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Abstract. Although several profiling techniques for identifying perfor
mance bottlenecks in logic programs have been developed, they are gener-
ally not automatic and in most cases they do not provide enough informa-
tion for identifying the root causes of such bottlenecks. This complicates 
using their results for guiding performance improvement. We present a 
profiling method and tool that provides such explanations. Our profiler 
associates cost centers to certain program elements and can measure dif-
ferent types of resource-related properties that affect performance, pre-
serving the precedence of cost centers in the cali graph. It includes an 
automatic method for detecting procedures that are performance bottle
necks. The profiling tool has been integrated in a previously developed 
run-time checking framework to allow verification of certain properties 
when they cannot be verified statically. The approach allows checking 
global computational properties which require complex instrumentation 
tracking information about previous execution states, such as, e.g., that 
the execution time accumulated by a given procedure is not greater than 
a given bound. We have built a prototype implementation, integrated 
it in the Ciao/CiaoPP system and successfully applied it to performance 
improvement, automatic optimization (e.g., resource-aware specialization 
of programs), run-time checking, and debugging of global computational 
properties (e.g., resource usage) in Prolog programs. 

Keywords : profiling, run-time checking, performance debugging, resource 
usage estimation/verification, logic programming. 

1 Introduction 

Proñlers have been developed in the context of several programming paradigms: 
imperative [5,16] (including object oriented [7]), functional [15,14], logic [3,9,4], 
or integrations of some of them, such as the functional logic languages Curry and 
Toy [1]. In this paper we focus our at tention on proñlers for logic programs, and 
in particular for the Prolog language. The implementation of Prolog proñlers has 
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the added complexity w.r.t. more traditional paradigms of having to deal with 
its speciñc features such as non-determinism and the possibility of failure, which 
makes it necessary to deal with backtracking (and, henee, with choice points), 
and search pruning operators (like the cut) . There exist some implementations 
of proñlers for the Prolog language (e.g., [4,3]). However, in order to ñll some 
gaps and to broaden the range of applications, we have developed a proñler for 
Prolog tha t has the following original features: 

1. It is based on the concept of cost center. We have adapted the cost center 
deñnition of Morgan [14], developed in the context of functional program-
ming, to support the unique features of logic programming. A cost center, as 
we will explain later in detail, is a program point (such as a procedure or a 
cali in a clause body) where da ta about computational events is accumulated 
each time the point is reached by the program execution control flow. This 
allows measuring accumulated execution time of program procedures that do 
not overlap, Le., the total resource usage of a program can be computed in 
a compositional way, by adding the execution time associated to each cost 
center. A cost center-based proñler with this property has been developed for 
functional programming [15], however, as far as we know, no implementation 
of this kind of proñler has been developed for logic programs. 

2. It allows preserving the precedence of cost centers in the cali graph. It pro
vides sepárate accumulated resource usage information for a given procedure 
depending on where it is called frorn, i.e., it is a cali graph profiler for Prolog. 
We have taken the cali graph proñling approach of [16] as start ing point and 
we have adapted it in order to deal with the more complex execution model 
of Prolog, taking failure, backtracking, and pruning operators into account. 
The SWI proñler is to our knowledge the only Prolog proñler tha t keeps the 
precedence between the caller and the callee, but it does not support the 
concept of cost center. 

3. It can measure a wide range of computational properties and events, such as 
execution time, execution steps, numbers of calis, failures, exits, redos, choice 
point creations, cut executions, choice points removed by the cut operator, 
or the percentage of the accumulated cost of a predicate with respect to the 
total cost of the program. We use in the rest of the paper the term "resources" 
to refer to any of these properties. Although the current implementation is 
not fully parametric w.r.t. resources, it can be easily generalized as it was 
done with the static resource analysis integrated in CiaoPP [12]. 

4. It is usedfor run-time checking of computational properties. For this purpose, 
it is tightly integrated in an advanced program development framework which 
incorporates in a uniform way run-time checking, static veriñeation, unit 
testing, debugging, and optimization. To our knowledge, no proñler has been 
used for this purpose or integrated in such an environment to date . 

5. It includes a (conñgurable) automatic method for detecting procedures that 
are performance bottlenecks following several heuristics. The method auto-
matically associates cost centers to procedures in an iterative process. Previ-
ous approaches are not automatic (e.g., [3,15,1]), so tha t the programmer is 
responsible for conñguring cost centers iteratively based on the information 



returned by the proñler until the root cause of the bottleneck is detected. 
We show tha t the conñguration of cost centers can be automated, as we will 
explain further, by exploring a (static or dynamically) generated cali graph 
until the root cause of the bottleneck is detected. 

6. It is able to point at the part of the program that is responsible for the bottle
neck, guided by any arbitrary resource (like time, event counts, etc.) and to 
provide explanations at different granularity levéis. This information includes 
an automatically generated picture of (a sub-graph of) the cali graph (see 
Section 6). Existing proñlers only provide information about where the bot-
tlenecks of the programs are without any kind of explanation about the root 
causes, requiring tha t additional techniques be applied in order to identify 
such causes. 

7. It combines time profiling with count profiling, which has proved to be non-
trivial [9], and supports modularity, allowing the speciñcation of which 
modules should be instrumented for proñling. This feature of our proñler 
is possible thanks to the usage of Ciao 's module system and the automatic 
code transformation provided through Ciao 's semantic packages. 

