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Abstract—A set of problems concerning the behaviour of a suddenly disturbed ideal floating zone 
is considered. 

Mathematical techniques of asymptotic expansions arc used to solve these problems. It is 
seen that many already available solutions, most of them concerning liquids enclosed in 
cavities, will be regarded as starting approximations which are valid except in the proximity of 
the free surface which laterally bounds the floating zone. 

In particular, the problem of the linear spin-up of an initially cylindrical floating zone is 
considered in some detail. The presence of a recircuiating fluid pattern near the free surface is 
detected. This configuration is attributed to the interplay between Coriolis forces and the 
azimuthal component of the viscous forces. 

INTRODUCTION 

Problems connected with the motion of a free liquid surface are fairly well known, see 
for example [1]. Here we will deal with a configuration to which very little attention has 
been paid in the past: the free surface of a floating zone under micrograviry conditions. 

Floating zone techniques have been used in recent years to prepare high purity 
materials and, particularly, high purity single crystals of silicon. 

The purification process involves (Fig. la) vacuum-melting a narrow zone at one end 
of a heated silicon rod, slowly moving the molten zone along the rod. allowing the 
silicon to solidify again in the wake of the zone. 

Usually the rod is held vertically, the floating zone is kept in position by surface 
tension forces, and there is no crucible contaminating the silicon. The molten zone 
refines the silicon by preferentially retaining certain impurities in solution and carrying 
them along to the end of the rod. Furthermore, the rod can be made into a single 
crystal by allowing the silicon to slowly solidify around a small seed crystal at one end. 
the crystal then grows by the addition of atoms from the melt without further crystal 
nucleating. 

The maximum stable length to diameter ratio of a vertically suspended floating zone 
is controlled by the balance between hydrostatic pressure, which increases with the 
distance to the top of the molten zone, and surface tension forces. 

The floating zone technique is well suited to high melting point materials (above 
2000°C); in addition to eliminating crucible contamination, as already mentioned, 
strains, due to the differential expansion of the crucible and the crystal, are absent. 

In spite of these advantages, floating zones which can be naturally stabilized in the 
terrestrial laboratory are far too short for many applications. Several levitation methods 
have been suggested to stabilize a slender floating zone but most of them are very 
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Fig. 1. Floating zone: (a) is a sketch o£ a Soaring zone in melting, whereas (b) shows the ideal 
configuration used for analytical purposes. 

limited in scope. The following advantages associated to microgravity are very often 
quoted: 

(1) The restriction imposed by gravity to the zone length to diameter ratio disap­
pears. Unfortunately, zones which are too slender exhibit a tendency to neciking 
because of surface tension and. thence, a maximum stable length to diameter ratio 
results {LID ^ vr for cylindrical zones), as noted by Rayleigh [2]. In addition, micro-
gravity renders the floating zone technique less sensitive to material properties (crip) 
than on earth. 

(2) Microgravity reduces buoyancy-induced convection (free convection) which re­
sults from the changes in fluid density because of the temperature. Very slight 
temperature gradients could promote convection in a normal gravity field. 

Absence of convection is the most widely quoted argument in favour of performing 
material sciences experiments in space. This absence of convection could be of 
importance in crystal growth, but convection-inducing mechanism other than buoyancy 
exist, not to mention that, since diffusion-controlled transport may be inadequate for 
providing sufficient mixing in the bulk, separate provisions may be required to stir the 
meit. 

The stability of the equilibrium of the floating zone under the disturbances intro­
duced either accidentally or intentionally in microgravity is a matter of concern, thence 
substantial research should be undertaken to improve our understanding of these 
problems before exploring the prospects for space materials processing based on the 
floating zone technique. 

THE FLUID DYNAMICAL APPROACH TO THE PROBLEM 

The theoretical study of a floating zone in melting involves a formidable task both 
because of the material characteristics of the melt, whose properties are strongly 
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temperature dependent, and because of the complexities associated to the disturbances 
which could be imposed on the zone, thence several simplifying assumptions must be 
introduced to hold the analytical study within reasonable bounds. 

(1) The first assumption consists in disregarding phase-changes. Several interesting 
problems connected with the hydrodynamics of phase change are then left aside 
(solidification and melting fronts, influence of shrinkage forces in promoting convec­
tion, etc). These problems are not specific of the floating zone however. 

