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Abstract—A, sot of problems conceming the behaviour of a suddcnly disturbed ideal floating zone
5 considered.

Mathemarical techniques of asymptotic expansions are used to solve these probiems. It is
scen that many already avalable solutions, most of them concerning lquids enclosed in
cavities, will be regarded as startiog approximations which are valid except in the proximity of
the free surface which laterally bounds the floating zone.

In pargcular, the problem of the linear spin-up of an imually eylindricai foating zone is
considered in some detail. The prescnce of 2 recirculating fluid pattern near the free surface is
detected, This configuration is atmbuicd to the interplay between Coriolis forces and the
azimuthal component of the viscous forees.

INTRODUCTION

Problems connected with the motion of 2 free liquid surface are fairly well known, see
for example [1]. Here we will deal with a configuration to which very little attention has
been paid in the past: the free surface of a floating zone under microgravity conditions.

Floating zone techmiques have been used in recent years to prepare high purity
materials and, particularly, high purity single crystals of silicon.

The purification process involves (Fig. 1a) vacuum-melting a narrow zone at one end
of a heated silicon rod, slowly moving the molten zone along the rod. allowing the
silicon to solidify again in the wake of the zone.

Usually the rod is held vertcally, the floating zone is kept in position by suzface
tension forees, and there is no crucible contaminating the silicon. The molten zone
refines the silicon by preferentially retaining certain impurities in solution and carryving
them along to the end of the rod. Furthermore, the rod can be made into & single
crystal by aljowing the silicon 10 slowly solidify around a small seed crystal at one end,
the crystal then grows by the addition of atoms from the melt without further crystal
nucleating.

The maximum stable length to diameter ratio of a vertically suspended floating zone
is contuolled by the balance berween hydrostatic pressure. which increases with the
distance to the top of the moiten zone. and surface tension forees.

The floating zone technique is well suited to high meiting point materiais (above
2000°C); in addition 1o eliminating crucible contamination, as alreadv mentioned,

strains, due to the differential expansion of the crucible and the crystal. are absent.
© In spite of these advantages. foating zones which can be naturally stabilized in the
terrestrial laboratory are far too short for many applications. Several levitation methods
have been suggesied to siwabilize a slender floating zone but most of them are verv
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Fig. 1. Floating zone: {2) is 2 sketch of 2 foating 2onc in melting, whercas (b) shows the ideal
configuration used {or analytical purposes.

limited in scope. The following advantages associated to microgravity are very often
quoted:

(1) The restriction imposed by gravity to the zone length to diameter ratio disap-
pears. Unfortunately, zones which are too slender exhibit a tendency to necking
because of surface tension and. thence, 2 maximum stable length to diameter ratio
resuits (L/D = o for cylindrical zenes), 25 noted by Rayleigh {2]. In addition, micro-
gravity renders the floating zone technique less sensitive 1¢ material properties {(ofp)
than on earth.

(2) Microgravity reduces buoyancy-induced convection (free convection) which re-
sults from the changes in fluid density because of the temperature. Very slight
temperature gradients could promote convection in a normal gravity field,

Absence of convection is the most widely quoted argument in favour of performing
marerial sciences experiments in space. This absence of convection could be of
importance in crystal growih, but convection-inducing mechanism other than buoyancy
exist. not to mention that. singe diffusion-controiled transport may be inadequate for
providing sufficient mixing in the buik, separate provisions may be required to stir the
melt. :

The stability of the equilibrium of the floating zone under the disturbances intro-
duced either accidentally or intentionally in microgravity is a matter of concern, thence
substantial research should be undertaken wo improve owr understanding of these
problems before exploring the prospects for space materials processing based on the
fleating zone technique.

THE FLUID DYNAMICAL APPROACH TO THE PROBLEM

The theoretical study of 2 floating zone in melting involves a formidable task both
because of the material characteristics of the melt, whose properties are swongly
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temperature dependent, and because of the complexities associated to the disturbances
which could be imposed on the zone, thence several simplifying assumptions must be
introduced to hold the analytical study within reasonable bounds.

