
Profiling for Run-Time Checking
of Computational Properties and

Performance Debugging in Logic Programs

Edison Mera1 , Teresa Trigo2,
Pedro Lopez-García2 '3 , and Manuel Hermenegildo2 '4

1 Complutense University of Madrid (UCM), Spain
2 1MDEA Software Institute, Spain

3 Spanish Research Council (CS1C), Spain
School of Computer Science, Technical University of Madrid (UPM), Spain

edison@fdi.ucm.es, hermeQfi.upm.es,
{teresa.trigo.pedro.lopez.manuel.hermenegildo}@imdea.org

4

Abstract. Although several profiling techniques for identifying perfor
mance bottlenecks in logic programs have been developed, they are gener-
ally not automatic and in most cases they do not provide enough informa-
tion for identifying the root causes of such bottlenecks. This complicates
using their results for guiding performance improvement. We present a
profiling method and tool that provides such explanations. Our profiler
associates cost centers to certain program elements and can measure dif-
ferent types of resource-related properties that affect performance, pre-
serving the precedence of cost centers in the cali graph. It includes an
automatic method for detecting procedures that are performance bottle
necks. The profiling tool has been integrated in a previously developed
run-time checking framework to allow verification of certain properties
when they cannot be verified statically. The approach allows checking
global computational properties which require complex instrumentation
tracking information about previous execution states, such as, e.g., that
the execution time accumulated by a given procedure is not greater than
a given bound. We have built a prototype implementation, integrated
it in the Ciao/CiaoPP system and successfully applied it to performance
improvement, automatic optimization (e.g., resource-aware specialization
of programs), run-time checking, and debugging of global computational
properties (e.g., resource usage) in Prolog programs.

Keywords : profiling, run-time checking, performance debugging, resource
usage estimation/verification, logic programming.

1 Introduction

Proñlers have been developed in the context of several programming paradigms:
imperative [5,16] (including object oriented [7]), functional [15,14], logic [3,9,4],
or integrations of some of them, such as the functional logic languages Curry and
Toy [1]. In this paper we focus our at tention on proñlers for logic programs, and
in particular for the Prolog language. The implementation of Prolog proñlers has

mailto:edison@fdi.ucm.es
http://upm.es

the added complexity w.r.t. more traditional paradigms of having to deal with
its speciñc features such as non-determinism and the possibility of failure, which
makes it necessary to deal with backtracking (and, henee, with choice points),
and search pruning operators (like the cut) . There exist some implementations
of proñlers for the Prolog language (e.g., [4,3]). However, in order to ñll some
gaps and to broaden the range of applications, we have developed a proñler for
Prolog tha t has the following original features:

1. It is based on the concept of cost center. We have adapted the cost center
deñnition of Morgan [14], developed in the context of functional program-
ming, to support the unique features of logic programming. A cost center, as
we will explain later in detail, is a program point (such as a procedure or a
cali in a clause body) where da ta about computational events is accumulated
each time the point is reached by the program execution control flow. This
allows measuring accumulated execution time of program procedures that do
not overlap, Le., the total resource usage of a program can be computed in
a compositional way, by adding the execution time associated to each cost
center. A cost center-based proñler with this property has been developed for
functional programming [15], however, as far as we know, no implementation
of this kind of proñler has been developed for logic programs.

2. It allows preserving the precedence of cost centers in the cali graph. It pro
vides sepárate accumulated resource usage information for a given procedure
depending on where it is called frorn, i.e., it is a cali graph profiler for Prolog.
We have taken the cali graph proñling approach of [16] as start ing point and
we have adapted it in order to deal with the more complex execution model
of Prolog, taking failure, backtracking, and pruning operators into account.
The SWI proñler is to our knowledge the only Prolog proñler tha t keeps the
precedence between the caller and the callee, but it does not support the
concept of cost center.

3. It can measure a wide range of computational properties and events, such as
execution time, execution steps, numbers of calis, failures, exits, redos, choice
point creations, cut executions, choice points removed by the cut operator,
or the percentage of the accumulated cost of a predicate with respect to the
total cost of the program. We use in the rest of the paper the term "resources"
to refer to any of these properties. Although the current implementation is
not fully parametric w.r.t. resources, it can be easily generalized as it was
done with the static resource analysis integrated in CiaoPP [12].

4. It is usedfor run-time checking of computational properties. For this purpose,
it is tightly integrated in an advanced program development framework which
incorporates in a uniform way run-time checking, static veriñeation, unit
testing, debugging, and optimization. To our knowledge, no proñler has been
used for this purpose or integrated in such an environment to date .

5. It includes a (conñgurable) automatic method for detecting procedures that
are performance bottlenecks following several heuristics. The method auto-
matically associates cost centers to procedures in an iterative process. Previ-
ous approaches are not automatic (e.g., [3,15,1]), so tha t the programmer is
responsible for conñguring cost centers iteratively based on the information

returned by the proñler until the root cause of the bottleneck is detected.
We show tha t the conñguration of cost centers can be automated, as we will
explain further, by exploring a (static or dynamically) generated cali graph
until the root cause of the bottleneck is detected.

6. It is able to point at the part of the program that is responsible for the bottle
neck, guided by any arbitrary resource (like time, event counts, etc.) and to
provide explanations at different granularity levéis. This information includes
an automatically generated picture of (a sub-graph of) the cali graph (see
Section 6). Existing proñlers only provide information about where the bot-
tlenecks of the programs are without any kind of explanation about the root
causes, requiring tha t additional techniques be applied in order to identify
such causes.