Once the 'no phase-change' assumption is introduced, the floating zone is assumed to 
consist of a liquid held between two parallel, coaxial, solid discs (Fig. lb). The resulting 
configuration will be of interest to many fluid dynamical applications far aside from the 
field of crystal growth. 

(2) The liquid is assumed to be Newtonian, a hypothesis which is untenable for highly 
viscous liquids. 

(3) Finally, it is assumed that the liquid is pure, exhibits uniform properties, and 
remains in thermal equilibrium with the environment. This assumption could be relaxed 
without undue difficulties. 

Here we will deal with problems concerning rotation of the zone around its symmetry 
axis. More precisely, we will investigate the phenomena which result when a cylindrical 
floating zone, either at rest or under soiid rotation, is suddenly disturbed through one 
or both end discs. 

THE FLOATING ZONE UNDER ROTATION 

In practical instances rotation is imparted to the floating zone with the aim of making 
the temperature field uniform Once rotating, the angular moment of inertia and thence 
the rotation rate of the zone can be changed at will by axially displacing the end discs. 

There is an impressive body of work on rotating flows mainly developed by 
Greenspan and his collaborators, see for example Greenspan [$}. Here the rotating 
liquid is partially in contact with solid walls and partially contained bv surface tension 
forces. 

Figure 2 shows the geometry, coordinate system and fluid velocity components for 
spinning floating zones. 

The governing equations (Navier-Stokes equations) for homogeneous liquids in a 
reference frame rotating with angular velocity CI are: 

3u 3w tr 
3t " dr r .2» + w|2=-f+E»«. dz dr (1) 
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Fig. 2. Geometry, coordinate system and fluid veloriry components for spinning floating 
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7-( ru)+— (rw) = 0. (4) 
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To write down these equations in dimensionless form, any length has been made 
dimensionless with IJ2, any velocity with ClL/2. Time has been made dimensionless 
with CTl, and gauge pressure with pn2L2/4. E is the Ekman number, E = v/Q,{L12)z. 
P = p~r/2, is the reduced pressure. Finally, 

„ 32 1 3 S2 1 
3r~ r Br dz~ r~ 

The direct analytical approach to most fluid flow problems is particularly difficult 
because of the non-linear character of the convective terms in the Navier-Stokes 
equations. Thence, we will resort to some linearization method. 

There are two main types of linearized rotatrng-fiow problems. 
(1) 'Linear spin-up', where the initial state of solid body rotation, with angular 

velocity, fl, is suddenly disturbed, through the end discs, which start rotating with the 
new angular velocity fi(H-s), \s\« 1. e is the so-called Rossby number. Obviously the 
liquid needs some time to reach the new state of solid body rotation with angular 
velocity fl(l +• s), and the problem consists in studying the flow pattern from the time of 
the impulsive disturbance onward. 

(2) Non-linear spin-up, short times, where the exact solution corresponding to the 
liquid at rest is suddenly disturbed through the end discs up to £1 ~ 1, but now the small 
parameter, e, measures the time from the start of rotation. 

The equations for the linear spin-up in a rotating reference frame are the following: 

(5) 

(6) 

(7) 
\ r-i 

~ (™)4-~(nv) = 0. (8) 
dr dz 

In addition to the usual boundary conditions at the discs, namely the kinematic 
condition (w=0) and the no-slip conditions (K = 0, u = r), the following boundary 
conditions at the free surface, whose equation is r=R[l-M(z, r)], must be fulfilled: 

52-2, 
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where C = pn2LJ/8<r is the so-called rotation parameter. 

^_iL.Ri<iE=a do) 
BT r Bz Bz 
^ ^ 2R(BlfBz) fdu Bw\ 
5r+3z + l-R2(3//3z)2W Bz) l J 

Equation (9) expresses the balance of forces normal to the free surface, whereas eqns. 
(10) and (11) express that viscous forces must vanish there. 

In addition, the kinematic condition yields, 

R - - u + W R ^ = 0. (12) 
Bt Bz 

Furthermore, it is assumed that the free surface remains anchored to the disc edge, 
thus 

/(±l,r) = 0. (13) 

This assumption seems to be substantiated by the experimental evidence, at least for 
moderate spinning rates. 

