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A first approach for designing and implementing an artificial cognitive control system based on the shared 
circuit models is presented in this work. The shared circuits model approach of sociocognitive capacities 
recently proposed by Hurley in The shared circuits model (SOW): how control, mirroring, and simulation can 
enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1) (2008) 1 -22 is enriched 
and improved in this work. A five-layer computational architecture for designing artificial cognitive 
control systems is proposed on the basis of a modified shared circuits model for emulating sociocognitive 
experiences such as imitation, deliberation, and mindreading. In order to show the enormous potential of 
this approach, a simplified implementation is applied to a case study. An artificial cognitive control 
system is applied for controlling force in a manufacturing process that demonstrates the suitability of the 
suggested approach. 

1. Introduction 

There is as yet no such complete scientific theory of intelligence 
(Sanz and Gómez, 2008). Recent results in different disciplines, 
such as neuroscience, psychology, artificial intelligence, and 
robotics, and results related with new machines and intelligent 
processes, have laid the foundations for a computational theory of 
intelligence (Meystel, 1994). There are many definitions of intelli­
gence, one of them is the ability of human beings to perform new, 
highly complex, unknown or arbitrary cognitive tasks efficiently 
and then explain those tasks with brief instructions. It has spurred 
many researchers in areas of knowledge such as control theory, 
computer science, and artificial intelligence (AI) to explore new 
paradigms to achieve a qualitative change and then to move from 
intelligent control systems to artificial cognitive control strategies 
(Albus, 2008). 

A natural cognitive system displays effective behavior through 
perception, action, deliberation, communication, and both indivi­
dual interaction and interaction with the environment. What 
makes a natural cognitive system different is that it can function 
efficiently under circumstances that were not explicitly specified 
when the system was designed. In other words, cognitive systems 
have certain flexibility for dealing with the unexpected (Vernon 
et al., 2007). A cognitive system can also reason in different ways. 

using large quantities of knowledge adequately represented in 
advance. In addition, a cognitive system can learn from experience 
to improve how it operates. Furthermore, it can explain itself and 
accept new directions, it can be aware of its own behavior and 
reflect upon its own capabilities, and it can respond robustly to 
unexpected changes. Thus, artificial cognitive agents must share 
with natural cognitive systems key traits and some cognitive and 
neurobiological principles. 

General systems analysis about the heterogeneous aspects of 
cognitive phenomena demonstrates that, bearing in mind the 
known mechanisms of human mind, cognition can be defined as 
model-based behavior (Huerta and Nowotny, 2009; Ito, 2008; 
Rabinovich et al., 2006). During cognitive or executive control, the 
human brain and some animal brains process a wide variety of 
stimuli in parallel and choose an appropriate action (task context), 
even in the presence of a conflict of objectives and goals. Thus, there 
is a shift from attention control (a selective aspect of information 
processing that enables one to focus on a relevant objective and 
ignore an unimportant one) to cognitive change in itself. 

At present there is a wide variety of strategies and initiatives 
related with the partial or full emulation of cognitive capacities in 
computational architectures. Each one is based on a different 
stance regarding the nature of cognitive capacity, what makes a 
cognitive system, and how to analyze and synthesize such a system. 
However, there are two widespread trends, the cognitivist approach 
(reflected, for example, in architectures such as Soar, EPIC, and 
ICARUS), based on representational systems as a tool for processing 
information symbolically (Pylyshyn, 1984), and the approach that 
describes emerging systems (AAR, Global Workspace, and SASE), 



which include connectionist systems, dynamic systems, and enac-
tive systems (Thelen and Smith, 1994). They are all based to a 
greater or lesser extent on the principles of self-organization (Clark, 
2001). The cognitivist approach rests on cognition's being devel­
oped on the basis of symbolic representations, while the connec­
tionist approach treats cognition as an enactive system, that is, a 
system defined "as a simple network of processes that it produces 
itself and that constitutes its identity". This sense-making (Weber 
and Várela, 2002) has its roots in autonomy, an autonomous system 
being a distinguishable individual (Froese, 2007). There are also 
hybrid models that combine the two visions; i.e., they use 
representations which are only constructed by the system itself 
when it interacts with and explores its environment 

On the other hand, there are thousands of complex systems and 
processes which are waiting for artificial cognitive control strate­
gies in order to behave adequately before disturbances and 
uncertainties (Sanz et al., 2007). In this century, the manufacturing 
is a clear example of a dynamic social and technical system 
operating in a turbulent environment characterized by continuous 
changes at all levels, from the overall manufacturing system 
network right down to individual factories, production systems, 
machines, components, and technical processes. Nowadays, the 
highest priority goes to the development of technologies that 
enable faster, more efficient manufacturing by means of coopera­
tive, self-organized, self-optimized behavior through process con­
trol systems. In addition, manufacturing processes are conditioned 
by the presence of nonlinear and time-variant dynamics that are 
determined by forces, torques, and other variables—even, in the 
case of nano-scale processes, with strong interactions at inter-
molecular level. These characteristics increase the functional 
complexity of manufacturing due to nonlinearities, and they 
exponentially increase the functional and precision requirements 
of sensors, actuators, and computing resources. 

This work is based on the shared circuits model (SCM) approach 
(Hurley, 2008). SCM approach serves as the foundation for design­
ing an artificial cognitive control system where imitation, delib­
eration, and mindreading processes are emulated through 
computational efficient algorithms in a computational architec­
ture. Hurley's approach suggests that these capacities can be 
achieved just by having control mechanisms, other-action mirror­
ing, and simulation. An artificial cognitive control system should 
incorporate these capacities and therefore it would be capable of 
responding efficiently and robustly to nonlinearities, disturbances 
and uncertainties. The modifications introduced to the SCM 
approach make that this preliminary version can be applied to 
design a control architecture for a case study: a high-performance 
drilling process. In order to improve efficiency of a high-perfor­
mance drilling process, the current study focuses on the design and 
implementation of a control system for drilling force. 

This article is organized into five sections. A brief description of 
SCM as described by Hurley is given in Section 2. The modified 
shared circuits model (MSCM) incorporated to an architecture in 
which is implemented an artificial cognitive control system is 
explained in Section 3. Section 4 shows the experimental results of 
applying a simplified implementation of the MSCM applied to a 
case study represented by a high-performance drilling process. 
Finally, the conclusions are presented in Section 5. 