7. It combines time profiling with count profiling, which has proved to be non-
trivial [9], and supports modularity, allowing the speciñcation of which
modules should be instrumented for proñling. This feature of our proñler
is possible thanks to the usage of Ciao 's module system and the automatic
code transformation provided through Ciao 's semantic packages.

8. It uses global static analysis to reduce the overhead of the proñling process.

2 A Cost Center-Based Approach to Proñling

Fundamental to our approach to proñling is the concept of cost center, which is
inspired by the one deñned by Morgan [14] in the context of functional languages.

A cost center for us is a program point where da ta about computational events
is accumulated each time the point is reached by the program execution control
flow. In our current implementation both predicates and literals in body clauses
can be marked as cost centers. However, for the sake of brevity, in this paper
we will only describe cost centers at the predícate level. We also introduce a
special cost center, named remainder cost center (denoted rcc), which is used for
accumulating da ta about events not corresponding to any deñned cost center.

In order to deal with the control flow of Prolog, we adopt the "box model" of
Byrd [2], where predicates (procedures) are seen as "black boxes" in the usual
way. Since the simple cal l / re turn view of procedures is not enough to capture
backtracking, this model uses a "4-port box view." Namely, given a goal (Le., a
unique run-time cali to a predícate), the four ports (events) in Prolog execution
are: (1) cali (start to execute the goal), (2) exit (succeed in producing a solution
to the goal), (3) redo (a t tempt to ñnd an alternative solution to the goal), and
(4) fail (exit with failure, if no further solutions to the goal are found). Thus,
there are two ports for "entering" the box (cali and redo), and two ports for
"leaving" it (exit and fail).

Def in i t ion 1 (Cal is re la t ion) . We define the calis relation between predicates
in a program as follows: p calis q, written p ~> q, if and only if a literal with
predícate symbol q appears in the body of a clause defining p. Let ^->+ denote the
transitive closure o / ^ . 1

1 For simplicity we provide a static definition of the cali graph. However, in practice,
it is dynamically built, and thus it deals safely with meta-calis.

Def in i t ion 2 (Cos t center s e t) . Given a program P to he profiled, the cost
center set for P (denoted Cp), is defined as Cp = {p \ p is a predícate of P
marked as a cost center} U {rcc}, where rcc is the remainder cost center.

Def in i t ion 3 (Cos t center g r a p h) . The cost center graph of a program P
(denoted Gp) is the graph defined by the set of nodes Cp and the set of edges
E = E' U {{rcc, rcc)}, such that (p, q) G E' iff:

1. p is not the remainder cost center (i.e., p =/= rcc), q =/= rcc, and p ^->+ q
through some path where all of its nodes (except the origin and destination)
are not in Cp; or

2. p = rcc and: (a) q is an entry point of program P such that q G Cp, or (b)
for some predícate r being an entry point of P, r ^->+ q through some path
where all of its nodes (except the destination) are not in Cp.

Def in i t ion 4 (E d g e - a c c u m u l a t e d resource u s a g e) . Each edge (c,d) G Gp
has a data structure Rcd, which contains the addition of resource usages over all
the times that the cost center d was entered from cost center c, until a new cost
center is entered or the computation finishes. This allows giving sepárate resource
usage information for a given procedure depending on where it is called from.

Our proñler is parametric w.r.t. the enter/leave ports, i.e., Rcd contains matrices
of the form Res our ce[enter][l cave] (enter G {cali, redo}, leave G {exit, fail}),
whose elements are counters to keep track of the usage of several resources for the
four possible "enter/leave" port combination (cf. the "4-port box" of node d). For
example we keep track of the number of times tha t each of the four "enter/leave"
port combination happens during program execution in Counts[enter][leave\.
Execution times are also tracked in Ticks[enter][leave\.

Example 1. We are going to illustrate how the resource usage information is
stored in the edges of the cost center graph during the proñling process. At any
time in this process, only one edge is active. When execution enters a predicate
which is deñned as a cost center, the resource usage monitored so far is stored in
the active edge, it is deactivated, and then another edge is activated. Consider
program p, and its cali graph and cost center graph in Figure 1. Before start ing
program execution, the active edge is (r c c , r c c) . Then, when execution starts ,
the partial counters are reset and p is called. Since p is deñned as a cost center,
the resource usage monitored so far in the partial counters is accumulated in
the active edge (r c c , r c c) , the partial counters are reset, and the active edge
changes to (r c c , p) . Then, the execution of the body of p s tar ts by executing
q. Since q is not deñned as a cost center, the active edge remains the same as
before, (r c c , p) (and the partial counters are not reset). When the execution
of q ñnishes, r is called. Since r is deñned as a cost center, the resource us
age monitored so far in the partial counters is accumulated in the active edge
(r c c , p) , the partial counters are reset, and the active edge changes to (p , r) .
Since r is the last cali in the definition of p, when the execution of r finishes, the
resource usage monitored so far in the partial counters is accumulated in (p , r)
and program execution finishes.

:— c o s t . c e n t e r p/Oj r / 0 .
p : - q, r . (P) ~ A q /A r)

C^írccyf p J - / r)

Fig. 1. Source code, cali graph and cost center graph for Example 1

Def in i t ion 5 (A c c u m u l a t e d resource usage of a cost cen ter) . The accu
mulated resource usage of a given cost center d (denoted R¿) is the sum of the
resource usage for all times cost center d is entered either in forwards (i.e., via
the cali port) or hackwards (i.e., via the redo port) execution, until a new cost
center is entered or the computation finishes.

