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Abstract—Floating zone melting is used m crystal growth and purification of high melting materials 
The use of a reduced gravity environment will remove the constraint imposed on the length of the 
zone by the hydrostatic pressure The equilibrium of the fioatmg zone may involve, (I) Hydrostatic 
forces, when the zone rotates as a whole (2) Convective driving forces, when the zone is stationary 
but fluid property gradients appear (3) Hydrodynamic forces, when some parts of the zone are set 
into motion with respect to others The last effects are considered in this paper I he flow pattern of a 
floating zone held between two discs in relative motion is complicated, and thence the solution of the 
problem is difficult even assuming a constant property-newtonian liquid Nevertheless, when a small 
parameter appears m the problem, the complete flow field can be split into zones where simple 
solutions are found To illustrate this approach, the spin up from rest of an initially cylindrical floating 
zone is considered with detail Here the small parameter is the time elapsed from the impulsive 
starting of motion Since the problem which has been considered, as well as some others which can 
be tackled by use of similar methods, concern the viscous layer close to either plate, they can be 
simulated experimentally in the ground laboratory with short floating zones Procedures to produce 
these zones are indicated 

Introduction 
FLOATING ZONE MELTING has been widely used for the last years in crystal growth 
and in purification of high melting materials As it can be seen in Fig 1, the melt 
does not require any crucible since it is held by surface tension forces 

In the ground laboratory, the maximum stable length of a vertically suspen­
ded liquid zone is controlled by the balance between hydrostatic pressure, which 
increases with the distance to the top of the molten zone, and surface tension 
forces. The use of a reduced gravity environment removes the constraint 
imposed on the length of the floating zone, rendering it more inherently ac­
cessible than on earth. 

The stability of equilibrium of the floating zone under the large variety of 
disturbances that could arise either accidentally or intentionally in the space 
laboratory is a matter of great concern Its study involves a formidable task both 
because of the material characteristics of the melt, whose properties are strongly 
temperature dependent, and because of the complexities associated to the 
disturbances which could be imposed on the zone. Thence, several 
simplifications must be introduced in the model. The simplest approach consists 
in disregarding phase changes, considering a liquid zone held between two 
parallel, coaxial, solid discs. 

tPaper presented at the XVIIIth International Astronautical Congress of the International 
Astronautical Federation, Praha, Czechoslovakia, 25 September-! October 1977 
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Fig 1. Geometry, coordinate system and fluid velocity components for spinning floating 
zone. 

Among the disturbances that one can impose on a floating zone (heating, 
vibration, electric or magnetic fields,,..) the most simple one is rotation around 
the symmetry axis. The aim of this rotation is to homogenize the temperature 
field. 

Studies on the stability of the floating zone could be classed in either of the 
following categories: 

1. Hydrostatic studies.t The zone rotates as a whole. Both the properties of 
the liquid constituting the zone and the angular velocity of the fluid around the 
symmetry axis are assumed to be uniform. 

2. Studies on naturally induced convection (Chang and Wilcox, 1976; Chun 
and Wuest, 1977). Now the zone is held at rest, but material property gradients 
appear as a consequence of heating, intentional diffusion of species, 
contamination,.... These gradients in the presence of body or surface forces 
induce the convection. 

3. Studies on artificially induced convection (Carruthers and Grasso, 1972; 
Carruthers et at 1975). These studies are concerned with the response of the 
column to a directly applied force which gives rise to a more or less complicated 
fluid pattern. This is the case when one of the end discs is set into motion. 

In this paper we discuss some problems concerning the rotating motion of an 
incompressible, newtonian, viscous liquid, having constant material properties, 
which is held by surface tension forces between two parallel coaxial discs. 

The mathematical formulation of the problem is moderately complicated, but 
the solution of the equations involved presents insurmountable difficulties. In 
many cases a small parameter appears in a natural way and, thence, the whole 
flow field can be split into partially overlapping regions where much simpler 
solutions become valid. 

The structure of the inner core, far from the free surface of the floating zone, 
is well known in many cases. The known mathematical solution to this problem 
is matched, to a given order in the small parameter, with the solution, valid up to 
this order, in a region close to the free surface. To do so the technique of 

tSee Carruthers and Grasso (1972), and Martinez Herranz (1976, 1977). 
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matched asymptotic expansionst can be used. Even in the cases in which the 
solution on a given zone cannot be expressed in closed form, the matching 
conditions give some insight into the main characteristics of the flow field. 

