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Abstract—Surface tension induced convection in a liquid bridge held between two parallel, coaxial, solid disks is 
considered. The surface tension gradient is produced by a small temperature gradient parallel Co the undisturbed 
surface. 

The study is performed by using a mathematical regular perturbation approach based on a small parameter, e, 
which measures the deviation of the imposed temperature field from its mean value. 

The first order velocity field is given by a Stokes-type problem (viscous terms are dominant) with relatively 
simple boundary conditions. The first order temperature field is that imposed from the end disks on a liquid bridge 
immersed in a non-conductive fluid. Radiative effects are supposed to be negligible. 

The second order temperature field, which accounts for convective effects, is split into three components, one 
due to the bulk motion, and the other two to the distortion of the free surface. The relative importance of these 
components in terms of the heat transfer to or from the end disks is assessed. 

1. INTRODUCTION 

Considerable attention has been paid in the last years to 
surface tension driven convection in liquid bridges, drops 
and similar configurations, under microgravity condi­
tions. The reason for this interest is that, once reduced 
buoyancy induced convection by the reduction of the 
gravity level, the most conspicuous yet outstanding 
convection driving mechanism will be surface tractions. 

The surface tension gradients can be produced either 
by temperature gradients (thermal convection) or by 
concentration gradients (solutal convection). This work 
concerns thermal convection. 

The imposed temperature gradient can have a com­
ponent parallel to and/or a component normal to the 
undisturbed surface. 

The parallel component produces the surface tractions 
which induce the motion in the bulk through the viscous 
forces. The motion immediately results whenever a 
temperature gradient exists, no matter how small. 

The normal component of the temperature gradient 
transfers thermal energy to or from the surface, this 
would imply a work of the surface tension forces and, 
thence, motion. But the fluid remains in a state of un­
stable equilibrium until a critical temperature gradient 
(better, a critical Marangoni number) is exceeded. This 
critical value decreases to zero when the surface 
crisps [1] indicating that in practice both convection 
driving mechanisms become coupled. 

In this paper the imposed temperature gradient is 
parallel to the undisturbed surface. 

Recent contributions to the study of surface tension 
driven convection can be classified into three categories: 

(1) Experimental studies, either using short duration 
drop-tower techniques [2], or simulating microgravity by 
the so-called short bridge technique, where the charac­
teristic length in the direction of gravity action is kept as 
small as feasible [3-8], 

(2) Numerical simulation, The complete equations and 

boundary conditions are solved by computer in order to 
study the influence of the several relevant parameters [9-
11]. The results are, however, objectionable mainly in 
connection with the fulfillment of the boundary con­
ditions at the free surface whose position is previously 
unknown. 

(3) Analytical studies of very simple geometrical 
configurations [12-14]. This approach has been and still is 
widely used, recall, for example, the Couette-flow ap­
proach to boundary layer problems. These types of solu­
tion provide a great insight at not excessive cost, and 
should be pursued before attempting a more sophisti­
cated analysis when the status of knowledge is yet far 
from satisfactory. 

The present approach is midway between 2 and 3 
above. The undisturbed geometrical configuration is a 
cylindrical liquid bridge, of circular cross section, held 
between two parallel coaxial solid disks. Heat is trans­
ferred through these disks. 

The most important among the simplifying assump­
tions introduced in this paper is that the temperature 
deviates only slightly from its mean value, thence the 
so-called Marangoni velocity is small, the Reynolds 
number based on this velocity is also small, and so on. 
This assumption cannot be applied to real floating zones 
in melt, but it would be useful in the analysis of many of 
the foreseen experiments under microgravity with which 
the authors are familiar. 

This paper is arranged as follows: 
First the general equations have been written in 

dimensionless form. These equations are those cor­
responding to a newtonian viscous liquid, in cylindrical 
coordinates, in an inertial reference frame. Changes in p 
and p with T are accounted for through the Boussinesq 
approximation. Boundary conditions at the free surface 
are discussed to some extent. 

The first order approximation for the velocity field is 
obtained by use of a technique which, although is not 
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new, has been recently studied by Joseph[15]. The first 
order deviation of the free surface from its initial cylin­
drical shape is then calculated. The deviation becomes 
infinitely large for the length to diameter ratio cor­
responding to the Rayleigh stability limit in a cylindrical 
liquid bridge at rest. 

The first order approximation for the temperature field 
corresponds to the imposed field. 

