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Abstract

A fully 3D iterative image reconstruction algorithm has been developed

for high-resolution PET cameras composed of pixelated scintillator crystal

arrays and rotating planar detectors, based on the ordered subsets approach.

The associated system matrix is precalculated with Monte Carlo methods

that incorporate physical effects not included in analytical models, such

as positron range effects and interaction of the incident gammas with the

scintillator material. Custom Monte Carlo methodologies have been developed

and optimized for modelling of system matrices for fast iterative image

reconstruction adapted to specific scanner geometries, without redundant

calculations. According to the methodology proposed here, only one-eighth of

the voxels within two central transaxial slices need to be modelled in detail.

The rest of the system matrix elements can be obtained with the aid of axial

symmetries and redundancies, as well as in-plane symmetries within transaxial

slices. Sparse matrix techniques for the non-zero system matrix elements are

employed, allowing for fast execution of the image reconstruction process. This

3D image reconstruction scheme has been compared in terms of image quality

to a 2D fast implementation of the OSEM algorithm combined with Fourier

rebinning approaches. This work confirms the superiority of fully 3D OSEM in

terms of spatial resolution, contrast recovery and noise reduction as compared

to conventional 2D approaches based on rebinning schemes. At the same time

it demonstrates that fully 3D methodologies can be efficiently applied to the

image reconstruction problem for high-resolution rotational PET cameras by

applying accurate pre-calculated system models and taking advantage of the

system’s symmetries.
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1. Introduction

Positron emission tomography (PET) is a powerful functional imaging technique that is

nowadays widely applied in human clinical practice, primarily in the field of oncology, as well

as in cardiology, neurology, etc. PET is also used regularly in pre-clinical (i.e. small animal)

research and drug development, and dedicated small animal scanners have become increasingly

popular. The challenge for high-resolution small animal PET scanners and other reduced field

dedicated scanners is to achieve fast and accurate image reconstruction procedures in target

volumes that are orders of magnitude smaller than the size of the human body. High-resolution

tomographs are designed to optimize spatial resolution while maintaining acceptable detection

sensitivity. They usually consist of a set of detector modules arranged in a static ring (Surti

et al 2005, Tai et al 2005, Wang et al 2006) or mounted on a rotating gantry (Del Guerra

et al 2006, Rouze and Hutchins 2003). The high-resolution detector modules are made of

pixelated scintillator crystals coupled to position-sensitive photomultipliers (PSPMT) (Del

Guerra et al 2006, Huisman et al 2007, Tai et al 2005, Vaquero et al 2005b, Wang et al

2006, Ziemons et al 2005), continuous scintillator crystals in conjunction with avalanche

photodiode (APD) arrays (Joung et al 2002) or position-sensitive photomultipliers (Benlloch

et al 2007), as well as non-crystal-based detector systems, such as multiwire proportional

chambers (Schafers et al 2005, Jeavons et al 1999) or semiconductor materials (Ishii et al

2007).

Small animal PET studies generally require spatial resolution capabilities in the range of

1 mm or less. In PET systems based on arrays of pixelated crystals, the requirements of high

resolution and sensitivity can be satisfied by using detector modules composed of narrow and

long crystals, and placed in a gantry with the smallest possible diameter (distance between

opposite modules). However, long pixelated crystals lead to significant depth of interaction

(DOI) detection uncertainties, resulting in a radial elongation artefact that progressively

degrades the spatial resolution as the source location is moved away from the centre of the field

of view (FOV). Short pixelated crystals reduce the DOI effect however at the same time lead

to a reduced detection efficiency. Detector modules with DOI measurement capability have

been proposed to simultaneously achieve high resolution and sensitivity (McElroy et al 2005,

Tsuda et al 2006, Herrero et al 2007), nevertheless several PET devices for animal imaging

employ detectors that do not provide DOI information. In such cases, accurate modelling of

the crystal response within the image reconstruction algorithm becomes critical in order to

achieve high spatial resolution. The increase of the gantry’s diameter can reduce the DOI

effect however at the same time leads to a reduction of sensitivity and a degradation of the

spatial resolution due to non-colinearity of γ -ray pairs.

Statistics provides a versatile framework to study the inverse problem of image

reconstruction from projections, i.e. guessing unknown data from indirect observations is

treated as the problem of inferring properties of an unknown distribution. Iterative statistical

3D reconstruction algorithms, such as the maximum-likelihood expectation-maximization

(MLEM) algorithm (Shepp and Vardi 1982), have shown superior image quality and

resolution/noise trade-off than classical analytic reconstruction techniques (Chatziioannou

et al 2000, Jacobson et al 2000, Johnson et al 1997, Mesina et al 2003) such as filtered

backprojection (FBP) (Colsher 1980) and 3D reprojection (3DRP) (Kinahan and Rogers

1989). Statistical methods have the advantage of allowing the incorporation of accurate

models of the data acquisition process within the image reconstruction process. In addition,

these algorithms can easily overcome artefacts caused by detector gaps or crystal failures

as they can efficiently handle missing data in the projection datasets (Ortuño et al 2003,
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Weber et al 2006). Furthermore, the MLEM demonstrates some interesting properties, such

as conservation of the total number of acquired counts and nonnegativity of the resulting

images.

The main disadvantage of iterative 3D image reconstruction is its high computational

cost, which has been partially solved with the development of fast algorithms, such as

the ordered-subset, expectation-maximization algorithm (OSEM) (Hudson and Larkin 1994)

or multiresolution techniques (Ranganath et al 1988, Raheja et al 1999). In the OSEM

algorithm, the image is more often updated, by employing subsets of LORs in the projection

and backprojection steps, which has been shown to reduce the time to achieve an image

equivalent to that obtained using MLEM by a factor proportional to the number of subsets

employed. Rebinning methods such as single slice rebinning (SSRB) (Daube-Witherspoon

and Muehllehner 1987) or Fourier rebinning (FORE) (Defrise et al 1997) can reduce the

dimensionality of 3D acquisitions by performing a set of 2D reconstructions to obtain

volumetric data, although there is a loss of image quality with respect to the more time-

consuming fully 3D implementation.