TYPICAL PROBLEMS 

The solution of many interesting problems can be undertaken at this stage. The 
additional assumption £s« 1 will be introduced. This seems to be the case of greatest 
mathematical interest (and difficulty), although very viscous liquids would be present in 
real floating zones. 

Mathematical techniques of asymptotic expansions can be used to solve those 
problems which exhibit one or several small parameters. In order to apply these 
techniques we will look for solutions which are valid sufficiently far from the free 
surface (central core solutions). Many solutions of this type are already available in the 
literature, a selection of some of them is presented in Fig. 3. None of them fulfils the 
boundary conditions at the free surface (nor were intended to do so) and this indicates 
that several of the terms which were negligible in the central core will change in the 
outer layer(s) steeper than it was anticipated. This will give the clue in the determina­
tion of the outer layer thickness and of the order of magnitude of the controlling terms 
in this layer. 

Let us consider, as an example, the case 3 in Fig. 3. The 'central core solution' has 
been obtained by Greenspan and Howard [5], who also considered the case of arbitrary 
axisymmetric rigid containers, and the particular case of the cylindrical container which 
is relevant here. The complete solution for times of the order of the so called Ekman 
spin-up time. rE = 1/fiVH, is given in the mentioned paper. For a qualitative description 
of the phenomena involved see Benton and Clark [9]. 

The fluid pattern consists of six main regions (Fig. 4). In region Di (whose charac­
teristic lengths, both radial and normal to the discs, are of order one) viscous forces are 
negligible, whereas inertial. Coriolis and pressure forces balance. Oppositely directed 
axial fluid masses reach the two Ekman layers near the discs (regions D :, whose 
thicknesses are of order E1/2) in order to replace, according to the continuity require­
ments, the fluid which is propelled radially outwards in these layers. Neither u nor v 
depend on z in this central region. The "central core solution' satisfies neither the 
kinematic (u=0) nor the no-slip (u = r, w = 0) boundary conditions at the rigid side 
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Fig. 3. Several 'central core' solutions. 

wall and, thence, a set of two axial shear layers (the so-called Stewartson layers) arises 
to make the required adjustment. In the first of these layers, D4, of thickness £"*, the 
radial mass flux is brought to rest, the azimuthal velocity of the interior flow is joined 
smoothly to the appropriate value at the wall, and the mass flux flowing radially 
outward in the Ekman layer rums into the axial direction. Viscous forces only appear in 
the azimuthal momentum balance. A thinner transition region, thickness E1/3, is 
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Fig. •!. Main regions in the linear spin-up of an initially cylindrical floating liquid zone. Times of order re. 
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imbedded between the D* region and the outer surface. The function of this layer is, in 
the case of the rigid container, to reduce the axial velocity to its zero value at the wall. 

SPLN-IXP OF A CYCLTNDRICAI. FLOATING ZONE 

It can be seen that the above-discussed solutions for the regions Dl7 D3, Dd and D3 i 
are also valid in the case of the linear spin-up of an initially cylindrical floating zone. 

"The function of zone D3, whose thickness is again of order Em, since this thickness is 
controlled by the structure of the differential equations, is now to fulfil the boundary 
condition of zero azimuthal component of the viscous stress tensor at the free surface. 
This is achieved through an interplay between Coriolis forces, radial an axial pressure 
gradients (which are mainly induced by the distortion of the free surface), and the 
azimuthal component of the viscous forces. Let us look closely at the relevant 
equations. 

The independent variables, of order one, r, r\ and z, are defined in this region as: 

r = T/VE; r = R+E,/3-r,; z^z. 

The differential equations (5H8) become, once higher order terms have been 
neglected, 

- 2 o * = - J r i n — + E l / 3 ^ , (14) 
3TJ 3TJ -

2"=B"30, (15) 

Time-dependent terms have been deleted since they are, for each equation, obviousiy 
smaller than at least one of the written terms. 

