request is delivered in a predictable way; at the right side, the answer for a composed service is 
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done the same way for the user, but it is obtained by processing data from two different stacks (and 

therefore, two different sensors and two different devices): 

 

Figure 52: comparison between a simple and a composed service. 

All the communications that have been explained before are going to be cleared up by using sequence 

diagrams in the next two sections of the Final Degree Dissertation. 

3.2.3 Simple services communication model. 
The sequence diagram that describes a simple service communication model for nSOM middleware is 
as follows: 

 

Figure 53: sequence diagram for a simple service. 
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In the sequence diagram a temperature request (which actually can be invoked in our real scenario) is 

used as an example for how simple services work under semantic middleware architecture nSOM: 

when the human user requests a temperature, the request is introduced by using a keyboard, a touch 

screen or whatever device is available at the moment (in our system an ESB has been mounted on a 

PC to guarantee that requests from almost every kind of device can be attended, as long as the device 

is able to route a request from a IP version 4 address) and is redirected via a conventional network 

(wireless or not, depending on the device from it was made) to the base station (1). After that, as long 

as the requested service is available in the system, the base station will always redirect it to the Broker 

agent, the first step on the communication (2), as it is the entity of the WSN that is aware of what 

services are functional. If the service is recognized by the Broker agent (that will be uploaded on a node 

of the WSN, most likely a mote), the request will be redirected again towards the node that has installed 

the agent (in this particular case, the temperature agent) capable of taking the data from the sensor 

present at the piece of hardware (3). 

Once the information has been obtained, it has to be delivered to the human user. To accomplish this, 

the service response will undo the route done before by the request. To begin with, the answer will be 

carried to the Broker agent, since all the communications are done by following a hierarchy where the 

Broker will receive all the responses to the requests (4). Once the Broker has received the value, it will 

be transmitted back to the base station (5), and the base station, bridging the Wireless Sensor network 

and the non-ubiquitous network, will finally send it to the device where the final user started the request 

in the first place (6). 

The sequence shown here is located at the application layer; the vehicle to transport the requests and 

answers are JSON messages. JSON is more useful than XML under this ubiquitous environment 

because, although XML supports standardizing schemas, it is usually more verbose than JSON, 

consuming more bandwidth and energy resources. 

Should any of the stages formulated before fail, the request will be unattended; an answer mechanism 

must be implemented in order to notify the user about the request failure (in our deployed system it was 

done so, as it will be learnt in the next section) and let them perform the same or other petition again. 

3.2.4 Composed services communication model. 
The sequence diagram that describes a composed service communication model for nSOM semantic 

middleware is as follows: 
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Figure 54: sequence diagram for a composed service. 

To use as an example of a communication model for a composed service, a real service that can be 

invoked from our deployment -Temperature Control- is explained here. Temperature control is a 

composed service that will evaluate the values from the environmental temperature (extracted from a 

mote with a Temperature agent deployed) and the body temperature (extracted from the mote with the 

agent that is porting all the data obtained via Bluetooth from a Zephyr-marketed belt). The result of the 

evaluation of temperatures (very high, high, medium, low or very low) is what will be sent to the user. 

Note that in this case this evaluation of the two separately received temperatures is the data processing 

stage, for other composed services data processing might represent other actions. 

As it was done in the previous case, the followed steps are explained here: the user will request the 

service (1) as if it was a simple service -and therefore there is no difference for the user; it will be 

invoked the same way, otherwise there would be no real sensor virtualization-. The request will reach 

the Broker agent, the element of the WSN that has received the service registration from all the other 

agents (2). As this is a composed service the request will be redirected to the Orchestrator agent, as it 

is done with all the composed services (3). The Orchestrator agent is incapable of providing a value for 

that service because it cannot be attended the way that was done before; despite the impression given 

to the final user, there is no sensor measuring the level of Temperature Control. Nevertheless, the 

Orchestrator agent is aware that once the values of the environmental and body temperature come to 

its grasp, they can be processed to have a satisfactory response. So, the Orchestrator agent will ask 
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the only entity of the network that is aware of all the deployed agents -that is, the Broker agent- for the 

two values that it requires, beginning with the environmental temperature (4).  

In this way, the Broker agent will send a request to the Temperature agent deployed in one mote (5), 
asking for the value of the environmental temperature. Once the value is send by the Temperature 

agent to the Broker agent in a JSON message (6), it will re-route the answer to the Orchestrator agent 

(7); note that at this point the Broker agent ignores the procedure that is taking place at the 

Orchestrator agent, nor it is expecting another request from the latter agent. However, a single value is 

not enough to determine the result of the request made by the user (nor it would be sensible to have all 

this procedure for a single value: it could have been retrieved as a simple service); the body 

temperature is needed too, so the Orchestrator agent will request it to the Broker agent (8), expecting to 

be answered as it was done before. And in fact, the request is attended the same way: the Broker 

agent will ask for the data to the agent that it knows that can provide it, which happens to be the Zephyr 

agent (9), and this agent will offer it if there is no unforeseen trouble (10). As soon as the Broker agent 

receives the JSON response with the particular datum, it will send the whole JSON message to the 

Orchestrator (11), the entity that requested it and is capable of isolating it from all the other content of 

the JSON message received. 

Now that the Orchestrator agent has the two values, it has all the information required to do the 

evaluation. Once it has taken place, one of the five possible results commented before will be placed 

into another JSON response message and sent back to the Broker agent (12). Able to distinguish a 

request from a response, and having as response destination the same node all the times, this Broker 

agent will send the response to the base station (13), and finally it will be re-routed to the device where 

the final user started all the process (14). If there is any failure while sending the messages or retrieving 

the data, two solutions can be tried: either the final user is notified about it, and they are offered the 

chance to request the service again, or if one or several of the required values to obtain a result for a 

composed service request has already been retrieved, the needed processing is undertaken without 

bearing in mind all the other required values.    
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4.1 Justification of the scenario. 
If nSOM is desired to be part of a ubiquitous, functional subsystem, it must be installed under very 

specific conditions. What follows now is a complete description of a system that was deployed as a 

tangible reality in a real scenario. The system had the features that have become typical of ubiquitous, 

pervasive computing: low-capability devices to get context information, deployment of the nodes at 

places were conventional equipments would have it hard to be placed and seamless integration of all 

the components on the environment where they are located. 

What is more, the system was deployed with the idea of providing data not only about the context of the 

system, but also from a final user that is wearing a belt capable of retrieving body information in real 

time (body temperature, heart rate, breathing rate). This information can be accessed by requesting it 

as a simple service, but with the wide range of available data, composed services can be invoked as 

well, looking to have for the whole system an added value that allows it to make a difference from other 

ubiquitous middleware architectures. 

All the hardware devices presented, and how the software is mounted on them are issues that will be 

explained in the next sections. 

4.1.1 User cases of the scenario. 
According to the analysis that was made before implementing nSOM, and before a real system had this 

architecture installed, user cases were studied. The result obtained was like this: 

 

Figure 55: user cases of the scenario. 
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The actors involved in this ubiquitous scenario, along with the different user cases presented, are going 

be extended for them to be completely understood. 

4.1.1.1 System actors. 

As it has been established, there are five actors that are part of this system. Those actors are: 

• Agents. These entities will be granting the data (from the context or from the user) that will be 

presented when simple or composed services are invoked. For this to happen they must 

publish themselves on the Broker agent, though. 

• Broker. It will be responsible for the already mentioned functionalities typical of them, being 

part of simple and composed service requests and responses. 

• Orchestrator. Its main duties have not changed; it will be retrieving the simple data needed to 

fulfil the composed service requests. 

• Service requester. They will usually be human beings either requesting simple or composed 

services from the system. They may also receive alarms, depending on their activities. 

• Sportsman/woman. While they can also request for services, they are more likely to receive 

alarm warnings. It is supposed that service requesters and sportsmen/women are at least two 

different users (one requesting services and the other focused on their own activities), but the 

system could be used for just one person too. 

4.1.1.2 Different user cases. 

The different user cases that were presented in the previous figure will be exposed here: 

4.1.1.2.1 Service exposure. 

This service will be used just for the agents to subscribe at the Broker agent, and therefore publish their 

services. Although a rather “passive” service, with no human user or other nodes intervention, it is 

pivotal to offer the services, since only those registered at the Broker agent will be able to be invoked. If 

a service has not been registered and it is requested by a user, the request will be dismissed. 

Requesting entity None, the agent will perform it whenever the mote it is deployed on is reset. 

Result The agent and its services are registered by the Broker agent. 

Required data None, a functional agent. 

Other 
considerations None. 

 

Chart 26: features of the Service exposure user case. 
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4.1.1.2.2 Simple service request: temperature request. 

This service is used whenever the temperature of the context where the system is located is wanted. As 

a simple service it can be requested by a human and the Orchestrator agent too, in case it has been 

required for a composed service. 

Requesting entity Service requester, Sportsman/woman (rarely), Orchestrator agent. 

Result The environmental temperature is provided. If the request fails, -100º is 
offered as an answer (not included in a JSON message). 

Required data None, a functional Temperature agent. 

Other 
considerations None. 

 

Chart 27: features of the temperature request user case. 

4.1.1.2.3 Simple service request: body temperature request. 

This service is used when the body temperature is requested, either by a human user or by the 

Orchestrator agent, in order to check if there is any alarm going on. This information is collected from 

the Zephyr belt. 

Requesting entity Service requester, Sportsman/woman (rarely), Orchestrator agent. 

Result The body temperature is provided. If the request fails, -100º is offered as an 
answer (not included in a JSON message). 

Required data None, a functional Zephyr agent and a Zephyr belt. 

Other 
considerations 

It requires an element (the Zephyr belt) external to the Wireless Sensor 
Network. When the answer is received, the value and a four digit belt 
identifier are provided altogether. 

 

Chart 28: features of the body temperature request user case. 

4.1.1.2.4 Simple service request: heart rate request. 

This service differs very little from the previous one; this data will be requested by a human or by the 

Orchestrator agent, and will be provided by the mote receiving the data from the Zephyr belt. 

Requesting entity Service requester, Sportsman/woman (rarely), Orchestrator agent. 

Result The heart rate is provided. If the request fails, the value -100 is offered as an 
answer (not included in a JSON message). 

Required data None, a functional Zephyr agent and a Zephyr belt. 
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Other 
considerations 

It requires an element (the Zephyr belt) external to the Wireless Sensor 
Network. When the answer is received, the value and a four digit belt 
identifier are provided altogether. 

 

Chart 29: features of the heart rate request user case. 

4.1.1.2.5 Simple service request: breathing rate request. 

Again, this service is provided by the mote connected via Bluetooth to the Zephyr device. 

Requesting entity Service requester, Sportsman/woman (rarely), Orchestrator agent. 

Result The breathing rate is provided. 

Required data None, a functional Zephyr agent and a Zephyr belt. 

Other 
considerations 

It requires an element (the Zephyr belt) external to the Wireless Sensor 
Network. When the answer is received, the value and a four digit belt 
identifier are provided altogether. 

 

Chart 30: features of the breathing rate request user case. 

4.1.1.2.6 Composed service request: injury prevention request. 

This, as the next composed service, can only be invoked from a human user. Unlike all the others, this 

is more likely to be asked by a sportsman/woman so they can check if they are taking their physical 

exercises to dangerous levels. 

In order to define the three levels of risk that can be obtained as an answer (see other considerations 

paragraph), upper and lower thresholds were fixed in our scenario. For body temperature were 38.0º 

and 36.4º (the Zephyr device was not absolutely accurate when measuring this data and less tight 

thresholds had to be used), for environmental temperature 34.0º and 12.0º degrees and for heart rate 

120 and 50 beatings per minute. Margins were fixed at 5º for environmental temperature, 5 heart 

beatings for heart rate, and 0.4º for body temperature. 

Requesting entity Service requester, Sportsman/woman. 

Result One of the three levels of risk of suffering a muscular injury by over-
exercising: High risk, Medium risk, Low risk. 

Required data Environmental temperature, body temperature and heart rate. 

Other 
considerations 

When the three required pieces of information are obtained, they are 
evaluated. If there is at least one of them beyond or below the maximum or 
minimum thresholds fixed, a High risk value is sent (and it is very likely that, 
although independently, an alarm will be sent to the ESB and the alarms 
mote). If at least one of the values is within the allowed range, but inside a 
margin close enough to the upper or lower threshold, a Medium risk 
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message is sent. Otherwise, a Low risk message is sent. 

 

Chart 31: features of the injury prevention request user case. 

4.1.1.2.7 Composed service request: temperature control request. 

This service works in a manner resembling the previous one, although it requires one less piece of 

information (heart rate is not taken into account for temperature control purposes). The thresholds and 

margins fixed for injury prevention service were kept for this one. 

Requesting entity Service requester, Sportsman/woman. 

Result One of the five levels of control: Very low, Low, Medium, High and Very 
high. 

Required data Environmental temperature, body temperature. 

Other 
considerations 

When the two required pieces of information are obtained, they are 
evaluated. If there is at least one of them beyond the maximum thresholds 
fixed, a Very high value is sent (and it is very likely that, although 
independently, an alarm will be sent to the ESB and the alarms mote). If at 
least one of the values is within the allowed range, but inside a margin close 
enough to the upper threshold, a High message is sent. On the contrary, if at 
least one of the values is within the allowed range, but inside a margin close 
enough to the lower threshold, a Low message is sent. Finally, if there is at 
least one of the values below the minimum thresholds fixed a Very low value 
is sent (and again, it is very likely that an alarm will be sent). Otherwise, a 
Medium message will be sent. 

