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Abstract. We address the problem of developing mechanisms for eas-
ily implementing modular extensions to modular (logic) languages. By 
(language) extensions we refer to different groups of syntactic definitions 
and translation rules that extend a language. Our use of the concept of 
modularity in this context is twofold. We would like these extensions to 
be modular, in the sense above, i.e., we should be able to develop dif­
ferent extensions mostly separately. At the same time, the sources and 
targets for the extensions are modular languages, i.e., such extensions 
may take as input sepárate pieces of code and also produce sepárate 
pieces of code. Dealing with this double requirement involves interesting 
challenges to ensure that modularity is not broken: first, combinations 
of extensions (as if they were a single extensión) must be given a precise 
meaning. Also, the sepárate translation of múltiple sources (as if they 
were a single source) must be feasible. We present a detailed descrip-
tion of a code expansion-based framework that proposes novel solutions 
for these problems. We argüe that the approach, while implemented for 
Ciao, can be adapted for other Prolog-based systems and languages. 

Keywords: Compilation, Modules, Modular Program Processing, Sep­
árate Compilation, Prolog, Ciao, Language Extensions, Domain Specific 
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1 Introduction 
The choice of a good notat ion and adequate semantics when encoding a partic­
ular problem can dramatically affect the final outcome. Extreme examples are 
programming pearls, whose beauty is often completely lost when translated to a 
distant language. In practice, large projects are bigger than pearls and often no 
single language fulfills all expectations (which can include many aspects, such 
as development time or execution performance). The programmer is forced to 
make a commitment to one language —and accept sub-optimal encoding— or 
more than one language —at the expense of interoperability costs. 

An alternative is to provide new features and idioms as syntactic and semantic 
extensions of a language, thus achieving notational convenience while avoiding 
inter-language communication costs. In the case of Prolog, language extensión 
through term-expansion systems (combined with operator definitions) has tradi-
tionally offered a quick way to develop variants of logic languages and semantics 



(e.g., experimental domain-specific languages, constraint systems, optimizations, 
debugging tools, etc.). Some systems, and in particular Ciao [10], have placed 
special attention on these capabilities, extending them [1] and exploiting them 
as the base for many language extensions. 

Once a good mechanism is available for writing extensions and a number of 
them are available, it is natural to consider whether combining a number of them 
following modular design principies is feasible. For example, consider embedding 
a simple handy functional notatíon [3] (syntactic sugar to write goals, marked 
with ~, in term positions), into a more complex extensión, such as the Prolog-
based implementation of CHR [8]. In this new dialect, the CHR rule (see Sect. 
6.2.1 in Frühwirth's book [8]): 

T eq and(TI, T2), TI eq 1, T2 eq X <=> T eq X. 
can be written more concisely as: 

T eq and(~eq( l ) , ~eq(X)) <=> T eq X. 
Intuitively, expansions are applied one after the other. This already points out 
that at least a mechanism to determine application order is needed. This is al­
ready undesirable because it requires users to be aware of the valid orderings. 
Furthermore, just ordering may not be enough. In our example, if functional syn-
tax is applied first, it must normalize the ~eq(_) terms before CHR translation 
happens, but there is no simple way to indicate to the functional expansión that 
the CHR constraints have to be treated syntactically as goals. If CHR transla­
tion is done first, it will not recognize that ~eq(_) corresponds to a constraint, 
and incorrect code will be generated before the functional expansión takes place. 
Thus, the second rule cannot be translated into the first one by simply composing 
the two expansions, without tweaking the translation code, which is undesirable. 

Moreover, current extensión mechanisms have difiiculties dealing with the 
module system. An example is the Typed Prolog extensión of [13], which ele-
gantly implements gradually typed Prolog in the style of Hindley-Milner, but 
needs to treat programs as monolitic, non-modular, units. Even if extensions are 
made module-aware, the dynamíc features of traditional Prolog systems present 
an additional hurdle: programs can change dynamically, and modules may be 
loaded at runtime, with no clear distinction between program code and transla­
tion code, and with no limits on what data is available to the expansión (e.g., 
consulting the predicates compiled in other arbitrary modules). In the worst case, 
this leads to a chaotic scenario, where reasoning about language translations is 
an impossible task. 