8. It uses global static analysis to reduce the overhead of the proñling process. 

2 A Cost Center-Based Approach to Proñling 

Fundamental to our approach to proñling is the concept of cost center, which is 
inspired by the one deñned by Morgan [14] in the context of functional languages. 

A cost center for us is a program point where da ta about computational events 
is accumulated each time the point is reached by the program execution control 
flow. In our current implementation both predicates and literals in body clauses 
can be marked as cost centers. However, for the sake of brevity, in this paper 
we will only describe cost centers at the predícate level. We also introduce a 
special cost center, named remainder cost center (denoted rcc), which is used for 
accumulating da ta about events not corresponding to any deñned cost center. 

In order to deal with the control flow of Prolog, we adopt the "box model" of 
Byrd [2], where predicates (procedures) are seen as "black boxes" in the usual 
way. Since the simple cal l / re turn view of procedures is not enough to capture 
backtracking, this model uses a "4-port box view." Namely, given a goal (Le., a 
unique run-time cali to a predícate), the four ports (events) in Prolog execution 
are: (1) cali (start to execute the goal), (2) exit (succeed in producing a solution 
to the goal), (3) redo (a t tempt to ñnd an alternative solution to the goal), and 
(4) fail (exit with failure, if no further solutions to the goal are found). Thus, 
there are two ports for "entering" the box (cali and redo), and two ports for 
"leaving" it (exit and fail). 

Def in i t ion 1 (Cal is re la t ion) . We define the calis relation between predicates 
in a program as follows: p calis q, written p ~> q, if and only if a literal with 
predícate symbol q appears in the body of a clause defining p. Let ^->+ denote the 
transitive closure o / ^ . 1 

1 For simplicity we provide a static definition of the cali graph. However, in practice, 
it is dynamically built, and thus it deals safely with meta-calis. 



Def in i t ion 2 (Cos t center s e t ) . Given a program P to he profiled, the cost 
center set for P (denoted Cp), is defined as Cp = {p \ p is a predícate of P 
marked as a cost center} U {rcc}, where rcc is the remainder cost center. 

Def in i t ion 3 (Cos t center g r a p h ) . The cost center graph of a program P 
(denoted Gp) is the graph defined by the set of nodes Cp and the set of edges 
E = E' U {{rcc, rcc)}, such that (p, q) G E' iff: 

1. p is not the remainder cost center (i.e., p =/= rcc), q =/= rcc, and p ^->+ q 
through some path where all of its nodes (except the origin and destination) 
are not in Cp; or 

2. p = rcc and: (a) q is an entry point of program P such that q G Cp, or (b) 
for some predícate r being an entry point of P, r ^->+ q through some path 
where all of its nodes (except the destination) are not in Cp. 

Def in i t ion 4 ( E d g e - a c c u m u l a t e d resource u s a g e ) . Each edge (c,d) G Gp 
has a data structure Rcd, which contains the addition of resource usages over all 
the times that the cost center d was entered from cost center c, until a new cost 
center is entered or the computation finishes. This allows giving sepárate resource 
usage information for a given procedure depending on where it is called from. 

Our proñler is parametric w.r.t. the enter/leave ports, i.e., Rcd contains matrices 
of the form Res our ce[enter][l cave] (enter G {cali, redo}, leave G {exit, fail}), 
whose elements are counters to keep track of the usage of several resources for the 
four possible "enter/leave" port combination (cf. the "4-port box" of node d). For 
example we keep track of the number of times tha t each of the four "enter/leave" 
port combination happens during program execution in Counts[enter][leave\. 
Execution times are also tracked in Ticks[enter][leave\. 

Example 1. We are going to illustrate how the resource usage information is 
stored in the edges of the cost center graph during the proñling process. At any 
time in this process, only one edge is active. When execution enters a predicate 
which is deñned as a cost center, the resource usage monitored so far is stored in 
the active edge, it is deactivated, and then another edge is activated. Consider 
program p, and its cali graph and cost center graph in Figure 1. Before start ing 
program execution, the active edge is ( r c c , r c c ) . Then, when execution starts , 
the partial counters are reset and p is called. Since p is deñned as a cost center, 
the resource usage monitored so far in the partial counters is accumulated in 
the active edge ( r c c , r c c ) , the partial counters are reset, and the active edge 
changes to ( r c c , p ) . Then, the execution of the body of p s tar ts by executing 
q. Since q is not deñned as a cost center, the active edge remains the same as 
before, ( r c c , p) (and the partial counters are not reset). When the execution 
of q ñnishes, r is called. Since r is deñned as a cost center, the resource us
age monitored so far in the partial counters is accumulated in the active edge 
( r c c , p ) , the partial counters are reset, and the active edge changes to ( p , r ) . 
Since r is the last cali in the definition of p, when the execution of r finishes, the 
resource usage monitored so far in the partial counters is accumulated in ( p , r ) 
and program execution finishes. 



:— c o s t . c e n t e r p/Oj r / 0 . 
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Fig. 1. Source code, cali graph and cost center graph for Example 1 

Def in i t ion 5 ( A c c u m u l a t e d resource usage of a cost cen ter ) . The accu
mulated resource usage of a given cost center d (denoted R¿) is the sum of the 
resource usage for all times cost center d is entered either in forwards (i.e., via 
the cali port) or hackwards (i.e., via the redo port) execution, until a new cost 
center is entered or the computation finishes. 