2. Shared circuits model to enable imitation, deliberation, and 
mindreading. A review 

SCM approach is supported on a layered structure to describe 
how certain human capacities (i.e., imitation, deliberation, and 
mindreading) can be deployed thanks to subpersonal mechanisms 
of control, mirroring, and simulation (Fig. 1). Basically, SCM is based 
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Fig. 1. Depiction of SCM. Layer 5 monitors simulation of input acts or evoking 
objects. Using layers 2 and 3, SCM can perform simulation at both ends and, with 
layer 5, enables strategic deliberation. 

on the observation of the human brain. Some brain regions are in 
charge of coding actions for reaching objectives and how other 
regions code means for reaching objectives. So, the brain may be 
envisaged as making use of not only inverse models that estimate 
the necessary motor plan for accomplishing an objective in a given 
context, but also a forward model that enables the brain to anticipate 
the perceivable effects of its motor plan, with the object of improving 
response efficiency. The first kind of behavior is covered by the 
action of layer 1 of SCM, while the behavior described in the forward 
model is covered by layer 2 of SCM. Layer 4 of the scheme is the layer 
in charge of controlling when to perform one type of behavior or 
another. 

Other kind of behavior is the imitation that, in addition to 
playing an important role in both the sociability and the develop­
ment of the human adult, is a means of learning. Imitative learning 
requires mirroring the actions of others in response to given 
circumstances. In order to perform this task, first the observer 
copies the input/output associations already observed, inhibiting 
the mirroring mechanism. SCM represents this mirroring capacity 
in its layer 3. The interaction between layer 3 and the inhibition 
control performed by layer 4 serves to emulate the agent's capacity 
to distinguish self from other. 

SCM also describes, from a functional point of view, how the 
agent can carry out the cognitive skill of mindreading. This capacity 
is emulated by the operation of layer 5, which is in charge of 
simulating possible other-related inputs that are external (exo­
genous) to the agent 

3. An architecture for artificial cognitive controL Modified 
shared drcuits model 

A computational architecture for an artificial cognitive control 
system is proposed for high-performance manufacturing pro­
cesses, underpinned by the modified shared circuits model 
(MSCM). Therefore, it is necessary to enrich SCM approach from 
a computational science viewpoint. To develop a complex cognitive 
agent, it is necessary to make a global structure that would be a 
collection of information processing elements, linked by informa­
tion forwarding elements layered atop physical/information inter­
faces (Sanz et al., 2009). 

This section explains the modifications introduced to SCM to 
enrich and improve its capacities, taking into account the sugges­
tions reported in the state-of-the-art and the main constraints of 
the SCM approach. Since a layer-based model is incorporated in a 



computational architecture, five modules are constructed made up 
of one or more processes performed by the above-described layers. 
Moreover, some limitations of SCM approach and some modifica­
tions to enrich and improve the SCM approach are introduced. 
A functional parallelism between layers in SCM and modules in are 
established. 

Recent works are focused on designing tailored control systems, 
while the MSCM proposal can be applied to any domain. The work 
developed by Vijaya Kumar et al. (2009), Jamaludin et al. (2009), or 
Liao et al. (2008) are examples of control strategies that cannot be 
extended to other processes. The first is specifically designed for 
elevator control, the second for the control of a helicopter flight, 
while the third work suggests a fuzzy logic controller for an oil 
refinery process. In the development of a self-tuning fuzzy logic 
controller for elevator system presented by Kumar et al., the 
controller is adjusted by modifying functions and selecting the 
most appropriate fuzzy rule set based on measure performance 
results. This update of the parameters is costly and it slows the 
control process. The architecture presented in MSCM uses a model, 
thus the control process is faster, and only updates the parameters 
in the presence of noise, as discussed below. 

The neural block control for synchronous generators presented 
by Felix et al. (2009) shows a cognitive solution for this problem, 
due to which it has to face with nonlinearities in the synchronous 
generator dynamics. The nonlinearities at the control problem are 
present at MSCM control, but the neural block control uses a 
specific mathematical model developed to control a synchronous 
generator. The intelligent distributed and supervised flow control 
methodology for production systems presented by Tamani et al. 
(2009) describes distributed control architecture. As MSCM, it takes 
inherent advantages such as modularity, reconfigurability, adapt­
ability, fault tolerance, extensibility, etc. But the MSCM proposal 
defines each module in terms of cognitive ability that emulates, 
while Tamani's proposal takes into account the control planning. 
This and other proposals before showed and submitted at Engi­
neering Applications of Artificial Intelligence are not biological 
inspired. They do not emulate some capabilities of a natural 
cognitive system that show an effective behavior through percep­
tion, action, deliberation, communication including individual 
interaction and interaction with the environment. Similar to 
MSCM, Chen and Chiang (2008) and Chu et al. (2008) describe 
more general intelligent control systems that use an adaptive 
control law. But they model high-level cognitive elements of 
human reasoning, and they do not address the low level details 
of perception and real-time behavior in the natural environment. 
MSCM embodies a computational infrastructure that is plausible 
from a neuroscience and psychological viewpoint. However, the 
modularity and flexibility of MSCM allow that it can be imple­
mented using the suggestions of these works or, for example, taking 
into account the robust adaptive interval proposed by Lin (2009). 

From the best of authors' knowledge, the main novelties of this 
work are twofold. Firstly, the SCM is enriched and improved on the 
basis of the state of the art. For example, SCM does not cover the 
description of an executive level to manage functioning of layers, so 
the module in charge of this task is also described. Secondly, the 
implementation of an artificial cognitive control system uses the 
enriched SCM and, the application to a high-performance manu­
facturing process corroborates on the basis of experimental results 
the suitability of the suggested approach. 

3.1. Module 1: basic adaptive feedback control 

Layer 1 of SCM receives the input signal, exogenous events, and 
objectives so that an output can be generated. However, SCM does 
not establish how the agent selects appropriate objectives (Paglieri 

and Castelfranchi, 2008) or where layer l's output is sent. Another 
aspect to consider is how the exogenous signal is integrated into 
the input signal. SCM does not specify whether the exogenous 
signal forms part of the input signal or, on the contrary, modifies it. 
If the later, whether the exogenous signal constitutes a disturbance, 
and, if so, the type of disturbance created. 