The problem of spin-up from the rest of an initially cylindrical zone is 
considered here with some detail. The undisturbed zone is held between two 
parallel coaxial discs having equal diameters. The contact angle between liquid, 
disc material and surrounding atmosphere is assumed to be smaller than 90°, so 
that, given the disc diameter and the distance between the discs, there is a fixed 
liquid volume which keeps cylindrical the undisturbed floating zone. Suddenly one 
of the discs is set impulsively into rotating motion and a shear layer near the disc 
starts to thicken by viscous diffusion. 

As it has been indicated above, we will look for a solution of the fluid motion 
that is close to the exact configuration at rest, thence this solution will hold only 
for small values of the time elapsed since the starting of the process. The 
mathematical technique used is fairly general, and some other configurations 
where a small parameter appears could be dealt with on similar grounds. 

Spin-up from the rest has been considered in the past for both laterally 
unbound liquids (Nigam, 1951; Benton, 1966), and for liquids within a cylindrical 
container,! but no similar analysis for the case of containment by surface 
tension seems to exist. 

This work is part of a more general endeavor for predicting the behavior of a 
floating zone subjected to mechanical disturbances in a reduced gravity en­
vironment (ESA experiment E-67, 1st Spacelab Mission). The aim of any 
pre-flight work of this kind would be to pave the way to a sound evaluation of 
the "unexpected" results which couid arise from the space experiment. 

Once the problem discussed here has been considered with some detail, one 
can question whether this particular configuration couid be experimentally 
simulated on the ground laboratory or not. Although the answer is affirmative in 
this particular case, as we will show later, other elusive problems, such as those 
concerning the structure of the shear layer between unequally rotating discs, 
whose experimental simulation requires large floating zones, cannot be simulated 
so easily. 

Rotating liquids contained by surface tension 

Basic equations 
The diagram in Fig. 1 shows the geometry, coordinate system and fluid 

velocity components for a spinning floating zone. The radius of the column is R, 
whereas the zone length is let unspecified since it does not appear in the problem 
which concerns the flow field near one of the discs. 

The nondimensionat differential equations for the axisymmetric rotating flow 
in cylindrical coordinates are (Greenspan, 1968): 

du , du v2 , du dp t r,/d2u , 1 du , d2u u\ ,, , 

tSee Cole (1968), Eckhaus (1973), Nayfeh (1973) and Van Dyke (1975). 
JSee Wedemeyer (1964), Walkins and Hussey (1973) and Weidman (1976). 
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To write down these equations any length has been made dimensionless with 
R, any velocity with Q,R, where ft is the maximum angular velocity prevailing in 
the flow field (either i iw or ft/). Time has been made dimensionless with ft-1, and 
guage pressure with p£l2R2. Finally, E is the Ekman number 

n OR2-

The boundary conditions at the disc are: 

v = r^Tr> u = w = Q onz = 0. (2a) 

Far from the disc. 

limYu - r ^ A = 0, Iim a = 0. (2b) 
7-KO \ S i / z-*no 

The vertical velocity component cannot be prescribed at infinity because the 
viscous boundary layer at the plate induces an axial flux which persists 
throughout the flow field. 

Boundary conditions at the free surface 
The diagram in Fig. 2 sketches the free surface, which bounds laterally the 

floating zone. The equation of this surface, in dimensionless form, is: 

r = l + / (z ,0 . 

The first boundary condition will express the balance of normal forces at the 
interface. These forces are (Landau and Lifshitz, 1959), the capillary pressure 
(as given by Laplace's formula), the excess of the local pressure over the 
ambient pressure, and the normal viscous stresses. In dimensionless form: 

(£)' 1 + • " - ' " • 2, 
d2l 

IE Jdu (dlYdw' dl (dw duV\= 1 _ _ _ 
P

 { + (<l)Ldr \dz) dz dz\dr dz)\ cf"1 + / j ^ Y ] J / z L i + [ a?J* 

(3a) 
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Fig. 2. Sketch of a free surface element in the $ plane. 

where C is the dimensionless rotation parameter (Bond number in terms of the 
centrifugal acceleration R£l2), 

c = p K W 

Two more boundary conditions are deduced by expressing that the tangential 
viscous stresses vanish at the interface. That is to say, that: T • n-
(n ' T • n) • n — 0, T being the viscous stress tensor and n the unit normal to the 
perturbed surface. In dimensionless form these conditions become: 