The accumulated resource usage of a cost center can be obtained as the sum of 
the accumulated resource usages of its incoming edges: Rd = J2rc d)eE ^cd-

Our deñnition of accumulated resource of a cost center is compositional, in the 
sense tha t the total resource usage of a program P , denoted Rp, is the addition 
of the accumulated resource usage of all its cost centers: Rp = J2ceC Rc- In 
contrast, in traditional proñlers, the accumulated execution times for different 
predicates may overlap (and thus adding them may yield a result greater than 
their actual resource usage). 

3 Integrating Proflling with Veriflcation and Debugging 

In this section we explain how our proñler is integrated within the Ciao/CiaoPP 
veriñcation/debugging framework, which incorporates in a uniform way run-time 
checking, static veriñcation, unit testing, debugging, and optimization [6,10]. The 
run-time checking of program state properties such as traditional types or modes 
can be performed relatively easily. This is in par t due to the fact tha t properties 
are written in the source language and runnable (facilitated by the underlying 
logic engine), which simpliñes the program transformation tha t adds run-time 
checks. However, the run-time checking of global computational properties re-
quires monitoring, which is performed by our proñler. Figure 2 gives an overall 
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Fig. 2. The Ciao assertion framework (CiaoPP's verification/testing architecture) 



:— c o s t _ c e n t e r q s o r t l / 2 , 

q s o r t l ( A , B ) : - q s o r t ( A , B ) 
q s o r t 2 ( A , B ) : - q s o r t ( A , B ) 

q s o r t ( [ ] , [ ] ) . 
q s o r t ( [ X | L ] , R ) : -

p a r t i t i o n (L , X ! L l 
q s o r t l ( L l , R 1 ) , 
q s o r t 2 ( L 2 , R 2 ) , 

a p p e n d ( R l , [ X | R 2 ] , R ) . 

q s o r t 2 / 2 . 

L2) , 

p a r t i t i o n ( [ ] , _ , [ ] 
p a r t i t i o n ( [H L ] ,X 

H < X, ! , 
p a r t i t i o n (L ,X 

p a r t i t i o n ( [ H L ] ,X 
H > = X, 
p a r t i t i o n (L ,X 

a p p e n d ( [] , B , B ) . 
a p p e n d ( [ H | A ] , B , [ H 

a p p e n d ( A , B , C ) 

[ ] ) • 
[H| L l ] , L 2 ) : -

L l , L 2 ) . 
L l , [H| L 2 ] ) : -

L l , L 2 ) . 

C ] ) : -

Fig. 3. Source code for qsort with cost center declarations (at predícate level) 

view of such framework, placing the proñling tool in context. Hexagons repre-
sent the tools involved while arrows indícate the communication paths among 
them. The process input is the user program, optíonally including a set of asser-
tions that always includes the assertions present for predicates exported by any 
libraries used (left part of Figure 2), and, optionally, it can include unit tests. 

In this paper we are interested in a subset of the versatile Ciao assertion 
language which allows expressing global computational properties whose run-
time checking requires the use of our proñler. A detailed description of the full 
assertion language can be found in [6]. For brevity we only introduce the class of 
pred assertions, which describes a particular predicate and, in general, follows 
the schema: 

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props]. 

where Pred is a predicate symbol applied to distinct free variables and Precond 
and Postcond are logic formulae about execution states. An execution state is 
deñned by the bindings of valúes to variables in a given execution step (in logic 
programming terminology, a substitution). Precond is the precondition under 
which the pred assertion is applicable. Postcond expresses that in any cali to Pred, 
if Precond holds in the calling state and the computation of the cali succeeds, then 
Postcond also holds in the success state. Finally, the Comp-Props ñeld is used 
to describe properties of the whole computation of the calis to predicate Pred 
that meet Precond (e.g., resource usage properties). For example, the following 
assertion for the quick-sort program in Figure 3: 

: - p r e d q s o r t ( A , B ) : ( 1 i s t (A ,num) , v a r (B ) ) = > ( 1 i s t (A ,num) , l i s t (B ,num) ) 
f ( c o s t ( u b ! s t e p s ! l e n g t h ( A ) * l o g ( l e n g t h ( A ) ) ) ! n o t _ f a i l s , i s _ d e t ) . 

states that for any cali to predicate q so r t / 2 with the ñrst argument bound to 
a list of numbers and the second one a free variable, if the cali succeeds, then 
the second argument is also bound to a list of numbers. It also states that (for 
any of such calis) an upper bound on the number of resolution steps required 
to execute qsort/2, is length(A) x log(length(A)), a function on the length of 
list A. This is of course false, but we will see later in this section how we can 
detect it using our proñler. Additionally, not_f a i l s and is_det express that the 
previous calis do not ñnitely fail (i.e., they produce at least one solution or do 
not terminate) and are deterministic (i.e., they produce at most one solution at 



most once), respectively. The cost construct for expressing resource usages, as 
illustrated in the previous sample assertion, follows the schema: 

cost(Approx, ResJVame, Arith_Expr) 

where the Res_Name ñeld expresses which resource the assertion refers to. It is 
a user-provided identiñer which gives a ñame to each particular resource that 
needs to be tracked, veriñed, or checked. Aríth-Expr is an arithmetic function 
that expresses the resource usage of the predicate as a function of input data 
sizes. The Approx ñeld states, for example, whether Aríth_Expr is providing an 
exact valué (eq), an upper bound (ub), or a lower bound (Ib). 