Iterative image reconstruction in PET is an ill-conditioned inverse problem where the

noise level can be much higher in the result than in the measured data (Leahy and Qi 2000).

The ill-posedness of maximum likelihood leads to an increase of the noise level as iterations

proceed. As a result, the iterative procedure has to be stopped early enough in order to

guarantee an acceptable resolution/noise trade-off. This inherent property of iterative ML-

based PET image reconstruction can be overcome with some sort of regularization techniques

which control the noise propagation across iterations.

Many regularization techniques have been proposed, such as Bayesian maximum a

posteriori (MAP) formulations (Green 1990, Qi et al 1998) which apply a penalty function

to those voxels whose values differ significantly from their neighbours, under the assumption

that in emission tomography the reconstructed image should not contain abrupt edges.

Regularization methods manage to control noise amplification reducing at the same time

the maximum effective spatial resolution in the obtained images.

Image reconstruction methods require a system response model or ‘system matrix’ (SM)

A = {aji}. In terms of MLEM-based iterative image reconstruction, each SM value represents

the probability that an event emitted from the source area covered by a specific voxel i is

registered by a specific detection unit j , i.e. a detector pair or a sinogram bin.

For practical implementations, the SM can be computed either analytically or by

simulation. In the former case, SM values can be roughly approximated by calculating

the intersection length of the line-of-response (LOR) that connects the pair of detectors with

each voxel (Siddon 1985, Herman and Meyer 1993) or using some interpolation method in the

way it is implicitly done by classical analytical methods. If crystal sizes are taken into account,

calculation of the area of intersection improves the estimation of detection probability in the

2D case (Terstegge et al 1997). A more accurate approach for 3D reconstruction involves

the analytical calculation of the volume of intersection between voxels and tubes-of-response

(TOR) (Scheins et al 2006).

Geometrical approximations of the SM can be enhanced by including specific analytical

models to compute spatially variant crystal penetration effects. 2D approximations have been

proposed (Selivanov et al 2000, Strul et al 2003, Yamaya et al 2005). In 3D methods, the

complexity of exact calculations (de la Prieta et al 2006) has suggested the use of multiple

ray-tracing methods to approximate volumes of intersection and physical properties of crystals

(Moehrs et al 2008, Yamaya et al 2008).
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The SM can also be derived from measurements based on point-source acquisitions (Frese

et al 2003, Panin et al 2006, Tohme and Qi 2009) or simulations (Alessio et al 2006). The

system response function is used in that case to model the spatially variant component of

the SM.

Other popular methodology for the estimation of the SM values is the modelling of the

system response by Monte Carlo (MC) simulations, allowing the incorporation to the model of

the most relevant physical effects involved. MC simulations for SM calculations have yielded

results equally good or even better than analytical approaches for SPECT image reconstruction

(Lazaro et al 2005). Also fully 3D PET image reconstruction using MC-based SM is feasible

for high-resolution PET: general MC codes for high-energy particles’ simulation have been

used (Rafecas et al 2004), MC codes oriented to PET modelling (Gimenez et al 2006, Rannou

and Chatziioannou 2004, Shokouhi et al 2004) or MC codes specifically designed for the SM

generation (Herráiz et al 2006).

In either case (measured SM or estimated by MC techniques or analytical techniques) the

SM values are pre-calculated offline and stored. The precalculated SM is a valid approach for

a specific device, except for the object-dependent effects, basically scatter and attenuation in

the source.

Alternatively, the SM can be factorized as a product of independent contributions:

geometry, attenuation, positron range, detector blurring and detector sensitivity (Qi et al

1998). This scheme can drastically reduce the size of the SM stored, however introduces at

the same time over-simplifications since the SM cannot be expressed in the general case as a

product of diagonal matrices.

The SM for 3D reconstruction methods for high-resolution small animal PET scanners

contain elements of the order of trillions (both the number of voxels and the number of LORs

are typically above the million). This imposes important computing demands in terms of the

time required to complete the iterative reconstruction procedure and the computer memory

needed for the storage of the SM in case of using a precalculated one.

The system matrices of most PET devices demonstrate a high degree of sparsity, i.e. the

vast majority of the SM elements are nearly zero (Kontaxakis et al 2002). This important SM

feature is related to the colinearity of each pair of γ -rays detected and moderate scattering in

the object. Thus, if scatter in object is neglected, only voxels intersected by the LOR between

the two detectors in coincidence have non-zero probabilities in the column of the SM that

corresponds to this detection unit. Modelling of object scatter in the SM reduces drastically

the sparseness, resulting into a prohibitive reconstruction time. On the other hand, simplified

analytical models of the SM trade accuracy for speed obtaining an excessively sparse SM. In

order to do this, physical processes such as the effect of positron range, non-colinearity of the

emitted gammas or scatter in crystal are neglected. The use of sparse matrix techniques and

system symmetries (Johnson et al 1995) when storing and using the SM elements represents

an efficient solution to the problem of the high associated computational cost. In addition,

SM pre-calculation can be a very time consuming process even when it needs to be performed

only once for a specific scanner configuration.

We have developed and validated a new OSEM-based fast image reconstruction

methodology for high-resolution small animal PET scanners based on planar rotating detectors

composed of pixelated crystals. The system rotates in a continuous manner and both 3D and

2D iterative image reconstruction modes have been developed. In the 3D case, the difficulties

regarding the large size of the SM are overcome with the use of a sparse precalculated SM and

axial and transaxial symmetries.
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Figure 1. Scheme of the scanner geometry employed in this work. Two pairs of planar detectors

composed of pixelated crystals and mounted on a rotating gantry.

2. Materials and methods

2.1. Scanner geometry

The small animal PET scanner design modelled here consists of two pairs of planar detector

modules in coincidence mode, with 160 mm of separation between opposite modules (Vaquero

et al 2004). Each detector is composed of a 30 × 30 array of 1.5 mm × 1.5 mm ×
12.0 mm LSO pixelated crystals, assembled on a 100 µm thick matrix of a plastic reflector.