 

Chart 32: features of the temperature control request user case. 

4.1.1.2.8 Composed service request: alarms request. 

As the other composed services, this one can only be requested from one final user. This service will 

notify a user, usually different from the sportsman/woman, that a value obtained from the registered 

nodes has been beyond the upper or lower threshold values fixed. The value will be visualized when it 

is requested through the ESB, while an alarm will be sent to the Alarms mote by the next service. 

Requesting entity Service requester, Sportsman/woman (rarely). 

Result Either a message noting that there are no alarms, or a number indicating the 
nature of the alarm and the value that has triggered it. 

Required data Environmental temperature, body temperature, heart rate. 

Other 
considerations 

The JSON message received will contain a three-figured number, where the 
first digit gives away the nature of the alarm (1=too low environmental 
temperature, 2= too high environmental temperature, 3= too low heart rate, 
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4= too high heart rate, 5= too low body temperature, 6= too high body 
temperature) and the other two tell the value that made the alarm spring up. 
For example, 235 would be a high environmental temperature alarm (first 
digit=2), because there are 35º at the room where the sportsman/woman is 
performing their workout. For heart rate the whole figure is added (for 
example, 338 would be an alarm value claiming that the 
sportsman/woman´s heart is beating at 38 beatings per minute, and 475 
would indicate that the sportsman/woman´s heart beats at 175 beatings per 
minute). 

 

Chart 33: features of the temperature alarms request user case. 

4.1.1.2.9 Alarm notification service. 

This is a composed service unique and separated from the others in the fact that it is not requested, but 

comes up whenever one of the values that are requested (they are the same than those in the previous 

service) is above or below the thresholds. The alarmed value will be sent to the human user wearing 

the watch used in our scenario to notify alarms.   

Requesting entity Orchestrator Alarms agent; it always reaches the Sportsman/woman. 

Result A beeping sound on the Android watch, and a warning on its screen 
notifying that a threshold has been surpassed. 

Required data Environmental temperature, body temperature, heart rate. 

Other 
considerations 

There is one single agent devoted to provisioning this service (Orchestrator 
Alarms agent). This service is not invoked by a human user. 

 

Chart 34: features of the alarm notification user case. 

4.2 Description of the validation scenario. 
Following the previous points of the Final Degree Dissertation, along with all the services that are 

available for human users, a figure with all the elements present in the scenario is offered at the start of 

the next page [GRyS&12]:  
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Figure 56: a holistic view of the system. 

In order to describe them all, and taking the previous figure as a starting point, hardware and software 

points of view are used to have a wider approach on the elements present in the system. 

4.2.1 Hardware elements of the system. 
The physical entities present in the system are as follows: 

• A Personal Computer with an Ubuntu distribution as the operating system (PC domain). 

Ubuntu will have an important role in the PC domain, as it is the operating system chosen to 

install the ESB component that is going to be receiving all the requests from devices belonging 

to end users. In addition to the ESB (3), the PC will also be mounting the software bundle 

required to have the base station processing the requests (4) and a REST interface (2) as a 

gateway between the proper ESB and the elements present in a mobile device. 

• A mobile device (or more likely in our particular case, a mobile phone), used to store all the 

information associated to a particular user, such as the profile (1) -height, weight, gender, etc.-. 

Along with the profile, if an alarm springs up it will be sent from the Wireless Sensor Network 

(or the mote with the Zephyr agent deployed, depending on where it was triggered) to the 

application storing the profile information, which also happens to monitor the user by requesting 

the heart rate every two seconds, along with the requests performed to the national Spanish 

meteorological database (AEMET, Agencia Estatal de METeorología). The software installed in 

the mobile phone was programmed by SAI Wireless. 

• A Wireless Sensor Network (5) that will be behaving as an orthodox ubiquitous system. The 

WSN has motes scattered in an environment (according to the objectives of UPM in the 

Lifewear project it is an indoor wide room, that is, a gymnasium) measuring three different 
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temperature values (6). Sun SPOT motes where used as the hardware of choice for the WSN 
nodes due to their RAM and ROM capabilities and their low energy consumption. These motes 

will communicate to each other by using the standard 802.15.4 (7), which is specifying the 

physical layer and the MAC (Medium Access Control) layers for Personal Area Netowrks 

[Radio-electronics 12] or, in this case, Wireless Sensor Networks. Note that 802.15.4 is not 

Zigbee; Zigbee is an industrial alliance scoping only the top of the 802.15.4 stack [Sun SPOT 

12b], not the whole standard.  

 

Figure 57: one of the actual motes used in the deployment of the system. 

• At the user domain, the human user (11) will be carrying several devices on. Firstly, two 

motes, one with the Zephyr agent that is porting the Bluetooth data from the Zephyr belt, and 

another one that will receive an alarm notification, should there be any value out of the range 

fixed for the system by the thresholds (note that while the mote with the Zephyr agent deployed 

can be considered as an endpoint of the Wireless Sensor Network, the other mote will not 

communicate with the WSN at all and will just receive an alarm notification, without sending any 

piece of information to the WSN. Nevertheless, this mote and the former are communicating via 

Bluetooth data converting boards (8) with the two other user devices: a Zephyr 
BioHarness™ v3 belt (9) and a WIMM Android programmable watch (10). The Zephyr belt 

looks as follows: 
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Figure 58: Zephyr BioHarness™ v3, worn by a final user. 

According to its data specifications [BioHarness™ 3 10], Zephyr BioHarness™ v3 is a belt 

capable of measuring different types of human body data (body temperature, breathing rate, 

positions and postures, etc) and given that it was needed a device that could be worn by a 

person while doing sport or performing a workout, it suits fine for our purposes. This belt is the 

device collecting the body-related parameters used for our system (body temperature, heart 

rate, breathing rate) but since the data are transmitted via Bluetooth and Sun SPOT motes do 

not support it natively, their hardware had to be augmented by using Bluetooth data converting 

electronic boards. An electronic board model, suitable enough due to its size and its 

capabilities, is marketed by Sparkfun Electronics –model Bluegiga WT-32-, so two Bluegiga 

boards were purchased [Bluegiga 12]. One board was attached to the mote that was charged 

with the task of converting the Bluetooth required parameters into data that could be transferred 

throughout the Wireless Sensor Network; the other to the mote that would communicate with 

the WIMM programmable watch. 

All this work was done primarily by Alexandra Cuerva with the assistance of other people. For 

more information on how the Sun SPOT mote´s pins were connected to the Bluetooth boards, 

and how the Bluetooth connection was made possible, it is strongly encouraged to have a look 

at Alexandra Cuerva´s own Final Degree Dissertation [Cuerva 12]. 

 

Figure 59: frontal and rear view of a mote augmented with a Bluegiga WT-32 board. 
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Finally, another device was required to notify the user of any alarm that would come up regarding their 

physical conditions (too high heart rate, too low body temperature, etc.). To accomplish this task, 

another device was purchased: a programmable Android watch from a vendor named WIMM (the watch 

has been named WIMM One) [WIMM 12]. What was interesting for our deployment is that this watch 

could be programmed to have events notified: if, for example, there was an alarm regarding a too high 

heart rate, the watch could be programmed to display it at its LCD screen, along with a beeping sound 

to warn the final user. Again, the programming effort was done by Alexandra Cuerva [Cuerva 12]. 

The next figure is showing all the physical devices that were used for the system that was mounted for 

this Final Degree Dissertation, the one where data regarding the performance of the network was 

collected from. All in all, seven motes were used (three to deploy three different Temperature agents, 

one to deploy the Broker agent, another one to deploy the Orchestrator agent, and two more for the 

Bluetooth data conversion and alarm notification duties), the Zephyr BioHarness™ v3 belt and the 

WIMM Android watch (note the Lifewear logo on the watch screen). For ITEA2 evaluation purposes, 

another wider setup was built on 11th June 2012; this architecture was deployed in the gymnasium 

facilities of the EUITT, and among other equipment, there was another smaller wireless Sensor 

Network deployed by Tecnalia [Tecnalia 12], composed by two Sun SPOT motes and a base station 

connected to UPM´s ESB. There were some issues related with the coexistence of both WSNs; it was 

likely that there were interference phenomena between them that crippled the communications among 

nodes. These issues were solved by giving unicast communications a more prominent paper and, after 

thorough tests, changing the frequency at which data was requested for the alarm service. 

 

Figure 60: devices used for the data-collecting scenario. 
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4.2.2 Software elements of the system. 
There were as many software elements present on the system as hardware-related ones. Most of them 

were agents with purposes related strictly to the Wireless Sensor Network; others were out of the 

Wireless Sensor Network but inside the system nevertheless.  

From a software perspective, our architecture can be separated into four different subsystems, each 

one with a different concern. User Interaction subsystem will be focused on all the duties related to the 

successful retrieval of requests from the user. Service Management subsystem will be bent on taking 

the necessary actions to obtain the requested information from the Wireless Sensor Network. Context 

Data Collection subsystem will collect the information that is related with the context where the system 

is deployed. Finally, the Bluetooth Management subsystem will be taking care of all the issues related 

with data collection from the Zephyr belt, and alarm delivery on the mote that is connected via Bluetooth 

to the Android watch. The subsystems are relating each other in a particular way: the User Interaction 

subsystem will ask for the information to the Service management subsystem, which will have gathered 

it from requests done to Context data Collection and Bluetooth Management subsystems. 

 

Figure 61: Subsystems diagram of our system. 

4.2.2.1 User Interaction subsystem. 

There are two components present in this subsystem, the ESB and the User Interface. 
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Figure 62: User Interaction subsystem and its inner components. 

ESB (numbered as 3 in figure 55) is an acronym for Enterprise Service Bus. It is a software architecture 

model under the principles of Service Oriented Architecture that allows the integration of different 

technologies used by separated service invocators. In a way, it plays a role resembling that of the 

middleware: it will interpret the requests that it receives and, as long as they are in a format 

understandable by the ESB, service requesters will not have to worry about delivering their petition in a 

particular format, since they will be interpreted by the ESB. Once the ESB receives the request, it will 

resend it to one of the interfaces it has to communicate with an internal system. 

 

Figure 63: an ESB architecture, as in [Teo&10]. 

In our system, the ESB will be useful to homogenize the nature of the requests done by the final user: it 

has been tested with petitions originating from tablets, mobile phones and the PC where it is installed. 

This was the result of the work done by Pedro Castillejo Parrilla and Huang Yuanjiang. 

The User interface, on the other hand, refers to the way the user requests access the ESB. It is done by 

two ways: on one hand, the services can be accessed via URL, where all the information related to the 

required IP address, the port number and the service that is going to be consulted is included. For 

example, if the Injury prevention service is invoked, the URL would be: 

192.168.0.199:8181/cxf/crm/lifewear/injury. This URL was using a private IP direction because it was 

for testing purposes; when the Lifewear scenario was deployed, or external tests had to be undertaken, 

a public IP address was provided.  

On the other hand, the SME called SAI Wireless [SAI 12] devised an interface to access all the services 

they were interested in as part of their own developments in the Lifewear project. The interface was 



 

Chapter 4                                                                                     System validation and results exposition 

 

117 

 

thought to be offered as support for a sports routine, and would advise the user to perform warming 

ups, different workouts, etc. 

4.2.2.2 Service Management subsystem. 

This subsystem has two components as well: 

 

Figure 64: Service Management subsystem and its inner components. 

Their functionalities of these components are what can be expected from them: the Orchestrator agent 

is the key component in composed services processing, requesting the Broker agent for the simple 

services that will be asked for, and the Broker agent is critical for the whole nSOM middleware 

architecture and the Wireless Sensor Network once nSOM is deployed, since it has registered which 

services have been announced and all the requests and responses of the Wireless Sensor network 

must go through it, at one point or another. 

In addition to these already known agents, another one appears: the Orchestrator Alarms agent is the 

one that will be requesting all the needed data to check whether a value is “alarmed” (that is, above or 

below the values fixed for the upper and lower thresholds). 

4.2.2.3 Context Data Collection subsystem. 

As it can be guessed, this subsystem is responsible for measuring and providing with the context 

information that is proper of the environment the WSN is deployed in. For our scenario it has three 

different, although similarly working, components: 

 

Figure 65: Context Data Collection subsystem and its inner components. 
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As it is observed, there are three temperature agents that will physically be deployed in three motes. 

The reason for having three different agents is measuring the temperature in three different places of 

the environment. Plus, in this case, when time measures were taken, each of the equally functional 

agents was under different conditions, so it is a good way to test, for example, what sort of disturbance 

is the worst for the network. 

4.2.2.4 Bluetooth Management subsystem. 

This last subsystem has two more components, as it can be seen in the next figure: 

 

Figure 66: Bluetooth Management subsystem and its inner components. 

The two components are going to deal with their already known functionalities: the Zephyr agent will 

adapt the data obtained from the Zephyr belt via Bluetooth connection to a format that can be 

understood by the other motes, and the Alarms mote will be taking the alarm information to the Android 

programmable watch via Bluetooth communication as well. 