SCM approach lies within the scope of philosophy, psychology, 
and neuroscience, so it does not consider essential aspects of the 
problems that must be addressed to represent and incorporate SCM 
to a computational architecture. The layer 1 (feedback control) is 
vaguely described in Hurley's paper as a flow of information 
supplied by the effect of the actual output on the environment, 
taking account of the actual state of the environment, i.e., the 
exogenous signal. Therefore, SCM approach does not clearly justify 
how the agent learns from observing others, i.e., how successful 
instrumental of other agents in its behavior associations are 
incorporated (Paglieri and Castelfranchi, 2008; Nielsen, 2008). 

In this work from the perspective on System Theory 
and Computational Science, module 1 of MSCM is equivalent to 
layer 1 in SCM. Module 1 is represented by a controller C and an 
optimization/adjustment process for this controller. This controller 
performs the instrumental association between input and output, 
similar to the description in SCM and very similar to closed-loop 
control systems widely used since the early 20th century (Fig. Al). 
For the sake of clarity it is assumed that the feedback (/) is the 
process output with noise and disturbances (y**). Thus, the 
proposed system partakes of the enactive nature underlined by 
SCM. The feedback can be inhibited to benefit the output prediction 
(y2) generated by module 2, as shown later. So, similar to layer 1 of 
SCM, the inputs are a reference signal r, according with the 
objectives, and the system output y". The control signal u" is the 
output of this module. 

This output u" is sent via the interface that enables the described 
architecture to communicate with the actuator system or the 
process P that comprises it. This does not include the exogenous 
input, because, in order to check whether the desired objective has 
been reached, the objective is only compared with the internal 
signal y". The exogenous input will influence on feedback process, 
since the information it provides will depend on the actual 
characteristics and influence of the environment on the process 
itself. 

In order to harmonize all components of module 1, unlike SCM, 
an external module in charge of objectives management is pro­
posed to run at the executive level. Moreover, the instrumental 
association-making process is equipped with an initial knowledge 
base of instrumental associations, which undergoes modification 
as agents learn from their environment. 

Apart from this own knowledge base, there is another knowl­
edge base, a sort of common repository, which is enriched and 
modified by the successful input/output relationships the agents 
observe. This knowledge base is managed by module 3. In SCM, this 
process is equivalent to learning, and it is where observation is 
referred to, since an architecture made up of agents is proposed. In 
this work, there is a space to hold common, shared knowledge 
modified by all the agents that have the same role or belong to the 
same type. Inter-agent communications are thus eliminated, and 
the architecture is accordingly simplified. Nevertheless, this solu­
tion implies that a mechanism for controlling access to the 
knowledge base has to be included. 

Using these two knowledge bases, an agent learns through what 
modules 3 and 1 do. The knowledge base managed by module 3 
collects and manifests the behavior of others on the basis of what is 
envisaged in the common repository, and it is in the second 
knowledge base managed by module 1, where this new knowledge 
is incorporated, as we shall see later. If neither the actions described 
in the instrumental associations used by module 1 nor any other 



imitable actions are successful, module 1 will be the module in 
charge of carrying out a new action resulting from a controller 
optimization/adjustment. Module 1 also contains an optimization/ 
adjustment process. 

An optimization/adjustment procedure is introduced in MSCM. 
This procedure uses a set of inverse models M that module 2 
handles, as shown later. The minimization or maximization 
criterion in optimization is determined by performance index/ 
(see Module A: perfomance index computation). Also participating in 
this module is an anticipative stage C that attempts to speed up the 
control process by anticipating changes in the system reference. 

3.2. Module A: performance index computation 

SCM approach does not address temporal issues in which the 
different layers operate. However, in this work, the module that 
handles the function of layer 4 is equipped with executive functions 
to determine the sequence of functioning modules. It is very 
important to provide some relevant information about the perfor­
mance of the agent. Module A in MSCM estimates a performance 
index or figure of merit (Fig. A.1). This is an essential module 
because the performance index that is calculated by this module 
takes part in the decision of when modules act and in what modules 
combined or not run. 

In this work, the system utilizes a performance index or a figure 
of merit J to assess its own behavior. Therefore, a performance 
index/ is calculated by weighting the figures of merit/, selected by 
selector ]s according with the actual objectives and goals. These 
performance indices are basically error-based criteria (i.e., devia­
tion of the process output with respect to the reference). 

3.3. Module 0: objective management 

It is important to note that SCM does not manage objectives and 
goals, therefore the management of objectives are not adequately 
addressed. Thus, it is necessary to include a module that carries out 
this task. The main role of module 0 is to supply a set of reference 
signals that module 1 uses to achieve the eventual objectives. 
MSCM can handle multi-objectives by technical, production, 
economic, and other objectives into references r, and the corre­
sponding figures of merit/,- at the system's executive level. 

The user sets the objectives into the objective manager or 
module 0 which translates these input into a reference signal r to 
the basic adaptive feedback control implemented to the module 1 
(see Module 1: Basic Adaptive Feedback Control) and into a perfor­
mance index switch /s (Fig. A.1). The performance index switch 
selects a figure of merit that evaluates how well the objectives are 
being achieved (see Module A: Performance Index or Figures of Merit 
Computation). 

3.4. Module 2: simulative prediction of effects for improved control 

Layer 2 of SCM is the layer in charge of simulating the effects of a 
possible action on the future input signal anticipating and thus 
avoiding some negative effects of the feedback process (Fig. A.1). 
However, as Behrendt critically pointed out (Behrendt, 2008), it is 
too soon to predict the effect of an action on the environment when 
the action has never been observed before, as SCM approach 
assumed. Makino also remarks (Makino, 2008) that SCM does 
not specify when the operation of layer 2 should be inhibited. He 
also enunciates the self-observation principle (SOP) and establishes 
that, in order to enact the property of mindreading (one of the 
properties whose enactment SCM describes), one needs to develop 
a predictive model on the basis of observation of one's own 
movements. In this sense, Llinás and Roy suggest that it is needed 

that the nervous system evolves a set of strategic and tactical rules 
to optimize prediction in order to generate intelligent motricity 
(Llinás and Roy, 2009). 