The previous examples illustrate the limitations of the current extensión mech­
anisms for Prolog and motivate the goals of this work: 

Predictable Combination of Fine-Grained Extensions: The exten­
sión mechanisms must be fine-grained enough to allow rich combinations, 
but also provide a simple interface for users of extensions. Namely, pro-
grammers should be able to write modules using several extensions (e.g., 
functional notation, DCGs, and profiling), without being required to know 
the application order of rules or the compatibility of extensions. Obviously, 
the result of the combination of such extensions must be predictable. That 



indirectly leads us to the necessity of describing a precise compilation model 
that includes compilation and loading of the extensión code. 

— Integration with Module Systems: It is thus necessary to make the ex-
tensions module-aware, while at the same time constraining them to respect 
the module system. For example, it must be possible to determine during ex­
pansión to what module a goal being expanded belongs, if that information 
is available, or to export new declarations. It is well known that modularity, 
if not designed carefully, can make static analysis impossible [2]. A flexi­
ble extensión system that however allows breaking modularity renders any 
efforts towards static transformations useless. 

This paper presents a number of novel contributions aimed at addressing these 
problems. We take as starting point the module and extensión system imple-
mented in Ciao [1,10], which is more elabórate than the one offered by tradi-
tional Prolog systems. We provide in this paper a refined formal description of 
the compilation model, and use it to propose and justify the definition of a num­
ber of distinct translation phases as well as the information that is available at 
each one. Then, we propose a set of rule-based extensión mechanisms that we 
argüe generalize previous approaches and allows us to provide better solutions 
for a good number of the problems mentioned earlier. 

The paper is structured as follows. Section 2 gives a detailed description of 
the core translation process for extensions. Section 3 defines a compilation model 
that integrates the extensions. Section 4 and Section 5 Alústrate the rules de-
fined in the previous section by defining several (real-life) language features and 
extensions. We cióse with a discussion of related and future work in Section 6, 
and conclusions in Section 7. 

2 Language Extensions as Translation Rules 

By language extensions we refer to translations that manipúlate a symbolic 
representation of a given program. For simplicity we will use térras representing 
abstract syntax trees, denoted by T, following the usual definition of ground 
terms in first order logia. To simplify notation, we include sequences of terms 
(Seq(T)) as part of T.1 We also assume some standard definitions and operations 
on terms: termFn(x) denotes the (ñame, arity) of the term, args : T —> Seq(T) 
obtains the term arguments (Le., the sequence of children), and setArgs : T x 
Seq(T) —> T replaces the arguments of a term. 

We use a homogeneous term representation for the program, but terms may 
represent a variety of language elements. The meaning of each term is often 
given by its surrounding context. In order to reflect this, each input term is 
labeled with a symbolic kind annotation. That annotation determines which 
transformation to apply to each term. 

We define the main transformation algorithm tr[x : K] = x' in Fig. 1. Given a 
term x of kind K, it obtains a term x' by applying the available rules. Translation 

1 We will assume -for simplicity and contrary to common practice- that when com-
piling a program variables are read as special ground terms. 



tr[ai : final¡ 

trlx : KJ 

tr[a: : K] 

tr[a; : K J 

tr[a; : try(t,m, K 2 ) ] 

t r j x i . . . a;„ : seq(«)] 

Fig. 1. The Transformation Algorithm 

ends for a term when the final kind is found. The transformation is driven by 
rules (defined in compílatíon modules). Note tha t the rules may contain guards 
in order to make them conditional on the term. Rule ' denotes 
tha t when a term x of kind K is found, it is replaced by x' of kind K' . Rule 
K >~ K' is the same, but the term is unmodified. Finally, rules 
and (x : KX, a') = > x' : K'X allow the deconstruction (decons) of a term into 
smaller parts , which are translated and then put together by reconstruction of 
the term (recons). Intuitively, this pair of rules allows performing a complex 
expansión tha t reuses other rules (which may be defined elsewhere). We will 
see examples of all these rules later. We divided expansions into finer-grained 
translations because we want to be able to combine them and to allow them 
to be Ínterleaved with other rules in such combinations. Monolithic expansions 
would render their combination infeasible in many cases. 

Additionally, there are some rules for specíal kínds, which are provided here 
for programmer convenience, even if they can be defined in terms of the previous 
rules. Their meaning is the following: the try(t, «1,^2) kind tries to transform 
the input with the relation t. If it is possible, the resulting term is transformed 
with kind n\. Otherwise, the untransformed input is retried with kind «2- This 
is useful to compose translations. The seq(n) kind indicates tha t the input term 
is a sequence of elements of kind n? 