(1} The first assumption consists in disregarding phase-changes. Several interesting
problems connected with the hydrodynamics of phase change are then left aside
(solidification and melting fronts, influence of shrinkage forces in promoting convec-
tion, etc.). These problems are not specific of the floating zone however.

Onee the ‘no phase-change’ assumption is inroduced, the floating zone is assumed to
consisi of a liguid held between two parallel, coaxiai, solid discs (Fig. 1b). The resulting
configuration will be of interest to many fluid dynamical applications far aside from the
field of erystal growth.

(2) The liquid is assumed to be Newtonian, a hypothesis which is untenable for highly
viscous liquids.

(3) Finally, it is assumed that the liquid is pure, exhibits uniform properties. and
remains in thermal equilibrium with the envizonment. This assumption could be relaxed
without undue difficulties, '

Here we will deal with problems concerning rotation of the zone around its symmetry
axis. More precisely, we will investigate the phenomena which result when a eylindrical
fioating zone, either at rest or under solid rotadon, is suddenly disturbed through one
or both end dises.

THE FLOATING ZONE UNDER ROTATION

In pracrical instances roation is imparted to the floating zone with the aim of making
the emperawure field uniform Once rotating, the angular moment of inertia and thence
the rotation rate of the zone can be changed at will by axially displacing the end discs.

There is an impressive body of work on rotating flows mainly developed by
Greenspan and his collaborators, see for example Greenspan [3]. Here the rotating
liquid is partally in contact with solid walls and partially contained by surface tension
forces.

Figure 2 shows the geometry, coordinate system and fluid velocity components for
spinning floating zones.

The governing equations (Navier-Stokes equations) for homogeneous liquids in a
reference frame rotating with angular velacity Q are:
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Fig. 2. Geomewy, coordinate system and fluid velocity components for spinmng floaung zones.
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To write down these equations in dimensionless form, any length has been made
dimensionless with L/2, any velocity with QL/2. Time has been made dimensioniess
with !, and gauge pressure with pQ*L*/4, E is the Ekman number, E = y/Q(Li2)%
P=p—r32, is the reduced pressure. Finally,
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The direct analytical approach to most fluid fow problems is pardcuiarly difficult
because of the non-linear character of the convective terms in the Navier-Stokes
equations. Thence, we will resort to some linearization method.

There are two main types of linearized rotating-flow probiems.

(1) ‘Linear spin-up’, where the inital state of solid body rotation, with anguar
velocity, {1 is suddenly disturbed. through the end discs, which start rotating with the
new angular velocity Q{1 +¢), |s|« 1. ¢ is the so-called Rossby number. Obviously the
liguid needs some time to reach the new state of solid body rotation with anguiar
veloeity £2(1 +¢), and the problem copsists in studying the flow pattern from the time of
the impulsive disturbance onward.

{2) Non-linear spin-up, short tmes, where the exact solution corresponding to the
liquid at rest is suddeniy disturbed through the end discs up 10 .~ 1, but now the small
parameter. £ measures the time from the swart of rotation.

The equations for the linear spin-up in 2 rotating reference frame are the following:
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In addition o the usual boundary conditions at the discs, namely the kinematic
condition (w=0) and the no-slip conditions («=0,v=r), the following boundary
conditions at the free surface, whose equation is r= R[1+!(z, )], must be fulfilled:
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where C = p0?L38¢ is the so-called rotation parameter.

&I _rIZ=0. (10)

a_w+§£ | _2R(3lfaz) (au aw)__o
ar 9z 1-R%*(@lfsz)* ‘or oz
Equation (9) expresses the balance of forces normal to the free surface, whereas equns.

{10} and (11) express that viscous forces must vanish there.
In addition, the kinematic condition yields,

(11

al 3l
——ut ez (), 2
Rar ] WRaz 0 (12

Furthermore, it is assumed that the free surface remains anchored to the disc edge,
thus

(=1, 1y=0. (13)

This assumption seems to be substantiated by the experimental evidence, at least for
moderate spinging rates.