The second order temperature field, which accounts 
for the first order convective effects is calculated. It is 
shown that the purely conductive field is modified by (1) 
the bulk convection induced by surface tension 
gradients, (2) the effect of surface crispation, and (3) the 
usually minor influence of surface energy. 

The overall heat transfer rate at the end disks can be 
calculated and compared to that due to conduction alone. 
It is shown that, in the particular case under con­
sideration (no heat transfer to the environment), the third 
of the mentioned effects is the sole responsible for the 
heat transfer enhancement. The first effect cancels, at 
each disk, because of the symmetry of the axial velocity 
respect to the mid cross section of the bridge, whereas 
the second cancels because of the antisymmetry of the 
free surface shape. 

Although, as a general rule, surface tension induced 
convection should be avoided in space manufacturing 
processes, it could be augmented for stirring, heat trans­
fer enhancement or observational purposes. This aug­
mentation can be achieved, for a given working liquid, 
through increased temperature gradients. Nevertheless, 
only geometrical procedures for enhancing convection 
are discussed in the present paper. 

2. GOVERNING EQUATIONS IN DIMENSIONLESS FORM 

The equations in cylindrical coordinates, inertia! 
reference frame, for a Newtonian, perfect fluid wiil be 
introduced in the following. The geometry, coordinate 
system and fluid velocity components are shown in Fig. 
1. 

The variables which appear in the equations below 
have been made dimensionless with the following 
characteristic magnitudes. 

Length: L/2, Velocity: Ur = -

d£ \ 

mr
ir 

Fig. 1. The liquid bridge with the main nomenclature. 

Surface enthalpy to heat conduction ratio, Nj 

Nj = $ ) * 
kt 

It is assumed that thermodynamic and transport proper­
ties are temperature independent, viz. c\cT = k\kT = 
filnr = • • • = 1, and that surface tension, a, is a linear 
function of temperature, 

— =l-RCr(T-l). 
(Tr 

Since temperature is assumed to deviate only slightly 
from its reference value, T= 1 + eT, + ..., the Bous-
sinesq approximation yields,[16]: 

(1) For the density vs temperature variation, 

where jS is the thermal expansion coefficient of the fluid. 
Recall that deviations from the reference values, ep, and 
eTu are both dimensionless. 

(2) For the pressure gradient term in the momentum 
equation, 

Vp_V(pr + ePi)_ 
l + «Pi =(i + #r,rI)v/>, + cVpJ+oua 

Density: pn Temperature: T„ Pressure: prU?, 

where the subscript r indicates reference values. 
The dimensionless parameters which will appear are 

defined as: 

Reynolds number: 

Prandtl number: 

Crispation number: 

Re 2/v 

Pr 
K ' 

<rrR 

where pr is the pressure, not necessarily uniform, under 
isothermal conditions. In this particular case, the motion 
is exclusively induced by temperature gradients in a zero 
gravity field, thence Vpr = 0. 

(3) The continuity equation, which can be written to 
first order as, 

becomes that for the incompressible flow. 
Finally, it is assumed that Mach number effects are 

negligible, (el/,)2 < crTn and that fluid motion is 
axisymmetrical and stationary, 3J3B— #/<?( = 0. 
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With all these simplifying assumptions in mind, the 
conservation equations become, 

Mass 

Momentum 

3u vl , du 
uTr'7 + wTz 

dru drw _ 
Br Bz ~~ ' 

(1) 

~dr + Re \dr2+rdr+dz' r 2 ] ' 
(2) 

3v uv , dv n _! (d2v ABv , d2v v\ 
UTr + ~7+WTz = Re {lF + -rTr^-7i' 

'^+wiz-=-fz+Re h?+-rj;+!?\-

Energy 

3 I \ dT D-lDJd2TJdTMd2T 
uTr + wTz^Re Pr ll^+7^+l? }• (3) 

2.1 The boundary conditions at the free surface 
Let T be the stress tensor and • the unit normal to the 

free surface, assumed to be positive when pointing 
towards the outer fluid (whose viscosity and thermal 
conductivity have been neglected). 

The normal equilibrium condition at the free surface 
reads, 

n- T- n = - a 
; • & 

where T • n is the force (viscous and pressure) acting on 
an element of surface, and o • T • n the component of this 
force normal to the surface. Rj and R2 are the two 
principal radii of curvature of the free surface at the 
point under consideration. The right hand side of the 
above equation is often called the capillary pressure. 

The component of the stress tensor tangential to the 
free surface is T • n - (a • T • n)n, This vector must 
balance the surface tractions due to surface tension 
gradients. Thus, 

T - a - ( n - T- n)n = V<7-(n • VCT)D. 