1. For the axial component, 

dzldr dz] L \dz) \\_dr dz\ 
(3b) 

2. For the azimuthal component, 

dr 
dl dv 
dz dz 

- 0 . (3c) 

On the other hand, the condition that the interface is a fluid surface, since the 
mass flow rate through it is zero, yields: 

dl , dl A 
—• - u + w — = 0. 
Bt dz 

(4) 

Furthermore, it is assumed that the free surface remains anchored to the disc 
edge, thus /(0, t) = 0. This assumption seems to be substantiated by the experi­
mental evidence, at least for moderate spinning rates. The spreading of the liquid 
column along the end discs poses interesting problems which have been the 
subject of some attention (Hocking, 1976 and 1977). 

Spin-up of a floating zone from rest 

The direct analytical approach to time dependent problems of rotating liquids 
contained by surface tension is difficult because of the non-linearity of the 

file:////_dr
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governing differential eqns (1) and boundary conditions (2-4). Then c e , we will 
resort to linearization methods by slightly disturbing some exact solution and 
exploring the consequences of the disturbance. In the present case the "exact 
solution" is that corresponding to a cylindrical floating zone in equilibrium at 
rest. The perturbation consists of suddently starting to spin one of the end plates 
about the axis of rotation with constant angular velocity. Formal series expan­
sion for velocity and pressure in a small parameter e, which measures the time 
from starting, will be introduced into the full Navier-Stokes equations and 
boundary conditions. Since the expansion must hold for arbitrary small values of 
e, terms of like orders in 6 must separately satisfy each equality, thus a relatively 
simple set of linear ordinary differential equations with variable coefficients and 
non-linear forcing functions results. These equations are uncoupled arid they can 
be solved exactly in closed form. In practice, however, two difficulties prevent 
the calculation of higher order terms, namely: 

1. The complexity of the forcing function increases very rapidly with order 
in the set, and 

2. The perturbation scheme breaks-down in the proximity of th^ interface. 
Before pursuing further we are forced to examine the details of the flow in the 
corner region where several fluid variables experiene sharp changes. 

Both solutions, that in the central core and that in the corner region, 
complement each other, one being valid in the region where the other fails, and 
both must be matched in an intermediate region of common validity. 

In the present case only first order terms have been obtained, an<] even in a 
not completely satisfactory way. This is a fairly modest achievement if one 
realizes that, judging by the case of the laterally unbound fluid reahn, the first 
order solution correspond to no more than the first-half radian of the disc 
motion, whereas the steady state is approached after about 2 radians 0f motion. 
It is, nevertheless, our feeling that this solution represents a start in the problem 
and an indication of the way to obtain more complete solutions. 

The central core 
It is only logical to assume that there is a central core which, at l^ast to first 

order, does not feel the effects of the free boundary. The solution for this central 
core will be that corresponding to the motion of a viscous fluid, confined to the 
upper half plane (z > 0), when at some initial instant the disc, of infinite radius, 
starts spinning with constant angular velocity. 

The viscous shear layer produced near the disc is, at the very beginning, very 
thin. Thence, aiming at the use of coordinates of order unity, we introduce a 
magnified time, T, and a magnified distance to the disc, i), wherea.s r is left 
unaltered. 

- I z 
T~ e' V~2y/(aEeT)' 

The asymptotic solution to this problem, as the parameter e becomes small, 
can be written down as follows: 



On the structure of the floating zone in melting 643 

n(r, z, t) = erriffa) + (er)2f2(V) + (er)4fM + . . . ] , (5a) 

v(ry z, t) = r[gl(-n) + (fiT)2g2(ij) + (eO'ftO)) + (erfg&l) + . - . ] , (5b) 

M>(Z, 0 - -4eTV(E*r)[A,(i>) + (eT)2/i2(7?) + (eT)4A3(ij) + . . . ] , (5c) 

p(z, 0 - ~ = 2Eer[Pl(V) + (erfpM + {erfpAv) + • • • ] • (5d) 

This expansion scheme is due to Benton (1966). The functions fu 8\ and hx 

were found in closed form by Thiriot (1940) (quoted by Benton). Pi was also 
given in closed form by Nigam (1951). Benton found g2 in closed form and f2y fi, 
#3> 84, h2 and /i3 by numerical integration. All these functions are tabulated in 
Benton's paper. Some of them have been plotted in Fig. 3. 