Each assertion can be in a particular veríficatíon status, marked with the 
keyword preñxes check, checked, fa lse , trust or true (see the ellipses in 
Figure 2). The (default) status check determines that the assertion is to be 
checked. checked and fa l se express that the assertion has already been proved 
correct or incorrect respectively by the system (a compile-time error is reported 
in the last case), trust expresses that the assertion is to be trusted (it provides 
information coming from the programmer), and true that the provided infor-
mation is the result of static analysis and thus correct (safely approximated). 
We herein introduce a new status, obs, which means that an assertion expresses 
observed information (in this case, by the proñler). 

In this paper we focus on the run-time checking of computational (resource-
related) properties within the CiaoPP uniñed framework, giving an intuitive short 
description using the following example. 

Example 2. Assume that we want the CiaoPP system to check whether the follow
ing assertion, which gives a logarithmic upper bound on the number of resolution 
steps of qsort/2 as a function of the length of the input list, holds or not: 
: — pred q s o r t ( A , B ) : ( l i s t (A ,1111111) , va r (B ) ) 

+ c o s t (ub , s t e p s , l e n g t h ( A ) * log ( l e n g t h ( A ) ) ) . 

First, the CiaoPP system tries to statically verify the assertion. This is done by run-
ning a static resource usage analysis (see [12]) that computes safe lower and upper 
bounds on the resource usage (number of resolution steps in this case), and then 
by comparing the analysis results with the speciñcation given in the assertion. A 
full description of the static veriñcation of computational/resource-related prop
erties is given in [8]. The quick-sort program is of the kind of divide-and-conquer 
programs that may cause the analysis to lose precisión. As a consequence, the as
sertion cannot be proved to be false, since the lower bound resource usage function 
derived by the analysis (which is linear) is not greater than the upper bound func
tion given in the assertion. Conversely the assertion cannot be proved to hold, 
because the upper bound resource usage function derived by the analysis (which 
is exponential) is not less or equal than the upper bound function given in the as
sertion. Thus, the outcome of the static veriñcation process is "unknown" and the 
assertion status remains as check.2 However, if the run-time checking option is se-
lected, CiaoPP instruments the program with checks to be performed at run-time 

2 This can optionally produce a veríficatíon warníng (also known as an "alarm"). 



for (parts of) assertions which cannot be veriñed statically. Failure of these checks 
raises run-time errors referring to the corresponding assertion. In our example, us-
ing input da ta automatically generated (or taken from existing unit tests [10]) the 
proñler performs different calis to the quick-sort program. If for some of these calis 
the computed number of steps is greater than the one speciñed in the assertion, 
then such assertion is false (in fact, CiaoPP was easily able to prove it). 

4 Proposing New Computational Properties 
In order to support cumulative properties, we extend the set of properties used in 
the assertion language, start ing with the addition of r e l _ c o s t , which expresses 
relative resource usages. For example, assuming tha t the q s o r t / 2 procedure is 
par t of a given main program, the assertion (with no postcondition): 

: — p r e d q s o r t ( A , B ) : ( l i s t ( A , n u m ) , v a r ( B ) ) + r e l . c o s t ( u b , e x e c t i m e , 2 0 ) . 

expresses tha t the execution time of q s o r t / 2 is at most 20% of the total execution 
time of the main program. The r e l _ c o s t construct follows the schema: 

rel_cost( Approx,Res_Name,Percentage) 

where Approx is as before, denoting an upper bound, a lower bound, or an exact 
valué on the Percentage of the procedure resource (Res_Name) usage with respect 
to the total resource usage of the whole main program (from which the predicate 
is called) respectively. 

We have also extended the c o s t and r e l _ c o s t property constructs with an 
extra argument Type specifying the kind of cost information we are interested in: 

{ c o s t , r e l _ c o s t } ( Approx, Type, Res-Name, Arith-Expf) 

deñned as follows: 

— so l ( I ) : The cost of obtaining the I - th solution without considering the cost 
of obtaining the previous one. By deñnition, if I is greater than the number 
of solutions, then the related cost is zero. 

— al lsols: The cost of obtaining all the solutions. It is equivalent to the cost 
of applying f i n d a l l / 3 over the given predicate, but subtracting the cost of 
f i n d a l l / 3 itself. 

— cali: The cost of calling the predicate, regardless of whether it fails or suc-
ceeds (this is the valué by default). 

— call_exit: The cost of calling the predicate when it succeeds. 
— calLfail: The cost of calling the predicate when it fails. 
— redo: The cost of backtracking over the predicate, regardless of whether it 

fails or succeeds. 
— redo_exit: The cost of backtracking over the predicate when it succeeds. 
— redo_fail: The cost of backtracking over the predicate when it fails. 

The following example illustrates how the CiaoPP system (with our proñler in-
tegrated and our extended run-time checking operations), monitors and checks 
relative resource usages at run-time. 



Example 3. Consider again the q so r t / 2 predícate in Figure 3, and assume that 
we want to know how the execution times of its recursive calis are distributed. 
Although as mentioned before it is possible to define cost centers at literal level, 
for the sake of clarity we have defined two bridge predicates (q so r t l / 2 and 
qsort2/2) that are used in place of the recursive calis of qsor t /2 , and have 
marked them as cost centers using the following declaration: 

:— c o s t . c e n t e r q s o r t l / 2 , q s o r t 2 / 2 . 