4.2.3 Communication on the application layer of the system. 
The communication is going to be tackled by using JSON (JavaScript Object Notation) messages. 

Apart from the particular format required by JSON, an additional one has been establish in order to 

have a standardization of the communication that covers the field the WSN will be operating, and in this 

way the particular data can be recovered in an easier way. 

The request message that will be sent from the base station throughout the Wireless Sensor Network 

will be formatted like this: 

{   
 "transport": "j2me.radiogram",   
 "envelope": "JSON-2.0",   
 "target": "<IP or MAC address>/<name of the destination agent ",   
 "origin": "<IP or MAC address>/<name of the source agent>",  
 {  
  "operation": "<operation name>",  
  "parameters": [ < parameters or void, if there are none> ]  
 }  
} 
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All the changing fields have been highlighted with bold characters; as it can be seen the transport and 

envelope fields are always the same, while the field named as “target” and “origin” can change 

depending on what agent started the request or what agent is able to serve the suitable response to the 

request (there are certain patterns, though. In a simple service request, the JSON request that arrives 

to the mote with the suitable sensor will have its MAC address and its name as the values of the target 

field, and the MAC address and the name of the Broker agent as the content in the origin field. In a 

composed service request, the Orchestrator agent appears as the content of target or origin fields). The 

operation and the parameters fields will vary depending on the service requested and the parameters 

used to have a more accurate response. 

The JSON response message will have a very similar layout, being the only change that a new field 

named “result” will be placed under the parameters of the requested service: 

{   
 "transport": "j2me.radiogram",   
 "envelope": "JSON-2.0",   
 "target": "<IP or MAC address>/<name of the destination agent ",   
 "origin": "<IP or MAC address>/<name of the source agent>",  
 {  
  "operation": "<operation name>",  
  "parameters": [ < parameters or void, if there are none> ]  
  "result": "<result of the operation>" 
 }  
} 

Last but not least, when an alarm is requested, the answer brought to the final user via ESB will be a 

JSON message that looks like this: 

{   
 "transport": "j2me.radiogram",   
 "envelope": "JSON-2.0",   
 "target": "<IP or MAC address>/<name of the destination agent ",   
 "origin": "<MAC address>/</nSOMOrchestratorAlarmsAgent",  
 {  
  "operation": "isAlarmed",  
  "parameters": [ < the value that has triggered the alarm> ]  
  "result": "<String representation of void object>" 
 }  
} 

4.3 Analysis of the validation scenario results. 
Once the scenario was mounted and the agents uploaded to the motes, several performance tests 

were carried out. The results, according to what services and features were tested, are offered here: 

4.3.1 Setup of the Wireless Sensor Network and node reset. 
What was measure here was how long it would take for the whole Wireless Sensor Network to be set 

up and have it fully functional. In order to perform the test, all the required nodes and the Zephyr belt 
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were turned off to begin with, and they were progressively turned on. Banal as it may seem, it is a 

delicate procedure because the nodes cannot be reset or turned on at the same time, or without any 

order: obviously, if the Broker is the last node to be reset or turned on, the Wireless Sensor Network will 

not work at all because not a single service will be registered and all the requests will be systematically 

dropped. To have a successful setup, the mote with the Broker agent deployed must be the first one to 

be turned on or reset; after it, it is advisable to turn on the Zephyr belt first and the mote with the Zephyr 

agent uploaded right after that. Then the mote with the Orchestrator and the Orchestrator Alarms 

agents must be reset, and finally the motes with the temperature agents. 

There are some other considerations that have to be made: the mote with the Orchestrator Alarms 

agent deployed (which will usually have the Orchestrator agent deployed as well) is the noisiest of the 

network by far. This is so because Orchestrator Alarms agent does not wait to be invoked by a user, but 

every five seconds (or in case of heart rate, one second) is asking the WSN for the data that it requires 

in order to make sure of the existence –or inexistence- of a value out of the bounds marked by the 

thresholds. Another troublesome node is the one with the Zephyr agent deployed; while this node does 

not add much data to the WSN, if the agent fails to be registered a lengthy series of actions have to be 

done to give it a try again (turning off the Zephyr belt, waiting around 10 seconds, turning on the belt 

again and finally resetting the mote) due to the behaviour of Bluetooth connections, thus adding a 

considerable amount of time in the network setup. 

First, a chart containing how many milliseconds it took to have the WSN fully deployed is offered. In 

order to have reliable results each test was made by making twenty five measures. The results are as 

follows: 

Requests Setup 

Request No. 1 89313 
Request No. 2 78726 
Request No. 3 101845 
Request No. 4 52984 
Request No. 5 212389 
Request No. 6 140989 
Request No. 7 59263 
Request No. 8 80776 
Request No. 9 54229 
Request No. 10 59075 
Request No. 11 86831 
Request No. 12 143267 
Request No. 13 56395 
Request No. 14 267687 
Request No. 15 125230 
Request No. 16 120996 
Request No. 17 126791 
Request No. 18 90227 
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Request No. 19 109396 
Request No. 20 153737 
Request No. 21 252957 

Request No. 22 138138 

Request No. 23 91257 

Request No. 24 86813 

Request No. 25 58034 
 

Chart 35: measures obtained for WSN setup. 

Other interesting values obtained were the average (92337.726 milliseconds) and the median periods 

of time (91257 milliseconds). The small but significant difference between the average and the median 

values is indicating that there is certain heterogeneity with the obtained results, and actually, there are 

only two readings that are around 90 seconds; the disparity among them is widespread. This is due to 

the fact that several attempts were conditioned by having had an agent failing to register their first time, 

and therefore the required time at that measure soared, especially if that issue had happened with the 

Zephyr agent, or if the Orchestrator Alarms agent was overwhelming the Wireless Sensor Network.  

The heterogeneity of the obtained values can be observed in the next graph: 

 

Figure 67: graph for the time used in setting up the mote (25 attempts). 

4.3.2 Simple services analysis.  
Once the Wireless Sensor Network has been setup, it is time to check how the provided services 

perform. 

4.3.2.1 Analysis of Temperature1 service. 

This is the first of three temperature readings that are going to be shown. Incidentally, the obtained 

results will not be the same for the three of them, because they have been placed under different 



 

Chapter 4                                                                                     System validation and results exposition 

 

122 

 

conditions. The mote with the temperature agent named Temperature1 was the furthest away from the 

Broker; it was wanted to know how this would affect the communications. 

For starters, in order to have 25 successfully answered requests, a total of 27 had to be made. This 

failure rate, as low as it may be (2 out of 27 attempts), is the highest of the three temperature agents 

tested. The other 25 requests were attended under this time values: 

Request Temp 1: time for the request to be responded (ms) 

Request No. 1 813 

Request No. 2 702 

Request No. 3 821 

Request No. 4 640 

Request No. 5 752 

Request No. 6 976 

Request No. 7 620 

Request No. 8 658 

Request No. 9 788 

Request No. 10 1103 

Request No. 11 742 

Request No. 12 838 

Request No. 13 758 

Request No. 14 682 

Request No. 15 702 

Request No. 16 1050 

Request No. 17 638 

Request No. 18 874 

Request No. 19 731 

Request No. 20 594 

Request No. 21 708 

Request No. 22 936 

Request No. 23 720 

Request No. 24 726 

Request No. 25 681 
 

Chart 36: measures obtained for Temperature1 service. 

Other interesting values obtained were the average (751.207 milliseconds) and the median times (731 

milliseconds). The disparity between the average value and the median, albeit small, is still significant. 

This is due to the fact that some of the requests took a longer than usual time to be attended as it can 

be seen on the next graph, made with the text from the previous chart: 
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Figure 68: graph for the time used in completing Temperature1 request (25 attempts). 

4.3.2.2 Analysis of Temperature2 service. 

The mote with the temperature agent named Temperature2 deployed was under different conditions 

than the former: it was relatively near the mote with the Broker agent, but its service was requested by 

the Orchestrator Alarms agent for the environmental temperature every little time, so it was under an 

acceptable but constant stress. Apparently, though, it did not affect the performance of the agent 

because only one request failed to be attended (1 out of 26 attempts). Surprisingly, the obtained values 

were slightly better than with Temperature1, further away but with no other requests that the ones made 

by the user: 

Request Temp 2: time for the request to be responded (ms) 

Request No. 1 801 

Request No. 2 532 

Request No. 3 619 

Request No. 4 685 

Request No. 5 724 

Request No. 6 746 

Request No. 7 1133 

Request No. 8 1048 

Request No. 9 550 

Request No. 10 728 

Request No. 11 841 

Request No. 12 670 

Request No. 13 692 

Request No. 14 669 

Request No. 15 850 

Request No. 16 806 

Request No. 17 824 
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Request No. 18 667 

Request No. 19 914 

Request No. 20 664 

Request No. 21 713 

Request No. 22 656 

Request No. 23 702 

Request No. 24 692 

Request No. 25 591 
 

Chart 37: measures obtained for Temperature2 service. 

Other important data obtained were the average (718.515 milliseconds) and the median values (702 

milliseconds). It is interesting to note that the difference between the average and the median data is 

lower than it was with Temperature1 service. This is pointing out at the fact that the data are more 

regular, and also they are confined in a narrower range of values. That is the impression that is offered 

at the sight of the next graph: 

 

Figure 69: graph for the time used in completing Temperature2 request (25 attempts). 

4.3.2.3 Analysis of Temperature3 service. 

The mote with the Temperature3 agent deployed on its hardware was given a third different 

environment: it was at a closer distance than the mote with Temperature1 agent deployed, but further 

away from the Broker agent than Temperature2 mote was. However, it did not attend any other request 

than the ones that were made during this testing session. Given that this was an agent with quite 

favourable conditions, it should come not as a surprise that the 25 requests were attended without any 

failure (failure rate: 0/25 attempts). Along with it, the results obtained from the tests, as long as required 

time is concerned, were like this: 
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Request Temp 3: time for the request to be responded (ms) 

Request No. 1 603 

Request No. 2 741 

Request No. 3 681 

Request No. 4 671 

Request No. 5 702 

Request No. 6 669 

Request No. 7 728 

Request No. 8 607 

Request No. 9 753 

Request No. 10 783 

Request No. 11 710 

Request No. 12 750 

Request No. 13 857 

Request No. 14 665 

Request No. 15 702 

Request No. 16 758 

Request No. 17 702 

Request No. 18 760 

Request No. 19 641 

Request No. 20 656 

Request No. 21 742 

Request No. 22 765 

Request No. 23 678 

Request No. 24 761 

Request No. 25 651 
 

Chart 38: measures obtained for Temperature3 service. 

Other noteworthy values obtained were the average (704.760 milliseconds) and the median values (702 

milliseconds). These values are very interesting when compared to the ones obtained from 

Temperature1 and Temperature2 agents: not only they are slightly lower, but also the average and the 

median values have reduced their difference extraordinarily; clearly, having a mote without any issue 

related with the power of the radio signal, and without the disturbance of having to attend requests from 

two sides (a human user and an inner agent) pays off when its performance is considered.  

A graph with the results shown before is on next page: 
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Figure 70: graph for the time used in completing Temperature3 request (25 attempts). 

4.3.2.4 Analysis of body temperature service. 

This service has a strong difference with the others, despite being a simple service like them: it is not 

depending on a “local” sensor to retrieve the data, but it has them sent from the Zephyr belt via 

Bluetooth transmission. Since the Zephyr device will transmit data every second, a performance less 

appealing than the ones of the temperature agents should be expected. But actually, although its 

performance is lower when compared to the other motes, it is not too much lower. 

In order to have 25 requests successfully answered, 27 had to be taken (error rate: 2/27 attempts), just 

like it happened with the furthest away mote, the one with the Temperature1 agent deployed. The 

obtained results are as follows: 

Request body temp.: time for the request to be responded (ms) 

Request No. 1 603 

Request No. 2 741 

Request No. 3 681 

Request No. 4 671 

Request No. 5 702 

Request No. 6 669 

Request No. 7 728 

Request No. 8 607 

Request No. 9 753 

Request No. 10 783 

Request No. 11 710 

Request No. 12 750 

Request No. 13 857 

Request No. 14 665 

Request No. 15 702 
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Request No. 16 758 

Request No. 17 702 

Request No. 18 760 

Request No. 19 641 

Request No. 20 656 

Request No. 21 742 

Request No. 22 765 

Request No. 23 678 

Request No. 24 761 

Request No. 25 651 
 

Chart 39: measures obtained for Temperature3 service. 

Considering that the average (775,296 milliseconds) and the median times (755 milliseconds) are 

higher than in the other cases, and the difference between the average and the median value increases 

–thus, the results are less homogeneous than before- the expectations about this agent are confirmed. 

However, this agent has to be given credit for not lowering the performance that much, especially given 

that is dependent on an external device to harvest the data from the environment. 

A graph with the already represented data is below: 

 

Figure 71: graph for the time used in completing Body Temperature request (25 attempts). 

4.3.2.5 Conclusions about performance in simple services. 

From the data obtained before, there are some conclusions that can be inferred.  

• Apparently, the distance (and therefore, the strength of the signal that is communicating with 

the motes) is more of a issue than a moderate load of traffic when requests coming from a user 

have to be responded. The requests will fail a little oftener and the ones that are delivered will 
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be slightly slower and less reliable if one mote is too far away. Obviously, the lesser traffic a 

mote has to deal with and the nearer it is (but not so near to have interference phenomena), the 

better its performance will be. 