TYPICAL PROBLEMS

The solution of many interesting problems can be undertaken at this stage. The
additional assumption E« 1 will be introduced. This seems to be the case of greatest
mathematical interest {and difficulty), although very viscous liquids would be present in
real floating zones.

Mathematical techniques of asymptotic expansions can be used w0 solve those
problems which exhibit one or several small parameters. In order to apply these
techniques we will look for solutions which are valid sufficiendy far from the free
surface (central core solutions). Many solutions of this type are already available in the
literature, a selection of some of them is presented in Fig. 3. None of them fulfils the
boundary conditions at the free surface (nor were intended to do so) and this indicates
that several of the terms which were negligible in the cenmal core will change in the
outer layer(s) steeper than it was anticipated. This will give the clue in the determina-
tion of the outer laver thickness and of the order of magnitude of the controlling terms
in this layer.

Let us consider. as an example. the case 3 in Fig. 3. The "centrai core solution’ has
been obtained by Greenspan and Howard (§], who also considered the case of arbitary
axisymmerric rigid containers, and the partcular case of the cylindrical container which
is relevant here. The complete solution for times of the order of the so called Ekman
spin-up time. rz = L/QVE, is given in the mentioned paper. For a gualitative description
of the phenomena involved see Benton and Clark [9].

The fluid pattern consists of six main regions (Fig. 4). In region D, {(whose charac-
teristic lengths, boch radial and normal o the discs, are of order one} viscous forces are
negligivle. whereas inerdal. Coriolis and pressure forces balance. QOppositely directed
axial fluid masses reach the two Ekman layers near the dises (regions D., whose
thicknesses are of order EV?) in order to replace, according to the continuity require-
ments, the fluid which is propelled radially cutwards in these layers. Neither u nor v
depend on z in this cenrral region. The “cenwal core solution’ satisfies neither the
kinematic (x=0) nor the no-slip (v=r w=10} boundary conditions at the rigid side
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Fig. 3. Several ‘central core’ solutions.

wall and. thence, a set of two axial shear layers (the so-called Stewartson layers) arises
to make the required adjustment. In the first of these layers, I, of thickness E', the
radial mass flux is brought to rest, the azimuthal velocity of the interior flow is joined
smoothly to the zppropriate value at the wall, and the mass flux fowing radially
outward in the Ekman layer murns into the axial direction. Viscous forees only appear in
the azimuthal momentum balance. A thinmer transition region, thickness E?, is
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Fig, 4. Main regions in the linear spin-up of 2 initially cylindrical Soating liquid zone. Times of order g,
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imbedded between the D, region and the outer surface. The function of this {ayer is, in
the case of the rigid container, 1o reduce the axial velocity to its zero value at the wall.

SPIN-UP OF A CYCLINDRICAL FLOATING ZONE

It can be seen that the above-discussed solutions for the regions Dy, Do, D, and Dy,
are also valid in the case of the linear spin-up of an initially cvlindrical foating zone,

“The function of zone D, whose thickness is again of order E'°, since this thickness is

conwrolled by the structure of the differential equations, is now to fulfil the boundary
condition of zero azimuthal component of the viscous stress tensor at the free surface,
This is achieved through an interplay between Coriolis forees, radial an axial pressure
gradients (which are mainly induced by the distortion of the free surface), and the
azimuthal component of the viscous forces. Let us look closely at the relevant
equations.

The independent variables, of order one, =, m and z, are defined in this region as:

1=rE  r=R+EWnp; =z,

The differental equations (5)-{8) become, once higher order terms have been
neglected,

¥
__21}..—: _.E»m, Z_f1=_+EkB§:§‘ (14)
2u2131’3§-;]%, (15)
P aw
=—— 4 EW i,
BNy 16)
Oxs—‘fagﬁ*%;-f. (an

Time-dependent terms have been deleted sinee they are, for each equation, obviously
smaller than at least one of the written terms.