C o m p o s i t i o n of T V a n s f o r m a t i o n s . Note tha t the transformation algorithm 
does not make any assumption regarding the order in which rules are defined in 
the program, given tha t the rules define a fixed order relation between kinds. We 
will see in Section 5 how to give an unambiguous meaning to conflicting rules 
targeting the same kind. 

2 In the Prolog implementation sequences are replaced by lists. 

: X 

- tr[ai : K'] (if K y K) 

- tr[ai : K ] (if x : K ==>• x : K ) 
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Example 1 (Combíníng Transformations). Consider the example about merging 
CHR and functional syntax presented in the introduction. It can be solved in 
our framework by introducing rules such as: 

(a \ b <=> c) : chrclauseí = > (abe): (goal1 goal1 goa^) 

(_ : chrclauseí, (a b' c')) = > (a \ b' <=> c) : chrclause2 

Those rules expose the internal structure of some construets to allow the coop-
eration between translations. That is, those rules mean that in the middle of 
the translation from the kinds chrclauseí and chrclause2 we allow treatment of a 
kind goali, which could be treated, e.g., by the functional syntax package. Note 
that neither the CHR ñor the functional package are required to know about the 
existence of each other. 

3 Integration in the Compilation Model 

In our compilation model programs are separated into modules. Modules can im-
port and use code from other modules. Additionally, modules may load language 
extensions through special compilation modules. For the sake of simplicity, we 
will show here the compilation passes required for a simplified language with ex-
ported symbols (e.g., predicates) and imported modules. Extending it to support 
more features is straightforward. 

We assume that compilation is performed on a single module at a time, in 
two phases.3 Let us also assume that each phase reads and writes a series of 
initial (sources), temporal, and final compilation results (linkable/executable 
binaries). We will cali those elements nodes, since clearly there is a dependeney 
relation between them. In practice, nodes are read and written from a (persistent) 
memory, that we will abstract here as a mapping V. We denote as V(n) the valué 
of a node. We denote as V(n) <— v the destructive assignment of v to n in V, 
and V(n) the valué of n in V. 

Given a module i, the first phase (strPass) performs the source code (denoted 
for conciseness as src[¿]) parsing and additional processing to obtain the abstract 
syntax tree (ast[¿]) and module interface (itf[¿]). In order to extend the compi­
lation, we introduce a cali to strTr. This will be defined herein in terms of the 
translation algorithm tr[ • : T] (Fig. 1), working on the program definitions. We 
will see actual example definitions for them in Section 5. We cali this the struc-
tural pass, since we can change arbitrarily the structure of the syntax tree, but 
we are not yet able to fully provide a semantics for the program, which may 
depend on external definitions from imported modules.4 Indeed, the informa-
tion about local definitions (e.g., defined predicates) and the module interface 

3 This is common in many languages, since at least two passes are required to allow 
identifiers in arbitrary order in the program text. 

4 It is important not to confuse ímportíng a module with including a file. The latter 
is purely syntactic and can be performed during program reading. For the sake of 
clarity, we omit dependencies to included files in further sections. 
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Fig. 2. Example of compilation dependencies for module ¿, which imports module j (d 
arrow), and requires compilation module k (c arrow) 

(defined below) is available only at the end of this pass. Note that we load com­
pilation modules dynamically during compilation. We will show later how this 
is done. 

Once the first phase finishes, the module interfaces are available. In the sec-
ond phase (semPass), the interface of the imported modules are collected and 
processed alongside with the module abstract syntax tree (ast[¿]) and interface 
(itf[¿]). The output of this phase (denoted as bin[¿]), can be either in an exe-
cutable form (e.g., bytecode), or in a suitable kernel language treatable by other 
tools (e.g., like program analysis). As in the previous phase, we introduce an 
extensible translation pass called semTr, similar to strTr. However, this time it 
can access the interface of imported modules. We ñame this the semantíc pass. 
For loading compilation modules (or any other module) dynamically, we need 
to compute the link-set (the reflexive transitive closure of the import relation 
between modules), or the minimum set of modules required during execution of 
a module. 