• When an external factor is put into use in a Wireless Sensor Network (in our case, a Bluetooth-

enabled belt), it is quite probable that it will lower the performance of the WSN element it 

attaches to, because it will make it dependent on the external device in its data deliveries. 

Nevertheless, if it has to be done, Sun SPOT motes have proven not to crash easily.  

It has to be born in mind that all the tests that are shown here were done with the motes fully charged, 

so battery levels should not be an issue when comparing performances among services.  

4.3.3 Composed services analysis. 
To offer a wider view of the general performance of the system, and in order to have information about 

how the network works with different services, the same analysis procedure has been applied on two of 

all the composed services of the system.     

4.3.3.1 Analysis of injury prevention service. 

This service fares the worst in terms of performance due to two reasons: firstly, it requires the retrieval 

of three pieces of information to be fully and successfully delivered; secondly, the service is requested 

under not so favourable conditions, with an element of the Wireless Sensor Network (the Orchestrator 

Alarms agent deployed altogether with the Orchestrator node) sending requests for data in a fast pace. 

Its reliability is affected as well: out of 28 requests done, three failed (error rate: 3/28 attempts); it is the 

worst result of all the services tested here. 

Consequently, the time required to serve this service is way longer than it was with the simple services 

(even when all the required times of the simple services are summed), as it can be learnt from the next 

chart: 

Request Injury prev.: time for the request to be responded (ms) 

Request No. 1 11408 

Request No. 2 4637 

Request No. 3 18009 

Request No. 4 11214 

Request No. 5 4466 

Request No. 6 11267 

Request No. 7 18121 

Request No. 8 4691 

Request No. 9 4596 

Request No. 10 4381 

Request No. 11 11184 

Request No. 12 11269 
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Request No. 13 17977 

Request No. 14 17821 

Request No. 15 18159 

Request No. 16 11123 

Request No. 17 4635 

Request No. 18 18185 

Request No. 19 11654 

Request No. 20 11182 

Request No. 21 16840 

Request No. 22 11213 

Request No. 23 16894 

Request No. 24 4538 

Request No. 25 11257 
 

Chart 40: measures obtained for injury prevention service. 

As for the average and the median times, they are 8702.681 milliseconds and 11257 milliseconds (this 

is the only tested service where the median value was bigger than the average one).There are two 

important facts that must be taken into account about this measures: firstly, the results obtained are, as 

it was mentioned before, much worse than in simple services. Apart from that, a pattern can be learnt 

from here: all the data collected are showing periods of time around 4.5, 11 and 18 seconds. It is 

probably due to the fact that the Broker and the Orchestrator agent are competing against the 

Orchestrator Alarms agent to get the data, and in this competence they can be very successful (the 

three pieces of information for the injury prevention service will be obtained before the data for the 

alarm checking procedure, thus taking for the service around 4.5 seconds to be served), mildly 

successful (the Broker and the Orchestrator agent must wait for the Orchestrator agent to fish one data 

request, lasting a time long enough to serve the injury prevention service in around 11 seconds), or 

unsuccessful (the Broker and the Orchestrator agent have to wait even more Orchestrator Alarm agent 

requests, thus increasing the required time to around 18 seconds). 

This fact can be seen on the graph below: 

 

Figure 72: graph for the time used in completing Injury prevention request (25 attempts). 
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4.3.3.2 Analysis of temperature control service. 

This composed Service requires less information pieces to be composed, and therefore its performance 

is better than in the case before. Its reliability is somewhat better too: out of 27 requests, 2 failed to 

provide the service (error rate: 2/27 attempts). 

As it can be seen in the next chart, the phenomenon that was happening before about readings 

collected around very specific values is reproduced here, albeit at a different, lower scale: 

Request Temp control: time for the request to be responded (ms) 

Request No. 1 3309 

Request No. 2 10105 

Request No. 3 3122 

Request No. 4 9916 

Request No. 5 3303 

Request No. 6 3390 

Request No. 7 15540 

Request No. 8 3236 

Request No. 9 3205 

Request No. 10 3239 

Request No. 11 3200 

Request No. 12 9932 

Request No. 13 3195 

Request No. 14 3177 

Request No. 15 3414 

Request No. 16 9965 

Request No. 17 15342 

Request No. 18 9974 

Request No. 19 15626 

Request No. 20 3775 

Request No. 21 9922 

Request No. 22 15870 

Request No. 23 3672 

Request No. 24 3496 

Request No. 25 9924 
 

Chart 41: measures obtained for temperature control service. 

As for the average and the median times, they are 4839.654 milliseconds and 3672 milliseconds 

respectively. Since now only two simple services are required to compose the third one, the times 

around the services are delivered are 3, 10 and 15 seconds. All these facts can be seen in the next 

graph as well: 
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Figure 73: graph for the time used in completing temperature control request (25 attempts). 

4.3.3.3 Conclusions about performance in composed services. 

As it was done before, conclusions regarding how composed services are offered in our system using 

nSOM semantic middleware architecture are presented: 

• Composed services take heavy punishment from the almost constant activity of the 

Orchestrator Alarms agent: since they require a lot of messages until finally completing their 

tasks (especially if many pieces of simple information are required), they are prone to suffer 

from delays at any of the links needed to have a fully functional chain of requests and 

responses, both inside and outside the domain of the Wireless Sensor Network.  

• The performance of a composed service, albeit much lower than that of a simple service, is at 

least fairly predictable: depending on how fast the requests for simple data were attended the 

result will be obtained around very specific values  

4.3.4 Reset time analysis. 
The last test that is going to be offered is regarding the time required for an agent to get successfully 

registered at the Broker agent. As the reliability of Wireless Sensor Networks is one of their most 

important features to be considered, it seems interesting to know how long would take an agent to 

register itself again if the mote it is deployed on has gone down for any reason (data floods, energy 

depletion, etc.). Another 25 attempts were done at this test, and Temperature2 agent was used for this 

process. The results obtained were as follows: 

Request Time for an agent to get re-registered (ms) 

Attempt No. 1 7309 

Attempt No. 2 7375 

Attempt No. 3 7444 
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Attempt No. 4 7307 

Attempt No. 5 7205 

Attempt No. 6 7184 

Attempt No. 7 7246 

Attempt No. 8 7298 

Attempt No. 9 7178 

Attempt No. 10 7367 

Attempt No. 11 7457 

Attempt No. 12 7448 

Attempt No. 13 7376 

Attempt No. 14 7371 

Attempt No. 15 7364 

Attempt No. 16 7275 

Attempt No. 17 7305 

Attempt No. 18 7353 

Attempt No. 19 7410 

Attempt No. 20 7352 

Attempt No. 21 7252 

Attempt No. 22 7288 

Attempt No. 23 7315 

Attempt No. 24 7224 

Attempt No. 25 7226 
 

Chart 42: measures obtained for re-registering an agent. 

The data obtained are very homogeneous (in fact, the average and the median values are 7316.298 

milliseconds and 7309 milliseconds, proportionally, the least differentiated of all the tests done), 

although somehow disappointing because the required time seems to be longer that what would be 

considered as desirable (results around 3 or 4 seconds were expected). 

The data represented in the chart above these Lines has been poured into a graph below: 

 

Figure 74: graph for the time used in completing re-registering (25 attempts). 
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5.1 Conclusions. 
The content of this report has been primarily focused on three major topics: a) A study on the state of 

the art of the current situation of ubiquitous middleware architectures, as a starting point to get an idea 

of what problems can be found when developing middleware under this conditions, b) A formal 

specification of a ubiquitous, pervasive middleware architecture with a description of all its elements, 

along with what functionalities can be expected and how they operate, and c) A third stage where this 

architecture is put to an actual use under a real system, obtaining a collection of data that is studied so 

as to extract information from it. 

In order to conclude this report in a more compelling way, a brief analysis of each of the already 

presented chapters is going to be made here to infer several conclusions at the sight of it from a holistic 

point of view, that will make possible to better evaluate the work done in this Final Degree Dissertation, 

along with several proposals that would be interesting to be taken into consideration for future 

developments on this technology. 

To begin with, the topics that have played a key role in this Final Degree Dissertation were first 

introduced in Chapter 1: the foundations of ubiquitous computing, along with all the other names that it 

has been given, the concepts that were linked to it, and the challenges inherently associated with 

developing software for this environment. Besides, the motivations, objectives and contributions quoted 

in this Final Degree Dissertation, the structure of the whole report and the technological framework it is 

encased in were mentioned as well. 

Being the main topic this report is about semantic, ubiquitous and pervasive middleware, a compelling 

description of the state of the art in ubiquitous middleware was offered in Chapter 2. All the troublesome 

features that had been hinted before were fully displayed here. First of all, a reasoning of why is a 

middleware architecture layer required was made, stating that middleware architectures dated decades 

before this Final Degree Dissertation, and given that one of them would be needed in a development of 

ubiquitous nature, why this middleware architecture could not be dealt with in a similar way as if it was a 

more conventional system. Although the objectives and the solutions seemed to be the same that were 

used on regular environments, realistically, middleware developments must be adapted to the special 

requirements of wearable and pervasive computing.  

Once this was learnt, a collection of legacy solutions in ubiquitous middleware was offered. Although 

many of the developments have important and somewhat common flaws (not ubiquitous enough, 

limited to a small scenario, not complete hardware insulators) they have to be given credit for being 

serious attempts at giving a solution to the challenges faced under the conditions that interest this Final 

Degree Dissertation. Plus, generally faulty as they may be, their failures have been a source for 

feedback and improvement of later developments, and it does not look as a coincidence that these new 

developments started appearing when new approaches were tried towards ubiquitous computing. 

These new approaches offer general purposes, objectives and new paradigms that ought to be taken 

into account when developing a middleware architecture; they provide new points of view and solve 
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some of the issues presented before (software-centric architectures do not consider hardware that 

much anymore, the Internet of Things -or IoT- gives a final goal for applications of where to point, etc.), 

although as it has been seen, they are not perfect and have their own issues, as the former middleware 

architectures based on earlier paradigms had. 

It also has become clear in this chapter that there is a wide variety of motes to choose from when 

thinking of a ubiquitous system –for a wider knowledge, one of the annexes shows a complete list of all 

the motes and gateway motes that are being marketed-; while not mandatory by any means, Wireless 

Sensor Networks are usually a key component for middleware architectures, and because WSNs are 

usually composed by intercommunication among a network of motes (regardless of what may be at the 

end of the system, like an user-carried computer or a BAN/PAN), choosing a particular model of a mote 

is a critical task for the whole ubiquitous system that is going to be deployed. Among all of them, Sun 

SPOT motes stood out for several reasons: their RAM and ROM capabilities were impressive and the 

usage of the Java Virtual Machine as the operating system guarantees a low footprint of the code in 

use.  

Finally, some of the open issues pending on hardware platforms were mentioned too. Basically, the 

development of more efficient and capable Wireless Sensor Networks is strongly dependent on the 

development of motes and their technologies, so any breakthrough in these fields will have a 

considerable impact on future implementations. Furthermore, it is pointed out that several services that 

are almost a given in conventional environment (Quality of Service, security) are underdeveloped or 

simply nonexistent in Wireless Sensor Networks and middleware architectures of this kind; an effort 

must be done to solve this issue. 

Next chapter was crucial to the introduction to an example of a service and ubiquitous oriented 

middleware. A general overview of the nSOM semantic middleware architecture was first offered, with 

all its different components and all the messages that are used whenever a communication is 

established (or finished). Before talking about its functionalities, the components or this architecture had 

to be introduced. nSOM is an agent-oriented semantic architecture, so its main components from a 

software-centric point of view (from the hardware perspective, the usual Wireless Sensor Network can 

be expected, along with some other parts that are going to be specifically mounted for the system 

validation) are agents; these agents can be uploaded to the motes at will, and it is not unusual (in some 

cases it is even mandatory) to have more than one agent loaded into each of the motes. Only the base 

station has not agents, although it is playing another role that makes it almost as if there was one of 

them (performing bridging functionalities between the ubiquitous environment and the ESB present in a 

Personal Computer). 

After all its components were described, it was time to show what they could offer altogether. Apart 

from the readings that could be obtained from the data harvested by the sensors (environmental 

temperature) or converted from the Zephyr belt (heart rate, breathing rate, body temperature), those 

readings could be combined into composed services that would result in a third service whose value 

can be inferred from the combined values of the previous readings. This value obtained from a 
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composed service would be the response of a request undertaken by the final user, who must remain 

oblivious to the fact that there are no physical sensors measuring any data (concept of sensor 

virtualization) despite requesting an actual value.  

Lastly, once all this aspects were clarified, a system was built within the technological framework that 

the Lifewear project could offer. After reasoning what kind of scenario the system would be built on, the 

user cases found were analyzed, along with the actors playing an active role in each of them. As it has 

been read, they were all based on the capabilities that were described before in the previous chapter. A 

description of the validation scenario is the next point of the chapter; the elements that are taking part of 

it, and the places they are going to be located, are told in an accurate way. From this deployed 

architecture a certain amount of data was measured, and from the results that were obtained, once they 

were processed into charts and graphics, several tendencies and conclusions were given. 