The detectors are mounted on a gantry rotating in continuous mode with 180◦ span. A

schematic of the device’s configuration is shown in figure 1.

The rotating scheme selection was motivated to allow the integration of a coplanar x-ray

tomograph in the same gantry (Vaquero et al 2005a, Lage et al 2009) as well as to reduce the

number of pairs of detectors in coincidence in order to also reduce the cost of the scanner. In

the flat head based scanner proposed, parallax error due to DOI has low values in the extremes

of the FOV because LORs involve parallel crystals. Meanwhile, parallax error in the centre

of the FOV is also affected by non-parallel crystals (figure 2).

The coincidences associated with pixelated crystals located in the detector extremes

are not used in the reconstruction process, and the dimensions of the useful FOV with complete

sinograms are 44.8 mm × 44.8 mm × 44.8 mm. Discarding the pixelated crystals at the

borders of each detector is based on the assumption that real mounted systems hardly resolve

the frontier pixelated scintillators (Vaquero et al 2005b).

Coincidences collected in list mode are binned in direct and oblique sinograms (Defrise

et al 1997) as a function of four variables {s, φ, θ,1}, where s is the distance between the z

axis and the projection of the LOR onto a transaxial plane; φ is the LOR azimuthal angle; θ
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Figure 2. Sketch of the parallax error in a flat head scanner compared with a full ring scanner.

is the polar angle between the LOR and the transaxial plane and 1 is the z coordinate of the

LOR at its mid-point.

In the proposed rotating scanner geometry, the presence of unnormalizable zero efficiency

sinogram bins is avoided by employing a sampling scheme of 0.8 mm in s and 1. A sampling

distance of 1.5◦ in φ is chosen, which allows us to use a wide range of subsets with a maximum

loss of axial resolution of 0.6 mm in the extreme of the axial FOV, resulting in a total projection

size of 55 × 120 × 28 × 28 = 5174 400 sinogram bins.

2.2. Reconstruction algorithm

The regularized OSEM algorithm follows the next iterative scheme:

λ
(n,m+1)
i = d

(n,m)
i c

(n,m)
i λ

(n,m)
i , m = 0, . . . , M − 2

λ
(n+1,0)
i = d

(n,M−1)
i c

(n,M−1)
i λ

(n,M−1)
i .

(1)

During each OSEM sub-iteration m, every voxel i of the image λ is updated by a multiplicative

term ci , and, in the MAP scheme applied in this work, regularized by di (Kontaxakis et al

2002). λ
(n,m)
i is the estimate of the activity concentration in voxel i at iteration n and OSEM

sub-iteration m, M being the number of subsets; ci contains the forward and back-projection:

c
(n,m)
i =

1

s
(m)
i

∑

j∈s(m)

ρjaji
∑

i ′
aji ′λ

(n,m)
i ′

(2)

where aji are the SM elements associated with voxels i and detection units j ; ρj denotes

the number of events recorded by each detection unit. The summatory in j runs over the set

of detection units in each subset s(m). The term s
(m)
i represents the sensitivity image (with

respect to one single subset), i.e. the cumulative probability that an event emitted from voxel

i is detected by the device if only the LORs assigned to the current subset are counted:

s
(m)
i =

∑

j∈s(m)

aji . (3)

Finally, the regularization term d
(n,m)
i has the following expression:

d
(n,m)
i =

(

1 + βr

λ
(n,m)
i − f (λ

(n,m)
i )

f (λ
(n,m)
i )

)−1

(4)
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where βr is the weight of the prior, constrained to 0 < βr 6 1. f (·) is a filter that can be of

median type (Alenius et al 1998), i.e. estimated as the median of the pixels in a neighbourhood

λ
(n,m)
i , generalized median (Alenius and Ruotsalainen 2002), as well as Gaussian type.

In this work, no pre-corrections for random events, attenuation or scatter have been

considered for the acquired data, in order to maintain the Poisson statistics as required by

MLEM and OSEM algorithms (Fessler and Hero 1995). Such corrections can be incorporated

into the reconstruction procedure itself with appropriate modelling, although such effects have

not been considered in this work.

2.3. 3D system matrix modelling

SM values are computed once offline and stored on disk before the beginning of the

reconstruction process in a sparse matrix format, taking advantage of system symmetries

that allow us to model and store only a small part of the total aji elements. In this work we

propose MC simulation to model the precalculated SM.

The Geant4 Application for Tomographic Emission (GATE) software package (Jan et al

2004) is quite popular for PET and SPECT simulations and is well validated for a wide range

of cameras. However, the complete tracking of high-energy events from the source to the

detectors leads to excessively long computation times when high statistics are required for

thousands of SM elements. Other MC specific codes for PET simulation (España et al 2009,

Lewellen et al 1998) exhibit the same behaviour. The need of a relatively simple but at the

same time faster simulation has led to the implementation and validation of a custom MC code

for SM modelling.

The custom SM simulation code is based on the generation of a high number of events

for every voxel located in the FOV, excluding those voxels for which SM coefficients can be

calculated using symmetries. Annihilations are simulated uniformly over the voxel. Each

simulated voxel models a SM column, or equivalently, a projection set, that is represented as

a set of plane and oblique sinograms.

The Positron range effect and non-colinearity of γ -rays for a specific radionuclide, i.e.
18F, depend on the material that constitutes the object and it is reasonable to work with an a

priori value for water, which approximates the majority of biological tissues. The positron

range is modelled with the sum of two exponentials (Levin and Hoffman 1999) which are

simulated in the MC code with an accept–reject algorithm. On the other hand, non-colinearity

of γ -rays has been modelled as a Gaussian distribution with σ = 0.212◦ (de Benedetti et al

1950).

A pair of gamma rays is generated uniformly only in directions within the solid angle of

coincidence, which is relatively small in the proposed scanner geometry. Detectors’ rotation

is modelled with random and uniformly distributed complementary rotation of sources.