Assume that we profile the execution of q so r t / 2 with an input list of 2500 
randomly generated elements, and that our profiler outputs the assertions: 

: — obs pred q s o r t l / 2 + r e l _ c o s t (eq , e x e c . t i m e , 4 8 ) . 
: — obs pred q s o r t 2 / 2 + r e l _ c o s t (eq , e x e c . t i m e , 4 7 ) . 

which mean that the observed execution times of q s o r t l / 2 and qsor t2 /2 are 
48% and 47% of the total execution time respectively. 

Assume now that we want the CiaoPP system to check at run time whether 
the two (recursive) calis in the body of the (original) q so r t / 2 are balanced (Le., 
whether each recursive cali consumes more or less 50% of the total execution 
time). For this purpose, we write the following assertions: 

: — check pred q s o r t l / 2 + r e l _ c o s t ( ub , exec . t ime , 5 5 ) . 
: — check pred q s o r t 2 / 2 + r e l . c o s t ( ub , exec . t ime , 5 5 ) . 

Assume that we cali q so r t / 2 with a non-uniformly distributed input list, and 
that the execution accumulates 65.01% and 8.16% of the time in the two cost 
centers associated to the two calis respectively. In this case, the CiaoPP dynamic 
comparator will throw a run-time checking error informing that the assertion for 
cost center q s o r t l / 2 is violated (because the monitored execution time is greater 
than the one expressed in the assertion), and, thus the two calis in the body of 
q so r t / 2 are not balanced. 

In contrast to non-cumulative global properties, the previously illustrated kind of 
cumulative properties cannot be checked immediately at run-time, but rather at 
the proper time instant in the program execution. In the current implementation, 
such checking is done at the end of the program execution (when the program 
control reaches an output port where there are no pending choice points). How-
ever, some scenarios require other rules for expressing the time instant in which 
the checking is performed. Consider for example a service that requires the check 
to be made periodically at certain time intervals, or when a certain number of 
client requests has been reached. Also, so far the operation for accumulating re-
source usages has been addition. However, it is desirable to have more complex 
operations. For example, oíd measurements could be discarded, or the events 
weighted according to their ages or other properties. 

5 Program Transformation for Proflling 

Source-to-Source Transformation for (High-Level) Proflling. A predi-
cate marked as a cost center is transformed into an equivalent one that preserves 
its semantics while intercepting occurrences of events inside it, by using some 



Program 

: — m o d u l e ( a p , [ a p p e n d / 3 ] , 
[ p r o f i l e r ] ) . 

:— c o s t _ c e n t e r a p p e n d / 3 . 

a p p e n d ( [] , B , B ) . 
a p p e n d ( [ H | A ] , B , [ H | C ] ) : -

a p p e n d ( A , B , C ) . 

Cost center transformation for profiling 

' $ c c $ ' ( a p , a p p e n d , 3 ) . 
a p p e n d ( E , L , R) :— 

h c c _ c a l l ( ' a p : a p p e n d ' ,3 , P revCCE , C u t T o ) , 
h c c . f a i l ( P r e v C C E , C h P t O ) , 
' $ c c $ a p p e n d ' ( A , B , C ) , 
h c c . e x i t ( P r e v C C E , A c t i v e C C E , C h P t 1) , 
he c r e d o ( A c t i v e C C E , ChPtO , C h P t l , C u t T o ) . 

' $ c c $ a p p e n d ' ( [] , B , B ) . 
' $ c c $ a p p e n d ' ( [ H | A ] , B , [ H | C ] ) : -

' $ c c $ a p p e n d ' ( A , B , C ) . 

Fig. 4. Cost center transformation for profiling (at predícate level) 

instrumentation procedures introduced by the transformation. For example, the 
predicate append/3 in Figure 4 is marked as a cost center (left hand side), and, in 
its transformation (right hand side), it is uniquely renamed to '$cc$append' /3. 
In order to avoid calis to instrumentation procedures along all recursive calis to 
append/3, the body of the recursive clause of ' $cc$append' / 3 is transformed so 
that it calis '$cc$append' /3 instead of append/3 (this also avoids the destruc-
tion of last cali optimization.). 

A brief description of the instrumentation predicates follows. They opérate 
on the cost center graph. Any edge in such graph (CC-edge in the following), 
contains the already described (non backtrackable) arrays Counts[enter][leave] 
and Ticks[enter][leave] (Section 2). An implicit stack whose elements are pairs 
of CC-edges (variables PrevCCE and ActiveCCE) is used to keep the active CC-
edge, and to restore the previous CC-edge when the control flow leaves the active 
one (so that the precedence of cost centers in the cali graph is preserved): 

— hcc_call(+Name,+Arity,-PrevCCE,-CutTo): activates the CC-edge whose 
destination is Name/Arity and origin the destination of the previous CC-
edge. Uniñes PrevCCE with a pointer to the previous CC-edge. Sets the flag 
named "entryport" (associated to the active CC-edge) to the valué "cali", 
in order to track that the predicate Name/Arity has been entered through 
the ca l i port. Uniñes CutTo with a pointer to the top of the current choice 
point stack. 