5.2 Future works. 
Although nSOM middleware architecture has proved to have a high level of maturity through the 

Lifewear project, and has become noteworthy in the fields of ubiquitous computing and semantic, 

pervasive middleware by its own right, there are still several improvements that could be interesting to 

tackle in future versions, judging from the results that have been obtained in the real scenario: 

• A stronger focus on node scalability would be desirable. If all the motes that are used in this 

project are counted (plus the two Sun SPOT motes and the base station from Tecnalia) we 

have nine motes (three indoor temperature nodes, two Bluetooth-related motes, one Broker, 

one Orchestrator –belonging to the deployment to the EUITT-, an outdoor temperature mote, 

an indoor luminosity mote –belonging to the deployment of Tecnalia-) and two base stations 

(one for the deployment done with the infrastructure of EUITT and another for Tecnalia´s). For 

a relatively small indoor scenario is acceptable, but if a more ambitious approach was tried for 

another purpose different from a gymnasium (for example, a whole building instead of a room, 

a wide outdoor area, etc.), an extra effort must be placed in having a perfectly functional 

system with, at least, dozens of motes. Nevertheless, the variety of challenges that have been 

overcome under the described deployment (fast-paced data requests, simultaneous service 

requests, coexistence with other architecture with the same kind of motes, Bluetooth data 

conversion) is remarkable and proves that the nSOM architecture has a lot of potential for more 

complex developments. 

• Sophisticated mechanisms to improve the reliability of the system. Self-healing and self-

recovery systems would come in handy for future developments, especially if a higher number 

of motes (and therefore, a higher number of chances for the failure of one of them) is going to 

be part of the Wireless Sensor Network. There are several ways to get through this task: nodes 

can check among them if the expected functionalities of the others are being made; should 

there be any trouble, another mote could assume the duties to be undertaken of the mode that 

has failed to do so. Also, a model where Broker or Orchestrator functionalities are decentralized 
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from one to several motes could make the system more reliable (if one of the motes that is part 

of a “Broker federation” runs out of battery, the other motes can still perform much or the 

majority of their work), at the expense of having several motes to fulfil one particular task 

instead of just one.  

• If this architecture is going to be used in a wider area, where there are many rooms and many 

places, a location system could be useful. Although right now it is possible to know where 

every mote is by using very basic procedures (if someone has attached a temperature mote to 

the wall of a particular room, then this person knows which room the mote is), if the 

environment that is going to receive the Wireless Sensor network, or the WSN itself, are very 

wide, taking notes about where the dozens or even hundreds of nodes are is clearly not an 

advisable idea. It would be more sensible to obtain the information whenever a request is done 

as part of the JSON answer, to have this data in a more precise way (asking for the 

temperature of one spot of one room, for example) or even requesting the accurate location of 

a mote for future data retrieval. 

• Finally, a software management application to better handle code from/to the motes would 

be another improvement to think of. Currently, the portability of the Java classes that are 

uploaded to a mote is very limited; an IDE is required to modify them, and in order to upload a 

different version of that code, or software with different functionalities, an uncomfortable 

procedure of looking through the projects of the IDE has to be done. It seems like a better 

solution if a portable application with a user-friendly interface could do that procedure and the 

file uploading without having to worry about having an IDE. It could be done by offering several 

options, like the available agents to be uploaded (Temperature, Orchestrator) or different 

software versions. Even minor changes (for example, lowering the body temperature maximum 

acceptable value) could be managed from the interface of the application, making it more 

attractive for a final user or a developer. 
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To this day, nSOM middleware architecture makes use of 29 java classes; since providing the Javadoc 

of all of them would be too impractical and could make the reader lose the perspective of the agents 

involved in the communications only the most important classes are shown here: 

Classes related to the Broker agent: 

runSun SPOT.java 
public class runSun SPOT 
extends MIDlet 

The startApp method of this class is called by the VM to start the application. The manifest specifies this class as 
MIDlet-1, which means it will be selected for execution. 

 

Constructor Summary 

runSun SPOT()  
             

  

Method Summary 

protected 
 void 

destroyApp(boolean unconditional)  
          Method used to finish the application. 

protected 
 void 

pauseApp()  
          Method used to pause the applications, it is not currently called by the Squawk Virtual 
Machine. 

protected 
 void 

startApp()  
          Method used to start the application and execute all the uploaded code. 

 void switchPressed(ISwitch sw)  
          Method that defines the actions to be taken when a switch is pressed. 

 void switchReleased(ISwitch sw)  
          Method that defines the actions to be taken when a switch is released. 

  

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 
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Constructor Detail 

runSun SPOT 
public runSun SPOT() 

Method Detail 

startApp 
protected void startApp() 
                 throws MIDletStateChangeException 

Method used to start the application and execute all the uploaded code. 

Throws: 

MIDletStateChangeException 

 

pauseApp 
protected void pauseApp() 

Method used to pause the applications, it is not currently called by the Squawk Virtual Machine. 

 

destroyApp 
protected void destroyApp(boolean unconditional) 
                   throws MIDletStateChangeException 

Method used to finish the application. 

Parameters: 

unconditional - not currently used by the application. 

Throws: 

MIDletStateChangeException - exception thrown if there is an illegal change of state. 

 

switchPressed 
public void switchPressed(ISwitch sw) 

Method that defines the actions to be taken when a switch is pressed. 

Parameters: 

sw - object from the ISwitch interface 
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switchReleased 
public void switchReleased(ISwitch sw) 

Method that defines the actions to be taken when a switch is released. 

Parameters: 

sw - object from the ISwitch interface 

 

nSOMBrokerAgent.java 
public class nSOMBrokerAgent 
extends java.lang.Object 
implements nSOMAgent 

Project: Lifewear 

 

Constructor Summary 

nSOMBrokerAgent()  
             

  

Method Summary 

 void connectionReset(java.lang.String dottedAddress)  
          Performs the load process of the nSOMBrokerAgent in the Service 
Execution Platform. 

 java.lang.String getnSOMAgentDescription()  
          Obtain the nSOMBrokerAgentDescription. 

 nSOMServiceAgentObject getServiceAgentObject()  
          Obtain the service description object for this nSOMLightAgent. 

 void load(nSOMContext nSOMContext)  
          Performs the load process of the nSOMBrokerAgent in the Service 
Execution Platform. 

 void receptacle(ServiceContext serviceResponse)  
          Implements the receptacle for service responses of the 
nSOMBrokerAgent. 

 void run()  
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          Performs the run process of the nSOMBrokerAgent. 

 void serviceInvocation(ServiceContext serviceInvocation)  
          Implements the receptacle for service invocation of the 
nSOMBrokerAgent. 

 void startSenderThreadPort52()  
          Method that will control the radio connections and communications 
through port number 52 (composed services requests). 

 void startSenderThreadPort54()  
          Method that will control the radio connections and communications 
through port number 54 (alarm requests). 

 void startSenderThreadPort67()  
          Method that will control the radio connections and communications 
through port number 67 (simple services requests). 

 void stop()  
          Performs the stop process of the nSOMBrokerAgent. 

 void unload()  
          Performs the unload process of the nSOMBrokerAgent in the Service 
Execution Platform. 

  

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

  

Constructor Detail 

nSOMBrokerAgent 
public nSOMBrokerAgent() 

Method Detail 

load 
public void load(nSOMContext nSOMContext) 

Performs the load process of the nSOMBrokerAgent in the Service Execution Platform. 

Specified by: 
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load in interface nSOMAgent 

Parameters: 

Context - provided by the nSOMContainer 

 

connectionReset 
public void connectionReset(java.lang.String dottedAddress) 

Performs the load process of the nSOMBrokerAgent in the Service Execution Platform. 

Parameters: 

Context - provided by the nSOMContainer 

 

run 
public void run() 

Performs the run process of the nSOMBrokerAgent. It is listening for data from the DiYSE cloud 

Specified by: 

run in interface nSOMAgent 

 

stop 
public void stop() 

Performs the stop process of the nSOMBrokerAgent. 

Specified by: 

stop in interface nSOMAgent 

 

unload 
public void unload() 

Performs the unload process of the nSOMBrokerAgent in the Service Execution Platform. 

Specified by: 

unload in interface nSOMAgent 

 

serviceInvocation 
public void serviceInvocation(ServiceContext serviceInvocation) 

Implements the receptacle for service invocation of the nSOMBrokerAgent. This method is invoked to 
pass the service invocations to the Broker agent. 

Parameters: 
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ServiceContext - of the service invocation 

 

receptacle 
public void receptacle(ServiceContext serviceResponse) 

Implements the receptacle for service responses of the nSOMBrokerAgent. This method is invoked to 
pass the service responses to the Broker agent. 

Specified by: 

receptacle in interface nSOMAgent 

Parameters: 

ServiceContext - of the service response 

 

getServiceAgentObject 
public nSOMServiceAgentObject getServiceAgentObject() 

Obtain the service description object for this nSOMLightAgent. 

Specified by: 

getServiceAgentObject in interface nSOMAgent 

Returns: 

nSOMServiceAgentObject of the nSOMLightAgent 

 

getnSOMAgentDescription 
public java.lang.String getnSOMAgentDescription() 

Obtain the nSOMBrokerAgentDescription. This method provides the name of the broker agent, which 
have been invoked. 

Specified by: 

getnSOMAgentDescription in interface nSOMAgent 

Returns: 

String with the Broker agent description 

 

startSenderThreadPort67 
public void startSenderThreadPort67() 

Method that will control the radio connections and communications through port number 67 (simple 
services requests). 
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startSenderThreadPort52 
public void startSenderThreadPort52() 

Method that will control the radio connections and communications through port number 52 
(composed services requests). 

 

startSenderThreadPort54 
public void startSenderThreadPort54() 

Method that will control the radio connections and communications through port number 54 (alarm 
requests). 

 

      
 

 

Classes related to the Orchestrator agent: 

nSOMOrchestratorAgent.java 
public class nSOMOrchestratorAgent 
extends java.lang.Object 
implements nSOMAgent 

Project: Lifewear 

 

Field Summary 

static double MAX_BODY_TEMPERATURE  
          Variable used to have a value for maximum body temperature. 

static int MAX_HEART_RATE  
          Variable used to have a value for maximum heart rate. 

static double MAX_ROOM_TEMPERATURE  
          Variable used to have a value for maximum room temperature. 

static double MIN_BODY_TEMPERATURE  
          Variable used to have a value for minimum body temperature. 

static int MIN_HEART_RATE  
          Variable used to have a value for minimum heart rate. 

static double MIN_ROOM_TEMPERATURE  
          Variable used to have a value for minimum room temperature. 
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static int WARNING_MARGIN  
          Variable used to have a margin value; it will be useful to define levels on the results of 
the composed services. 

static double WARNING_MARGIN_TEMP  
          Variable used to have a margin value; it will be useful to define levels on the results of 
the composed services related with body temperature. 

  

Constructor Summary 

nSOMOrchestratorAgent()  
          Constructor of the nSOMOrchestratorAgent Class.  

  

Method Summary 

 double bluetoothRequest(java.lang.String serviceInvocationSMD
)  
          Method used to extract the value obtained from the Bluetooth-associated 
mote from a JSON answer. 

 java.lang.String getInjuryPrevention()  
          Method used to get a lecture of the risk of having a muscular breakdown 
while performing a workout. 

 java.lang.String getnSOMAgentDescription()  
          Obtain the nSOMAgentDescription. 

 nSOMServiceAgentObje
ct 

getServiceAgentObject()  
          Obtain the service description object for this nSOMTemperatureAgent. 

 java.lang.String getTemperatureControl()  
          Method used to get a lecture of the temperature levels while performing. 

 java.lang.String getThermometer()  
            

 void load(nSOMContext nSOMContext)  
          Performs the load process of the nSOMTemperatureAgent in the Service 
Execution Platform. 

 java.lang.String receiveDataRequestFromWSN()  
          Process an incoming service request from the DiYSE cloud to the WSN, 
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waiting the service response from the sensor network via Broker node 

 void receptacle(ServiceContext operationInvocation)  
          Implements the receptacle of the nSOMTemperatureAgent. 

 void run()  
          Performs the run process of the nSOMTemperatureAgent and the services 
registering in the Brokers. 

 void scanAlarms()  
            

 void sendDataRequestToWSN(java.lang.String serviceInvocatio
nSMD)  
          Process an incoming service request from the DiYSE cloud to the WSN, 
sending it to the sensor network via Broker node 

 void stop()  
          Performs the stop process of the nSOMTemperatureAgent and the 
services unregistering in the Brokers. 

 double tomarTemperatura(java.lang.String serviceInvocationSMD
)  
          Method used to extract the temperature value from a JSON answer. 

 void unload()  
          Performs the unload process of the nSOMTemperatureAgent in the 
Service Execution Platform. 

 java.lang.String wirelessNetworkRequest(java.lang.String operationName)  
          Method used to perform requests on the network in order to obtain the 
required data for the composed services 

  

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

  

Field Detail 

MAX_ROOM_TEMPERATURE 
public static final double MAX_ROOM_TEMPERATURE 

Variable used to have a value for maximum room temperature. 
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See Also: 

Constant Field Values 

 

MIN_ROOM_TEMPERATURE 
public static final double MIN_ROOM_TEMPERATURE 

Variable used to have a value for minimum room temperature. 

See Also: 

Constant Field Values 

 

MAX_BODY_TEMPERATURE 
public static final double MAX_BODY_TEMPERATURE 

Variable used to have a value for maximum body temperature. 