Variance reduction (VR) techniques are employed in order to get a larger rate of simulated

equivalent events for better statistics in the generated data. This technique is applied to the

gamma ray tracking in the scintillator crystal with an auxiliary look-up table (LUT) where

relative probabilities of detection in neighbouring crystals have been stored, according to

the angle and relative point of intersection with the detector. The LUT sampling interval

is 2◦ in the angular direction (both in θ and φ angles in spherical coordinates, relative to

the detector surface), and 1/15th of the crystal dimensions. Using this technique, complete

simulation for every γ -ray that reaches the detector surface is replaced by pre-calculated

detection probabilities that have been modelled as a function of the angle of incidence and

intersection point.
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The detector response model is performed with a MC simulation which includes

photoelectric and Compton scatter interactions of γ -rays, which have been modelled according

to the negative exponential attenuation law and the Klein–Nishina distribution sampled

with a double-rejection technique (Hua 1997). NIST (National Institutes of Standards and

Technology) photon cross section tables for data have also been used (Berger et al 1998).

A sufficient number of γ -rays are launched for every sampled direction of the LUT. The

resulting density distribution of detected energy is further integrated over the pixelated crystal

volumes. To reduce the size of the stored LUT and reject negligible probabilities, only the N

most probable pixelated crystals associated with each incoming angular direction are stored

in the LUT. A detailed description of the modelling of the detector interaction can be found in

our previous works (Ortuño et al 2006, 2004).

Optionally, the VR method can be skipped, i.e MC simulation of the detector is performed

for every γ -ray that reaches the detector. In the case of multiple interactions, the LOR is

positioned according to the centre of the pixelated crystal with maximum deposited energy.

If the total energy is lower than the energy window, the event is discarded. The significant

increase of simulation time and size of SM due to resulting non-zero elements using this

method did not recommended it for fast 3D reconstructions.

This simulation software has been adapted and optimized here for the PET scanner

geometry under study. Simulation results are directly processed and stored in sparse-mode

format. Finally, after simulation is completed, data are post-processed to distribute aji values

among the chosen number of subsets.

In MC methods, the statistical quality of the SM is determined by the number of simulated

events and the VR techniques used to accelerate the modelling process. It is thus desirable to

simulate as many coincidences as possible, but it is difficult to know a priori if the simulated

data will produce an accurate enough description of the system response. The accuracy of the

SM can be estimated with the ‘mean relative error’ (Rafecas et al 2004) denoted as σ̄rel, which

is calculated according to (5):

σ̄rel ≡
1

Nnz

∑

i,j

σ
(

aji

)

aji

(5)

where Nnz is the number of the non-zero SM elements and σ(aji) is the standard deviation

of their values aji , assuming the Poisson noise: σ(aji) = √
aji . The motivation for using the

mean relative error is the following. Ideally, increasing the simulation time implies adding

events to elements aji, reducing their variance, while Nnz would remain nearly constant when

all SM elements with non-negligible probabilities in the assumed model have been reached.

The consequence is that σ̄rel decreases rapidly as the number of simulated events increases,

until a reasonably good description of the scanner is reached, beyond which the decrease of

σ̄rel is more gradual. Instead of calculating σ̄rel as in (5), something that is only possible when

the calculation of the whole SM is completed, a partial value of σ̄rel associated with single

voxels i0 has been studied (6):

σ̄rel (i0) ≡
1

Nnz,i=i0

∑

i=i0,j

σ
(

aji

)

aji

. (6)

2.4. System matrix axial symmetries

A SM symmetry relation can be expressed as aji = aj ′i ′ for any voxels i and i ′, and projection

bins j and j ′. Parallel shift redundancies and reflection axial symmetry (Johnson et al
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Figure 3. Schematic of parallel shift (left) and axial symmetry (right) along the axial direction.

1995) can reduce the storage size of the SM by a factor proportional to the number of

transaxial slices. Both are applicable in scanners with translation symmetry along the axial axis

(figure 3).

Voxels were chosen in an orthogonal grid oriented along the x, y and z axes, with z being

the axial axis of the PET device. Choosing the voxel size in z as a divisor of the pixelated

crystal size in the z direction, translation symmetry can be applied. Analogously, reflection

axial symmetry needs an alignment between the orthogonal grid and the pixelated crystals. If

the orthogonal grid is employed as a discretization of the volume vector λ, each voxel i will

have Cartesian coordinates [x, y, z] directly related to voxel indices in the x, y and z axes,

denoted as
{

ix, iy, iz
}

. Sampled z values as a function of the voxel size 1zv are

zv = (iz1zv, iz : 0, . . . , Nz − 1) (7)

where Nz is the number of z axis voxel indices.

On the other hand, the projection index j is assigned to one LOR joining two pixelated

crystals. Scanners consisting of pairs of opposed detectors at the same distance can assign the

LOR directly to a discrete index depending on the pixelated crystal row:

za = (jza1zc, jza : 0, . . . , Nc − 1)

zb = (jzb1zc, jzb : 0, . . . , Nc − 1)
(8)

where 1zc is the crystal thickness in the z axis direction and Nc is the number of crystal rows

in each detector. jza and jzb are the LOR indices associated with each crystal row. Using direct

and oblique sinograms, these indices are extracted from the decomposition

j = js + Nsjφ + NsNφjza + NsNφNzjzb (9)

where {Ns, Nφ, Nz} are the number of bins in the {s, φ, z} projection dimensions, js is the

projection bin index in the radial dimension and jφ is the projection bin index in the angular

dimension.

Subset division of the projection space for OSEM algorithm (1) is performed over the φ

dimension in the following way:

j ∈ s(m) ⇔ (jφMODM) = m. (10)

Nφ must be divisible by M to have subsets with the same number of elements.