— hcc_fail(+PrevCCE,-ChPtO): pushes a choice point on the stack in or
der to execute instrumentation code upon backtracking (after failure oc-
curs), and uniñes ChPtO with a pointer to such choice point. The instru
mentation code executed upon backtracking increments by one the valué of 
Counts [entryport] [f ai 1] associated to the active CC-edge, 3 and changes the 
active CC-edge to PrevCCE. 

— hcc_exit(+PrevCCE,-ActiveCCE,-ChPtl): increments by one the valué of 
Counts [entryport] [exit] associated to the active CC-edge. Uniñes ActiveCCE 
with a pointer to the active CC-edge and ChPtl with a pointer to the top of 
the current choice point stack. Changes the active CC-edge to PrevCCE. 

— hccjredo(+ActiveCCE,+ChPtO,+ChPtl,+CutTo): pushes a choice point on 
the stack to execute instrumentation code upon backtracking. Checks whether 

3 Note that the entryport flag can take the valúes cali or redo. 



ChPtO and ChPtl point to the same choice point, in which case the goal is 
deterministic (i.e., no choice points have been created during its execution), 
and all choice points up to CutTo are removed (namely, the ones introduced 
by hcc_fail /2 and hccjredo/4 itself). The instrumentation code executed 
upon backtracking sets the "entryport" flag (associated to the active CC-
edge) to the valué "redo," and changes the active CC-edge to ActiveCCE. 

Static Cost Center Optimization using CiaoPP. The overhead introduced 
by the transformation of cost centers described before can be reduced by us
ing static analysis. There are situations where it can be ensured that some of 
the instrumentation predicates (or combinations of them) introduced by such 
transformation will never be reached. For example, when a predicate (or literal) 
marked as a cost center does not introduce choice points, always succeeds, or 
always fails. Thus, such unreachable instrumentation predicates can be removed. 
Our proñler detects these situations by using the information inferred by the 
CiaoPP analyzers [6] (such as non-determinism and non-failure). It also intro
duces specialized versions for reachable combinations of instrumentation predi-
cates. Although these specialized versions increase the size of the instrumented 
program, they can signiñcantly reduce the overhead introduced by the proñler. 
Figure 5 shows (right hand side) some of the optimized cost center transforma-
tions (which introduce specialized versions of the instrumentation predicates) 
performed by using information inferred by CiaoPP analyzers, that is expressed 
as assertions (left hand side). 

A s s e r t i o n 

: — t r u e p r e d Goa l 
+ ( n o . c h o i c e p o i n t , n o t _ f a i l s ) . 

: — t r u e p r e d Goa l 
+ n o _ c h o i c e p o i n t . 

:— t r u e p r e d Goa l + n o t _ f a i l s . 

Spec ia l i zed C o s t Center T r a n s f o r m a t i o n 
h c c . c a l l . n c n f (Ñame , A r i t y , P revCCE ) , 
c a l l ( G o a l ) , 
h c c . e x i t . n c n f ( P r e v C C E ) . 
h c c . c a l l (Ñame , A r i t y , P revCCE , C u t T o ) , 
h c c _ f a i l _ n c ( P revCCE ) , 
c a l l ( G o a l ) , 
h c c . e x i t . n c ( P r e v C C E , C u t T o ) . 
h c c _ c a l l _ n f (Ñame , A r i t y , P revCCE , C u t T o ) , 
c a l l ( G o a l ) , 
h c c . e x i t ( P r e v C C E , A c t i v e C C E , C h P t l ) , 
h c c . r e d o . n f ( A c t i v e C C E , C h P t l , C u t T o ) . 

Fig. 5. Cost center transformation optimization 

Enriching Information with Low-level Profiling. We set up several hooks 
at some relevant points in the engine. Their implementation is located in a 
sepárate module. To avoid run-time overhead, such hooks are made available 
by compiling the engine with an option that enables them. For example, there 
are hooks that are called when a fail causes the next choice point to be tried 
(lph_f ailjredo(wam)), when a cut is executed (lph_cut(wam)), and when a 
given predicate pred is called (lph_exit_call(wam, pred), where the variable 
wam is a structure that represents the current state of the virtual machine). 
Such hooks remain uninstantiated until the procedure prof i l e / 1 is used over 
a given goal, in which case they are instantiated to actual functions that per-
form the proñling itself. The end of the proñling leaves the hooks uninstantiated 



again. When performing low-level proñling, each edge of the cost center graph 
contains the following (non backtrackable) data structures: (1) the already des-
cribed ones used in high-level proñling; (2) two matrices, Cuts[enter][leave] and 
SCuts[enter][leave], that keep the number of cut executions that remove or do 
not remove choice points respectively (which allows for example detecting useless 
pruning operations and checking that a cut actually prunes branches); and (3) a 
hash table used to track the execution of predicates. The key of each entry in the 
table is a predicate name/arity and its ñelds are: (a) two matrices similar to the 
already described Counts[enter][leave] and Ticks[enter][leave\), but referred to 
"predicate heads," and (b) a counter (Skips) to keep the number of choice points 
that are removed for that predicate by some pruning operator (cut) execution. 

The low-level proñling allows tracking information on predicates that have not 
been marked as cost centers (e.g., library predicates), and therefore, to detect that 
certain low-level or library predicates are being used by our program without us 
being aware (which could happen if syntactic expansions are used). It also allows 
detecting backtracking in predicate heads (useful to detect predicates that do 
not succeed in the ñrst clause, or that are not indexed by the ñrst argument). 