The accumulated resource usage of a cost center can be obtained as the sum of
the accumulated resource usages of its incoming edges: Rd = J2rc d)eE ^cd-

Our deñnition of accumulated resource of a cost center is compositional, in the
sense tha t the total resource usage of a program P , denoted Rp, is the addition
of the accumulated resource usage of all its cost centers: Rp = J2ceC Rc- In
contrast, in traditional proñlers, the accumulated execution times for different
predicates may overlap (and thus adding them may yield a result greater than
their actual resource usage).

3 Integrating Proflling with Veriflcation and Debugging

In this section we explain how our proñler is integrated within the Ciao/CiaoPP
veriñcation/debugging framework, which incorporates in a uniform way run-time
checking, static veriñcation, unit testing, debugging, and optimization [6,10]. The
run-time checking of program state properties such as traditional types or modes
can be performed relatively easily. This is in par t due to the fact tha t properties
are written in the source language and runnable (facilitated by the underlying
logic engine), which simpliñes the program transformation tha t adds run-time
checks. However, the run-time checking of global computational properties re-
quires monitoring, which is performed by our proñler. Figure 2 gives an overall

Program

Code

User
Defs

Bulltlns/
Librarles

Assertions:

(:- check :

(: - t e s t)

(^:- trust J

Program
assertions

Unit-Tests

Builtins/
Libra ríes

assertions

Certifícate
(ACC)

(optimized)
Code

s
- checked " ^) T > ' Verified

- > C =-false) — > • Compile-time error

• Veriflcation warning •

X :-false Run-time error

Fig. 2. The Ciao assertion framework (CiaoPP's verification/testing architecture)

:— c o s t _ c e n t e r q s o r t l / 2 ,

q s o r t l (A , B) : - q s o r t (A , B)
q s o r t 2 (A , B) : - q s o r t (A , B)

q s o r t ([] , []) .
q s o r t ([X | L] , R) : -

p a r t i t i o n (L , X ! L l
q s o r t l (L l , R 1) ,
q s o r t 2 (L 2 , R 2) ,

a p p e n d (R l , [X | R 2] , R) .

q s o r t 2 / 2 .

L2) ,

p a r t i t i o n ([] , _ , []
p a r t i t i o n ([H L] ,X

H < X, ! ,
p a r t i t i o n (L ,X

p a r t i t i o n ([H L] ,X
H > = X,
p a r t i t i o n (L ,X

a p p e n d ([] , B , B) .
a p p e n d ([H | A] , B , [H

a p p e n d (A , B , C)

[]) •
[H| L l] , L 2) : -

L l , L 2) .
L l , [H| L 2]) : -

L l , L 2) .

C]) : -

Fig. 3. Source code for qsort with cost center declarations (at predícate level)

view of such framework, placing the proñling tool in context. Hexagons repre-
sent the tools involved while arrows indícate the communication paths among
them. The process input is the user program, optíonally including a set of asser-
tions that always includes the assertions present for predicates exported by any
libraries used (left part of Figure 2), and, optionally, it can include unit tests.

In this paper we are interested in a subset of the versatile Ciao assertion
language which allows expressing global computational properties whose run-
time checking requires the use of our proñler. A detailed description of the full
assertion language can be found in [6]. For brevity we only introduce the class of
pred assertions, which describes a particular predicate and, in general, follows
the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free variables and Precond
and Postcond are logic formulae about execution states. An execution state is
deñned by the bindings of valúes to variables in a given execution step (in logic
programming terminology, a substitution). Precond is the precondition under
which the pred assertion is applicable. Postcond expresses that in any cali to Pred,
if Precond holds in the calling state and the computation of the cali succeeds, then
Postcond also holds in the success state. Finally, the Comp-Props ñeld is used
to describe properties of the whole computation of the calis to predicate Pred
that meet Precond (e.g., resource usage properties). For example, the following
assertion for the quick-sort program in Figure 3:

: - p r e d q s o r t (A , B) : (1 i s t (A ,num) , v a r (B)) = > (1 i s t (A ,num) , l i s t (B ,num))
f (c o s t (u b ! s t e p s ! l e n g t h (A) * l o g (l e n g t h (A))) ! n o t _ f a i l s , i s _ d e t) .

states that for any cali to predicate q so r t / 2 with the ñrst argument bound to
a list of numbers and the second one a free variable, if the cali succeeds, then
the second argument is also bound to a list of numbers. It also states that (for
any of such calis) an upper bound on the number of resolution steps required
to execute qsort/2, is length(A) x log(length(A)), a function on the length of
list A. This is of course false, but we will see later in this section how we can
detect it using our proñler. Additionally, not_f a i l s and is_det express that the
previous calis do not ñnitely fail (i.e., they produce at least one solution or do
not terminate) and are deterministic (i.e., they produce at most one solution at

most once), respectively. The cost construct for expressing resource usages, as
illustrated in the previous sample assertion, follows the schema:

cost(Approx, ResJVame, Arith_Expr)

where the Res_Name ñeld expresses which resource the assertion refers to. It is
a user-provided identiñer which gives a ñame to each particular resource that
needs to be tracked, veriñed, or checked. Aríth-Expr is an arithmetic function
that expresses the resource usage of the predicate as a function of input data
sizes. The Approx ñeld states, for example, whether Aríth_Expr is providing an
exact valué (eq), an upper bound (ub), or a lower bound (Ib).

Each assertion can be in a particular veríficatíon status, marked with the
keyword preñxes check, checked, fa lse , trust or true (see the ellipses in
Figure 2). The (default) status check determines that the assertion is to be
checked. checked and fa l se express that the assertion has already been proved
correct or incorrect respectively by the system (a compile-time error is reported
in the last case), trust expresses that the assertion is to be trusted (it provides
information coming from the programmer), and true that the provided infor-
mation is the result of static analysis and thus correct (safely approximated).
We herein introduce a new status, obs, which means that an assertion expresses
observed information (in this case, by the proñler).