According to the notation presented before, parallel shift redundancies can be applied

to get symmetries between parallel LORs from one voxel i with z index iz to a new voxel i ′

with index iz + ns1n, where 1n is the axial shift expressed in numbers of pixelated crystal
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Figure 4. The number of modelled transaxial slices depends on the thickness and alignment of

the voxel grid. With the axial alignment plotted in (b), only two central slices need to be modelled

in detail for axial voxel size one-quarter the pixelated crystal width, and only one slice for thicker

voxels. In alignment (a) at least three slices are modelled in detail to obtain the SM values for the

rest of the slices with axial symmetries and translations. Configuration (a) is denoted as centred

alignment and configuration (b) is denoted as shifted alignment.

rows, and ns denotes the number of slices that match the pixelated crystal thickness in the z

dimension, ns = 1zc/1zv . The index j ′ of the LOR symmetric to the LOR with the index j

involves the axial shift 1n between the two pairs of crystal rows:

aji = aj ′i ′ ⇔











iz
′ = iz + ns1n

j ′
za = jza + 1n

j ′
zb = jzb + 1n

. (11)

Analogously, the reflection symmetry relation along the axial direction between mirrored

LORs with respect to the central transaxial plane can be expressed as follows:

aji = aj ′i ′











i ′z = nsNz − iz

j ′
za = Nz − 1 − jza

j ′
zb = Nz − 1 − jzb

. (12)

The voxel size is chosen at one-quarter of the size of the detector pixelated crystal (ns = 4),

to ensure that the intrinsic scanner resolution is maintained both in the transaxial and the axial

directions. Coarse grid SM at half the pixelated crystal size has also been modelled to be used

when faster reconstructions are desired.

With the axial alignment proposed in figure 4(b), where slice separation coincides with a

crystal separation, only two central slices need to be modelled in detail for the finest resolution.

This resolution corresponds to a slice thickness of one-fourth of the pixelated crystal size in

the axial dimension (ns = 4), while the rest of the slices are obtained with reflection axial

symmetry and parallel shift axial redundancies. This slice position will be referred to as

shifted alignment for short.

An alternative approach proposed consists of centring one slice with respect to the

pixelated crystal centre, as in figure 4(a). This grid alignment in the axial direction, referred

to as centred alignment for short, requires the simulation of at least three slices in the finest

resolution, resulting in an increase of the simulation time and storage requirements for the
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Figure 5. Not all LORs have a symmetry relationship with another one simulated in a central slice,

unless the detector is considered longer than it actually is, with the inclusion of virtual crystals.

precalculated SM. Another drawback of the centred alignment is that SM values associated

with coarse resolution voxels cannot be extracted with a combination of the values associated

with the finest resolution because there is no direct overlap as it occurs in the shifted alignment.

According to the symmetries defined above, the maximum polar angle for a given LOR to

match with another one belonging to the central transaxial plane depends on the radial distance

r of the event generation point for this LOR, the distance between opposite detectors D and

the axial size of detectors Lz (figure 5):

θmax = arctan

(

Lz

D + 2r

)

. (13)

In order to cover the complete set of 3D acquisitions, with θmax = arctan (Lz/D), the SM

modelling requires the consideration of a virtual extension of the detector in the axial direction

L
′

z, as shown in figure 5. In terms of the real dimension Lz, the virtual detector length in z is

Lz
′ = Lz (D + 2r)/D. (14)

In summary, axial symmetries allow for calculating all SM values by performing complete

MC-based calculations of the SM values that correspond to the voxels of a limited number

of central slices. This number varies from 1 to 3 depending on the slice alignment and slice

thickness. One requirement is that the polar angle θ be limited; otherwise, the extension of

the detector with virtual crystals should be considered.

2.5. System matrix transaxial symmetries

Since the majority of scanners have rotational symmetry along the axial axis, in-plane transaxial

symmetries can also be used in the SM modelling and reconstruction scheme, by modelling

only the voxels belonging to the first quadrant, i.e. ix ∈ [0, Nx/2), and iy ∈
[

0, Ny/2
)

. One

voxel ia has an in-plane rotational symmetry relationship with voxels ib, ic and id belonging to

the other three quadrants and relative indices according to (15):

ia = {ix, iy}
ib = {Nx − ix − 1, Nx − iy − 1}
ic = {iy, Nx − ix − 1}
id = {Nx − iy − 1, ix}.

(15)

Each of the above cases involves a mapping of the azimuthal angle φ of the LOR: 180◦

(ia → ib), 90◦ ((ia → id ) and −90◦ (ia → ic). The changes of sinogram and image indices
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Table 1. SM rotation symmetries in the transaxial plane.

ia → ib ia → ic ia → id (∀jφ)

φ → (φ + π) φ → (φ − π/2) φ → (φ + π/2)

ix
′ = Nx − ix − 1 ix

′ = iy ix
′ = Nx − ix − 1 (∀jφ)

iy
′ = Nx − iy − 1 iy

′ = Nx − ix − 1 iy
′ = ix

j ′
za = jzb j ′

za = jzb j ′
za = jza (if jφ < Nφ/2)

j ′
zb = jza j ′

zb = jza j ′
zb = jzb

j ′
s = Ns − js − 1 j ′

s = Ns − js − 1 j ′
s = js

j ′
φ = jφ j ′

φ = jφ + Nφ/2 j ′
φ = jφ + Nφ/2

j ′
za = jzb j ′

za = jza j ′
za = jzb (if jφ > Nφ/2)

j ′
zb = jza j ′

zb = jzb j ′
zb = jza

j ′
s = Ns − js − 1 j ′

s = js j ′
s = Ns − js − 1

j ′
φ = jφ j ′

φ = jφ − Nφ/2 j ′
φ = jφ − Nφ/2

are shown in table 1. According to (10), these symmetries link projection bins contained in

the same subset. It should be noted that the implementation of the angular shifts of 90◦ and

180◦ do not involve any interpolation if the sinogram size in φ is even.

In addition to the rotation symmetry, transaxial in-plane reflection symmetry has also

been applied. In this case, the transpose of ix and iy voxel indices lead to the φ inversion.