The SOP principle serves to adapt some modification basically in 
layer 2 of SCM. In module 2 there is a set of forward models M on 
whose basis, given a control signal, a future output is generated. In 
order to perform this task, it is also relevant to take into account the 
actual characteristics of the environment, i.e., the exogenous input 
and/or the influence of noise and disturbances. This input differs 
from the output of the actuator system because it consists of 
external events to the agent independent of the agent's action. 

Makino also proposes that the inhibition performed by layer 4 
should not be selective, but rather that it hinge on failure 
monitoring, and for that purpose he also suggests others modifica­
tions to the original SCM approach. Failure monitoring seems to be 
the sole criterion for deciding whether or not to inhibit the 
deliberation and imitation capacities exercised by layers 2 and 3, 
respectively, since the system focuses on accomplishing certain 
objectives satisfactorily. 

In order to be more specific, module 2 of this proposal runs 
before the action is performed in order to evaluate/deliberate about 
different action possibilities, depending on whether the agent's 
criteria (module 1) are successful or not. However, it is always 
functioning with the object of its output's being compared to the 
output of the actual process, so that module 1 can learn (see Module 
Interaction). 

SCM approach establishes that, when the actual input and the 
predicted input do not match, the actual input is used as module 1 's 
input. This rule is applied in this work at module 2 of the MSCM 
since the meaning of the deviations of the process models is the 
presence of noise or unknown behavior y*. An artificial mechanism 
can be introduced to update the model and to use module 1 using a 
threshold for the level of noise. This mechanism is carried out by a 
process that observes the new effects and learns to incorporate 
these new effects into model M. 

3.5. Module 3: mirroring for priming, emulation, and imitation 

In layer 3 of SCM, the property of imitation is enacted. The agent 
carries out an action that mirrors or copies behavior observed in 
others. Hurley underlines this fact as an important one in the 
learning process. However, as Carpendale and Lewis critically 
observe (Carpendale and Lewis, 2008), mere mirroring of an action 
does not lead to understanding of that action, as shown in the 
examples given by the authors. Carpendale and Lewis identify the 
cause of this error as the interrelationship between layers in SCM, 
whose description evades the distinction between information and 
knowledge. In addition, as Heyes pointed out (Heyes, 2008), that 
SCM adopts imitation as conjunction, i.e., a phenomenon that 
conjugates at the same time: 

• Learning of an instrumental relationship between a body 
movement and its effect, and thus 

• a way of carrying out such movement. 

Nevertheless, Heyes argues that in addition to the literature in 
this field, empirical evidence and daily experience support the idea 
that both learning through observation and imitation can occur 
independently. Under this philosophy, we tend to forget that the 
copying process often requires the observer to establish the 
necessary relationship between the visual information gained 
from observing the action and motor output, under conditions 
where it is not obvious how the necessary information for this sort 
of mapping has been acquired. So MSCM proposal enriches SCM 
work addressing "learned knowledge" as that knowledge that has 



been incorporated into the set of instrumental associations, that 
module 1 handles in MSCM. In the meantime, the knowledge that 
expresses imitation, used in layer 3 in SCM, remains in the set 
managed by module 3 in MSCM. 

Therefore, on the basis of error signal e the output generates action, 
mirroring the behavior of others, as depicted in Fig. A.1. The input for 
module 3 similarly to the input for module 1 may be determined 
either by the system input plus feedback or by the effects simulated by 
module 2, depending on whether module 4 is inhibiting module 2 or 
not. The module 3 supports a set of inverse models M~: that obtains 
an imitative output action taking the error e as input (Fig. A.1). 

Module 3 of MSCM is used to enact the capacity of imitation of a 
common knowledge base (discussed in detail in the description of 
module 1), a sort of repository shared by the agents, which is 
enriched and modified by the agent-observed relationships that 
prove successful. 

3.6. Module 4: management of monitored output inhibition combined 
with prediction and/or mirroring 

Layer 4 is the layer in charge of inhibiting the capacities for 
evaluating different possibilities of action according with SCM. 
However, SCM approach does not identify when to inhibit, as 
Makino remarked (Makino, 2008). In addition, the conceptual 
scheme of SCM does not clarify the influence of the action of layer 
4 on the interaction among layers 2 and 3. If layer 4 is not inhibiting 
the input simulation in layer 2, layer 3 may have as inputs the 
actual input or the input simulated by layer 2. Likewise, if layer 4 is 
not inhibiting the output simulation in layer 3, layer 2 may have as 
its input this simulated output or the actual output. 

For this reason, from the perspective of computational science, it 
is necessary to define and implement some mechanisms to decide 
whether or not to perform imitation. That is why the decision 
whether to enact deliberation (which occurs through the operation 
of module 2) or imitation (which is enacted in layer 3) is proposed to 
be done in another module. The module that is in charge of managing 
any orders of this sort issued to SCM layers 2 and 3. So, very close to 
SCM layer 4, MSCM module 4 in our proposal, therefore performs 
executive functions within the system, as it is the module in charge 
of managing the aforesaid orders (Fig. A.1). 

Thus, as Makino proposes concerning SCM approach (Makino, 
2008), inhibition depends on failure monitoring. What kind of 
inhibition that characterizes the deliberation, action, and imitation 
cycle, as described in Module Interaction. We might stress that, 
where there is a certain amount of disturbance in the environment, 
there must be no imitation. The use of a performance index/ is used 
as a figure of merit in module 4 is introduced in MSCM approach. 

The issue of the development of mindreading capacities is not 
convincingly addressed in the SCM. One possibility is to observe the 
behavior of others when layer 4 is not inhibiting layer 3, in order to 
acquire the observed input/output relationships. In this work, since 
there is a common knowledge base where each agent contributes, 
no observation entailing an exchange of messages among agents is 
necessary. 

A key issue is when module 1 is optimized or when a new learning 
is enabled at module 2, because it depends on the system's status 
(deliberating, acting, etc.), forming part of the system's operational 
cycle. Therefore, module 4 is in charge of checking if the system shifts 
from one state to another (see Module Interaction); accordingly, 
module 4 also decides when to perform optimization and learning. 

3.7. Module 5: counterfactual input simulation 

SCM describes a fifth layer in charge of simulating the effects of 
the behavior of other processes on the basis of self s own behavior. 

In the computational system, this translates into a module in 
charge of simulating effects while running offline. In our proposal, 
this is module 5. 