See Also: 

Constant Field Values 

 

MIN_BODY_TEMPERATURE 
public static final double MIN_BODY_TEMPERATURE 

Variable used to have a value for minimum body temperature. 

See Also: 

Constant Field Values 

 

WARNING_MARGIN 
public static final int WARNING_MARGIN 

Variable used to have a margin value; it will be useful to define levels on the results of the composed 
services. 

See Also: 

Constant Field Values 

 

WARNING_MARGIN_TEMP 
public static final double WARNING_MARGIN_TEMP 

Variable used to have a margin value; it will be useful to define levels on the results of the composed 
services related with body temperature. 

See Also: 
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Constant Field Values 

 

MAX_HEART_RATE 
public static final int MAX_HEART_RATE 

Variable used to have a value for maximum heart rate. 

See Also: 

Constant Field Values 

 

MIN_HEART_RATE 
public static final int MIN_HEART_RATE 

Variable used to have a value for minimum heart rate. 

See Also: 

Constant Field Values 

Constructor Detail 

nSOMOrchestratorAgent 
public nSOMOrchestratorAgent() 

Constructor of the nSOMOrchestratorAgent Class. 

Method Detail 

load 
public void load(nSOMContext nSOMContext) 

Performs the load process of the nSOMTemperatureAgent in the Service Execution Platform. 

Specified by: 

load in interface nSOMAgent 

Parameters: 

Context - provided by the nSOMContainer 

 

run 
public void run() 

Performs the run process of the nSOMTemperatureAgent and the services registering in the Brokers. 

Specified by: 

run in interface nSOMAgent 
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stop 
public void stop() 

Performs the stop process of the nSOMTemperatureAgent and the services unregistering in the 
Brokers. 

Specified by: 

stop in interface nSOMAgent 

 

unload 
public void unload() 

Performs the unload process of the nSOMTemperatureAgent in the Service Execution Platform. 

Specified by: 

unload in interface nSOMAgent 

Parameters: 

Context - provided by the nSOMContainer 

 

getThermometer 
public java.lang.String getThermometer() 
                                throws java.io.IOException 

Throws: 

java.io.IOException 

 

getInjuryPrevention 
public java.lang.String getInjuryPrevention() 
                                     throws java.io.IOException 

Method used to get a lecture of the risk of having a muscular breakdown while performing a workout. 
This is a composed service made from requests of room temperature, body temperature and heart 
rate. 

Returns: 

Risk of having muscular injuries ("HIGH RISK", "MEDIUM RISK", "LOW RISK". 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 
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getTemperatureControl 
public java.lang.String getTemperatureControl() 
                                       throws java.io.IOException 

Method used to get a lecture of the temperature levels while performing. a workout. This is a 
composed service made from requests of room temperature and body temperature. 

Returns: 

Temperature levels: "VERY LOW", "LOW"", "MEDIUM", "HIGH", "VERY HIGH". 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 

 

wirelessNetworkRequest 
public java.lang.String 
wirelessNetworkRequest(java.lang.String operationName) 
                                        throws java.io.IOException 

Method used to perform requests on the network in order to obtain the required data for the 
composed services 

Parameters: 

operationName - the name of the operation request to obtain the data for the wider composed 
service. 

Returns: 

the value (formatted to a String) of the requested data 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 

 

tomarTemperatura 
public double tomarTemperatura(java.lang.String serviceInvocationSMD) 

Method used to extract the temperature value from a JSON answer. 

Parameters: 

serviceInvocationSMD - the JSON answer that is containing the temperature value. 

Returns: 

the specific temperature value. 

 

bluetoothRequest 
public double bluetoothRequest(java.lang.String serviceInvocationSMD) 

Method used to extract the value obtained from the Bluetooth-associated mote from a JSON answer. 
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Parameters: 

serviceInvocationSMD - the JSON answer that is containing the Bluetooth-associated value. 

Returns: 

the specific Bluetooth-associated value. 

 

receptacle 
public void receptacle(ServiceContext operationInvocation) 

Implements the receptacle of the nSOMTemperatureAgent. This method is invoked to pass the service 
invocations to the agents. 

Specified by: 

receptacle in interface nSOMAgent 

Parameters: 

ServiceContext - of the service invocation 

 

sendDataRequestToWSN 
public void sendDataRequestToWSN(java.lang.String serviceInvocationSMD) 

Process an incoming service request from the DiYSE cloud to the WSN, sending it to the sensor network 
via Broker node 

Parameters: 

serviceInvocationSMD - invocation in SMD 

 

receiveDataRequestFromWSN 
public java.lang.String receiveDataRequestFromWSN() 
                                           throws java.io.IOException 

Process an incoming service request from the DiYSE cloud to the WSN, waiting the service response 
from the sensor network via Broker node 

Returns: 

serviceResponseSMD response in SMD 

Throws: 

java.io.IOException 

 

scanAlarms 
public void scanAlarms() 
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getServiceAgentObject 
public nSOMServiceAgentObject getServiceAgentObject() 

Obtain the service description object for this nSOMTemperatureAgent. 

Specified by: 

getServiceAgentObject in interface nSOMAgent 

Returns: 

nSOMServiceAgentObject of the nSOMNoiseAgent 

 

getnSOMAgentDescription 
public java.lang.String getnSOMAgentDescription() 

Obtain the nSOMAgentDescription. This method provides the name of the temperature agent which 
have been invoked. 

Specified by: 

getnSOMAgentDescription in interface nSOMAgent 

Returns: 

String with the agent description 

 

nSOMOrchestratorAlarmsAgent.java: 
public class nSOMOrchestratorAlarmsAgent 
extends java.lang.Object 
implements nSOMAgent 

Project: Lifewear 

 

Field Summary 

static int ID_HBT  
          Variable used to have a value for maximum body temperature, the actual temperature 
value will be added to this identifier. 

static int ID_HET  
          Variable used to have a value for maximum environmental temperature, the actual 
temperature value will be added to this identifier. 

static int ID_HR  
          Variable used to have a value for heart rate, the actual heart rate value will be added 
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to this identifier. 

static int ID_LBT  
          Variable used to have a value for minimum body temperature, the actual temperature 
value will be added to this identifier. 

static int ID_LET  
          Variable used to have a value for minimum environmental temperature, the actual 
temperature value will be added to this identifier. 

static double MAX_BODY_TEMPERATURE  
          Variable used to have a value for maximum body temperature. 

static int MAX_HEART_RATE  
          Variable used to have a value for maximum heart rate. 

static double MAX_ROOM_TEMPERATURE  
          Variable used to have a value for maximum room temperature. 

static double MIN_BODY_TEMPERATURE  
          Variable used to have a value for minimum body temperature. 

static int MIN_HEART_RATE  
          Variable used to have a value for minimum heart rate. 

static double MIN_ROOM_TEMPERATURE  
          Variable used to have a value for minimum room temperature. 

  

Constructor Summary 

nSOMOrchestratorAlarmsAgent()  
          Constructor of the nSOMTemperatureAgent Class.  

  

Method Summary 

 double bluetoothRequest(java.lang.String serviceInvocationSMD
)  
          Method used to extract the value obtained from the Bluetooth-associated 
mote from a JSON answer. 

 int checkAlarm(double envTemp, double bodyTemp, 

double heartRate)  
          This method is used to check whether the received values are within the 



 

Chapter 5                                                                                                      Conclusions and future works 

155 

 

expected tolerances that the thresholds are defining or there is any value under 
or over the defined range. 

 void enviarAlarmaESB(int alarma)  
          Method used to send an alarm to the Enterprise Serial Bus, whenever it is 
suitable. 

 void enviarTemperaturaMota(int temp)  
          Method used to send the environmental temperature to the mote that is 
being carried by the user. 

 java.lang.String getnSOMAgentDescription()  
          Obtain the nSOMAgentDescription. 

 nSOMServiceAgentObje
ct 

getServiceAgentObject()  
          Obtain the service description object for this nSOMTemperatureAgent. 

 int isAlarmed()  
            

 void load(nSOMContext nSOMContext)  
          Performs the load process of the nSOMTemperatureAgent in the Service 
Execution Platform. 

 java.lang.String receiveDataRequestFromWSN()  
          Process an incoming service request from the DiYSE cloud to the WSN, 
waiting the service response from the sensor network via Broker node 

 void receptacle(ServiceContext operationInvocation)  
          Implements the receptacle of the nSOMTemperatureAgent. 

 double requestBodyTemperature()  
          method used to obtain the body temperature, so as to know if the value is 
surpassing the low or high level threshold. 

 double requestEnvironmentalTemperature()  
          method used to obtain the environmental temperature. 

 int requestHeartRate()  
          method used to obtain the heart rate, so as to know if the value is 
surpassing the low or high level threshold. 

 void run()  
          Performs the run process of the nSOMTemperatureAgent and the services 
registering in the Brokers. 
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 void sendDataRequestToWSN(java.lang.String serviceInvocatio
nSMD)  
          Process an incoming service request from the DiYSE cloud to the WSN, 
sending it to the sensor network via Broker node 

 void stop()  
          Performs the stop process of the nSOMTemperatureAgent and the 
services unregistering in the Brokers. 

 double tomarTemperatura(java.lang.String serviceInvocationSMD
)  
          Method used to extract the temperature value from a JSON answer. 

 void unload()  
          Performs the unload process of the nSOMTemperatureAgent in the 
Service Execution Platform. 

  

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

  

Field Detail 

MAX_ROOM_TEMPERATURE 
public static final double MAX_ROOM_TEMPERATURE 

Variable used to have a value for maximum room temperature. 

See Also: 

Constant Field Values 

 

MIN_ROOM_TEMPERATURE 
public static final double MIN_ROOM_TEMPERATURE 

Variable used to have a value for minimum room temperature. 

See Also: 

Constant Field Values 
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MAX_BODY_TEMPERATURE 
public static final double MAX_BODY_TEMPERATURE 

Variable used to have a value for maximum body temperature. 

See Also: 

Constant Field Values 

 

MIN_BODY_TEMPERATURE 
public static final double MIN_BODY_TEMPERATURE 

Variable used to have a value for minimum body temperature. 

See Also: 

Constant Field Values 

 

MAX_HEART_RATE 
public static final int MAX_HEART_RATE 

Variable used to have a value for maximum heart rate. 

See Also: 

Constant Field Values 

 

MIN_HEART_RATE 
public static final int MIN_HEART_RATE 

Variable used to have a value for minimum heart rate. 

See Also: 

Constant Field Values 

 

ID_LET 
public static final int ID_LET 

Variable used to have a value for minimum environmental temperature, the actual temperature value 
will be added to this identifier. 

See Also: 

Constant Field Values 

 

ID_HET 
public static final int ID_HET 
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Variable used to have a value for maximum environmental temperature, the actual temperature value 
will be added to this identifier. 

See Also: 

Constant Field Values 

 

ID_HR 
public static final int ID_HR 

Variable used to have a value for heart rate, the actual heart rate value will be added to this identifier. 

See Also: 

Constant Field Values 

 

ID_LBT 
public static final int ID_LBT 

Variable used to have a value for minimum body temperature, the actual temperature value will be 
added to this identifier. 

See Also: 

Constant Field Values 

 

ID_HBT 
public static final int ID_HBT 

Variable used to have a value for maximum body temperature, the actual temperature value will be 
added to this identifier. 

See Also: 

Constant Field Values 

Constructor Detail 

nSOMOrchestratorAlarmsAgent 
public nSOMOrchestratorAlarmsAgent() 

Constructor of the nSOMTemperatureAgent Class. 

Method Detail 

load 
public void load(nSOMContext nSOMContext) 

Performs the load process of the nSOMTemperatureAgent in the Service Execution Platform. 
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Specified by: 

load in interface nSOMAgent 

Parameters: 

Context - provided by the nSOMContainer 

 

run 
public void run() 

Performs the run process of the nSOMTemperatureAgent and the services registering in the Brokers. 

Specified by: 

run in interface nSOMAgent 

 

stop 
public void stop() 

Performs the stop process of the nSOMTemperatureAgent and the services unregistering in the 
Brokers. 

Specified by: 

stop in interface nSOMAgent 

 

unload 
public void unload() 

Performs the unload process of the nSOMTemperatureAgent in the Service Execution Platform. 

Specified by: 

unload in interface nSOMAgent 

Parameters: 

Context - provided by the nSOMContainer 

 

isAlarmed 
public int isAlarmed() 

 

requestEnvironmentalTemperature 
public double requestEnvironmentalTemperature() 
                                       throws java.io.IOException 
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method used to obtain the environmental temperature. This datum will be sent to mote that is in 
charge of gathering all the simple data , analyze it and send an alarm to the final user watch if it has to 
be done. 

Returns: 

the environmental temperature value. 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 

 

tomarTemperatura 
public double tomarTemperatura(java.lang.String serviceInvocationSMD) 

Method used to extract the temperature value from a JSON answer. 

Parameters: 

serviceInvocationSMD - the JSON answer that is containing the temperature value. 

Returns: 

the specific temperature value. 

 

requestBodyTemperature 
public double requestBodyTemperature() 
                              throws java.io.IOException 

method used to obtain the body temperature, so as to know if the value is surpassing the low or high 
level threshold. 