Symmetry relations are given as follows:

aji = aj ′i ′ ⇔























ix
′ = iy

iy
′ = ix

j ′
φ = Nφ/2 − jφ − 1

j ′
s = js























if jφ < Nφ/2. (16)

aji = aj ′i ′ ⇔











































ix
′ = iy

iy
′ = ix

j ′
za = jzb

j ′
zb = jza

j ′
φ = 3Nφ/2 − jφ − 1

j ′
s = Ns − js − 1











































if jφ > Nφ/2 (17)

Note that the transaxial in-plane reflection symmetry connects elements belonging to different

OSEM subsets. For the sake of simplicity, this symmetry is precalculated off-line and only

the part of the SM that corresponds to one subset is loaded in computer memory during each

OSEM sub-iteration.

Figure 6 shows the location of voxels needed to be simulated using both transaxial

reflection and rotation symmetries, which are approximately one-eighth part of the total

voxels contained in one transaxial slice.

2.6. System matrix storage

The calculated values of the SM are stored in sparse mode, and every non-zero aji element is

associated with a position index and the corresponding probability value. Both data are kept

in two classes of files that are specifically structured for fast access and further processing
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Figure 6. Schematic of modelled voxels in the transaxial plane. Only the values of the SM elements

that involve the eighth part of voxels belonging to one transaxial slice need to be modelled. The

rest of the values in the precalculated SM can be obtained by applying rotational and reflection

symmetries.

Table 2. Number of SM elements and number of simulated voxels for some grid discretizations.

SM type Voxels (i) i× j Voxels simulated

SMc, shifted alignment 56 × 56 × 70 1.77 × 1012 316

SMc, centred alignment 56 × 56 × 71 1.80 × 1012 632

SMb, shifted alignment 112 × 112 × 70 7.10 × 1012 1247

SMb, centred alignment 112 × 112 × 71 7.20 × 1012 2494

SMa , shifted alignment 112 × 112 × 140 1.42 × 1013 2494

SMa , centred alignment 112 × 112 × 141 1.43 × 1013 3741

during the projection and backprojection steps. Stored data are ordered according to the subset

subdivision of j to allow sequential access of the required SM elements at each step.

Different discretizations of the image volume have been used in this work, with voxel

sizes of 0.4 mm × 0.4 mm × 0.4 mm, 0.4 mm × 0.4 mm × 0.8 mm and 0.8 mm × 0.8 mm ×
0.8 mm, in the transaxial plane (x–y) and the axial (z) axis. The SM associated with these

grids are denoted respectively as SMa , SMb and SMc in short.

The finest grid is intended to guarantee the theoretical limit of spatial resolution in

reconstructed PET images using PS-PMT detectors (Lecomte 2004). Coarse voxel sizes are

employed to get faster reconstruction times when a regularized image is preferred, rather than

a higher resolution but noisier result.

Table 2 shows the exact number of simulated voxels for different grid resolutions and

both centred and shifted axial alignments. Symmetries make the repetition of the process for

all voxels in the image volume grid unnecessary . However the number of voxels involved

in the calculations is still in the order of thousands for the finest resolution of the camera

configuration chosen for these experiments. However, the complete set of non-zero aji
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Table 3. Parameters of modelled SM.

SM type Voxels (i) Disk space (MB) Nij Sparsity σ rel (i0)

SMc, shifted alignment 56 × 56 × 70 95 48 140 99.405% 0.23

SMb, shifted alignment 112 × 112 × 70 302 37 713 99.53% 0.21

SMa , shifted alignment 112 × 112 × 140 596 36 408 99.54% 0.24

elements that correspond to the voxels involved in the Monte Carlo calculations can be loaded

in RAM even for the finest resolution.

The total time for the simulations is maintained below 100 h in a processor Intel Core

2 Duo, with 2.4 GHz CPU clock. This relatively short time of simulation was an important

requirement due to the necessity of evaluating different scanner configurations in the design

step. For the SM with shifted axial alignments, table 3 shows the disk space, degree of sparsity,

σ̄rel (i0) and mean number of SM elements stored in the disk by pixel ( i.e. not equal to zero),

denoted as Nij.

2.7. 2D system matrix

2D image reconstruction can be applied in order to perform fast reconstruction of the 3D

acquired data. Data are rebinned in this case with the SSRB or the FORE algorithms. For this

case, instead of modelling the 2D SM with an unrealistic MC process in two dimensions, the

calculated 3D SM is rebinned in order to obtain the new probability values. For this purpose a

procedure based on the SSRB algorithm is employed for all SM entries that correspond to each

voxel in the image volume. A maximum axial difference of 15 pixelated crystals is employed

in the post-processing of the SM data in this case.

For 2D image reconstruction, in-plane symmetries are not employed since memory

requirements do not make necessary this effort. In this case, the probability values associated

with one complete transaxial slice are calculated and stored. The same values are employed

for the iterative reconstruction of the 2D rebinned projection data for all transaxial slices.

The SM corresponds to a projection space of 55 × 120 bins and an image grid of

112 × 112 pixels. The whole volume covered by the FOV is obtained with Nz independent 2D

reconstructions; however, regularization filters and anatomical priors implemented are of 3D

nature and are applied between sub-iterations. The voxel size is 0.8 mm in the z direction due to

the rebinning process. The precalculated and stored 2D SM has the following characteristics:

total number of modelled pixels: 9816; storage size of 24.5 MB; total SM elements:

82 790 400; mean number of non-zero SM elements per pixel: 513.5, leading to a sparsity of

92.5% and the mean relative error is 0.11. In addition to the SM of 112 × 112 pixels, a finest

grid 2D SM of 224 × 224 was also modelled.

2.8. Experimental validations using synthetic data

Some synthetic phantoms have been simulated to evaluate and validate the reconstruction

method proposed in this work. First, point sources placed in a hot cylinder were simulated

with GATE, in order to quantitatively evaluate and also quantify noise and resolution recovery.

Secondly, an image quality phantom (NEMA 2008) has also been simulated with GATE.

This experiment has been designed to calculate uniformity, recovery coefficients and edge

resolution. Thirdly, a Derenzo-type phantom was simulated for qualitative evaluations.
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Figure 7. Transaxial and coronal sections of the point-source phantom.