Other forces, such as those associated with surface 
irreversibility, have been neglected. 

In addition, a kinematic condition will result from the 
fact that there is no macroscopic flux of mass through 
the free surface, whose equation is given by F(%, 0 = 0 

at 

equation, which is the surface counterpart of the internal 
energy equation for the bulk phase, is,[17]: 

+ V(-rV,^] = (rV(-V, + 8[n-JB], 

where e is the internal energy per unit surface area. The 
subscript / refers to a vector projected on the surface, in 
particular V, = V-n(n- V). 8 is the jump across the 
surface, n • J„ represents the diffusive flux of total 
energy to (or from) the surface. Assuming that there is 
no diffusion of species, J„ = - kVT. Effects associated 
with heat radiation, surface irreversibility, . . . are 
neglected. 

When <r depends only on T and is a linear function of 
T, the above equation yields, 

T\%) W ( = 3[kn-Vr]. 

The boundary conditions at the free surface, whose 
equation in dimensionless form is r = R[\ + l{z)\, can be 
written in cylindrical coordinates as: 

Dynamic boundary conditions 
Normal equilibrium 

p-2Re~ 1 

l+R2 

dz) 

fin + R2 (fry 

-R 
di_ (dw du 
&z .dr dz)] 

= Re~lCr i ^ „ - i f 

R2(l + /) Mir 
dz2 

Axial equilibrium 

(4) 

1 f d/ (du 3w\ 

Hl)7{ dzU dz) 

Azimuthal equilibrium 

3 (v\ D dl dv _ 

Kinematic boundary condition 

The thermal boundary condition is deduced from the 
surface balance equation for the internal energy. That 

u = wR 
dV 
dz' 

(5) 
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Thermal boundary condition 

3T_Rdi§T = 
br d2 dz 

Nt dw 

dz W dr) \dz) dr dz2 J 

The first of these two equations merely indicates that the 
reference pressure is that corresponding to static equili­
brium. The second equation will be used to calculate the 
axial deviation of the free surface from its undisturbed 
position. 

Axial equilibrium 

The boundary conditions at the end disks, z = ± 1, are 
the following: 

U = V= W = 0 , 

and either T or dTjdz prescribed. In this particular case 
we will impose the value 

dwt dUj = dTj 

dr dz dz' 

which illustrates how the surface tension gradients in­
duce the motion in the bulk through the viscous forces. 

Kinematic boundary condition 

T(r,±\)=\±eTw, 

3. THE FIRST ORDER APPROXIMATION 

Since the imposed dimensionless temperature field 
deviates only slightly from the reference value, 1, it is 
inferred that, (1) the dimensionless velocities are of order 
€ (in particular, v = 0 because of the axisymetry of the 
configuration), and (2) the free surface deviates only 
slightly from its undisturbed cylindrical shape. 

Introducing w = euf, v = 0, w = ewu and I = e!, in the 
above set of equations and boundary conditions, and 
neglecting higher order terms, the following Stokes-type 
problem results. 

Mass 

Hi=0. 

Thermal boundary condition 

dr ' dz ' 

(5a) 

(6a) 

Here it is seen that the free surface is stretched as a 
consequence of the thermal energy transferred to it. 

The boundary conditions at the end disks are the same 
as above. 

The resulting problem is linear. The temperature field 
becomes decoupled in the sense that the heat transfer is 
purely conductive and can be deduced without resorting 
to the velocity field, Thus, T = 1 + eTwz. 

Momentum 

3rui , 3rw'^n 
Br dz 

D dpi _d2u{ 1 dut 32u, Hi 
Relr"lrT + ~r~d7+^F~7' 

udpi_d2w1,idw1,d
2w} 

(la) 

(2a) 

Energy 

3.1 The first order velocity field 
Introducing the stream function for axisymmetrical 

flows, x, defined as 

<*X 3x x 

the problem for x reduces to the biharmonic differential 
equation 

(d\\B,a% IV n ... 

XP + -r* + J?-?) x = 0> (7) 

dr2 +r dr + dz2 ~U ' 
(3a) 

with the following boundary conditions at the free sur­
face, which can be transferred to r - R within the first 
order approximation. 

Norma! equilibrium 

with the boundary conditions 

r = R, 
dr2 r dr rtK w> dz 

x = ±l, * = f = 0. 