6 Automatic Performance Bottleneck Detection 
Deñning cost centers by hand in order to detect performance bottlenecks is a 
time-consuming task. As mentioned before, one of the original features of our 
proñling tool is a method for identifying performance bottlenecks in an automatic 
way, which uses an iterative process that defines cost centers at each iteration. 
For space reasons, we give a high-level description of the algorithm and refer the 
reader to [11] for details and examples. The method provides the sub-graph (a 
tree in fact) of the cost center graph that is responsible for the performance leak. 
It can be applied to modular programs and allows providing a list of modules 
whose predicates must be taken into account. The input cali graph to the method 
is dynamically constructed (deñning cost centers for all predicates in the selected 
modules, and executing once with proñling activated). 

Starting with the initial goal as the current predicate, at each iteration the 
children of the current predicate in the cali graph (i.e., its called predicates) are 
computed. They and the prevíous cost centers in the current branch of the cost 
center graph (including the current predicate), are marked as cost centers. Then, 
the goal is proñled, and, after that, the set of cost centers called by the current 
predicate and the amount of resource that each one consumes are computed. To 
ensure termination, any predicate previously deñned as a cost center (including 
the current predicate) is removed from this set. If after this removal there are no 
cost centers left in the set, then the process ñnishes returning the graph built so 
far. Otherwise, it selects the relevant cost centers of the called cost centers set, 
according to a heuristic (which is a parameter of the method), provided by the 
user. Some examples of heuristic selection rules are: (1) select the N predicates 
that consume more resources, (2) select the ones whose resource consumption 
is larger than a given percentage of the total resource usage, or (3) select the 
predicates whose number is not larger than a percentage X of the number of pro
gram predicates, and which together consume a percentage of the total resource 



usage greater than a given bound Y. Independently of the heuristic used, a given 
predicate is selected at most once (and thus, the sub-graph returned is a tree). 

We have also developed a method for drawing automatically the sub-graph of 
the cost center graph that is responsible for the performance leak, where different 
colors and sizes are used to express the accumulated resource usage in each cost 
center. 

7 Experimental Results 

We have performed an experimental assessment of our proñler. The results are 
shown in Table 1 for two different platforms with different processors and OS: an 
Intel Core i7, 4 cores x 2.67GHz (2 threads per core), 12GB of RAM, Ubuntu 
Linux 10.10 (kernel 2.6.35) and an UltraSparc-Tl, 8 cores x 1GHz (4 threads 
per core), 8GB of RAM, SunOS 5.10. In both platforms, the execution has been 
locked to a single core in order to avoid erroneous execution time measurements. 
The proñler measures execution times using a high-resolution timer, which al-
lows giving relevant valúes in situations where other methods would get a zero 
valué. The ñrst and second columns of the table show the benchmarks used4 

and the number of predicates deñned in them respectively. For each platform, 
the Obs column shows the observed execution time without proñling (given in 
milliseconds). The following two columns grouped under (Est. Dev.) are meant 
to assess the accuracy of our proñler in monitoring execution times. They show 
the ratio between the execution time estimated by the proñler and Obs for two 
levéis of proñling instrumentation: hl , which only performs the high level source-
to-source transformation, and 11, which besides performing this transformation, 
also introduces hooks in the engine (Le., it also performs low-level proñling). The 
columns grouped under Bot. D. refer to the automatic performance bottleneck 
detection process (described in Section 6), where the performance is measured in 
terms of execution time, the heuristic of selecting the goal with the largest execu
tion time in each iteration has been followed, and the proñling has been performed 
without engine hooks (since they do not improve execution time measurements). 
Column # i t shows the number of iterations needed to complete such process, 
and column ovb shows its overhead, calculated as ovb = '"' pr

n.——, where the 
u ' u #itx0bs ' 

total time due to executing the program with proñling (Tpr = ^ ¿ ¿ i Profi) a n ( i 
the total time due to its compilation (Tco = Xl¿Íi Compi) have been subtracted 
from the total time (Ttot) in order to isolate the time due to the bottleneck 
detection process itself. Averages are also provided in the last row of the table.5 

The columns under P ro f i l i ng Ov. relate to the run-time overhead intro-
duced by the different program transformations/instrumentations described in 
Section 5. They are grouped into two sub-columns, showing the results when the 
instrumentation has been optimized using CiaoPP's static analyzers (Optim.), 
and without such optimization (N.Op.). In both cases we present the results 
with (11) and without (hl) engine hooks activated respectively. The overheads 

4 Source code for the examples is available at http://www.clip.dia.fi.upm.es/profiiing/ 
5 Weighted average taking the observed execution time as weight in all cases. 

http://www.clip.dia.fi.upm.es/profiiing/


Table 1. Experimental assessment of the profiler 

Program 

mem 
guardians 
color_map 
bignums 
wumpus 
solvejugs 
qsort 
sudoku 
zebra 
hanoi 
flat 
substitute 
queens 

# 
P. 

5 
9 
5 
4 

65 
6 
4 

12 
5 
3 
4 
3 

16 
Average 

Intel 

Obs 
(ms) 

67 
182 
99 

102 
211 
255 

76 
72 
40 

128 
65 

187 
92 

121 

Est. 
Dev . 
hl 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.1 
1.3 
1.3 
1.2 
1.5 
2.0 
2.0 
1.2 