Compilation Order. In general, determining the order in which compilation 
must occur, and which recompilations have to take place whenever some source 
changes is not a straightforward task. For example, see Figure 2 which shows the 
dependencies for the incremental compilation of a module i depending on module 
j and compilation module k. We need an algorithm that automatically schedules 
compilation of modules (both program and translation modules) and which is 
incremental in order to reduce compilation times. Both of these requirements 
are necessary in a scalable, useful, dynamic environment. Le., when develop-
ing, the user should not have to do anything special in order to ensure that all 



modules are compiled and up to date. However, since dependencies are dynamic 
we cannot (and would not want to) rely on traditional tools like Makef i l e s . 

3.1 Incremental Compilation 

We solve the problems of determining the compilation order, and making the 
algorithm incremental, with minor changes. The idea is to invoke the necessary 
compilation passes before each V(n) is read, in order to access up-to-date valúes. 
For that, we define the UpdateNode(n) in Algorithm 1. 

The algorithm works with tíme-stamps. We extend the V mapping with an 
(also persistent) mapping T between nodes and time-stamps, so that: T(x) = _L 
if the node does not have any valué, and for each V(n) <— v, T(n) is updated 
with a recent time-stamp. We need another mapping S, that relates a node with 
its status, and is non-persistent and monotonous during a compilation session 
(during which compilation of a set of modules takes place, with no allowed 
changes in source code). When a compilation session starts, we begin with the 
empty status for all nodes. Finally, we assume that for passes that produce 
more than one output node (e.g., the interface and the syntax tree), we can 
choose a fixed one of them as the ruling node (e.g., the interface). We denote by 
RulingNode(n) the ruling node of n. 

data: mappings V, T, and S 

1 def UpdateNodein): 
2 

3 

4 

B 

r = RulingNode(n) ; CheckNode(r) 
if S(r) = invalid then 

S(r) «— working 
if GenNode(r) then S(r) «— val id(T(r)) else S(r) «— error 

6 def CheckNode(r): 
7 

8 

9 

if S(r) = _L then 
if UpToDate(T(r),Nodelnputs(r)) then S(r) <- val id(T(r)) 
else S(r) «— invalid 

10 def UpToDate(t,oldin): 
n 
12 

13 

14 

15 

if t = _L V oldin = _L then return False 
foreach m„ e oldin do 

rin = RulingNode(n in) ; CheckNode(r in) 
if -i((S(rin) = val id(í i„)) A (í¿n < í)) then return False 

return True 

Algorithm 1: UpdateNode 

UpdateNode works by obtaining the ruling node, invoking CheckNode to up­
date its status, and, depending on it, invoking GenNode to (re)generate the out-
puts if necessary. CheckNode (line 6) examines the node and updates its status. 



If the node was visited before, the status will be different from _L, and it will 
exit. If not, it will check that r is up to date (UpToDate(t, oldin), line 10) w.r.t. 
all the dynamic input dependencies (oldin = Nodelnputs(r)). In our case, for 
strPass(i) the input nodes are src[¿] and the link-set of all compilation modules 
specified in the (oíd) ¡tf[i]. For semPass(i) the input nodes are itf[¿] and \tí[j], 
for each imported module j specified in ¡tf [i], in addition to the nodes for com­
pilation modules. The input nodes are _L if it was not possible to obtain them 
(i.e., no itf[¿] is found). If the node is up-to-date, its status is marked as valid(í), 
indicating that it needs no recompilation. If not, it is marked as invalid. This 
may mark the status of other dependent nodes, but no action is performed on 
them. 

For terminal nodes (e.g., source code src[¿] for some module i), GenNode(r) 
will simply check that the node r exists, and Nodelnputs(r) is empty. CheckNode 
will mark existing terminal nodes as valíd. Non-existing nodes will be marked as 
invalid, and later UpdateNode will try to genérate them. Since they do not exist, 
they will be marked as error. For computable nodes, GenNode(r) invokes the 
compilation pass that generates the corresponding output ruling node (based on 
static output dependencies, i.e., strPass(i) generates ¡tf[i], semPass(i) generates 
bin[¿]). If compilation was successful, the status is updated with valid(T(r)) (in­
dicating that it was successfully generated within this compilation session). On 
error, error is used as mark. An additional working status is used to mark nodes 
being computed and detect compilation loops (i.e., compilation modules depend-
ing on themselves). Note that for nodes whose valué is assumed to be always up 
to date (jrozen nodes, e.g., precompiled system librarles or static modules that 
cannot be updated) we make S(n) = valid(O) by definition (denoting the oldest 
possible time-stamp). 