In this paper we focus on the run-time checking of computational (resource-
related) properties within the CiaoPP uniñed framework, giving an intuitive short
description using the following example.

Example 2. Assume that we want the CiaoPP system to check whether the follow
ing assertion, which gives a logarithmic upper bound on the number of resolution
steps of qsort/2 as a function of the length of the input list, holds or not:
: — pred q s o r t (A , B) : (l i s t (A ,1111111) , va r (B))

+ c o s t (ub , s t e p s , l e n g t h (A) * log (l e n g t h (A))) .

First, the CiaoPP system tries to statically verify the assertion. This is done by run-
ning a static resource usage analysis (see [12]) that computes safe lower and upper
bounds on the resource usage (number of resolution steps in this case), and then
by comparing the analysis results with the speciñcation given in the assertion. A
full description of the static veriñcation of computational/resource-related prop
erties is given in [8]. The quick-sort program is of the kind of divide-and-conquer
programs that may cause the analysis to lose precisión. As a consequence, the as
sertion cannot be proved to be false, since the lower bound resource usage function
derived by the analysis (which is linear) is not greater than the upper bound func
tion given in the assertion. Conversely the assertion cannot be proved to hold,
because the upper bound resource usage function derived by the analysis (which
is exponential) is not less or equal than the upper bound function given in the as
sertion. Thus, the outcome of the static veriñcation process is "unknown" and the
assertion status remains as check.2 However, if the run-time checking option is se-
lected, CiaoPP instruments the program with checks to be performed at run-time

2 This can optionally produce a veríficatíon warníng (also known as an "alarm").

for (parts of) assertions which cannot be veriñed statically. Failure of these checks
raises run-time errors referring to the corresponding assertion. In our example, us-
ing input da ta automatically generated (or taken from existing unit tests [10]) the
proñler performs different calis to the quick-sort program. If for some of these calis
the computed number of steps is greater than the one speciñed in the assertion,
then such assertion is false (in fact, CiaoPP was easily able to prove it).

4 Proposing New Computational Properties
In order to support cumulative properties, we extend the set of properties used in
the assertion language, start ing with the addition of r e l _ c o s t , which expresses
relative resource usages. For example, assuming tha t the q s o r t / 2 procedure is
par t of a given main program, the assertion (with no postcondition):

: — p r e d q s o r t (A , B) : (l i s t (A , n u m) , v a r (B)) + r e l . c o s t (u b , e x e c t i m e , 2 0) .

expresses tha t the execution time of q s o r t / 2 is at most 20% of the total execution
time of the main program. The r e l _ c o s t construct follows the schema:

rel_cost(Approx,Res_Name,Percentage)

where Approx is as before, denoting an upper bound, a lower bound, or an exact
valué on the Percentage of the procedure resource (Res_Name) usage with respect
to the total resource usage of the whole main program (from which the predicate
is called) respectively.

We have also extended the c o s t and r e l _ c o s t property constructs with an
extra argument Type specifying the kind of cost information we are interested in:

{ c o s t , r e l _ c o s t } (Approx, Type, Res-Name, Arith-Expf)

deñned as follows:

— so l (I) : The cost of obtaining the I - th solution without considering the cost
of obtaining the previous one. By deñnition, if I is greater than the number
of solutions, then the related cost is zero.

— al lsols: The cost of obtaining all the solutions. It is equivalent to the cost
of applying f i n d a l l / 3 over the given predicate, but subtracting the cost of
f i n d a l l / 3 itself.

— cali: The cost of calling the predicate, regardless of whether it fails or suc-
ceeds (this is the valué by default).

— call_exit: The cost of calling the predicate when it succeeds.
— calLfail: The cost of calling the predicate when it fails.
— redo: The cost of backtracking over the predicate, regardless of whether it

fails or succeeds.
— redo_exit: The cost of backtracking over the predicate when it succeeds.
— redo_fail: The cost of backtracking over the predicate when it fails.

The following example illustrates how the CiaoPP system (with our proñler in-
tegrated and our extended run-time checking operations), monitors and checks
relative resource usages at run-time.

Example 3. Consider again the q so r t / 2 predícate in Figure 3, and assume that
we want to know how the execution times of its recursive calis are distributed.
Although as mentioned before it is possible to define cost centers at literal level,
for the sake of clarity we have defined two bridge predicates (q so r t l / 2 and
qsort2/2) that are used in place of the recursive calis of qsor t /2 , and have
marked them as cost centers using the following declaration:

:— c o s t . c e n t e r q s o r t l / 2 , q s o r t 2 / 2 .

Assume that we profile the execution of q so r t / 2 with an input list of 2500
randomly generated elements, and that our profiler outputs the assertions:

: — obs pred q s o r t l / 2 + r e l _ c o s t (eq , e x e c . t i m e , 4 8) .
: — obs pred q s o r t 2 / 2 + r e l _ c o s t (eq , e x e c . t i m e , 4 7) .

which mean that the observed execution times of q s o r t l / 2 and qsor t2 /2 are
48% and 47% of the total execution time respectively.

Assume now that we want the CiaoPP system to check at run time whether
the two (recursive) calis in the body of the (original) q so r t / 2 are balanced (Le.,
whether each recursive cali consumes more or less 50% of the total execution
time). For this purpose, we write the following assertions:

: — check pred q s o r t l / 2 + r e l _ c o s t (ub , exec . t ime , 5 5) .
: — check pred q s o r t 2 / 2 + r e l . c o s t (ub , exec . t ime , 5 5) .