(8) 

and 

Pr = 
1 JlolRL 

ReCrR2
 PrU

2 

0 w-c't< du. 
drr=R 

-Re Pi L] 
RY 

(4a) 

There is at present an elegant mathematical tool allowing 
the solution of biharmonic problems in series form. It 
was first used in Elasticity by Smith (1952) (quoted in 
[15]), by Lee and Fung[18] in Stokes-type problems and, 
fairly recently by Joseph[15], Joseph and Sturges[19], 
who are particularly concerned with the convergence of 
the series. This tool will be used to obtain a formal 
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solution of our problem even though the convergence of 
the resulting series are not yet clearly established. 

3.1.1 Biharmonic eigenfunctions. These are the so-
called Papkovich-Fadle functions. The even functions 
are defined [15] as: 

/<£ in){2)\ = (Sn sin S„ cos S„z-Snz cos Sn sin Snz\ 
\<f>2

n\z)J \ - tf-V'U)-2 cos S„ cos S„z / ' 

odd functions are also given in [15] but are irrelevant 
here. 

The functions I,(S„r)<f>\"\z), where It is the modified 
Bessel function of order one, are biharmonic, i.e. solu­
tions of (7). 

The boundary conditions at the end disks are satisfied, 
since <f>l"\± 1) = 0, provided that 

d<f>\"\z) 0 

dzz=± i ' 

and this furnishes the eigenvalues Sn, which are the 
first-quadrant complex roots of sin 25 + 25 = 0. 

In our particular case, the imposed temperature field is 
odd in z, u = dxldz must be odd and, thence, x e v e n -

3.1.2 The stream function x- x(r>z) W'I! be expressed as 

x{r,z)^^kUSnr)^\z). 

The boundary conditions (8) become respectively 

dz oZ —a. 

According to [15] the coefficients, C„, in a series 
representation 

velocity components, as deduced from (9), are: 

f c (mz)) 

are given by 

C" = " AJSQ f' « * in)(2) + 2 cos S„ cos S„z)g(z) 
H COS iJn J—i 

+&rXz)f{z)}dz. 
The expression for the stream function then becomes: 

X(r, z)--Tw 
1 1 ItiSHr),w 

^cos45n5n
2I i (5„R) 

$VJ(2). (9) 

Figure 2 shows the first order streamlines, rx~Const., 
for three different values of the slenderness, l/R, of the 
liquid bridge. 

3.1.3 The velocity components and pressure field. The 

Ul'dz fw 
1 1 HSnr) d$\n\z) 

Zi co*1 SnSJhiSJQ dz 

dr r 
y 1 1 USnr) 
4i cos4 S„ Sn Ii{SnR) 

<S>\"\z). (10) 

In particular, the axial component wt(R, z) at the free 
surface is shown in Fig. 3 for several values of R. Notice 
that wj decreases when the slenderness, 1/K, of the 
liquid bridge increases. 

The pressure field can be deduced from the couple of 
momentum equations (2a) in the usual way. The final 
result is: 

Rep,(r,z) = -2TW 
y 1 USnr) 
4i cos3 S„ HSnR) 

sinS„z. (13) 

3.2 The shape of the free surf ace 
This shape is deduced from the differential equation 

(4a) with the attachment condition at the disk edge 
(lt(± 1) = 0). The condition of liquid volume invariance is 
automatically satisfied, to first order, since /,(z) is odd in 
z. The final expression is too complicated to be written 
down here, but several results have been plotted in Fig. 
4. 

It can be shown that l\{z) becomes infinitely large 
when sinl/.R = 0. The smallest root of this equation is 
precisely the Rayieigh stability limit for a sylindrical 
liquid bridge at rest. 

4. THE SECOND ORDER TEMPERATURE FIELD 

The next term in the expression of T, T = 
1 + eTwz + €2T2(r, z), is calculated from the energy equa­
tion (3), boundary condition (6), and r 2 ( r , ± l ) - 0 at the 
end disks. Retaining terms up to order e2, the following 
differential equation for T2 results: 

B2T2ldT2Md2T2 (12) 

In order to write down the boundary condition at r - R, 
Ni has been expressed as Ni = e'N (j^\, N = 0(1)) 
accounting for the fact that Nr is usually small [20]. Then 
(6) becomes, 

3rr=R dz dz 

where the last terms disappears unless / - 1. 
The above linear problem will be split into three, 

giving respectively the effects of bulk convection (T2b)> 
surface crispation (T2c), and surface energy (T2n). 