Correctness and Optimality of Time-Stamp Approximation. The algo-
rithm is based on, given a node, knowing if it needs to be recomputed. Based 
on the fact that each compilation pass only depends on its inputs, we can deter­
mine this by checking if the contents of a node have changed w.r.t. the contents 
used for the pass. For that, we could keep all the versions of each node, and 
number them in increasing order. Instead of local versión numbers, we can use 
time-stamps, as a global versión counter updated each time a node is written. 
This has the property that for each generated node n, T(n) > T(m) for each m 
being an input dependency of n. If we can reason on time-stamps, then keeping 
the contents of each node versión is unnecessary.5 So if we find an input depen­
dency with a time-stamp greater than T(n), then it is possible that it may have 
changed. We may have false positives (time changed but the valué is the same), 
which will result in more work than necessary, but not incorrect results. If the 
time-stamp is less or equal then we can be assured that it has not changed since 
n was generated. Unless time-stamps are artificially changed by hand, we will 
not have false negatives (whenever a node needs to be computed, it will be). 

5 When dealing with large dependencies, this seems inpractical, both in ternas of time 
and space. We want this operation to be as fast as possible and not consume much 
additional space. 



We only need to keep for each node its dependencies (the ñame of the nodes, 
not their valué), or provide a way of inferring them from other stored valúes.6 

Handling Compilat ion Module Loops. When a compilation module de-
pends on modules that depend on it, a deadlock situation occurs. The compila­
tion module cannot be compiled because it requires some modules that cannot 
be compiled yet. However, it is common to have languages that compile them-
selves. We solve the issue by distinguishing between normal and static modules. 
Static modules have been compiled previously and their bin[¿] and itf[¿] are kept 
for following compilations (say b¡n[í]s and ¡tf[í]s respectively). In that case, 
(¡tf [i] = \tí[i]s A bin[¿] = b¡n[í]s). The set of all static modules for the compiler 
constitutes the bootstrap system. Note that self-compiling modules require cau-
tion, since accidentally losing the bootstrap will make the source code useless 
(our source, only understood by our compilation module, may be written in a 
language for which there exists no working compiler). 

Module Invariants and Extensions. Although the kernel language may pro­
vide low-level pathways if necessary (e.g., to implement debuggers, code inspec-
tion tools, or advanced transformation tools), it is important not to break the 
module invariants. One invariant is the module interface (¡tf[j]), which once 
computed cannot be changed without invalidating the compilation of any mod­
ule i that imports it j . For this reason, a semantic expansión cannot modify the 
module interface. 

4 Backward Compatibili ty 

We now illustrate how the Ciao expansión primitives [1] can be easily emulated 
within the proposed approach. Ciao extensions are defined in special librarles 
called packages. They contain lexical and syntactic definitions (such as new op-
erators), and hooks for language extensión, defined in compilation modules. The 
available hooks can be seen as partial functional relations (or predicates that 
given an input have at least one solution) that transíate different program parts: 
term, sentence, clause, and goal translations. For conciseness, we will denote 
them as £t, £s, £c, £g C T x T, respectively. The transformations in a single 
package will be the tupie £ = (£t,£s,£c,£g). We will denote with £ = (£\... £n) 
all the transformation specifications that are local and used in module, and by £j. 
the sequence of translations (£\h .. .£nk), for a particular k G {t, s, c,g}. Fig. 3 
shows the emulation of these translations. 

The translations made during the strTr phase start with tr[ • : sents]. A term 
of kind sents represents a sequence of sentences, that is translated as a sentsg-. 
Subscripts are used here to represent families of kinds. The kind sentsts repre­
sents a sequence of sentences that require the translation sentts. The third rule 

6 That is of course not necessary for static dependencies (e.g., that each ast[¿] depends 
on src[¿]). 



sents y sentsg- term y termg 

sentsts >- seq(sentt.,) term[t\ta] y try(t,termts,termts) 

sení[t|ts] y try(t,sentsts, sentts) term^ y rterm 

sentü y term x . rfemj ^ a r g s ( a ; ) . ( f e m j f e m j ) 