There is another process not reported in SCM approach, for 
simulating the reaction of other agents on the basis of output. In 
order to perform this task, there is a set of forward models, D, that 
gather the associations between dictated action u'" and the possible, 
or counterfactual, inputs (i.e., the reactions of others) (Fig. A.1). 
Module 4 of MSCM is the module that decides when to run this 
simulation; and when it does, actual process P is replaced by one of 
the models in set D that offers a prediction about what disturbances 
would occur. In this way, the system envisages the exogenous input 
that would occur if action u"' were performed, thus enhancing the 
architecture's enactive qualities. So, together with the operation of 
module 3 (not inhibited by module 4), it affords information about 
the acts of others. The system as a whole is enabled to deliberate 
about possible strategies that others may enact by incorporating the 
deliberation that takes place thanks to module 2's role. 

The authors believe that, unlike as it is proposed in SCM, the 
decision to inhibit/not inhibit the operation of module 5 is not a 
self-decision, but may be made by module 4. The activation of one 
module alone or combined modules (modules 2,3, and 5) enables 
one capacity or another; accordingly, it is advisable for the decision 
to be centralized in a single module. So deliberation on how a 
possible action would influence others or external noise (exogen­
ous input) is made if modules 2 and 5 are running at once. 
Deliberation on how a possible imitated action would influence 
others or external noise (exogenous input) is made if modules 2,3 
and 5 are functioning together. 

3.8. Module interaction 

The relationships and interactions among modules make pos­
sible to artificially emulate the cognitive capacities of deliberation, 
imitation, and mindreading. In order to develop a computational 
framework aiming at control system design, it is necessary to 
address module interactions. Layers interactions is one of the main 
weaknesses of the SCM approach. 

SCM approach just outlined these interactions, neglecting the 
temporal issues underneath how they operate. This temporal 
pattern is essential to clarify how and when the system acts, and 
therefore it is necessary to set a method or strategy to establish a 
sequence of actions for each module. In this section, one of the 
possible operating sequences of the different modules is explored, 
in view of the results already reported in the literature. 

On the basis of the SCM approach it is possible to address 
person's facial movements. These facial movements can be asso­
ciated with the visual information related with observed facial 
movements, to enable imitation; and the model reaches the 
conclusion that some correspondences are innate and others are 
acquired with experience in front of a mirror, being imitated 
(Hurley, 2008, p. 14). This leads us to posit that the starting point is 
some innate knowledge, although Hurley does not commit herself 
to establishing which correspondences are innate, acquired, or both 
(Hurley, 2008, p. 14). 

As Nielsen points out (Nielsen, 2008), SCM overlooks a crucial 
component for imitation: motivation. Whether or not imitation takes 
place, as we have seen, depends on whether or not module 3 has been 
inhibited from functioning. Under Makino's assertions, the necessary 
motivation can be provided by failure monitoring: if the actual action 
is not successful, the imitation mechanisms are triggered. 

Hurley also asserts that an animal with resources for mirroring/ 
imitation may not have ever used a means to achieve an objective. 
But if a new observed means is copied and can be combined flexibly 
with objectives, the copied means is associated (with its 



corresponding objective), whereupon information is gathered about 
the new instrumental structure in the observed action, and learning 
by imitation is activated (Hurley, 2008, p. 15). 

In addition, using the foundations given by MeltzofFs work 
(Meltzoff, 2005), SCM suggests that first self is related with actions 
of other, as evidenced by observation of newborns' imitation of the 
facial gestures of others. And afterwards, those self is related 
bidirectionally with the mental states of self in a certain way, 
through learning (Hurley, 2008, p. 10). 

Moreover, Hurley utilizes Tomasello's ratchet effect (Tomasello, 
1999) to establish that the most skillful individuals are selective 
imitators, i.e., those who let others toil in their stead to find new 
means of attaining objectives, whereupon the selective imitators 
imitate the successful association, thus avoiding the cost of learning 
through trial and error (Hurley, 2008, p. 8). However, as Carpendale 
and Lewis pointed out (Carpendale and Lewis, 2008) upon analyzing 
SCM, the model offers no evident mechanism whereby an action can 
be comprehended through the imitation process. 

The above-mentioned arguments lead to introduce new 
mechanisms in the MSCM, as follows. If the result of evaluating 
the set of possible innate or already-acquired actions is not 
satisfactory, the action leading to the sought-after objective is 
imitated. If this action is satisfactory, the agent learns, incorporat­
ing the action into the set of instrumental associations that the 
module 1 control uses. Otherwise, module 1 acquires new knowl­
edge by means of an optimization process. The optimization 
process is the last mechanism, because it is more costly than 
copying an observed association. 

Thus, learning is looked at the process with two paths of 
realization: 

• Adjustment/optimization of the control parameters handled by 
the models in module 1 or those that characterize the effect 
modeling steered by module 2. 

• The transfer of information from the models handled by module 3 
(underpinning the capacity for imitation) to module 1, which is 
where control is performed. This information is translated into 
the inverse models that these modules handle. 

Thus, in MSCM it is envisaged that an imitable action (or its 
equivalent instrumental association) has been learned when it is 
incorporated into the private set of inverse models belonging to 

module 1. It is through the operation of module 3 that the agent 
imitates behavior observed in other agents, or behavior that other 
agents have added to the common knowledge base after observing 
the behavior in question as successful, executing the behavior and 
achieving the desired end. If a specific agent observes that by 
imitating it is successful, this agent incorporates this knowledge in 
the private knowledge base handled by module 1. 

The following knowledge bases, according to the described 
models, set upon the type of involved models, are proposed in this 
work: 

• Own set of forward models D, handled by module 5 to simulate 
the counterfactual effects of actions taken by the system. This 
set replaces process P if this simulation is required. 

• Own set of forward models for effects M, available for the 
module 2. 

• Set of inverse models for imitation M_1, available for the 
module 3. 

In this approach the strategic deliberation that performs module 5 
must participate in all deliberation phases of the procedure shown 
in Fig. 2 together with module 2. The rationale is that it is important 
to roughly know the eventual disturbances that could appear in 
deliberation to anticipate the influence of disturbance on the 
process. 

An artificial cognitive control system is designed according the 
method described in Fig. 2. In this iterative procedure, the evalua­
tion of whether or not there is an excessive noise is determined by 
observing whether noise surpasses a certain threshold. 