The sought sclution must match, in an asymptotic sense. with the soluton in D, and
this suppiies the required boundary conditions for very large negative values of 1. Such
conditions are {see Gresnspan and Howard (3] for the relevant equations in Dy):

Re™

E-Vu=9-~R =E”“’mf—- . (18)
& EYIR. (1%

an

Now the aim is to slightly change the azimuthal velocity, v, since that given by the D,
soluzion does not fulfil the boundary condition at the free surface (which is dv/an =0, as
we will see very soon). Equation (18) suggests the following asvmprotic expansion for v,

ve=R&EVRy (m zor) ... . (204

According 10 the azimuthal momentum equation (eqn. 15), the radial velocity 1 must
be of order E¥'?, instead of being of erder E™*, as it could be {wrongly) deduced by
matching with u in region D, (eqn. 18}. This could come as a surprise although it can
be justified as follows: Corlolis forces are the only available forees for changing the
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azimuthal velocity, v; nevertheless, they are too small in region D, to bring dv/én to its
correct value at the free surface. Thence,

w=E i yln, zy 4. {21
The order of magnitude of the axial velocity is deduced from eqns. (17) and (21},
w=EY 2w g 24, , 22)
whereas eqns. (16) and (19) yield:
P=PrEVRRN+ES Py, 2y 1)+ .. - (23

THE FREE SURFACE

Now let us consider the linearized boundary conditions at the free surface, whose
equation is, to first order:

r=R[1+E"y(z, 7)), (24)
where n is unknown beforehand, but it can be deduced from the boundary condition

expressing the normal balance of forces.
Eguation (9}, after negiecting higher order terms, becomes:

. v 21
P+ES’”P2+§R‘(1+2E“£1)=~C~1§(l B }——- Bt & @5
from which we deduce:
B 4AR? =
P4+iR%*= R {253a)
=7, (25b}
7 (rek)m -
PP RC+ ih="F Pa. (25¢)
Boundary conditions (10), (fl} and (12) become respectively
g, (26)
an
a.‘f.“.:o’ @n
an
wy =0, 28

The condition at the disc edge cannot be fulfilled at this stage because of reasons
which will be indicated later.

SEVERAL RESULTS

Once solved the problem. the expressions for the velocity field and the stream
function X are, in the first order approximation:

u=E"Ryy(n, zim)+. .
1Re™ k1
Uy = i Z {(~1)* 15k cos

2 T L
x[exp (¥Zarken) 2 exp (¥27kn/2) cos (% B rkn 2;)}
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v=R+E"2y,(q, z;7)+...,

s k=1
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w=E¥yw,(n, zie)+. .,

_ERe-—rw _ kul(_i_)ln'
wD-—z—ﬁ-:k;( 1) p—s sin wkz
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18 3”7

Xo= = Z - 1)"‘"1 ——sin TRz
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The expression for the stream function, X, allows the representation of the stream-
lines in the secondary recirculation zone as indicated in Fig. 5. The upper part of this
figure, from Benton and Clark [9], shows the meridionai circulation pattern for the
linear spin-up of a homogeneocus liquid in a circular cylinder with rigid walls. No
particular details in zone Dy are shown. The lower part of the figure corresponds to the

CIRCULAR CYUNDER a
{rigie walls) - $

SIOEWALL
WYERS

(E5 anD EX)

From BENTON & CLARK [9]

INITLALLY CYLINDRICAL FLOATING ZONE
(region DJ)

Fig. 5. Meridional circulation pattern for the spin-up. The upper part shows a liquid encosed in o rigid
circular cvlinder. The lower pare shows the secondary reczroulation which appears near the fTee SUrtace i
a floating liquid zone.
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shaded region in the upper part, and shows the predicted secondary recircuiation near

the free surface.