(x : rterm, a) =£- setArgs(ai,a) : final 

clausesy seq(clause) bodyy try(f, control, goal) 

clause y clauseg f(x,x) = x € {,/2, ;/2,...} 

clause[t]ts] y try(t, clausetB,clausetB) x : control6?^ args(ai) : (body... body) 

claUSen y tlb / . ¡ -^\ recons . ( ^\ r I 

u (a; : control, a) ==? set/\rgs{x, a) : final 

(h:-b) : hb ^> (h b) : (head body) goal y goalg-

(_: hb, (h b)) " ^ (h:-b) : final goal[t]ts] y try{t,body,goalu) 

goaln y resolv 

Fig. 3. Emulating Ciao translation rules 

indicates that a sentence of kind sent^ts] (we extract the first element of the 
list of transformations) will be transformed by t, yielding a term of kind sentsts 

(i.e., a sequence of sentences) on success.7 In case of failure, the untransformed 
term will be treated as a sentts. In this way, all transformations in £s (i.e., all 
sentence_trans) will be applied. Once ts is empty, the result is translated as 
kind term, equivalent to tertrig-. Similarly to the previous case, all transforma­
tions in ts (i.e., all term_trans) are tried and removed from the list of pending 
transformations. When ts is empty, the datum is treated as an rterm, which di­
vides the problem into the translation of arguments as kind term and reuniting 
them as a final (non-suitable for further translations) result. Both transforma­
tions are applied in the same order as specified in Ciao. 

The translations made during the semTr phase start with tr[ • : clausesj. 
Sequences of clauses are treated in a similar way as sentences, with the difference 
that the translation of a clause always returns one clause (not a sequence). When 
all translations in £c (all clause_trans) have been performed, the head and body 
are treated. In this figure, we do not show any successor for the head kind, since 
this will be done in the following examples (we could add head y final to mark 
the end of the translation). For body, we apply the same body translation on 
the arguments of control constructs (e.g. , / 2 , ; / 2 , etc.). If we are not treating a 
control structure, the translations in £g are applied (all goal_trans). Note that 
the first kind in the try kind of goals is goal. In contrast with other translations, 

7 We assume that concatenation of sequences is implicit. We can adapt all the discus-
sion to work with lists of sentences, but that would obscure the exposition. 



when a goal translation is successfully applied, it is not removed from the list; 
all translations are tried again until none is applicable.8 In such case, the term 
is translated as a resolve kind (for the same reason as for head, we leave it open 
for later translations). 

Note the flexibility of the base framework: for instance, introducing changes 
in the expansión rules at fundamental levéis can be done, even modularly. 

Priority-Based Ordering of Transformations. The rules presented in this 
section establish a precise and fixed application order. However, when more 
than one sentence, term, clause, or goal translation is used in the same module 
the ordering among them also needs to be specified. The standard solution for 
this problem in Ciao is to use the order in which the packages which contain 
the expansión code are stated (e.g., in : - use_package( [dcg, f syntax]) the 
dcg transformations precede those of f syntax. We propose an arguably bet-
ter solution for this problem: to introduce a priority in each hook, so that all 
transformations in £ can be ordered beforehand. With this solution (now imple-
mented in Ciao) directives such as : - use_package( [dcg, f syntax]) and :-
use_package( [f syntax, dcg]) are fully equivalent, and both would apply the 
transformations in the right order. Of course, this moves the responsibility from 
the user of the extensión to the extensión developer. However, in practice this 
represents a huge advantage for users of packages. 

5 Examples and Applications 

We show the expressivity of the rules with fragments of two translations that 
deal with the module system and meta-predicates. Each of them is presented 
separately, but their combination results in a transformation equivalent to that 
hardwired in the Ciao compiler (and which was not expressible in the oíd trans­
formation hooks). For the sake of clarity, we continué using the formal notation 
in all the following sections. Writing the Prolog equivalent of both the rules 
and the driver algorithm presented here is straightforward. As implemented in 
the Ciao compiler, Prolog terms can be used to represent the abstract syntax 
tree. The different stages of compilation can be kept in memory as facts in the 
dynamic datábase, with extra arguments to identify the module. 

We indicate the current module as cm. We will assume that we have access 
to the information visible during the translation, such as parsed module code, 
declarations, interfaces, etc. 

Example 2 (Predícate-based Module System). The following rules perform the 
module resolution and symbol replacement in all the clause goals to implement 
a predicate-based module system via a language extensión. Instead of duplicating 

8 This preserves the semantics of the original translation hooks, where termination is 
up to the writer of the translation rules. Detecting those problems is out of the scope 
of this paper. 



the logic to lócate goal positions, the translations are inserted in the right place 
just after goal expansions are performed (Fig. 3). 