11 
1.4 
1.6 
1.8 
2.4 
1.6 
1.6 
2.1 
1.7 
1.5 
1.9 
1.8 
2.3 
2.2 

1.8 

B o t . D . 
# 
it 
4 
4 
2 
3 
4 
4 
3 
7 
3 
3 
4 
3 
6 

3 

OVf, 

(%) 
2.40 
0.95 
1.26 
1.46 
1.53 
0.52 
1.82 
2.42 
3.53 
1.12 
2.41 
0.71 
1.79 

1.34 

Profiling Ov. 
Optim. 
hl 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.3 
1.5 
1.5 
1.6 
2.9 
2.9 
3.1 

1.5 

11 
4.6 
3.8 
4.3 
2.6 
5.6 
4.0 
6.3 
5.3 
5.7 
8.3 

10.0 
12.7 
15.7 
6.7 

N.Op. 
hl 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.3 
1.6 
1.5 
2.1 
4.2 
2.9 
3.1 

1.6 

11 
4.6 
3.8 
4.3 
2.6 
5.6 
4.0 
6.3 
5.6 
5.7 
9.6 

14.2 
12.6 
15.7 
7.0 

Sparc 

Obs 
(ms) 

377 
959 
558 

2178 
1018 
1237 
402 
359 
184 
665 
323 

1102 
429 
753 

Est. 
Dev . 
hl 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.1 
1.2 
1.4 
1.2 
1.5 
2.0 
2.3 
1.2 

11 
1.4 
1.3 
1.3 
1.0 
1.7 
1.5 
2.2 
1.5 
1.4 
1.7 
1.6 
2.0 
1.9 

1.5 

B o t . D . 
# 
it 
4 
4 
2 
3 
4 
4 
3 
7 
3 
3 
4 
3 
6 

3 

OVf, 

(%) 
4.65 
1.31 
2.24 
0.33 
1.56 
0.98 
1.46 
4.44 
7.16 
1.57 
2.54 
0.51 
4.30 

1.59 

Profiling Ov. 
Opt im. 
hl 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.4 
1.7 
1.9 
1.9 
3.8 
3.4 
4.4 

1.6 

11 
7.8 
6.1 
6.4 
1.1 

11.4 
7.1 

10.5 
8.7 

10.6 
14.6 
17.2 
19.6 
28.4 

9.5 

N .Op . 
hl 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.5 
1.8 
1.9 
2.4 
5.4 
3.4 
4.4 

1.7 

11 
7.8 
6.1 
6.4 
1.1 

11.4 
7.1 

10.6 
9.4 

10.6 
16.9 
24.7 
19.7 
28.4 
10.0 

(11 and hl) are given as a ratio ™J, where Prof refers to the execution time 
when the proñler is activated, with the cost centers assigned by the automatic 
bottleneck detection process reported in the columns grouped under Bot. D. (the 
number of selected cost centers is # i t —1), and Obs is the valué in the third co
liman described before. The overhead ratio hl is very cióse to 1 (Le., almost no 
overhead is introduced) for the ñrst six programs in the table, while it is larger 
for the rest. This is because the latter perform recursive calis between cost cen
ters. As expected, the overhead ratios (for both platforms) grow as we increase 
the degree of information that we want to obtain from the proñler. 

It can be argued that the overhead introduced by our proñler is small for a 
reasonable level of proñling information, and that global static analysis indeed 
reduces such overhead. Interestingly, if we compare our results with those re
ported in [16] (which is the closest related previous work that we are aware of 
for which there is available data, although applied to imperative programs), the 
overheads of the hl columns under Profi l ing Ov. /Optim. are of similar mag-
nitude to those reported therein: 2.95 in the worst case, while in our results the 
worst overhead for the Intel platform is 3.1 (queens). However, our approach 
provides a richer (and more detailed) variety data. 

8 Discussion and Future Work 

Since its development our proñler has proved to be quite useful in practice by 
identifying the root causes of performance bottlenecks in several complex, real-
life situations. For example, it was the key for identifying a difñcult to lócate 
performance bug in the (Ciao) CHR implementation (a complex and relatively 
large piece of code): a dereferencing chain for the attribute of a variable was 
constructed, instead of modifying the valué of the attribute. Thus, the time 
needed for getting the valué of such attribute was directly proportional to the 



number of times tha t the a t t r ibute was modiñed. Our proñler has also been suc-
cessfully applied to resource-aware poly-controlled partial evaluation [13]. This 
technique combines different control strategies to obtain optimizations tha t can-
not be obtained using a single control technique. Once the optimizations have 
been obtained they are compared using some valúes (called fitness valúes). Our 
implementation has been successfully used for estimating such valúes. 

Note tha t in some cases, bottlenecks can only be detected using the ñne-grain 
information provided by our low-level proñling (via engine hooks). For example, 
assume tha t we have a read-only library which is responsible for lack of perfor
mance. In this case we are unable to define cost centers on it to perform high-level 
proñling. Alternatively we can activate the engine hooks to track information 
about all the subroutines invoked in such l ibrary and use it to diagnose the per
formance problem. Engine hooks can also proñle more properties, like the number 
of cut executions tha t remove (or do not remove) choice points, failures during 
head uniñcation, or choice points removed for a given predicate (see Section 5). 

Although our proñler already supports several computational properties and 
events, these are predeñned. However, as future work, it should be straightfor-
ward to extend it to allow measuring user-deñned resources, in the sense of the 
static resource analysis currently integrated in the CiaoPP framework [12]. 
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