We can point out that, when a decision's success is evaluated in 
the action, imitation, and learning procedure, success will depend 
directly on the error found for the decision's implementation. 

In order to carry out this process with the described modules, 
the modules are connected as shown in Fig. A.1. The main feature to 
stress here is that now module 4 is inhibiting module operation by 
acting on the switches to choose between the output calculated by 
modules 1,2, and/or 3. Thus, module 4 is in charge of governing the 
action, imitation, and learning cycle. 

The comparator at the output of module 2 enables to discern 
whether the predicted input is similar to the actual input; if it is not, 
the actual input is used to calculate next control actions. The 
actuator system receives a signal and acts on the process input 

1) Deliberate the possible actions to carry out, by means of interaction of modules 1,2, and 5. 

2) If any of the actions leads to success, execute it. 

a) If there is noise in excess, module 2 learns the new effects that have been produced. 

3) If not, 

a) If noise surpasses a threshold, go to (3.iii. 1). 
b) If not, 

i) Deliberate about the possible actions of others (imitative actions), through the interaction 
of modules 2, 3, and 5. 

ii) If any of the imitative actions leads to success, execute it. 

(1) Learn this action by incorporating the corresponding instrumental association into 
module l's private set of forward models. 

iii) If not, 

(1) Through an optimization process, acquire a new action using the process model 
handled by module 2, whose results are handled by said optimization process in 
module 1. 

(2) Execute a new action by means of the operation of this module. 

Fig. 2. Algorithm of the system's action, imitation, and learning cycle. 



P. Module 2 is always operating, because it handles a representation 
of the process (model). The process model is necessary to enable the 
optimization/adjustment in module 1 from the results of comparing 
the process output and model output in module 2. This optimization/ 
adjustment is not the learning process to incorporate successful 
imitative knowledge of module 3 to module 1. The optimization/ 
adjustment process is carried out when the imitative action is not 
successful at the deliberation stage, and it is necessary that module 1 
performs a new action enabled for this optimization/adjustment 

For the sake of simplicity, the signal governing deliberation and 
module 5 can be treated as a single signal, since they act jointly on 
the suggested operating mechanism. However, this is an operating 
sequence procedure introduced in this work, and the two cases are 
considered separately aiming at further research on their activity 
independently. The interaction between modules is represented in 
detail in the expanded block diagram shown in Appendix A. 

For example, if observations were under deliberation, module 4 
would activate the imitate signal, not inhibiting the operation of 
module 3 (which covers the observations or instrumental associa­
tions to be imitated). Moreover, it would activate to simulate signal; 
and it would deactivate the no-deliberate signal, i.e., enabling 
feedback on the basis of the output of module 2 without taking into 
account actual process P. 

4. MSCM as the basement to control a complex process. A case 
study of high-performance drilling process 

In order to demonstrate the viability of an artificial cognitive 
control system based on MSCM foundations, the authors have 
selected the drilling process. Drilling is one of the most intensely 
used processes in the manufacturing of aircraft parts, automobile 
parts, and molds and dies in general. Due to the ferocious 
competition for markets, one of the main corporate objectives is 
to diminish down time to a minimum and increase product quality. 
Production time is reduced through a higher material removal rate 
while taking advantage of the entire useful life of the cutting tool 
and producing the required finish quality. Increasing the material 
removal rate is directly related with maintaining a constant cutting 
force throughout the entire operation. Cutting force can be kept 
constant by modifying in real time the feed rate at which the 
cutting tool works the material. Maximizing cutting force causes an 
increase in the material removal rate, but it speeds up wear on the 
cutting tool and may lead to cutting-tool breakage and impaired 
workpiece quality. 

Artificial Intelligence (AI) techniques and biology and physics-
inspired methods have improved methods for designing and 
implementing new intelligent control systems in order to regulate 
complex processes such as manufacturing processes. In the field of 
AI-based techniques as applied to process control, hybridization or 
combination of more than one technique has led to novel neuro-
fuzzy systems. Systems that combine fuzzy strategies, artificial 
neural network and evolutionary strategies facilitate tasks such as 
the modeling and control of highly complex nonlinear systems 
(Babuska and Verbruggen, 2003). 

The modified SCM (MSCM) proposed in this work offers the 
necessary theoretical framework to design an artificial cognitive 
control system. The most adequate paradigms can be selected from 
among the extensive choice provided by Control Theory, Artificial 
Intelligence and its techniques. Computer Science, System Theory 
and Information Theory. The study and selection of the most viable 
method from among the many offered by the myriad topics 
mentioned above is not straightforward. One way is to exploit 
the advantages of neurofuzzy systems for combining the semantic 
transparency and intrinsic robustness of fuzzy systems (Precup 
et al., 2008) with the learning ability of artificial neural networks. 

These capacities for incorporating experience, for learning, and for 
adaptation and self-adjustment (Fukuda and Kubota, 1999) are 
aligned with the capacities available in the MSCM for emulating 
sociocognitive experiences such as imitation, deliberation, and 
mindreading. 

The neurofuzzy system known as Adaptive Network-based 
Fuzzy Inference System (ANFIS) is one of most well-known 
neurofuzzy system. Moreover, ANFIS is a pioneering work, as 
well as simplest computationally and the most viable for real­
time applications (Jang, 1993). For these reasons, ANFIS was 
selected to implement some tasks to be performed in some 
modules of the MSCM. The scheme of this neurofuzzy system is 
depicted in Fig. 3. For the sake of simplicity, the input is represented 
by/(feed rate) and the output is represented by F (drilling force). 

Indeed, according to Linear and Nonlinear Control Theory there 
are many strategies that can be used in the modules of the MSCM by 
establishing analogies between the roles of the modules and 
control paradigms. A comparative study using certain resem­
blances to some common control strategies such as feedforward 
control, adaptive control, predictive control, and robust control, to 
name only a few, goes beyond the scope of this paper. The role of the 
internal models in the MSCM approach opens the possibility of 
using the design method provided by Internal Model Control 
paradigm, as shown in the next section. 

4.1. Modules 2 and 3 from the viewpoint of internal model control 
paradigm 

The IMC provides the necessary basement to design control 
systems by using direct and inverse process models for designing 
the control system (Morari and Zafiriou, 1989). The use of the IMC 
paradigm theoretically guarantees control system robustness and 
stability in the presence of external disturbances. And after some 
simplifications, analogies between some modules of the MSCM and 
IMC paradigm can be drawn. 