We denote that a predicate symbol / is defined in the current module by 
localdef(/) = defined(/) G ast[cm], and that / is exported by an imported module 
m by importdef(/, m) = (exported(_f) G ¡tf[m] A ¡mported(m) G ast[cm]). Let 
modlocal(m, í) be a term operation that replaces the principal functor of term 
t by another one that is prívate to module m (e.g., by a special representation, 
not directly accessible from user code, that concatenates the ñame of the current 
module cm with the symbol). The translation of head transforms the term using 
that operation. The rule for resolv does the same, but uses the module obtained 
from lookup (that indicates where the predicate is defined).9 

x : head = > modlocal(cm, x) : final 

x : resolv = > modlocal(m, x') : meta (if lookup(x, m,x')) 

x : resolv = > error("module error") : final (if-ilookup(x, _, _)) 

(-iqual(a, _, _) A a' = a A localdef(/) A m = cm) V 

, , , ,. (-iqualía, _, _) A a' = a A ¡mportdef( f, m) A m = cm) V 
lookup(a, m, a ) = ) M ., v ' ' ' A i i . uA\ !, 

KV ' ' ' (qual(a, m, a') A m = cm A localdef(/)) V 

(qual(a, m, a') A m ^ cm A ¡mportdef(/, m)) 

where / = termFn(a') 

The complete specification is lengthy, but not more complicated. E.g., it would 
require more elabórate error handling, which checks for ambiguity on import 
(e.g., m in lookup must be unique, etc.). 

Example 3 (Rules for Meta-predícates). Goals that cali meta-predicates in Pro­
log require special handling of their arguments. We specify the translation of such 
goals though a kind meta. The translation rule decomposes the term into meta-
arguments, each of kind marg(r), where T is the meta-type for the predicate, 
e.g., goal). Note that we assume that ast[cm] includes a term metaPred(/, T) for 
each : - meta_predicate declaration. That relates the module-local symbol / 
of the predicate with each of the meta-types of the goal arguments. The trans­
lation of marg(r) returns a pair of the transformed term and an optional goal. 
Then, the composition rule rebuilds the goal by placing the transformed terms 
cis cir guments, collecting the optional goals in front of it: 

qua\(mg,m,g) is true iff the term rng is the qualification of term g with term m 
(e.g., lists:append( [1], [2], [1,2])). We use it to avoid ambiguity with the colon 
symbol used elsewhere in rules. 



decons - , - , n 

g : meta = > x : n where 

x = args(gr) 

metaPred(termFn((;), T ) G ast[cm] 

Ki = margíji) Ví.l < i < \f\ 

(g : meta, a) => g' : final where 

a¿ = (x¿, s¿) Ví.l < i < l, / = |a|, 

gr' = toConj((si s2 ••• s; setArgs(gr,x))) 

The toConj function transforms the input sequence into a conjunction of literals. 
We list below the rules for arguments. In the cases where the arguments do not 
need any treatment , we use e as the second element in the pair, which denotes 
the empty sequence. The case where the argument represents a goal, but is not 
known at compile time (e.g., X IS el variable, or x = qm : _ , where qm is not 
an atom), is captured by needsRt(x). In such case the rule emits code tha t will 
perform an expansión at run time (which however may share code with those 
rules). Finally, if the argument represents a goal, we use a deconstruction rule 
to expose an argument of kind body, which once translated is put back in a pair, 
as required by marg(_).w 

x : margar) =^> [x,e) : final (if r / goal) 

x : margar) =^> (x , (rtexp(a;,r, c m , i ))) : final (if r = goal A needsRt(a;)) 

where a; is a new variable 

x : margir) ==? x : body (if r = goal A -meedsRt(a;)) 

(_ : margir), x) ==? [x,e) : final 

Example 4 (Combined Transformation). The previous transformations can be 
combined to transíate goals involving meta-predicate calis into plain module-
qualified goals. The rules defined in this section and in Section 4 can be used to 
transform the input goal: 

G= f i n d a l l ( X , m e m b e r ( X , [ l , 2 , 3 ] ) , X s ) 

as G' by evaluating t r [ G : goalj so that : 

G" = ' a g g r e g a t e s : f i n d a l l ' ( X , ' l i s t s : m e m b e r ' ( X , [ 1 , 2 , 3 ] ) , X s ) 

assuming tha t f i n d a l l / 3 is imported from the module a g g r e g a t e s , tha t 
member/2 is imported from l i s t s , and tha t the meta-predicate declaration of 
f i n d a l l / 3 specifies tha t its second argument is a goal. 