The sought solution must match, in an asymptotic sense, with the solution in Da, and 
this supplies the required boundary conditions for very large negative values of -q. Such 
conditions are (see Greenspan and Howard [5] for the relevant equations in DJ: 

E-W22u = o - . R = . E m 2 ^ 7 j , (IS) 

£ - B « 2 * . (19) 

Now the aim is to slightly change the azimuthal velocity, u, since that given by the Da 

solution does not fulfil the boundary condition at the free surface (which is dvld^ = 0. as 
we will see very soon). Equation (18) suggests the following asymptotic expansion for v. 

v = RJrEm2vl{rttz:r)+... . (20) 

According to the azimuthal momentum equation (eqn. 15), the radial velocity u must 
be of order E5nz, instead of being of order E m = , as it could be (wrongly) deduced by 
matching with u in region Dt (eqn. IS). This could come as a surprise although it can 
be justified as follows: Coriolis forces are the only available forces for changing the 
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azimuthal velocity, v; nevertheless, they are too small in region DA to bring dvld-t) to its 
correct value at the free surface. Thence, 

H = ES/12UO(71,Z;T) + , . . . (21) 

The order of magnitude of the axial velocity is deduced from eqns. (17) and (21), 

W!=Em2w0(rs,z;r) + ... , (22) 

whereas eqns. (16) and (19) yield: 

P = P + £1/32i?T! + £5'12P2(T,,z;r) + . . . . (23) 

THE FREE SURFACE 

Now let us consider the linearized boundary conditions at the free surface, whose 
equation is, to first order: 

r = RCl + E"Uz,T)], (24) 

where n is unknown beforehand, but it can be deduced from the boundary condition 
expressing the normal balance of forces. 

Equation (9), after neglecting higher order terms, becomes: 

P + Em*P2HR\l+2Enll) = ~-(l-E-ll)~^En~k. (25) 
L..K L- dz 

from which we deduce: 

PHR2='ER' ( 2 5 a ) 

« = & (25b) 

Bzz ' \"~ ' R2J'k R 

Boundary conditions (10), (11) and (12) become respectively 

7 ^ = 0, (26) 

1^ = 0. (28) 

The condition at the disc edge cannot be fulfilled at this stage because of reasons 
which will be indicated later. 

SEVERAL RESULTS 

Once solved the problem, the expressions for the velocity field and the stream 
function X are, in the first order approximation: 

U = E S / 1 = U 0 ( 7 1 , Z : T ) + . . . , 

u 0 = 4 ^ L l t ( - i r i ^ r f c C 0 S , r t e 
2 VlTTt_L 

RC+-^)l^-^Pz- (25c) 

exp (</2lrk-n) + 2 exp 02^kr]i2) cos (~%2irkt\ -r~~ (29) 
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u = K+E1 /12u1(-n Jz;7)+..., 
Re- I £• (-1V-1 

H=^~l, cos Trkz 

Vs. 
exp (#2^fcT,)+2exp 02^12) cos—-$lZkr\ (30) 

IRe-

x exp (#2irfcT|) ~2 exp (#2ii5eri/2) cos — $2~xk-n 

X = ES ' 1 2X 0 (TJ,Z:T) + . . . , 

Xa=~~-r=BB 2, (~l)fc x —— suiTrfcz 
2 -Jm fc_! ttk 

(31) 

x exp (#21£T| )+2 exp ( 3 S T ] / 2 ) cos f~ ^2«*n + T r ) } (32) 

The expression for the stream function, X, allows the representation of the stream­
lines in the secondary recirculation zone as indicated in Fig. 5. The upper pan of this 
figure, from Benton and Clark [9], shows the meridional circulation partem for the 
linear spin-up of a homogeneous liquid in a circular cylinder with rigid walls. No 
particular details in zone D3 are shown. The lower part of the figure corresponds to the 
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Fre«n 6EKI0N «.OARK [9] 
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Fig. 5. Meridional circulation pattern for the spin-up. The upper pan shows a liquid enclosed in a rigid 
circular cylinder. The lower part shows the secondary recirculation which appears near the free surface in 

a floating liquid zone. 
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shaded region in the upper part, and shows the predicted secondary recirculation near 
the free surface. 