Assume that we cali q so r t / 2 with a non-uniformly distributed input list, and
that the execution accumulates 65.01% and 8.16% of the time in the two cost
centers associated to the two calis respectively. In this case, the CiaoPP dynamic
comparator will throw a run-time checking error informing that the assertion for
cost center q s o r t l / 2 is violated (because the monitored execution time is greater
than the one expressed in the assertion), and, thus the two calis in the body of
q so r t / 2 are not balanced.

In contrast to non-cumulative global properties, the previously illustrated kind of
cumulative properties cannot be checked immediately at run-time, but rather at
the proper time instant in the program execution. In the current implementation,
such checking is done at the end of the program execution (when the program
control reaches an output port where there are no pending choice points). How-
ever, some scenarios require other rules for expressing the time instant in which
the checking is performed. Consider for example a service that requires the check
to be made periodically at certain time intervals, or when a certain number of
client requests has been reached. Also, so far the operation for accumulating re-
source usages has been addition. However, it is desirable to have more complex
operations. For example, oíd measurements could be discarded, or the events
weighted according to their ages or other properties.

5 Program Transformation for Proflling

Source-to-Source Transformation for (High-Level) Proflling. A predi-
cate marked as a cost center is transformed into an equivalent one that preserves
its semantics while intercepting occurrences of events inside it, by using some

Program

: — m o d u l e (a p , [a p p e n d / 3] ,
[p r o f i l e r]) .

:— c o s t _ c e n t e r a p p e n d / 3 .

a p p e n d ([] , B , B) .
a p p e n d ([H | A] , B , [H | C]) : -

a p p e n d (A , B , C) .

Cost center transformation for profiling

' $ c c $ ' (a p , a p p e n d , 3) .
a p p e n d (E , L , R) :—

h c c _ c a l l (' a p : a p p e n d ' ,3 , P revCCE , C u t T o) ,
h c c . f a i l (P r e v C C E , C h P t O) ,
' $ c c $ a p p e n d ' (A , B , C) ,
h c c . e x i t (P r e v C C E , A c t i v e C C E , C h P t 1) ,
he c r e d o (A c t i v e C C E , ChPtO , C h P t l , C u t T o) .

' $ c c $ a p p e n d ' ([] , B , B) .
' $ c c $ a p p e n d ' ([H | A] , B , [H | C]) : -

' $ c c $ a p p e n d ' (A , B , C) .

Fig. 4. Cost center transformation for profiling (at predícate level)

instrumentation procedures introduced by the transformation. For example, the
predicate append/3 in Figure 4 is marked as a cost center (left hand side), and, in
its transformation (right hand side), it is uniquely renamed to 'ccappend' /3.
In order to avoid calis to instrumentation procedures along all recursive calis to
append/3, the body of the recursive clause of ' ccappend' / 3 is transformed so
that it calis 'ccappend' /3 instead of append/3 (this also avoids the destruc-
tion of last cali optimization.).

A brief description of the instrumentation predicates follows. They opérate
on the cost center graph. Any edge in such graph (CC-edge in the following),
contains the already described (non backtrackable) arrays Counts[enter][leave]
and Ticks[enter][leave] (Section 2). An implicit stack whose elements are pairs
of CC-edges (variables PrevCCE and ActiveCCE) is used to keep the active CC-
edge, and to restore the previous CC-edge when the control flow leaves the active
one (so that the precedence of cost centers in the cali graph is preserved):

— hcc_call(+Name,+Arity,-PrevCCE,-CutTo): activates the CC-edge whose
destination is Name/Arity and origin the destination of the previous CC-
edge. Uniñes PrevCCE with a pointer to the previous CC-edge. Sets the flag
named "entryport" (associated to the active CC-edge) to the valué "cali",
in order to track that the predicate Name/Arity has been entered through
the ca l i port. Uniñes CutTo with a pointer to the top of the current choice
point stack.

— hcc_fail(+PrevCCE,-ChPtO): pushes a choice point on the stack in or
der to execute instrumentation code upon backtracking (after failure oc-
curs), and uniñes ChPtO with a pointer to such choice point. The instru
mentation code executed upon backtracking increments by one the valué of
Counts [entryport] [f ai 1] associated to the active CC-edge, 3 and changes the
active CC-edge to PrevCCE.

— hcc_exit(+PrevCCE,-ActiveCCE,-ChPtl): increments by one the valué of
Counts [entryport] [exit] associated to the active CC-edge. Uniñes ActiveCCE
with a pointer to the active CC-edge and ChPtl with a pointer to the top of
the current choice point stack. Changes the active CC-edge to PrevCCE.

— hccjredo(+ActiveCCE,+ChPtO,+ChPtl,+CutTo): pushes a choice point on
the stack to execute instrumentation code upon backtracking. Checks whether

3 Note that the entryport flag can take the valúes cali or redo.

ChPtO and ChPtl point to the same choice point, in which case the goal is
deterministic (i.e., no choice points have been created during its execution),
and all choice points up to CutTo are removed (namely, the ones introduced
by hcc_fail /2 and hccjredo/4 itself). The instrumentation code executed
upon backtracking sets the "entryport" flag (associated to the active CC-
edge) to the valué "redo," and changes the active CC-edge to ActiveCCE.