This allows applying rules treating bodies, such as symbol renaming for the module 
system. 



6 Related Work 

In addition to the classic examples for imperative languages, such as the C pre-
processor, or more semantic approaches like C++ templates and Java generícs, 
much work has been carried out in the field of extensible syntax and seman-
tics in the context of functional programming. Modern témplate systems such 
as the one implemented in the Glasgow Haskell compiler [14] generally pro-
vide syntax extensión mechanisms in addition to static metaprogramming. The 
Objective Caml preprocessor, Camlp4 [4], provides similar features but focuses 
more on the syntax extensión aspects. Both systems allow the combination of 
different syntax within the host language by using explicit mechanisms of quo-
tations/antiquotations. 

Another elegant approach consists on defining language extensions based on 
interpreters. In [11] a methodology for building domain-specific languages is 
shown, which combines the use of modular monad interpreters with a partial 
evaluation stage to reduce or eliminate the interpretation overhead. Although 
this approach provides a clean semantics for the extensión, it has the disad-
vantage of requiring the (not always automatable) partial evaluation phase for 
efficiency, and its integration with the rest of the language and with the compi­
lation architecture is more complex. 

Another solution explored has been to expose the abstract syntax tree, through 
a reasonable interface, to the extensions. Racket (formerly PLT Scheme) [7] has 
an open macro system providing a flexible mechanism for writing language ex­
tensions. It allowed the design of domain-specific languages (including syntax), 
but also language features such as, e.g., the class and component systems, which 
in Racket are written using this framework. To the extent of our knowledge, 
there is no formal description of the framework ñor whether and how múlti­
ple language extensions interact when specified simultaneously. However, it is 
interesting to note that despite growing independently, Ciao and Racket, both 
dynamic languages, have developed similar ideas, like separation of compile-time 
and run-time affairs and the necessity of expansions at different phases. 

Finally, extensibility has also been achieved by making use of rewriting rules. 
For instance, by mixing such features with compilation inlining, the Glasgow 
Haskell compiler provides a powerful tool for purely functional code optimiza-
tion [12]. It seems however that the result of the application of such rules can 
quickly become unpredictable [6]. In the context of constraint programming, a 
successful language transformation tool is Cadmium [5], which compiles solver-
independent constraint models. 

7 Conclusions 

We have described an extensible compilation framework for dynamic program­
ming languages that is amenable to performing sepárate, incremental compi­
lation. Extensibility is ensured by a language of rewrite rules, defined in plug-
gable compilation modules. Although the work is mainly focused on Prolog-
like languages, most of the presentation deals with common concepts (modules, 



interfaces, declarations, identifiers), and thus we believe tha t it can be adapted 
to other paradigms with minor effort. 

In general, the availability of a rich and expressive extensión system is a large 
asset for language design. One obvious advantage is tha t it helps accommodate 
the programmer 's need for syntactic sugar, while keeping changes in the kernel 
language at a minimum. It also offers benefits for portability, since it makes it 
possible to keep a common front end (or a set of language features) and plug ín 
different kernel engines (e.g., Prolog systems) at the back end, as long as they 
provide access to the same kernel language (or one tha t is rich enough) [15]. 

Beyond the obvious usefulness of the framework as a separation of concerns 
during the design of extensions (the support for extensión composition and sepá­
rate compilation, etc.), the transí ation rules can also be seen as a complementary 
specification mechanism for the language features designed. If such rules are suc-
cinct and clear enough, which is not tha t hard in practice, they can actually be 
exposed to programmers alongside s tandard documentation. We plan to modify 
the lpdoc tool [9] to provide support for this. 

We believe tha t the model proposed makes it easier to provide unambiguous, 
composable specifications of language extensions, tha t should not only make 
reasoning about correctness easier, but also avoid causing and propagating er-
roneous language design decisions (such as, e.g., unintended compilation depen-
dencies between modules tha t would ruin any parallel compilation or analysis 
efforts) tha t are normally hard to detect and correct. We also hope tha t our con-
tribution will contribute, in the context of logic programming, towards setting a 
basis for interoperability and portabili ty of language extensions among different 
systems. 
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