From the point of view of control theory, the basis scheme is a 
closed-loop control system having both forward model M 
(described in module 2) of the process to be controlled P situated 
in parallel with P, and an inverse model M_1 (the model handled in 
module 3), where y* represents environmental disturbances 
(Fig. 4). Certainly, the IMC paradigm sets a control design strategy 
which explicitly uses a model of the process (Goodwin et al., 2001). 
This principle is very similar to the role assigned to the forward and 
inverse models defined in MSCM (see Module Interaction), which 
are essential for implementing modules 2 and 3. 

Fig. 4 shows a basic configuration of MSCM applied to control 
process P using modules 0,2, and 3. These modules are selected to 
implement in a simplified manner the artificial cognitive control 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

premise consequent 

Fig. 3. ANFIS system architecture. 
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Fig. 4. Diagram of the basic configuration of MSCM applied to control process P, 

system. The main rationale of this selection is twofold. The first 
argument is the need of evaluating the interaction of two modules 
in the architecture and the second motivation is to show the 
computational viability of two relevant modules. Modules 2 and 3 
interact to control using forward and inverse internal models, 
respectively, and this interaction is also essential for IMC scheme. 
As explained before, IMC is a widely applied control paradigm. 
According to IMC paradigm, the development of these two modules 
is relatively simple and it serves to provide some fast results that 
support the computational feasibility of an artificial cognitive 
control system inspired in the MSCM. 

The role of modules 2 and 3 and their interaction can be 
effectively represented by neurofuzzy systems (e.g., ANFIS) and 
the IMC scheme. Module 0 receives the main objectives or goals and 
translates it into a reference value r. In this case study, the reference 
is the drilling force y. Module 3 (inverse model), has one input (i.e., 
the difference between the reference value and the resulting value 
y" of the difference between the process output y and the direct 
model output y2). The control action or control signal in this case 
study is the feed rate u2. The control signal or control action u2 acts 
on the process P and on the direct model used in module 2. 
Assuming an ideal case, with no disturbance and a perfect model 
used by module 2, the difference of forces y" is 0 and moduie 3 uses 
the reference r as input to generate the control signal u2. 

For the sake of simplicity, a simplified artificial cognitive control 
system is implemented using a simplified architecture of MSCM 
shown in Fig. 4. The IMC paradigm and the ANFIS neurofuzzy system 
are used in this work to provide functioning capabilities to modules 2 
and 3. The main rationale of using both methods was previously 
explained. ANFIS is used to generate direct models (the model used in 
module 2) and inverse models (the model used in module 3) which 
shape the knowledge on which the system is initially based 

The experimental data are obtained from tests performed on 
cast iron test pieces, a material commonly used in the aerospace 
industry. Two variables are taken into account in this process: the 
force on the piece at the Z-axis and the tool feed rate (Fig. 5). The 
nominal operating conditions are a spindle speed of 870 rpm, an 
initial feed rate of 100 mm/min, and a cutting depth of 15 mm. 

First the ANFIS system is trained using real-world input/output 
data so that it learns the process dynamics, and a direct process 
model is obtained. Another ANFIS system is trained to learn the 
inverse process dynamics and performs as a nonlinear controller, 
obtaining the inverse model (Gajate and Guerra, 2009). For the 
direct model used in module 2, feed rate is taken as the input 
variable to obtain a mean cutting force y2 as the output variable. As 
mentioned above, for indirect model used in module 3, cutting 
force is used as the input variable to obtain a feed rate U2 as the 
output variable. In order to adjust the model, a set of training data is 
used to create an initial neurofuzzy model. Then, a second set of 
data is used to adjust the initial system parameters. Direct and 
inverse models are shown in Fig. 6. Moreover, module 3 collects a 

Fig. 5. Drilling process. 

repository of models with satisfactory input/output associations 
that other beings/systems keep enriching. The self incorporates 
these associations into its models, which module 1 then uses 
during learning by imitation (see Module Interaction). 

During the modeling stage, some parameters, such as the 
number and type of membership functions in fuzzification, and 
the order of the Takagi-Sugeno defuzzification rules can be 
modified. Similarly, model accuracy can be improved by changing 
the learning process parameters (hybrid learning or error back 
propagation, number of iterations, step size, etc.). These para­
meters were chosen according a tradeoff between the root mean 
square error (RMSE) criterion and model's dynamic response. 

The direct and inverse models that best matched the system 
response are those that use two Gaussian-shaped membership 
functions in the fuzzification stage, with linear or first-order 
Takagi-Sugeno rules as shown in Fig. 6. The training sets are 100 
iterations of the training algorithm (a higher number of iterations 
causes overtraining and. resulting in undesired peaks in the system 
output) which utilizes a hybrid training mode such that error back 
propagation did not reach the output value desired, along with a 
step size of 0.01. The increase in step size did not produce a 
significant improvement in the output; however, it did increase 
operation computation time. The models are obtained with the 
fuzzy toolbox provided by Matlab. The choice of the models was 
based on their good dynamic behavior (responses without oscilla­
tions) and computational efficiency. 

For the direct model: 
Takagi-Sugeno output functions: 

Force (low)= -34.5/+4218N 
Force (high) =-165/+1.7 10-4N 

Rule 1. If Feed rate is "low" then Force is "low" 

Rule 2. If Feed rate is "high" then Force is "high" 
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Fig. 7. (a) Inverse model response and {b) direct model response. 

For the inverse model: 
Takagi-Sugeno output functions: 

Feed rate (low)= -0.005F+102 mm/min 
Feed rate (kigh)= -0.02F+114.6 mm/min 

Rule 1. If Force is "low" then Feed rate is "low" 

Rule 2. If Force is "high" then Feed rate is "high" 

Fig. 7 shows the direct model response and the inverse model 
response. A fundamental requirement of the direct model is a good 
transient response because of the negative effect that the overshoot 
has on the useful tool life. 

The need to develop efficient control systems to work on local 
area networks means that, in further developments, MSCM can be 
adapted to a distributed (networked) modular concept The main 
idea is to use another application to enable the integration of 
heterogeneous components inside the distributed system, offering 
great flexibility in terms of operating system and programming 
language. In addition, this software should have a real-time speci­
fication, which affords advantages in efficiency and deterministic 
behavior in accessing memory and communications resources. 