4.1 The effect of bulk convection 
The first problem will be defined by the differential 

equation (3b) with no heat transfer through the cylindri­
cal surface r - R and zero temperature at the end disks. 
Since T2b is even in z, the overall heat transfer through 
either disk must be zero. 
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Fig. 2. Streamlines corresponding to the first order velocity field for three different values of the slenderness, \jR, 
of the liquid bridge. 

3 A 5 
l , /CrTw 

Fig. 4. The radial deviation of the free surface from its original 
Fig. 3. The first order axial velocity at the free surface, w^R, z), cylindrical configuration, /|(z), for several values of the slender-
for several values of the slenderness, \/R, of the liquid bridge. ness, ]jR, of the liquid bridge. 
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A particular solution of (3b), vanishing at z = ± 1 is: 

RePrT, 

223 

T,B = ^cos"S„5n
3I,(S„R)LU 

The convergence of this expression is extremely fast and 
a single term will suffice to provide an accurate result. 

Figure 5 shows T2b = T2p + T2bt as deduced from (12) 
and (16), in the form of temperature profiles for several 

+ 2 s m 2 5 0 * n Z ) - f U 2 - l ) ( * n z ) + * ? ' W ) ] . v a ! u e s o f t h e c o o r d i n a t e z " 

It can be seen[21] that at r = R, 

dT2p _^RePrTw
7 

drr, 
(l-z2). 

(12) 4.2 The effect of surface crispation 
The problem for the temperature field due to surface 

crispation, T2c, can be solved as that for T2h above. 
Unfortunately we were, up to now, unable to express in 
closed form the function lt(z) and some sort of numeri­
cal approximation should be used. The expression 

Now, if the temperature field, T2b, due to the effect of 
bulk convection is split into 

*2b - Tzp + T2h, 

the problem for T2h will be: 

3 T2h . 1 dTzh . d T2h _(» 
dr2 r dr + 9z2 " ° 

with 

r=R 
3T7 RePrT„ 

(l-z2), 
drr=R o 

z = ±\ T2h(r,±l) = 0. 

The solution of this problem is straightforward[22], 

TT ^=o(Z(t+ [) 

(13) 

(14) 

(15) 

. ( In +I \ 

cos 
2n + \ 

TTZ. (16) 

ll(z) = /max Sin TTZ, 

provides an excellent approximation [21] except for short 
zones which, on the other hand, remain practically cyl­
indrical. 

With the above approximation for l,(z), T2c becomes 

T2c = ~-RTJ„ 

T/2n + l 
IQ\ —s— iff 

(-1)" 
V(2n + l)(2« + 3) 

d^vR 
cos 

2n + l 
irz. (17) 

The overall heat transfer rate through the end disks is 
again zero. Since there is no heat flux through the mid 
cross-section, 

f 
Jo 

2<nr 
dT2, 

dz, 
dr=-2wR2T« f>-

1.2r 

RePrT^ 
xlO 

-1.6 

Fig. 5. The effect of bulk convection on the second order temperature field, Tlb(R = i). 
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4.3 The effect of surface energy 

This problem is again defined by the- Laplace differen­

tial equation with, 

z = ± l , T 2 n ( r ,± l ) = 0. (19) 

In this case the temperature field results to be odd in z. 
A formal expression for T2n is, 

T2„ = N y [ f w{R,0cos nirH^rr^sin nwz. 
j U - i J liKnwK) 

(20) 

The heat transfer rate through any cross-section, z, may 
be written as 

f 2irr^dr = 2irRN\w{R,z)-f w(R,£)dn. 

In particular, for the end discs, 

r 2 7 r r _ i l k - d r = _ 2 7 ! - R N f w(R,£)d£ (21) 
Jo oZ!=,± i J-t 

Thence, this term is the only one which contributes to 

the overall heat transfer through the end disks, under the 

validity of the present model. 

5. CONCLUSIONS 

A method to analyze low Reynolds number surface 
tension driven flows has been presented. It is seen that: 

(1) The dimensionless axial velocity at the free surface 
decreases when the slenderness of the bridge increases, 
because of the dragging effect of viscosity. When con­
vection is to be enhanced, bridges of annular cross 
section can be used. For a given outer R, annular 
configurations present larger surfaces, although the axial 
velocity will decrease to zero with the thickness of the 
annular liquid wall. 

(2) The stability limit for the slenderness of the bridge 
is that corresponding to static equilibrium. 