Fig. 3. The functions fu f2, g, and /it as given by Benton (1966). 

The corner region 
We suspect that the central core solution is not valid near the free surface, 

where very complicated boundary conditions must be fulfilled. It is hoped, 
however, that the region where the core solution is non-uniformly valid is very 
thin, and this suggests using the following "corner region variables" (Fig. 4). 

r = - ; V(Eer)' £ = 
r-\ 

2\/(EeTY 

The asymptotic expansions for the relevant variables in this zone are: 

u(r, z, t) = 6r[rf1(7))+ rlUi(€> V) + 2y/{Eer)VM> V) + • • .] , (6a) 

(6b) 
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w(r,z, t) = erir'W^, y) + 2V(Eer) W2($, y) - 4y/(EeT)htM + . . •], (6c) 

plK^^^y/(Eer)^ P,(& y) + V(fe - )P 2 (£ y) + 2V(Eer)Pi(y) + • . . ] , (6d) 

""' /(z, 0 = (eT)2[Li(ij) + 2 V ( £ 6 T ) J U ( I ? ) + . . . ] • (6e) 

Underlined terms are those entering into the central core solution, r has been 
used as far as possible to simplify writing. It is to be noted that these expansions 
proceed in powers of (er)"2 and, thence, several terms must be calculated for 
each term of the central core expansion. 

Fig. 4. Corner region variables. 

Substituting expansions (6) into eqns (1) and boundary conditions (2-4) and 
realizing that the problem for the azimuthal velocity, u, remains uncoupled, one 
gets the basic equations, defining the hrst and second order "-corner region 
problems", given in Table 1. Both problems are two dimensional and linear. Un­
fortunately they are boundary value elliptic problems and attempts made to 
found analytical simple solutions meet, up to this moment, with partial success 
only. 

It should be noticed that since the radial velocity can be calculated to first 
and second order without resorting to pressure, the shape of the free surface is 
independent of the Bond number, C, provided that it is (in addition to constant) 
of order unity or larger. Values of C"1 for several liquids in a typical case are 
given in Table 2. 

Several results 
The first order problem has been solved close to the corner (small values of 

p) and far from it (large "magnified" values of p). 
The stream function for small p has been found to be, 

^r,ztt) = er^HA(e) + ^H5(e) + ^H6{0) + ...J, (16) 

where p2 = £2 + y2, 6 = tan"1 $y, and 

HA(6) = 3 - ^ - p - cos2 d(\ - f cos2 e\ (17a) 
ai7„«o \ o / 
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' ( l - ^ c o s 2 H tisyv) = -=-j—g—cos 
3 dn„=o 

H4(0) = ^ / ^ - cos2 6 sin2 0 cos 26. 
2 di7„=0 

(I7b) 

(I7c) 

This stream function depicts the fluid motion devoided of the azimuthal 
velocity component. 

Several streamlines have been plotted in Fig. 5. These streamlines change 
with time. The fact that they impinge normally to the undisturbed free surface 
indicates that the fluid set into radial motion by centrifugal forces feeds the fluid 
domain which grows because of the free surface displacement. 

It is also interesting to point out that the curvature of the streamlines is 
moderate in any case and seems to reach its largest value in the proximity of the 
corner where the velocity is small, thence the pressure gradients developed in 
the proximity of the free surface are not large. 

Table I. First and second order problems for the corner region 

1st order problem 2nd order problem 

2 2 
nomenclature 1_ = — — + 2 £ S- + -~r + 2 n S-

3C H 3^ 3 n 

Equations ip 
(L-n)u. - ~ . 

(L-MW. = l_i 

3Ut o'rf. 