Static Cost Center Optimization using CiaoPP. The overhead introduced
by the transformation of cost centers described before can be reduced by us
ing static analysis. There are situations where it can be ensured that some of
the instrumentation predicates (or combinations of them) introduced by such
transformation will never be reached. For example, when a predicate (or literal)
marked as a cost center does not introduce choice points, always succeeds, or
always fails. Thus, such unreachable instrumentation predicates can be removed.
Our proñler detects these situations by using the information inferred by the
CiaoPP analyzers [6] (such as non-determinism and non-failure). It also intro
duces specialized versions for reachable combinations of instrumentation predi-
cates. Although these specialized versions increase the size of the instrumented
program, they can signiñcantly reduce the overhead introduced by the proñler.
Figure 5 shows (right hand side) some of the optimized cost center transforma-
tions (which introduce specialized versions of the instrumentation predicates)
performed by using information inferred by CiaoPP analyzers, that is expressed
as assertions (left hand side).

A s s e r t i o n

: — t r u e p r e d Goa l
+ (n o . c h o i c e p o i n t , n o t _ f a i l s) .

: — t r u e p r e d Goa l
+ n o _ c h o i c e p o i n t .

:— t r u e p r e d Goa l + n o t _ f a i l s .

Spec ia l i zed C o s t Center T r a n s f o r m a t i o n
h c c . c a l l . n c n f (Ñame , A r i t y , P revCCE) ,
c a l l (G o a l) ,
h c c . e x i t . n c n f (P r e v C C E) .
h c c . c a l l (Ñame , A r i t y , P revCCE , C u t T o) ,
h c c _ f a i l _ n c (P revCCE) ,
c a l l (G o a l) ,
h c c . e x i t . n c (P r e v C C E , C u t T o) .
h c c _ c a l l _ n f (Ñame , A r i t y , P revCCE , C u t T o) ,
c a l l (G o a l) ,
h c c . e x i t (P r e v C C E , A c t i v e C C E , C h P t l) ,
h c c . r e d o . n f (A c t i v e C C E , C h P t l , C u t T o) .

Fig. 5. Cost center transformation optimization

Enriching Information with Low-level Profiling. We set up several hooks
at some relevant points in the engine. Their implementation is located in a
sepárate module. To avoid run-time overhead, such hooks are made available
by compiling the engine with an option that enables them. For example, there
are hooks that are called when a fail causes the next choice point to be tried
(lph_f ailjredo(wam)), when a cut is executed (lph_cut(wam)), and when a
given predicate pred is called (lph_exit_call(wam, pred), where the variable
wam is a structure that represents the current state of the virtual machine).
Such hooks remain uninstantiated until the procedure prof i l e / 1 is used over
a given goal, in which case they are instantiated to actual functions that per-
form the proñling itself. The end of the proñling leaves the hooks uninstantiated

again. When performing low-level proñling, each edge of the cost center graph
contains the following (non backtrackable) data structures: (1) the already des-
cribed ones used in high-level proñling; (2) two matrices, Cuts[enter][leave] and
SCuts[enter][leave], that keep the number of cut executions that remove or do
not remove choice points respectively (which allows for example detecting useless
pruning operations and checking that a cut actually prunes branches); and (3) a
hash table used to track the execution of predicates. The key of each entry in the
table is a predicate name/arity and its ñelds are: (a) two matrices similar to the
already described Counts[enter][leave] and Ticks[enter][leave\), but referred to
"predicate heads," and (b) a counter (Skips) to keep the number of choice points
that are removed for that predicate by some pruning operator (cut) execution.

The low-level proñling allows tracking information on predicates that have not
been marked as cost centers (e.g., library predicates), and therefore, to detect that
certain low-level or library predicates are being used by our program without us
being aware (which could happen if syntactic expansions are used). It also allows
detecting backtracking in predicate heads (useful to detect predicates that do
not succeed in the ñrst clause, or that are not indexed by the ñrst argument).

6 Automatic Performance Bottleneck Detection
Deñning cost centers by hand in order to detect performance bottlenecks is a
time-consuming task. As mentioned before, one of the original features of our
proñling tool is a method for identifying performance bottlenecks in an automatic
way, which uses an iterative process that defines cost centers at each iteration.
For space reasons, we give a high-level description of the algorithm and refer the
reader to [11] for details and examples. The method provides the sub-graph (a
tree in fact) of the cost center graph that is responsible for the performance leak.
It can be applied to modular programs and allows providing a list of modules
whose predicates must be taken into account. The input cali graph to the method
is dynamically constructed (deñning cost centers for all predicates in the selected
modules, and executing once with proñling activated).

Starting with the initial goal as the current predicate, at each iteration the
children of the current predicate in the cali graph (i.e., its called predicates) are
computed. They and the prevíous cost centers in the current branch of the cost
center graph (including the current predicate), are marked as cost centers. Then,
the goal is proñled, and, after that, the set of cost centers called by the current
predicate and the amount of resource that each one consumes are computed. To
ensure termination, any predicate previously deñned as a cost center (including
the current predicate) is removed from this set. If after this removal there are no
cost centers left in the set, then the process ñnishes returning the graph built so
far. Otherwise, it selects the relevant cost centers of the called cost centers set,
according to a heuristic (which is a parameter of the method), provided by the
user. Some examples of heuristic selection rules are: (1) select the N predicates
that consume more resources, (2) select the ones whose resource consumption
is larger than a given percentage of the total resource usage, or (3) select the
predicates whose number is not larger than a percentage X of the number of pro
gram predicates, and which together consume a percentage of the total resource

usage greater than a given bound Y. Independently of the heuristic used, a given
predicate is selected at most once (and thus, the sub-graph returned is a tree).

We have also developed a method for drawing automatically the sub-graph of
the cost center graph that is responsible for the performance leak, where different
colors and sizes are used to express the accumulated resource usage in each cost
center.