In order to obtain the shape the normal balance of forces at the free surface (eqn. 25) 
is used, as already mentioned. To this aim the pressure field must be calculated up to 
order Ein2. This can be achieved through the radial and axial momentum equations 
(eqns. 14 and 16), which yield: 

P , ( 0 , z ; r ) = - 2 ^ £ ( - D ^ S p c o s ^ z . 
V-7TT ! ( . ! TTK 

Bringing this expression of P3 to the right hand side of eqn. (25c), and taking into 
account the following additional conditions of symmetry (eqn. 34) and of volume 
invariance (eqn. 35). 

W Z , T ) = E 1 ( - Z , T ) , (34) 

(33) 

I 1 (2 ,T )d Z =0 , 

the following equation for the free surface results: 

• e 
; i ( ^ ) = - 2 ^ £ c R - S / ( ; ^ 7 r 2 f c 2 R ^ ] . _ K , c c o s ^ z . 

(35) 

(36) 

Several representative results are given in Fig. 6. It should be noticed that the 
displacement of the free surface becomes infinitely large when the dimensionless radius 
of the floating zone, R, is related to the rotation parameter, C as follows: 

IIR = irl-fl+WC. (37) 

This equation gives the maximum stable length to diameter ratio of a cylindrical zone 
in terms of the rotation parameter C (recall that R is the zone radius made dimension-
less with half the zone length). Equation (37) was first obtained by Gillis [10]. 

The zones Dd and D3 merge with the Ekman layer, D2, near the discs. The resulting 
solution, which can be obtained without difficulty, is not uniformly valid in a small 

-O.S -CW. -OJ -02 -OJ 0 0.1 0 J 03 QA 05 0.E 

Fig. 6. Shape of the free surface for several values of the diraensioniess radius. R. C = 2. 
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zone, the 'comer region', placed near the free surface, whose height and radial 
thickness are both of order E1/3. The relevant differential equations in this zone (which 
may be important in the study of the conditions at the disc edge, 'and in the control of 
crystal imperfections) become of elliptic type and, thence, its solution is not readily 
accessible. The mathematical difficulties associated to this region have been discussed, 
in connection with the case 1 in Fig. 3, by one of the present authors [11]. 

CONCLUSIONS 

Since rotation will be imparted to a floating zone for homogenizing purposes, some 
knowledge of the phenomena associated with the onset of rotation or to changes in the 
rotation rate would be of interest. 

A very simple problem has been analyzed in the present paper: the linear spin-up of 
an initially cylindrical floating liquid zone. 

The first, fairly obvious, conclusion is that the inner flow pattern does not differ too 
much from that corresponding to a liquid enclosed in a cylindrical container of circular 
cross-section. Rotating cylindrical configurations are moderately insensitive to changes 
in the boundary conditions. 

On the other hand, the secondary recirculation near the free surface comes some­
what as a surprise, although several antecedents are found in the literature. This 
secondary recirculation could be important in those situations where interface 
phenomena control the fluid motion. 

Acknowledgements—The authors wish to acknowledge the support of their research by grants from the 
Spanish Space Research Commission (CONES'). 

NOMENCLATURE 

C rotation parameter C=-pfl3L3/So-
E Ekman number, E - vIClOJl)2 

L distance between end discs [m] 
if differential operator, 

P dimensionless reduced pressure, P«p - ( r : / 25 
P dimensionless gage pressure at die free surface of the floating zone in solid rotation 
R disc radius, made dimensionless with 111 
X Greenspan stream function. 

3X S X _ X 

3 : ' W " 3r r 

I radial deviation of the free surface from its undisturbed position, I(z.:) = ( r -Rl /R 
P dimensionless gage pressure 
r dimensionless radial distance, r^R 
t dimensionless time __ 
% Ekmaa spin-up nme, :a = l/flJE Is] 
u dimensionless radial velocity 
o dimensionless aomuthal velocity 
w dimensionless axial velocity 
z dimensionless axia! distance to the mean plane, [;|^1 
ft angular velocity [rad • b"v] 
-n radial coordinate of order one in region D j . T j - E ' ^ r - R ) . 
f liquid kinematic viscosity [or • s""Y] 
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p liquid density [kg • m~3] 
<r liquid-gas surface tension [N - m"1] 
T dimensionless tune, T =• ti/£ 

Subscripts 

0,1,2 indicate zero, first or second order of approximation 
f fluid 
w wall 
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