Boundary conditio's 

" = 0 Uj = -". = 0 

— « li- _. = o 

%--o ?. -: -TJ- = o 

3 i" . "• v _ ,j f. 
• ^ * 

3 * _- -̂  d n 

li-n ('J- . •- , P. } = 0 
f;.m - - 1 

3p 3P 3U. 
(L-6>'J2 = -3r^^r + '3r (7a'b) 

3 P - 3 P . o W . 

3U 3K, 
_ £ + - ^ - 0 {9a,b) 

(j =*_•„ = 0 (10a,b) 

lim L', = 0 ( 11 a , b ) 

P.-: T7^ = 2(f, (i )--_•. co.n)-?, (n))-

*̂ c ̂  ~ i 

- ^ - - - ^ ^ 0 < '. 3 a , b ) 

dL, 
n -^f - 5 L ^ = -2U 2(c,i) (:5a,b) 



646 I. Da-Riva and J. Meseguer 

Table 2. Values of the reciprocal of the bond number for several liquids 

T = 293 K R = 5 x 1<T: m n = 1 rad.s^' 
pRW 

Liquid 

Hater 

Propylene Glycol 

Glycerol 

Diethylene Glyc*1 

Direthyl Silicone 
1000 CS 

Dimethyl Silicone 
5 CS 

Water contaminated with 
n-Prooanol 
Haler contaminated with 
Tricresyl Phosphate 
'.later contaminated with 
Diethyl Phthalate 

pxlO 3 

[kg.m-3] 

.9982 

1 .0328 

1.2613 

1.1161 

.973 

.918 

.9982 

.9982 

.9982 

OX103 

72.583 

72 

63. 3 

45 .21 

21.2 

19.7 

70.40 

63. 30 

49. 80 

References 
and Comments 

Riddick £ 

Bunger (1970) 

DOW COP.HIHG 

(1963) 

^50 ml of water 
with 1 drop of 
contaminant. 
Padday (1977). 

c"1 

. 582 

.558 

.401 

. 324 

. 174 

. 172 

. 564 

. 507 

. 399 

The distribution of radia! velocity, £/)(£, ^) + f\('n)> near the disc is shown in 
Fig. 6. This distribution, which will present an inflection point outside the frame 
of the figure, reminds that existing near the separation point of a boundary layer. 
This resemblance is not complete, since the non-linear momentum terms, which 
play an important role in boundary layer separation, are negligible here. One 
must say that the existence of the mentioned inflection points strongly indicates 
the possibility of instabilities originating near the disc. 

Figure 7 shows the radial velocity, £/i(0, TJ) + / I ( ^ ) , across the boundary 
£ = 0, as well as the shape, LI(TJ), of the free surface. 

Since we were unable to calculate the velocity field except for extreme values 

<|</«T- 0.050 
0.045 
0040 
0.035 
0.030 
0.025 
0.020 
0.015 
0.010 

0.005 

0 8 

^ / r r«0 

0.6 0.4 0.2 

08 

0.6 

^ 0 . 4 

0.2 

Fig. 5. The streamlines near the corner of the floating zone as calculated by means of 
eqns(f6)and(!7). 
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0.2 0.3 0.4 0.5 

Fig. 6. Radial velocity distribution near the disc. 

005 j -

Fig. 7. Radial velocity across the boundary f = 0 ar-i shape of the free surface. 

of 77, we resorted to a patching between the function giving E/](0, TJ) for smal! 
and for large values of v- This was done as follows: 

First a solution of the problem valid near £ = 0 was sought in the form: 

2m 

U^^="%2^\U2mMl (18a) 

f t-2m+\ (18b) 
(18c) 
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Substitution of these expansions into the equations of motion (7a)-(9a), with 
boundary conditions (12a) and (13a), gives a set of ordinary differential equations 
in 7j. The successive stages are not uncoupled however, rather there is at each 
stage more unknowns than equations. This is so because the problem is elliptic 
and, thence, the flow near the free surface is affected by that farther from the 
surface. Nevertheless, it is possible (van Dyke, 1966) to break the chain at some 
stage, leading to a determinate set of equations. The simplest approach, in our 
case, consists in assuming that pressure gradients can be neglected throughout 
so that the following expression results for the radial velocity: 

tA(0, v) + fiiv) - J[FXW J V ' 2 erfc2 xF2(x) dx - F2(u) f e*2'2 erfc2 xFfa) dx j 

+ AF2(v)y (19) 

with 

Fdv)=l + v2 (20a) 

FiM = tt + V2) erfc - ^ - yj(~)v e(~"'/2). (20b) 

Although one is tempted to calculate A by expressing /7i(0,0) = 0, this is not 
advisable, because the uniform pressure assumption is only valid far from the 
plate. On the contrary, near the plate the following expression holds: 

t/1(0,7?) + /1(7)) = ~ / ^ - 7 ?
3 + . . . (21) 

Then a composite function was written down, and A was calculated through 
the requirement of overall mass preservation as follows: 

f {C/,(0, v) + Uv)}dV = lim /(.(i,). (22) 

Recall that 4€T\Z(EGT) 7r|lim /ii(-7j)}, eqn (5c), gives, as a first approximation, the 

mass Mow rate towards the plate which replaces the liquid propelled outwards in 
the boundary layer. 