Coincidences from GATE-simulated studies were collected in list-mode format and

translated to 3D sinogram format using a binning custom module that does not provide

DOI resolution, but calculates the sinogram bin from the centres of the pixelated crystals. The

energy window has been fixed to 400 –700 KeV and the timing coincidence window to 12 ns.

Simulations included the positron range, non-colinearity, scatter and attenuation effects. The

radionuclide was 18F.

In the following experiments, 3D and 2D iterative reconstructions are compared. 3D-

OSEM reconstruction was performed with two different precalculated SM which differ in the

voxel size along the z dimension: SMa based on an image volume grid of 112 × 112 ×
112 voxels each of size 0.4 mm × 0.4 mm × 0.4 mm; SMb is based on an image volume grid

of 112 × 112 × 56 voxels of size 0.4 mm × 0.4 mm × 0.8 mm. Both SM were modelled

with shifted axial alignment. The associated SM applied to the 2D-OSEM reconstruction

corresponds in all cases to a 112 × 112 2D image grid with a pixel size of 0.4 mm ×
0.4 mm The reconstruction has been sequentially performed on fifty-five 0.8 mm thick

transaxial planes.

It should be noted that reconstructions employing SMb for 3D-OSEM produce images

with the same voxel size than 2D methods and require the modelling of only those voxels

situated in one transaxial plane, while SMa corresponds to voxels with half the thickness of

those produced by SMb and requires at least the modelling of two transaxial slices.

2.8.1. Point-source phantom. The phantom, whose transaxial and coronal sections are

shown in figure 7, consists of 15 point sources placed in a warm cylinder with a radius of

20 mm and length of 48 mm. Radial positions are located at 2, 6, 10, 14 and 18 mm off-centre

in three transaxial planes located at −20, 0, and 10 mm from the centre of the FOV. The

activity of the cylindrical background was fixed to 12.9 µCi, while the activity of each of the

point sources was 0.1621 µCi each.

2.8.2. Derenzo-type phantom. A Derenzo-type phantom has been modelled with GATE, as

a cylinder of plastic (methacrylate) with 22 mm radius and sets of active water-filled rods of

4.8, 4.0, 3.2, 2.4, 1.6 and 1.2 mm in diameter and the same distance between the rod surfaces.

Rod lengths have been fixed to 16 mm, and the phantom has been placed in the centre of the

FOV. Transaxial and coronal sections of this phantom are shown in figure 8. Activity density

selected was 5 µCi cm−3 leading a total activity of 13.24 µCi.
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Figure 8. Derenzo-type phantom with rods of diameters 4.8, 4.0, 3.2, 2.4, 1.6 and 1.2 mm,

respectively.

Two acquisitions have been simulated at two different phantom positions. In the first one,

the phantom has been placed with rods perpendicular to the scanner axial axis, in order to better

evaluate the spatial resolution in the z direction. A total amount of 6.68 × 106 coincidences

have been collected for this case. The second alignment has been the usual one: rods parallel

to the axial axis, oriented for resolution measurements in the transaxial plane. It should be

noted that the axial invariance of rods in this alignment allows obtaining good axial resolution

results with rebinning methods. In addition, if z filtering is employed in the regularization

scheme, good SNR values can be achieved because of the specific phantom configuration

rather than the reconstruction properties. The counts collected with this alignment were

7.26 × 106.

2.8.3. Quality phantom. The image quality phantom with coronal and transaxial sections

shown in figure 9 has been designed in order to evaluate the noise characteristics and contrast

recovery of the proposed algorithms. The GATE simulation package has been used in this

experiment.

The total length of the phantom is 50 mm although only 44.8 mm is covered by the FOV

of the camera. This phantom consists of two main parts: a main cylindrical chamber with

30 mm diameter and 30 mm length, and five fillable rods drilled through solid plastic, with

radii of 1 , 2 , 3 , 4 and 5 mm, and a length of 20 mm respectively.

The main cylindrical chamber (or background) is filled with water containing 18F with the

same activity concentration of the fillable rods. The cylinder includes two smaller cylinders of

14 mm length and 8 mm inner diameter. One of them is filled with air and the other contains

water with double activity concentration. Total activity in this phantom was 100 µCi.

The per cent contrast recovery for hot ROIs (QH) (NEMA 2007) is defined as

QH =
(

CH/CB − 1

aH /aB − 1

)

100(%) (18)

where CH is the average counts in the hot ROIs, CB is the average counts in the background ROI,

and aH and aB are the activity concentrations in the hot ROI and hot background, respectively.

If aH = aB , an alternative contrast recovery Q′
H can be calculated as CH/CB .
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Figure 9. Transaxial and coronal views of the image quality phantom.

On the other hand, contrast recovery for cold ROIs (QC) (NEMA 2007) can be measured

as

QC =
(

1 −
CC

CB

)

100(%) (19)

where CC is the average counts in the cold cylinder ROI.

3. Results

3.1. System matrix statistics

The obtained SM has been compared with results produced by GATE. The comparison has

been done with the simulation of two selected voxel projections (i.e. SM columns) because

the complete simulation of the SM using GATE was unaffordable due to excessively long

computation times.

One voxel was located 15 mm off the axial axis, in the central transaxial plane, while the

other one was considered in the centre of the FOV. In both cases the voxel size was 0.8 mm ×
0.8 mm × 0.8 mm. GATE simulations were stored in list-mode format and binned to 3D

sinogram format with the same module used in the phantom studies.

Each GATE voxel projection simulation was performed until reaching 1 × 106

coincidences, and it took approximately 24 h to compute in a personal computer. On the other

hand, the custom SM simulation needed less than 1 min to acquire 65 × 107 coincidences by

voxel. The speed-up factor is about six orders of magnitude.

SM columns have 5174 400 elements, organized as 3D projections of 55 × 120 ×
28 × 28 bins. For better appreciation of similarities between GATE and custom simulations,

histogrammed results are presented in figure 10 as a matrix of Nz × Nz elements where each

value is equal to the total coincidences assigned to each {jza, jzb} oblique sinogram. The

grey level values of figure 10 are normalized to the total collected coincidences. The similar

distribution of coincidences in oblique sinograms can be appreciated in detail tracing a profile

over sinograms with index jzb = Nz − 1 − jza (figure 10, right).