On the other hand the object-oriented strategies for software 
programming are selected from computational tools to implement 
this architecture. The main motivation is that each module can be 
viewed as an object that can be placed in a node of a communica­
tion network. By means of object-oriented strategies, entities and 
agents can be implemented by combining state and behavior 
into a single independent object Likewise, an object-oriented 

implementation furnishes encapsulation and simplifies develop­
ment (Heck et al., 2003). In addition, it facilitates a high degree of 
cohesion and a low degree of coupling among modules, rendering 
their individual development independent. In this way we enable 
modules to develop in parallel, to be implemented and modified 
independently, and even to be able to change and fine tune their 
models without the need to modify the other modules' models. 

42. Experimental results 

Once the direct and inverse neurofuzzy models have been 
created, modules 2 and 3 can be implemented and the simplified 
version of an artificial cognitive control system is ready to be 
verified by means of experiments. The main goal is to obtain a good 
transient response without overshoot using the cutting parameters 
given by the tool manufacturer for this tool and workpiece material 
combination. Experimental trials are conducted using a machining 
center equipped with an open computer numerical controller. 
In the experiments a 10 mm diameter tool is used. 

Networked control is achieved using a personal computer 
connected to the computer numerical controller via an industrial 
network (see Fig. 8). The application to read/write variables was 
implemented in lafiview®1 and the control system is implemented 
in Real-Time Windows Target of Matlab/Stmu/mfe.2 In order to test 

1 Graphical programming environment of National Instruments, http://www.nt 
com/labview/. 

2 Environment for multidomain simulation and Model-Based Design for dynamic 
and embedded systems of Mattiworks. htty://www.madnvorks.cmi/pwdi^ámulinty. 

http://www.nt
http://www.madnvorks.cmi/pwdi%5e�mulinty
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the effectiveness of the control system developed, several trials are 
performed with the nominal conditions recommended for a steel 
alloy material. The force is measured with a dynamometer. The 
parameters are provided by the computer numerical controller via 
the industrial network. 

The response of the artificial cognitive control system when 
controlling a complex process, using this simplified implementa­
tion (i.e., modules 2 and 3), is shown in Fig. 9. According to the 
objective, the reference r is set to 1000 N, which corresponds to the 
drilling of the steel alloy material with a tool diameter of 10 mm. 

In spite of the demanding initial condition and the delay, system 
fulfilled the design requirements with a fast closed-loop response and 
without oscillations. In order to suppress the cutting-force increase, the 
feed rate is decreased gradually as the drilling depth increases, and the 
cutting force is quite well regulated at the given setpoint r=1000 N. 
Furthermore, the quality of the transient response and the nonexis­
tence of overshoot and peaks lead to better utilization of the tool life. 

The use of a deliberative stage, by using a forward model of the 
process, allows MSCM to deal with disturbances and noise to keep 
constant the process output. The process P is constantly influenced 
by the presence of disturbances and noise. But thanks to the 
deliberation, that leads to compare what would happen in an ideal 
situation with the real process, the control exercised by the use of 
an inverse model (module 3) maintains the output of the process 
close to the reference value, as shown in Fig. 9. 

However, an overall artificial cognitive control system designed 
on the basis the five modules of MSCM is not yet designed and 
implemented to accomplish more than one objective. This is due to 
all cognitive stages that are described in our proposal do not take 
part in this case study, and modules are not distributed in a 

network. In this case, the response of the system to the output could 
be slower. These preliminary results have been obtained with a 
simplified version of MSCM to illustrate the benefits of this 
approach and its computational viability from the perspective of 
computational science and control system. 

5. Conclusion 

This paper presents a first approach to design an artificial 
cognitive control system from the conceptual framework that is 
given by the shared circuit models approach to emulate socio-
cognitive capacities. The shared circuit model (SCM) approach is 
enriched and improved using the state-of-the-art on this field. 
Moreover, relevant reports on this issue as well as the contributions 
of the authors are also outlined. The modified SCM (MSCM) is 
postulated from the viewpoint of System Theory and Computer 
Science. The conceptual scheme consists of the translation from the 
viewpoint of SCM layers to MSCM modules. Therefore, a sequence of 
operating MSCM is proposed in this paper. The suggested procedure 
enables the activity of combined modules or a module alone. In 
general, MSCM goes beyond the SCM approach with the aim of 
deriving a computational solution to a complex control problem. 

Another contribution of the modified SCM is to enable more 
efficient and faster manufacturing through cooperative, self-orga­
nized, self-optimized behavior by process control systems. This 
work leads to a progress on artificial intelligent systems from the 
imitation of self-human mind evolution. 

From a theoretical point of view, MSCM provides an alternative 
conceptual framework to perform control tasks in an efficient, 
robust fashion that characterizes human cognitive processes. In 
order to exploit these advantages, five modules are proposed using 
MSCM approach. Basically MSCM translates the learning imitative 
process described by SCM into the transfer of information between 
actions to imitate handled by module 3, with the proper knowledge 
of the agent that manages module 1. MSCM also employs an 
optimization/adjustment process in module 1 to improve a new 
action that is not previously considered in the SCM. A module that 
informs about the behavior of the artificial cognitive control system 
using a performance index is a must This information is used by 
module 4 to select which module acts at the control process. 

Another aspect is that SCM does not provide the necessary 
basement about how to manage objectives and goals. Thus, it is 
necessary to include a module to carry out this task. Likewise, the 
procedure of functioning layers is not sufficiently specified in SCM, 
and therefore it is necessary to set a sequence of operation orto set 
an artificial mechanism. For example, the suggested module 2 can 
run before the action is performed in order to evaluate/deliberate 
about different possible actions, depending on whether the agent's 
criteria (module 1) has had success or not. 

In order to assess the suitability of the proposed approach, an 
artificial cognitive control system is designed and implemented to 
drilling force regulation as case study of a manufacturing process. 
The simplified version implemented (modules 2 plus module 3) 
from the MSCM approach demonstrates its viability from the 
perspective of computational science and control system. In 
addition, the proposed modular architecture enables to improve 
and modify these modules in future. 
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Appendix A. Expanded block diagram of the proposed system 

See Fig. A.1 for more details. 
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