7 Experimental Results

We have performed an experimental assessment of our proñler. The results are
shown in Table 1 for two different platforms with different processors and OS: an
Intel Core i7, 4 cores x 2.67GHz (2 threads per core), 12GB of RAM, Ubuntu
Linux 10.10 (kernel 2.6.35) and an UltraSparc-Tl, 8 cores x 1GHz (4 threads
per core), 8GB of RAM, SunOS 5.10. In both platforms, the execution has been
locked to a single core in order to avoid erroneous execution time measurements.
The proñler measures execution times using a high-resolution timer, which al-
lows giving relevant valúes in situations where other methods would get a zero
valué. The ñrst and second columns of the table show the benchmarks used4

and the number of predicates deñned in them respectively. For each platform,
the Obs column shows the observed execution time without proñling (given in
milliseconds). The following two columns grouped under (Est. Dev.) are meant
to assess the accuracy of our proñler in monitoring execution times. They show
the ratio between the execution time estimated by the proñler and Obs for two
levéis of proñling instrumentation: hl , which only performs the high level source-
to-source transformation, and 11, which besides performing this transformation,
also introduces hooks in the engine (Le., it also performs low-level proñling). The
columns grouped under Bot. D. refer to the automatic performance bottleneck
detection process (described in Section 6), where the performance is measured in
terms of execution time, the heuristic of selecting the goal with the largest execu
tion time in each iteration has been followed, and the proñling has been performed
without engine hooks (since they do not improve execution time measurements).
Column # i t shows the number of iterations needed to complete such process,
and column ovb shows its overhead, calculated as ovb = '"' pr

n.——, where the
u ' u #itx0bs '

total time due to executing the program with proñling (Tpr = ^ ¿ ¿ i Profi) a n (i
the total time due to its compilation (Tco = Xl¿Íi Compi) have been subtracted
from the total time (Ttot) in order to isolate the time due to the bottleneck
detection process itself. Averages are also provided in the last row of the table.5

The columns under P ro f i l i ng Ov. relate to the run-time overhead intro-
duced by the different program transformations/instrumentations described in
Section 5. They are grouped into two sub-columns, showing the results when the
instrumentation has been optimized using CiaoPP's static analyzers (Optim.),
and without such optimization (N.Op.). In both cases we present the results
with (11) and without (hl) engine hooks activated respectively. The overheads

4 Source code for the examples is available at http://www.clip.dia.fi.upm.es/profiiing/
5 Weighted average taking the observed execution time as weight in all cases.

http://www.clip.dia.fi.upm.es/profiiing/

Table 1. Experimental assessment of the profiler

Program

mem
guardians
color_map
bignums
wumpus
solvejugs
qsort
sudoku
zebra
hanoi
flat
substitute
queens

P.

5
9
5
4

65
6
4

12
5
3
4
3

16
Average

Intel

Obs
(ms)

67
182
99

102
211
255

76
72
40

128
65

187
92

121

Est.
Dev .
hl
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.3
1.3
1.2
1.5
2.0
2.0
1.2

11
1.4
1.6
1.8
2.4
1.6
1.6
2.1
1.7
1.5
1.9
1.8
2.3
2.2

1.8

B o t . D .

it
4
4
2
3
4
4
3
7
3
3
4
3
6

3

OVf,

(%)
2.40
0.95
1.26
1.46
1.53
0.52
1.82
2.42
3.53
1.12
2.41
0.71
1.79

1.34

Profiling Ov.
Optim.
hl
1.0
1.0
1.0
1.0
1.0
1.0
1.3
1.5
1.5
1.6
2.9
2.9
3.1

1.5

11
4.6
3.8
4.3
2.6
5.6
4.0
6.3
5.3
5.7
8.3

10.0
12.7
15.7
6.7

N.Op.
hl
1.0
1.0
1.0
1.0
1.0
1.0
1.3
1.6
1.5
2.1
4.2
2.9
3.1

1.6

11
4.6
3.8
4.3
2.6
5.6
4.0
6.3
5.6
5.7
9.6

14.2
12.6
15.7
7.0

Sparc

Obs
(ms)

377
959
558

2178
1018
1237
402
359
184
665
323

1102
429
753

Est.
Dev .
hl
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.2
1.4
1.2
1.5
2.0
2.3
1.2

11
1.4
1.3
1.3
1.0
1.7
1.5
2.2
1.5
1.4
1.7
1.6
2.0
1.9

1.5

B o t . D .

it
4
4
2
3
4
4
3
7
3
3
4
3
6

3

OVf,

(%)
4.65
1.31
2.24
0.33
1.56
0.98
1.46
4.44
7.16
1.57
2.54
0.51
4.30

1.59

Profiling Ov.
Opt im.
hl
1.0
1.0
1.0
1.0
1.0
1.0
1.4
1.7
1.9
1.9
3.8
3.4
4.4

1.6

11
7.8
6.1
6.4
1.1

11.4
7.1

10.5
8.7

10.6
14.6
17.2
19.6
28.4

9.5

N .Op .
hl
1.0
1.0
1.0
1.0
1.0
1.0
1.5
1.8
1.9
2.4
5.4
3.4
4.4

1.7

11
7.8
6.1
6.4
1.1

11.4
7.1

10.6
9.4

10.6
16.9
24.7
19.7
28.4
10.0

(11 and hl) are given as a ratio ™J, where Prof refers to the execution time
when the proñler is activated, with the cost centers assigned by the automatic
bottleneck detection process reported in the columns grouped under Bot. D. (the
number of selected cost centers is # i t —1), and Obs is the valué in the third co
liman described before. The overhead ratio hl is very cióse to 1 (Le., almost no
overhead is introduced) for the ñrst six programs in the table, while it is larger
for the rest. This is because the latter perform recursive calis between cost cen
ters. As expected, the overhead ratios (for both platforms) grow as we increase
the degree of information that we want to obtain from the proñler.