Once an approximation for IA(0, rj) has been obtained, -Li(rf) is deduced 
from eqn (15a). The resulting curve is also given in Fig, 7. 

It can be seen in Fig. 7 that the floating zone remains cylindrical in the close 
proximity of the plate. This contrasts with most available information on the 
shape of rotating floating zones, which seems to indicate that some conicainess 
exists near the plates. This conicainess may be due either to gravitational effects 
or to later developments in the rotating motion. In fact the boundary condition 
(3b) shows that provided that dlldz is small enough, as happens to be the case in 
the first stages of the rotating motion development, dwjdr- —BulBz. Since near 
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the plate Bwjdr = 0, w(0,17) has a zero at least of order 172 when 17 = 0. Thence 
the free surface must remain cylindrical near the end disc, (see eqns 15a, b). 

Other central core solutions 
The approach pursued here is based on the existence of an exact solution 

which is slightly disturbed. The same approach can be surely used in other cases 
of interest. 

A list of solutions, already available, which could be relevant to problems 
connected with the structure of rotating floating zones is given in Table 3. In 
most cases solutions for not too small values of the controlling parameter exist, 
but they are of little use here since the boundary conditions at the free surface 
are only simple when that surface departs slightly from a circular cylinder. 

The free shear layer under equal counter-rotation (case 6 in Table 3), has 
been included because its study requires only small amendments to the near-the-
disc solution. A more difficult problem concerns the location of that shear layer. 
In the case of exactly equal counter-rotation of the discs the shear layer is 

Table 3. Relevant candidate central core solutions 

B o u n d a r y C o n d i t i o n s 

at t<0 at t>0 

Small 

Parameter 
References 

T»f I 
G r e e n s p a n , 

1 9 6 8 , p p . 2 8 - 3 1 

l!>! 'VJJJ71 

£X"' 
Greenspan and Howard, 

1963 

Z = / E 
G r e e n s p a n , 

1968 , p p . 3 8 - 6 3 

«^3»f 

iltTlTlHUX 

-n. <^P -"w 

< ^ > " f 

rzzzzzzzzzzz 

t D a v i s and I , u d f o r d , 

1 9 7 M - a . 

S->«f 

UillifULU 

<^P"f 
T 

D a v i s and L u d f o r d , 

1 9 7 1 - b . 

^ J 5 « f 

_.4 
T 
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obviously placed midway between both discs. Other cases are difficult to 
elucidate. Further, Mellor et al. (1968), showed that several cells in the meridian 
plane could appear. It should be said, in addition, that to correctly locate these 
layers requires the knowledge of higher order approximations which are, at 
present, far from available. 

The feasibility of ground-based experiments 
Floating liquid zones can be simulated on the surface of the earth by use of 

the "neutral buoyancy" (Plateau), technique. This technique involves the suspen­
sion of one liquid inside another with which it is immiscible but precisely equal 
in density. The neutral buoyancy technique has been used in floating zones by 
several experimenters.t Their results are relevant to the stability of floating 
zones under disturbances akin to those which would appear in the space 
experiment. The main objection to this technique lies in the presence of both 
pressure and viscous forces, induced by the movement of the outer liquid, which 
hide some dynamical effects. In our particular case, viscous stresses acting at the 
interface between both liquids would invalidate the boundary conditions (3b) and 
(3c). 

Fortunately, most of the effects associated to the spin-up arise near the plates 
and, thence, their simulation requires zones of short length. 

Figure 8 shows the maximum stable length of a floating zone in a graviational 
field, 2/i, vs the radius, R> of the zone. Notice that for large values of R (in the 
case of water for R > 6 mm) an asymptotic value, 2/i = 2.84VX&igp)> is reached. 
Values of 2h for several liquids, and large values of R, are given in Table 4. 

Let us compare these lengths with the thicknesses of the viscous boundary 
layers, close to the discs, which were previously analyzed. 