In order to obtzin the shape the normal balance of forces at the free surface {eqn. 25}
is used, as already mentioned. To this ajm the pressure field must be calculated up to
order E¥12, This can be achieved through the radial and axial momenmim equAtions

{eqns. 14 and 16), which yield:

Re™ ¢ R 33)
Pz(0‘2;7)=-27=ﬂ:k§_:1( 1) — cos wkz. {

ingi i i i ide of eqn. (25¢), and taking into
Bringing this expression of P, to the ng,ht hand si
accof:t the following additional conditdons of symmetry {eqn. 34) and of volume
invariznce {eqn. 33).

Lz, r)= L=z, 7), {34)

I ' I(z, 7)dz =0, (35

-1
the following equation for the free surface results:

5 C 1
2 (k™ wkR*~1-R’C

Several representative results are given in Fig. 6. It should b'.:: noci_csd that t.he
displacement of the free surface becomes infinitely large when the dimensioniess radius
of the floating zone, R. is related to the rotaton parameter, C, as follows:

/R = =1+ R*C. (37}

This equation gives the maximum stable length 10 diameter ratio_of a cylind_ricn.l zone
in terms of the rotation parameter C (recall that R is the zone radius m_agie dimension-
less with haif the zone leagth). Equation (37) was first obtained by Gillis [10]. '

The zones D, and D, merge with the Ekman layer, Ds, near the discs. jl‘he.a resulting,
solutron. which can be obrtained without difficulty, i not uniformly valid in a small

¢0s mkZ. (36)

e-"?
Lz o) = —N’iﬁ CR?

Fig. 6. Shape of the free surface for several values of the dumensioniess radis, R. C= 2,
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zone. the ‘corner region’, placed pear the free surface, whose height and radial
thickness are both of order EY?. The relevant differential equations in this zone (which
may be important in the study of the conditions at the disc edge, 'and in the control of
crystal imperfections) become of eliptic type and, thence, its solution is not readily
accessible. The mathematical difficulties associated to this region have been discussed,
in connection with the case 1 in Fig. 3, by one of the present authors [11].

CONCLUSIONS

Since rotation will be imparted to a floating zone for homogenizing purposes, some
knowledge of the phenomena associated with the onset of rotation or to changes in the
rotaton rate wouid be of inrerest,

A, very simple problem has been analyzed in the present paper: the linear spin-up of
an initially cylindrical floating liquid zone.

The first, fairly obvious. conclusion is that the inner flow pattern does not differ 100
much from that corresponding to a liquid enclosed in a cylindrical container of circular
cross-section. Rotating cylindrical configurations are moderately insensitive to changes
in the boundary conditions.

On the other hand, the secondary recirculation near the free surface comes some-
what as a surprise, although several antecedents are found in the lterature. This
secondary recircuiation could be Important in those situations where interface
phenomena control the fluid moton.
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NOMENCLATURE

rotation parameter € =p{*LY8o
Ekman number, E = o/ QL/2)2
distance between end discs {m]
differenual operator.
-3 2
PERTINY
ar* ror ozt A2

Khmn

dimensionless reduced pressure, Pw p—(752)

dimensionless gage pressure at the free surface of the floaung zone i sohd rotamon
dise rads, made dunensioniess with L2

Grecuspan stream funcuon,

3¢ 1 Oy

radial deviavon of the free surface from s undsturbed posimon. [(z. 1)= (r— RYR
dunensioniess gage pressure

dimensioniess radial distance, 1= R

dimensioniess time —

Ekman spw-up ame, &g @ L/VE [5]

dunensionless radial veloarv

dimenstonless ammuthal veloery

dimensioniess want veloary

dimens:onless axial distancs to the mean plane, [z{=1
ansular veloaty [rad - s7']

radial coerdinate of order one in regon Dy, n= E-¥(r - R),
liqud kinemane viscosity (m” 571
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I3 hawd density [kg - m™)
o ligmael—gag surface tension [N - m™1]
T dimensonless trme, 7= (VE
Subseripes
0.1.2 mdicate zero, first or sceond order of approxumanon
f flud
w wall
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