It can be argued that the overhead introduced by our proñler is small for a
reasonable level of proñling information, and that global static analysis indeed
reduces such overhead. Interestingly, if we compare our results with those re
ported in [16] (which is the closest related previous work that we are aware of
for which there is available data, although applied to imperative programs), the
overheads of the hl columns under Profi l ing Ov. /Optim. are of similar mag-
nitude to those reported therein: 2.95 in the worst case, while in our results the
worst overhead for the Intel platform is 3.1 (queens). However, our approach
provides a richer (and more detailed) variety data.

8 Discussion and Future Work

Since its development our proñler has proved to be quite useful in practice by
identifying the root causes of performance bottlenecks in several complex, real-
life situations. For example, it was the key for identifying a difñcult to lócate
performance bug in the (Ciao) CHR implementation (a complex and relatively
large piece of code): a dereferencing chain for the attribute of a variable was
constructed, instead of modifying the valué of the attribute. Thus, the time
needed for getting the valué of such attribute was directly proportional to the

number of times tha t the a t t r ibute was modiñed. Our proñler has also been suc-
cessfully applied to resource-aware poly-controlled partial evaluation [13]. This
technique combines different control strategies to obtain optimizations tha t can-
not be obtained using a single control technique. Once the optimizations have
been obtained they are compared using some valúes (called fitness valúes). Our
implementation has been successfully used for estimating such valúes.

Note tha t in some cases, bottlenecks can only be detected using the ñne-grain
information provided by our low-level proñling (via engine hooks). For example,
assume tha t we have a read-only library which is responsible for lack of perfor
mance. In this case we are unable to define cost centers on it to perform high-level
proñling. Alternatively we can activate the engine hooks to track information
about all the subroutines invoked in such l ibrary and use it to diagnose the per
formance problem. Engine hooks can also proñle more properties, like the number
of cut executions tha t remove (or do not remove) choice points, failures during
head uniñcation, or choice points removed for a given predicate (see Section 5).

Although our proñler already supports several computational properties and
events, these are predeñned. However, as future work, it should be straightfor-
ward to extend it to allow measuring user-deñned resources, in the sense of the
static resource analysis currently integrated in the CiaoPP framework [12].

References

1. Brassel, B., Hanus, M., Huch, F., Silva, J., Vidal, G.: Run-Time Proñling of Func-
tional Logic Programs. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol. 3573, pp.
182-197. Springer, Heidelberg (2005)

2. Byrd, L.: Understanding the Control Flow of Prolog Programs. In: Tárnlund, S.-A.
(ed.) Proceedings of the 1980 Logic Programming Workshop, Debrecen, Hungary,
pp. 127-138 (July 1980)

3. Debray, S.K.: Proñling Prolog Programs. Software Practice and Experience 18(9),
821-839 (1983)

4. Ducassé, M., Noyé, J.: Tracing Prolog Programs by Source Instrumentation is Ef-
ficient Enough. Journal of Logic Programming 43, 157-172 (2000)

5. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a Cali Graph Execution Pro
ñler. In: SIGPLAN 1982: Proc. of the 1982 SIGPLAN Symp. on Compiler Con-
struction, pp. 120-126. ACM, New York (1982)

6. Hermenegildo, M., Puebla, G., Bueno, F., López-García, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1-2), 115-140
(2005)

7. Kazi, I.H., José, D.P., Ben-Hamida, B., Hescott, C.J., Kwok, C , Konstan, J.A.,
Lilja, D.J., Yew, P.-C: JaViz: A Client/Server Java Proñling Tool. IBM Syst.
J. 39(1), 96-117 (2000)

8. López-García, P., Darmawan, L., Bueno, F.: A Framework for Verification and
Debugging oí Resource Usage Properties. In: Technical Communications oí ICLP.
LIPIcs, vol. 7, pp. 104-113. Schloss Dagstuhl (July 2010)

9. Matos, A.B.: A matrix model for the flow of control in prolog programs with ap-
plications to profiling. Software Practice and Experience 24(8), 729-746 (1994)

10. Mera, E., López-García, P., Hermenegildo, M.: Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281-295. Springer, Heidelberg (2009)

11. Mera, E., Trigo, T., López-García, P., Hermenegildo, M.: An Approach to Profiling
for Run-Time Checking of Computational Properties and Performance Debugging.
Technical Report CLIP3/2010.0, Technical University of Madrid (UPM), School of
Computer Science, UPM (March 2010)

12. Navas, J., Mera, E., López-García, P., Hermenegildo, M.: User-Definable Resource
Bounds Analysis for Logic Programs. In: Dahl, V., Niemelá, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 348-363. Springer, Heidelberg (2007)

13. Ochoa, C , Puebla, G.: Poly-Controlled Partial Evaluation in Practice. In: ACM
Partial Evaluation and Program Manipulation (PEPM 2007), pp. 164-173. ACM
Press, New York (2007)

14. Jarvis, S.A., Morgan, R.G.: Profiling large-scale lazy functional programs. Journal
of Functional Programing 8(3), 201-237 (1998)

15. Sansom, P.M., Peyton Jones, S.L.: Formally Based Profiling for Higher-Order
Functional Languages. ACM Transactions on Programming Languages and Sys
tems 19(2), 334-385 (1997)

16. Spivey, J.M.: Fast, accurate cali graph profiling. Software Practice and Experi
ence 34(3), 249-264 (2004)