(3) When the thermal conductivity of the fluid which 
surrounds the bridge can be neglected, the convective 
heat transfer through the end disks is very small, and is 
only due to surface energy effects. Although this con­
clusion is based on the assumption that the imposed 
temperature field is odd in z (antisymmetrical), matters do 
not differ markedly when the imposed field is even. It 
can be seen, for example, that the contribution of T2b is 
nil in any case. 

Acknowledgement—-We wish to acknowledge the support by the 
Spanish Space Research Commission (CONIE). 

REFERENCES 

1. K.. A. Smith, On convective instability induced by surface-
tension gradients. / Fluid Mech. U, 40M14 (1966). 

2. S. Ostrach and A. Pradhan, Surface-tension induced con­
vection at reduced gravity. AIAA J, 16, 419-424 (1978). 

3. Ch. H. Chun, Marangoni convection in a floating zone under 
reduced gravity. J. Crystal Growth 48,600-610 (1980). 

4. Ch. H. Chun and W. Wuest, Suppression of temperature 
oscillations of thermal Marangoni Convection in a floating 
zone by superimposing of rotating flows. Acta Astronautica 
9, 225-230 (1982). 

5. D. Schwabe, A. Scharmann and E. Preisser, Studies of 
Marangoni convection in crystal growth melts. XXXI Cong, 
IAF, Tokyo, Preprint IAE-80-C-140. Pergamon Press, 
Oxford (1980). 

6. D. Schwabe, F. Preisser and A. Scharmann, Verification of 
the oscillatory state of thermocapillary convection in a float­
ing zone under low gravity. Acta Astronautica, 9, 
265-273 (1982). 

7. R. Monti and L. G. Napolitano, Experimental validation of 
kinematic and thermal scaling laws in Marangoni flows. 
XXXI Cong. IAF, Tokyo, Preprint IAF-80-C-138. Pergamon 
Press, Oxford (1980). 

8. R. Monti, Experimental equipment for the measurement of 
thermofluidynamic conditions in fluid physics experiments on 
board of space platform. Acta Astronautica 9,275-284 (1982). 

9. C. E. Chang and W. R. Wilcox, Analysis of surface tension 
driven flow in floating zone melting. /. Heat Mass Transfer 
19, 355-366 (1976). 

10. R. Piva and M. Strani, Numerical solutions for surface 
tension driven flows. XXXI Cong. IAF, Tokyo, Preprint 
IAF-80-C-112. Pergamon Press, Oxford (1980). 

11. G. Graziani, M. Strani and R. Piva, Effect of free surface 
radiation in axisymmetric thermocapillary flows. Acta 
Astronautica 9, 231-243 (1982). 

12. L. G. Napolitano and C. Golia, Coupled Marangoni boundary 
layers. Acta Astronautica 8, 417-434 (1981). 

13. L. G. Napolitano and C. Golia, Buoyancy effects in Maran­
goni boundary layers. XXXII Cong. IAF, Roma, Preprint 
IAF-81-135. Pergamon Press, Oxford (1981). 

14. L. G. Napolitano, Temperature field in Marangoni-Poiseuille 
plane flows. XXXI Cong. IAF, Tokyo, Preprint IAF-80-C-
110. Pergamon Press, Oxford (1980). 

15. D. D. Joseph, The convergence of biorthogonal series for 
biharmonic and Stokes flow edge problems. Part I. SIAM J. 
Appl. Math. 33, 337-347 (1977). 

16. L, D. Landau and E. M. Lifshitz, Fluid Mechanics, 1st Edn, 
pp. 212-215. Pergamon Press, Oxford (1959). 

17. L. G. Napolitano, Thermodynamics and dynamics of surface 
phases, Ada Astronautica 6,1093-1112 (1979). 

18. J. S. Lee and Y. C. Fung, Stokes flow around a circular 
cylindrical post confined between two parallel plates. / Fluid 
Mech, 37, 657-670 (1969). 

19. D. D. Joseph and L, Sturges, The convergence of bior­
thogonal series for biharmonic and Stokes flow edge prob­
lems. Part II. SIAM I Appl. Math. 34, 7-26 (1978). 

20. R. Monti, Study on Fluid Phenomena Influencing the Design 
of Zero-g-Experiments, pp. 89-91. Techno System Report 
TS-11-79, Naples (1979). 

21. I. Da-Riva, Microgravity fluid dynamics—some develop­
ments. CISM Udine, Advanced School, pp. 8.5-8.13 (1981). 

22. H. S. Carsiaw and J. C. Jaeger, Conduction of Heat in Solids, 
6th Edn, pp. 217-225. Oxford University Press (1967). 