As can be seen in Fig. 3, the fluid dynamic phenomena of interest turn up 

Fig. 8. Maximum stable length of a floating zone in a gravitational field, according to 
Heywang (From Wuest, 1976). 

tSee Plateau (1859), Mason (1970) and Carruthers and Grasso (1972) among others. 
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Table 4. Maximum stable length, 2ft, of a floating zone, according to Heywang 
asymptotic formula, compared to twice the thickness, 2z, of the viscous layer near the 

end disc. 0 = 1 rad.s"1. Liquids at temperature close to 300 K 

Liquid 

Hater 

Propylene Glycol 

Glycerol 

Diethylene Glycol 

Dimethyl Silicone 
1000 Cs 

Dimethyl silicone 
5 Cs 

O/gp x 10 
[m2] . 

g = 9.81 m.s 

7.41 

7.11 

5.12 

4.12 

2.22 

2.19 

V x 10 

r 2 -1! 
Lm .s J 
1.0037 

54.23 

487.6 

31.98 

1000. 

5. 

2h x 103 

Cm] 

7.73 

7.57 

6.42 

S.77 

4.23 

4.20 

2z x 103 

Cm] 

8.01 

58.9 

176. 

45.2 

253. 

17.9 

within dimensionless distances to the end discs which are at most 17 = 2. This 
means in the physical variables z^4Ry/(EeT). Furthermore, our approach is 
based on the hypothesis that CT is small (CT ^ 1). Values of 2z = 8^/(vl£l), are also 
given in Table 4 for the same liquids and conditions as stated in Table 2 above. 

One can realize from Table 4 that both lengths, 2h and 2z, are very similar in 
the case of water. For more viscous liquids, the viscous boundary layer thickens 
very rapidly. To avoid this fast thickening, the spinning velocity 0, could be 
increased, with the subsequent decrease in the experimental time. 

An apparatus to simulate the spin-up from the rest of a floating zone, which 
is based on the above ideas, has been constructed in our laboratory. The results 
which have been obtained up to this moment are not conclusive enough to be 
presented here. 

Conclusion 
The work presented above is incomplete and a more detailed study should be 

made. Nevertheless it is felt that this work could introduce the analysis of 
several phenomena which appear in a spinning floating zone near the discs. 

Although the fluid domain which has been considered up to now is fairly 
reduced on a volumetric basis, it is the more interesting from both the 
fundamental point of view and from the applications. 

From the fluid dynamic point of view the corner region is the source of 
instabilities which should be considered with detail in the future. Furthermore, in 
the crystal growth technique special care must be paid to the growth front (that 
is to say, the zone near the end disc), when aiming at the obtention of 
homogeneous single crystals. 

A more complete study of the boundary layer near the disc would include: 
non-uniform temperature fields, highly temperature dependent material proper­
ties (particularly viscosity), and phase changes. It is our impression that all these 
effects would be considered at not excessive extra work, once the incompres­
sible problem has been correctly solved. 
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Appendix A 
Nomenclature 

C rotation parameter (Bond number), 
C = pRWia 

E Ekman number, E = vlQ.R2 

Li term in series solution for position of 
free surface 

P, term in series solution for pressure in 
the corner region 

R radius of the undisturbed cylindrical 
floating zone 

Uj term in series solution for radial velo­
city in the corner region 

Wf term in series solution for normal-to-
disc velocity in the corner region 

/I(TJ) first term in series solution for radial 
velocity in the central core 

gi(ij) first term in series solution for azimu-
thal velocity in the central core 

/II(TJ) first term in series solution for normal-
to-disc velocity in the central core 

/ nondimensional radial distance of the 
free surface to its undisturbed posi­
tion 

p nondimensional pressure 

PI(TJ) first terms in series solution for 
nondimensional pressure in the 
central core 

r nondimensional radial distance 
t nondimensional time 
u nondimensional radial velocity 
v nondimensional azimuthal velocity 
w nondimensional normal-to-disc velocity 
2 nondimensional distance to disc 

ft angular velocity 
ft* angular velocity of the disc 
ft/ angular velocity of the fluid bulk 

e small parameter 
TJ nondimensional magnified distance to 

the disc, T) =» Z12\/(E€T) 
v liquid kinematic viscosity 
£ nondimensional magnified distance to 

the undisturbed free surface, £ = 
(r-l)/2V(JSeT) 

p liquid density. Also distance to the 
corner of the floating zone 

a Hquid-gas surface tension coefficient 
r nondimensional magnified time, T = tie. 