Returns: 

the environmental temperature value. 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 

 

requestHeartRate 
public int requestHeartRate() 
                     throws java.io.IOException 

method used to obtain the heart rate, so as to know if the value is surpassing the low or high level 
threshold. 

Returns: 

the environmental temperature value. 

Throws: 
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java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 

 

bluetoothRequest 
public double bluetoothRequest(java.lang.String serviceInvocationSMD) 

Method used to extract the value obtained from the Bluetooth-associated mote from a JSON answer. 

Parameters: 

serviceInvocationSMD - the JSON answer that is containing the Bluetooth-associated value. 

Returns: 

the specific Bluetooth-associated value. 

 

checkAlarm 
public int checkAlarm(double envTemp, 
                      double bodyTemp, 
                      double heartRate) 

This method is used to check whether the received values are within the expected tolerances that the 
thresholds are defining or there is any value under or over the defined range. 

Parameters: 

envTemp - the received environmental temperature 

bodyTemp - the received body temperature 

heartRate - the received heart rate 

Returns: 

0 if there is no alarm, a three-figured number, composed by the identifier + the received value 

 

enviarAlarmaESB 
public void enviarAlarmaESB(int alarma) 
                     throws java.io.IOException 

Method used to send an alarm to the Enterprise Serial Bus, whenever it is suitable. 

Parameters: 

alarma - a three-figured number containing the kind and the value of the reading that triggered the 
alarm. 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 
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enviarTemperaturaMota 
public void enviarTemperaturaMota(int temp) 
                           throws java.io.IOException 

Method used to send the environmental temperature to the mote that is being carried by the user. 

Parameters: 

temp - the temperature value that is sent to the mote. 

Throws: 

java.io.IOException - if there is any sort of trouble collecting data from Input/Output classes. 

 

receptacle 
public void receptacle(ServiceContext operationInvocation) 

Implements the receptacle of the nSOMTemperatureAgent. This method is invoked to pass the service 
invocations to the agents. 

Specified by: 

receptacle in interface nSOMAgent 

Parameters: 

ServiceContext - of the service invocation 

 

sendDataRequestToWSN 
public void sendDataRequestToWSN(java.lang.String serviceInvocationSMD) 

Process an incoming service request from the DiYSE cloud to the WSN, sending it to the sensor network 
via Broker node 

Parameters: 

serviceInvocationSMD - invocation in SMD 

 

receiveDataRequestFromWSN 
public java.lang.String receiveDataRequestFromWSN() 
                                           throws java.io.IOException 

Process an incoming service request from the DiYSE cloud to the WSN, waiting the service response 
from the sensor network via Broker node 

Returns: 

serviceResponseSMD response in SMD 

Throws: 

java.io.IOException 
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getServiceAgentObject 
public nSOMServiceAgentObject getServiceAgentObject() 

Obtain the service description object for this nSOMTemperatureAgent. 

Specified by: 

getServiceAgentObject in interface nSOMAgent 

Returns: 

nSOMServiceAgentObject of the nSOMNoiseAgent 

 

getnSOMAgentDescription 
public java.lang.String getnSOMAgentDescription() 

Obtain the nSOMAgentDescription. This method provides the name of the temperature agent which 
have been invoked. 

Specified by: 

getnSOMAgentDescription in interface nSOMAgent 

Returns: 

String with the agent description 

 

Classes related to the Temperature agent: 

TemperatureSensor.java 
public class TemperatureSensor 
extends java.lang.Object 

Project: lifewear 

 

Constructor Summary 

TemperatureSensor()  
          Creates a Temperature sensor instance.  

  

Method Summary 



 

Chapter 5                                                                                                      Conclusions and future works 

164 

 

 double getCelsiusTemperature()  
          Obtain a temperature measure in celsius degress. 

 double getFahrenheitTemperature()  
          Obtain a temperature measure in fahrenheit degress. 

  

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

  

Constructor Detail 

TemperatureSensor 
public TemperatureSensor() 

Creates a Temperature sensor instance. 

Method Detail 

getCelsiusTemperature 
public double getCelsiusTemperature() 
                             throws java.io.IOException 

Obtain a temperature measure in celsius degress. 

Returns: 

Celsius temperature measure (double) 

Throws: 

java.io.IOException 

 

getFahrenheitTemperature 
public double getFahrenheitTemperature() 
                                throws java.io.IOException 

Obtain a temperature measure in fahrenheit degress. 

Returns: 

Fahrenheit temperature measure (double) 

Throws: 

java.io.IOException 
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nSOMTemperatureAgent1.java 
public class nSOMTemperatureAgent1 
extends java.lang.Object 

Project: lifewear 

 

Constructor Summary 

nSOMTemperatureAgent1()  
          Constructor of the nSOMTemperatureAgent Class.  

  

Method Summary 

 java.lang.String getnSOMAgentDescription()  
          Obtain the nSOMAgentDescription. 

 nSOMServiceAgentObject getServiceAgentObject()  
          Obtain the service description object for this nSOMTemperatureAgent. 

 double getTemperature1(byte unit, int resolution)  
          Obtain a temperature measure, in double format. 

 void load(nSOMContext nSOMContext)  
          Performs the load process of the nSOMTemperatureAgent in the 
Service Execution Platform. 

 void receptacle(ServiceContext operationInvocation)  
          Implements the receptacle of the nSOMTemperatureAgent. 

 void run()  
          Performs the run process of the nSOMTemperatureAgent and the 
services registering in the Brokers. 

 void stop()  
          Performs the stop process of the nSOMTemperatureAgent and the 
services unregistering in the Brokers. 

 void unload()  
          Performs the unload process of the nSOMTemperatureAgent in the 
Service Execution Platform. 
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Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

  

Constructor Detail 

nSOMTemperatureAgent1 
public nSOMTemperatureAgent1() 

Constructor of the nSOMTemperatureAgent Class. 

Method Detail 

load 
public void load(nSOMContext nSOMContext) 

Performs the load process of the nSOMTemperatureAgent in the Service Execution Platform. 

Parameters: 

Context - provided by the nSOMContainer 

 

run 
public void run() 

Performs the run process of the nSOMTemperatureAgent and the services registering in the Brokers. 

 

stop 
public void stop() 

Performs the stop process of the nSOMTemperatureAgent and the services unregistering in the 
Brokers. 

 

unload 
public void unload() 

Performs the unload process of the nSOMTemperatureAgent in the Service Execution Platform. 

Parameters: 

Context - provided by the nSOMContainer 
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getTemperature1 
public double getTemperature1(byte unit, 
                              int resolution) 

Obtain a temperature measure, in double format. 

Parameters: 

unit - of the measure (C, F, K). 

resolution - of the double format measure (0, 1, 2). 

Returns: 

Noise measure (double primitive data type) 

 

receptacle 
public void receptacle(ServiceContext operationInvocation) 

Implements the receptacle of the nSOMTemperatureAgent. This method is invoked to pass the service 
invocations to the agents. 

Parameters: 

ServiceContext - of the service invocation 

 

getServiceAgentObject 
public nSOMServiceAgentObject getServiceAgentObject() 

Obtain the service description object for this nSOMTemperatureAgent. 

Returns: 

nSOMServiceAgentObject of the nSOMNoiseAgent 

 

getnSOMAgentDescription 
public java.lang.String getnSOMAgentDescription() 

Obtain the nSOMAgentDescription. This method provides the name of the temperature agent which 
have been invoked. 

Returns: 

String with the agent description 

 

Finally, it is also offered the runBundle.java class that is executed on the PC that has installed the ESB 

in order to initialize the base station: 
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runBundle.java 
public class runBundle 
extends java.lang.Object 

Project: Lifewear 

 

Field Summary 

static int LIMITELEDS  
            

  

Constructor Summary 

runBundle()  
             

  

Method Summary 

 java.lang.Str
ing 

generateSMDRequestFromCloud(java.lang.String receivedService
Invocation)  
          Generate the SMD invocation from the cloud invocation 

 java.lang.Str
ing 

getTemperature(java.lang.String id)  
          Method used to get the environmental temperature after a user request. 

 java.lang.Str
ing 

getThermometre()  
          Method used to get temperature readings and show them as LEDs in different 
colors. 

static void main(java.lang.String[] args)  
          Start up the host application. 

 void receiveDataRequestFromCloud(java.lang.String receivedRequest
)  
          Receive service request from the DiYSE cloud to the WSN 

 java.lang.Str
ing 

receiveDataRequestFromWSN()  
          Process an incoming service request from the DiYSE cloud to the WSN, waiting the 
service response from the sensor network via Broker node 
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 void sendDataRequestToWSN(java.lang.String serviceInvocationSMD)  
          Process an incoming service request from the DiYSE cloud to the WSN, sending it to 
the sensor network via Broker node 

 void sendDataResponseToCloud(java.lang.String receivedResponseSMD
)  
          Send received data to the DiYSE cloud from the WSN 

 double tomarTemperatura(java.lang.String serviceInvocationSMD)  
            

  

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

  

Field Detail 

LIMITELEDS 
public static final int LIMITELEDS 
See Also: 

Constant Field Values 

Constructor Detail 

runBundle 
public runBundle() 

Method Detail 

main 
public static void main(java.lang.String[] args) 
                 throws java.lang.Exception 

Start up the host application. 

Parameters: 

args - any command line arguments 

Throws: 

java.lang.Exception 
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getTemperature 
public java.lang.String getTemperature(java.lang.String id) 
                                throws java.rmi.RemoteException 

Method used to get the environmental temperature after a user request. 

Parameters: 

id - identifier of the mote the temperature is being asked from 

Returns: 

the temperature value converted to a String. 

Throws: 

java.rmi.RemoteException - in case the RMI part has any issue. 

 

getThermometre 
public java.lang.String getThermometre() 
                                throws java.rmi.RemoteException 

Method used to get temperature readings and show them as LEDs in different colors. It has only testing 
purposes. 

Returns: 

message of requested thermometer invocation 

Throws: 

java.rmi.RemoteException - in case the RMI part has any issue. 

 

sendDataResponseToCloud 
public void sendDataResponseToCloud(java.lang.String receivedResponseSMD) 

Send received data to the DiYSE cloud from the WSN 

Parameters: 

receivedResponse - data received from the wireless sensor network 

 

receiveDataRequestFromCloud 
public void receiveDataRequestFromCloud(java.lang.String receivedRequest) 

Receive service request from the DiYSE cloud to the WSN 

Parameters: 

receivedRequest - request received from the cloud 
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sendDataRequestToWSN 
public void sendDataRequestToWSN(java.lang.String serviceInvocationSMD) 

Process an incoming service request from the DiYSE cloud to the WSN, sending it to the sensor network 
via Broker node 

Parameters: 

serviceInvocationSMD - invocation in SMD 

 

receiveDataRequestFromWSN 
public java.lang.String receiveDataRequestFromWSN() 
                                           throws java.io.IOException 

Process an incoming service request from the DiYSE cloud to the WSN, waiting the service response 
from the sensor network via Broker node 

Returns: 

serviceResponseSMD response in SMD 

Throws: 

java.io.IOException 

 

generateSMDRequestFromCloud 
public java.lang.String 
generateSMDRequestFromCloud(java.lang.String receivedServiceInvocation) 

Generate the SMD invocation from the cloud invocation 

Parameters: 

receivedServiceInvocation - invocation from the cloud 

Returns: 

SMD description of the data request invocation 

 

tomarTemperatura 
public double tomarTemperatura(java.lang.String serviceInvocationSMD) 
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Sensor Node Name Microcontroll
er Transceiver 

Program 
+ Data 

Memory 

External 
Memory Programming Remarks 

Arago 
SystemsWiSMote 
Dev  

MSP430F5437 CC2520 

RAM : 16 
Kbytes 
Flash : 
256 
Kbytes 

up to 8 
Mbits C Contiki and 6LoWPan supported. 

Arago 
SystemsWiSMote 
Mini 

ATMEGA128 
RFA2 ATMEGA128 RFA2 

RAM : 16 
Kbytes 
Flash : 
128 
Kbytes 
E²PROM : 
4Kbytes 

 C Contiki and 6LoWPan supported. 

AVRraven Atmel 
AVR#Raven 
wireless kit 

AtMega1284p 
+ 
ATmega3290p 

AT86RF230 
128 
Kbytes + 
16 Kbytes 

256 kB? C  

COOKIES  

ADUC841, 
MSP430 

ETRX2 TELEGESIS, ZigBit 
868/915 

4 Kbytes 
+ 62 
Kbytes 

4 Mbit C 
Platform with hardware 
reconfigurability ( Spartan 3FPGA 
based or Actel Igloo) 

BEAN MSP430F169 CC1000 (300-1000 MHz) 
with 78.6 kbit/s  4 Mbit  YATOS Support. 

BTnode 

Atmel ATmega 
128L (8 MHz 

Chipcon CC1000 (433-
915 MHz) and Bluetooth 

64+180 K 
RAM 

128K 
FLASH 

C and nesC 
Programming BTnut and TinyOS support. 

http://en.wikipedia.org/w/index.php?title=Arago_Systems&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Arago_Systems&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WiSMote_Dev&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WiSMote_Dev&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Arago_Systems&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Arago_Systems&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WiSMote_Mini&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WiSMote_Mini&action=edit&redlink=1
http://en.wikipedia.org/wiki/Atmel_AVR#Raven_wireless_kit
http://en.wikipedia.org/wiki/Atmel_AVR#Raven_wireless_kit
http://en.wikipedia.org/wiki/Atmel_AVR#Raven_wireless_kit
http://www.cookieswsn.com/
http://www.btnode.ethz.ch/
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@ 8 MIPS) (2.4 GHz) ROM, 4K 
EEPROM 

COTS 
ATMEL 
Microcontroller 
916 MHz      

Dot ATMEGA163  1K RAM 8-16K 
Flash weC  

EPIC mote  

Texas 
Instruments 
MSP430 
microcontroller 

250 kbit/s 2.4 GHz IEEE 
802.15.4 Chipcon Wireless 
Transceiver 

10k RAM 48k Flash  TinyOS. 

Egs [1] ARM Cortex 
M3 

CC2520, Mitsumi's class 2 
Bluetooth module  2 Gbit  TinyOS. 

Eyes MSP430F149 TR1001  8 Mbit  PeerOS Support. 

EyesIFX v1 MSP430F149 TDA5250 (868 MHz) FSK  8 Mbit  TinyOS Support. 

EyesIFX v2 MSP430F1611 TDA5250 (868 MHz) FSK  8 Mbit  TinyOS Support. 

FlatMesh FM1 16 MHz 802.15.4-compliant  

660 
sensor 
readings 

Over-air control Commercial system, for digital 
sensors. 

FlatMesh FM2 16 MHz 802.15.4-compliant  

660 
sensor 
readings 

Over-air control Commercial system, built-in tilt 
sensor. 

GWnode PIC18LF8722 BiM (173 MHz) FSK 64k RAM 128k 
flash C Custom OS. 

http://www.eecs.berkeley.edu/~prabal/projects/epic/
http://www.cs.jhu.edu/~jgko/papers/egs-secon-demo.pdf
http://en.wikipedia.org/wiki/TinyOS
http://en.wikipedia.org/wiki/TinyOS
http://www.senceive.com/Products.aspx
http://www.senceive.com/Products.aspx
http://envisense.org/glacsweb/tech/probe/probe.html
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IMote 

ARM core 
12 MHz 

Bluetooth with the range of 
30 m 

64K 
SRAM 

512K 
Flash  TinyOS Support. 

IMote 1.0 ARM 7TDMI 
12-48 MHz 

Bluetooth with the range of 
30 m 

64K 
SRAM 

512K 
Flash  TinyOS Support. 

IMote 2.0 
Marvell 
PXA271 ARM 
11-400 MHz 

TI CC2420 802.15.4/ZigBee 
compliant radio 

32 MB 
SRAM 

32 MB 
Flash  

Microsoft .NET Micro, Linux, TinyOS 
Support. 

INDriya_CS_03A14[
2] 

Atmel ATmega 
128L [3] 

IEEE 802.15.4 compliant 
XBee radios 

128 KB 
FLASH + 
4 KB 
RAM 

Expansio
n 
available 

C-programming & 
nesC compliant 

Comprehensive Sensor mote with: 
Ambient 
Light,temperature,accelerometer,JP
EG camera,PIR, sound sensor, 
TinyOS TinyOS compliant, IPv6 
network supportive stacks for 
internetworking & so on. 

Iris Mote ATmega 1281 

Atmel AT86RF230 
802.15.4/ZigBee compliant 
radio 

8K RAM 128K 
Flash nesC Mote Runner, TinyOS, MoteWorks 

Support. 

KMote TI MSP430 

250 kbit/s 2.4 GHz IEEE 
802.15.4 Chipcon Wireless 
Transceiver 

10k RAM 48k Flash  TinyOS and SOS Support. 

Mica 
ATmega 
1034 MHz 8-bit 
CPU 

RFM TR1000 radio 50 kbit/s 128+4K 
RAM 

512K 
Flash nesC Programming TinyOS Support. 

Mica2 ATMEGA 128L Chipcon 868/916 MHz 4K RAM 128K 
Flash  

TinyOS, SOS and MantisOS 
Support. 

Mica2Dot ATMEGA 128  4K RAM 128K   

http://en.wikipedia.org/w/index.php?title=IMote&action=edit&redlink=1
http://indrion.co.in/developmentkit.php
http://indrion.co.in/developmentkit.php
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://en.wikipedia.org/wiki/TinyOS
http://en.wikipedia.org/wiki/Iris_Mote
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/TI_MSP430
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/Atmel_AVR
http://www.xbow.com/Home/wHomePage.aspx
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Flash 

MicaZ ATMEGA 128 TI CC2420 802.15.4/ZigBee 
compliant radio 4K RAM 128K 

Flash nesC TinyOS, SOS, MantisOS and Nano-
RK Support. 

Monnit WIT  TI CC1110 868/900 MHz 4K RAM   C# multi sensor boards. 

Mulle 

Renesas 
M16C 

Atmel AT86RF230 802.15.4 
/ Bluetooth 2.0 31K RAM 

384K+4K 
Flash, 2 
MB 
EEPROM 

nesC, C programming 
Contiki, TinyOS, lwIP: TCP/IP and 
Bluetooth Profiles: LAP, DUN, PAN 
and SPP Support. 

NeoMote ATmega 128L 

TI CC2420 802.15.4/ZigBee 
compliant radio 4K RAM 128K 

Flash nesC 
TinyOS, SOS, MantisOS, Nano-RK 
and Xmesh Support, Industrial end-
use product. 

Nymph ATMEGA128L CC1000  
64 kB 
EEPROM  MantisOS Support. 

PowWow  MSP430F1612 TI CC2420 802.15.4/ZigBee 
compliant radio 

55kB 
Flash + 
5kB RAM  

C programming : 
MSPGCC, IAR 

Open source; open hardware; 
research platform. 

Preon32  

ARM Cortex 
M3 Atmel AT86RF231 (2.4 GHz) 

64kB 
RAM + 
256kB 
Flash 

8 Mbit Java virtual machine, Contiki and 
6LoWPan supported. 

Redbee  MC13224V 2.4 GHz 802.15.4 

96 KB 
RAM + 
120 KB 
Flash 

 

GCC 
(seemc1322x.devl.org
), IAR 

Contiki; standalone. 

Rene ATMEL8535 916 MHz radio with 
bandwidth of 10 kbit/s 

512 bytes 
RAM 8K Flash  TinyOS Support. 

http://www.xbow.com/Home/wHomePage.aspx
http://www.monnit.com/products/wireless-sensors/
http://www.csee.ltu.se/~jench/mulle.html
http://en.wikipedia.org/w/index.php?title=NeoMote&action=edit&redlink=1
http://en.wikipedia.org/wiki/Atmel_AVR
http://powwow.gforge.inria.fr/
http://www.virtenio.de/
http://www.redwirellc.com/store
http://mc1322x.devl.org/
http://mc1322x.devl.org/
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SenseNode MSP430F1611 Chipcon CC2420 10K RAM 48K 
Flash 

C and NesC 
programming GenOS and TinyOS Support. 

Shimmer  MSP430F1611 802.15.4 Shimmer SR7 (TI 
CC2420) 

48 KB 
Flash 
10 KB 
RAM 

2 GB 
microSD 
Card 

nes C and C 
Programming 

TinyOS Support. Built in 3 Axis 
Accel, Tilt/Vib Sensor. Full range of 
expansion modules. 

Sun SPOT ARM 920T 802.15.4 512K 
RAM 

4 MB 
Flash Java Squawk Java ME Virtual Machine. 

Telos MSP430  2K RAM    

TelosB 

Texas 
Instruments 
MSP430 
microcontroller 

250 kbit/s 2.4 GHz IEEE 
802.15.4 Chipcon Wireless 
Transceiver 

10k RAM 48k Flash  
Contiki, TinyOS, SOS and MantisOS 
Support. 

Tinynode 

Texas 
Instruments 
MSP430 
microcontroller 

Semtech SX1211 8K RAM 512K 
Flash C Programming TinyOS. 

T-Mote Sky 

Texas 
Instruments 
MSP430 
microcontroller 

250 kbit/s 2.4 GHz IEEE 
802.15.4 Chipcon Wireless 
Transceiver 

10k RAM 48k Flash  
Contiki, TinyOS, SOS and MantisOS 
Support. 

Waspmote 

Atmel ATmega 
1281 

ZigBee/802.15.4/DigiMesh/R
F, 2.4 GHz/868/900 MHz 8K SRAM 

128K 
FLASH 
ROM, 4K 
EEPROM
, 2 GB 
SD card 

C/Processing GPRS, Bluetooth, GPS modules, 
sensor boards. 

http://www.shimmer-research.com/
http://en.wikipedia.org/wiki/Sun_SPOT
http://en.wikipedia.org/wiki/Java_ME
http://www.advanticsys.com/
http://www.tinynode.com/
http://www.libelium.com/products/waspmote
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weC Atmel AVR 
AT90S2313 RFM TR1000 RF     

Wireless RS485  Atmega 128L 
Chipcon CC2420 + Amplifier 
250 kbit/s 2.4 GHz IEEE 
802.15.4 

4k RAM 128k 
Flash  Xmesh, TinyOS. 

XYZ 

ML67 series 
ARM/THUMB 
microcontroller 

CC2420 Zigbee compliant 
radio from Chipcon 32K RAM 256K 

Flash C Programming SOS Operating System Support. 

XM1000 

TI's 
MSP430F2618 TI's CC2420 8K RAM 

116K 
FLASH 
ROM  

Contiki, TinyOS, SOS and MantisOS 
Support. 

Zolertia Z1  

Texas 
Instruments 
MSP430F2617 

Chipcon CC2420 2.4 GHz 
IEEE 802.15.4 Wireless 
Transceiver 

8 KB 
RAM 

92 KB 
Flash C, nesC 

Contiki and TinyOS Support. 16 Mbit 
external flash + 2 digital on-board 
sensors. 

FireFly 

Atmel ATmega 
1281 Chipcon CC2420 8K RAM 

128K 
FLASH 
ROM, 4K 
EEPROM 

C Programming Nano-RK RTOS Support. 

Ubimote1  

TI's CC2430 
SOC based on 
8051 Core 

TI's CC2430 8K RAM 
128K 
FLASH 
ROM 

C Programming TI's ZStack, TinyOS Support. 

Ubimote2  

TI's 
MSP430F2618 TI's CC2520 8K RAM 

116K 
FLASH 
ROM 

C Programming TI's ZStack Support. 

VEmesh  TI MSP430 Semtech SX1211/1231, 
TI TRF6903 

512B RA
M 

8K FLAS
H 

Over-the-air 
Programming 

FHSS; Interface to MODBUS, DALI, 
RS-232/485, TCP/IP. 

http://wireless485.com/
http://www.eng.yale.edu/enalab/xyz/
http://www.advanticsys.com/
http://www.zolertia.com/products/z1
http://en.wikipedia.org/wiki/TI_MSP430#MSP430F2xx_Series
http://en.wikipedia.org/wiki/TI_MSP430#MSP430F2xx_Series
http://en.wikipedia.org/wiki/TI_MSP430#MSP430F2xx_Series
http://en.wikipedia.org/wiki/Contiki
http://en.wikipedia.org/wiki/TinyOS
http://www.nanork.org/wiki/FireFly
http://www.cdacb.in/html/ubiquitous_comp.aspx
http://www.cdacb.in/html/products_details.aspx
http://www.virtual-extension.com/product_specs.htm
http://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
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panStamp  Atmega328P TI CC1101 (868/915 MHz) 2K RAM 

32K 
FLASH, 
1K 
EEPROM 

C/C++ Software compatible with Arduino 

 

Chart 43: list of available wireless sensor nodes [Nodes 12]. 

Another chart of gateway sensor nodes is as follows: 

 

 
 Microcontroller Transceiver Interface 

(USB/Serial/Wifi/Ethernet) 
Program 
memory 

External 
Memory 

ADVANTICSYS 
SG1000  

Dual Core Atom 
D525 2x1.8Ghz 802.15.4-compliant RS232,USB,TCP/IP 

 

2GB RAM, 
160GB HDD 

DWARA_CS_03A30 Atmel ATmega 
128L [4] 

WPAN:IEEE 802.15.4 compliant XBee 
radio GSM/GPRS Modem:SIM300S 

UART based serial connection to 
SIM300S 128 KB Flash --- 

Shimmer Span  MSP430F1611 802.15.4 Shimmer SR7 (TI CC2420) USB Flashdrive - Doesn't block 
adjacent USB ports 

10 KB RAM 
48 KB Flash  

Stargate IntelPXA255 802.11 Serial connection to WSN 64 MB SDRAM 32 MB Flash 

FlatMesh FMG-S 16 MHz 802.15.4-compliant Serial connection to FlatMesh 
FM1, FM2  

660 sensor 
readings 

http://www.panstamp.com/
http://www.advanticsys.com/shop/assg1000-p-26.html?language=en
http://www.advanticsys.com/shop/assg1000-p-26.html?language=en
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.shimmer-research.com/p/products/sensor-units-and-modules/span-platform
http://www.senceive.com/Products.aspx
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VEmesh  TI MSP430 Semtech SX1211/1231, TI TRF6903 MODBUS, USB, RS-232/485, 
TCP/IP 

2K RAM + 
16K FLASH 

Expansion 
available 

 

Chart 44: list of available gateway sensor nodes [Nodes 12]. 

http://www.virtual-extension.com/product_specs.htm
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