Figure 11 (left) shows the projection of a voxel located 15 mm off the axial axis,

histogrammed over {jza, jzb} bin indices, i.e. the sum of the whole set of the oblique sinograms.
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(c)

(a) (b)

(d)

Figure 10. Graphical comparison between voxel simulations with GATE and with the proposed

custom model. (1) The voxel was located 15 mm off the axial axis; (2) voxel centred in the FOV.

Histograms with the total value of oblique sinograms represented in grey level, and profiles of the

main diagonal are shown.

Single 2D sinograms (figure 11, right) are more suitable for better appreciating the different

degree of sparsity between GATE and custom simulations. It can be noted that the VR

technique employing the LUT to model crystal interactions limits the non-zero bins due to

inter-crystal scatter and produces sinograms with higher degree of sparsity.

The voxel associated with the smallest values of probability of detection, i.e. among the

ones located in the extreme of the FOV, and the voxel centred in the FOV, give upper and

lower limit values of σ̄rel in the simulation scheme, since the number of events launched per

voxel is the same. This effect is observed in figure 12 where the σ̄rel values of extreme and

centred voxels of the transaxial central slices are plotted. Also in figure 13, coarse resolutions

with large voxels show more non-zero j elements, and for the same SM, the centred voxel has

also more non-zero values. The σ̄rel results plotted in figure 12 suggest that launching 2 × 108

events per voxel would lead to reasonably good statistics.
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Figure 11. Captions of histograms over {s, φ} and single 2D sinogram of voxel simulation located

15 mm off the axial axis (left) and single 2D sinogram with jza = 13 and jzb = 22 (right). The 2D

sinogram is a subset of a single column of the SM and can be appreciated by the different degree

of sparsity between GATE simulation, the custom simulation without VR technique and custom

simulation employing a LUT to model the crystal interaction.
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Figure 12. Mean relative error per voxel (σ̄rel (i)) versus number of simulated events per voxel.

Two voxels belonging to the central transaxial slice are compared: ie, located in the extreme of

the FOV, and ic, located in the centre of the FOV. The system matrix SMa corresponds to a grid of

112 × 112 × 112 voxels, with a voxel size of 0.4 mm × 0.4 mm × 0.4 mm.

3.2. Point-source phantom

The measured sensitivity of this study was 58 cps µCi−1, collecting a total amount of 1.05 ×
107 coincidences with 120 min of acquisition time. A total number of eight iterations over

ten subsets have been performed in all cases, i.e. 80 sub-iterations of the OSEM algorithm.

No regularization has been applied. For SSRB and FORE applied before 2D-OSEM, the

axial rebinning has been chosen to 15 pixelated crystals. Transaxial and coronal views of

reconstructed images with 3D-OSEM and 2D-OSEM methods are shown in figure 14. The
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Figure 13. The number of non-zero SM elements j associated with two voxels ic and ie, located

respectively in the centre and the extreme of the central transaxial slice of the FOV. Three different

grid discretizations of the image volume have been studied with dimensions 56 × 56 × 56 voxels

(SMc), 112 × 112 × 56 voxels (SMb), and 112 × 112 × 112 voxels (SMa).

(a) 3D-OSEM, SMa (b) 3D-OSEM, SMb (c) 2D-OSEM+SSRB

Figure 14. Reconstructions of point sources placed in a hot cylinder, simulated with GATE.

SM obtained with the VR method were used in the reconstructions presented in this and the

following sections.

In figure 15 the arithmetic mean of radial, tangential and axial resolution, specified by the

full width half maximum (FWHM) distance of the adjusted Gaussian curve, has been plotted

against the radial position. The points selected correspond to the row situated in the central

transaxial plane.
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Figure 15. Spatial resolution as function of the radial position for 2D-OSEM and 3D-OSEM

reconstruction methods, for the point-source phantom.
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Figure 16. Signal-noise ratio versus resolution trade-off for 2D-OSEM and 3D-OSEM

reconstruction methods, evaluated with the point-source phantom.

Noise-resolution curves are plotted in figure 16 from 1 to 8 iterations. The signal-to-noise

ratio (SNR) is interpreted as the mean divided by the standard deviation, measured on the

warm cylinder over 500 random selected voxels per slice, and FWHM is referred to as the

mean value of the activity distribution measured at the point sources in the central transaxial

plane. Voxel sizes used in figures 15 and 16 were selected to be 0.2 mm in the transaxial

slice for both 2D and 3D reconstructions. For the axial dimension, the 2D rebinning method

imposed a voxel size of 0.8 mm, while for 3D reconstruction the size was of 0.8 mm for SMb′

and 0.4 mm SMa′ corresponding to the single slice and two slices SM simulation option.

3.3. Derenzo-type phantom

The sensitivity of this study was 130 cps µCi−1 for the setup with rods parallel to the axial

axis and 120 cps µCi−1 for the setup with rods perpendicular to the axial axis. Acquisition

time was 33 min in both configurations. Figures 17 and 19 show reconstructed volumes for

the two proposed phantom setups with 2D-OSEM and 3D-OSEM, and with the two distinct

z resolutions in the 3D case. Transaxial and coronal views are shown. The line profiles

plotted in figure 18 correspond to volumes of figure 17, crossing the 1.2 mm and 2.4 mm

rods which are perpendicular to the axial axis. Parameters were fixed to ten iterations with

ten balanced subsets each one for all cases. In order to control the noise amplification, a 3D

separable Gaussian filter has been applied in each sub-iteration in the regularization scheme,
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(a) 3D-OSEM, SM a (b) 3D-OSEM, SM b (c) 2D-OSEM+FORE

Figure 17. Reconstructions of a Derenzo-type phantom simulated with GATE, with rods

perpendicular to the z axis of the scanner. Coronal and transaxial planes are shown for 3D-

OSEM (a)–(b) and FORE+2D-OSEM (c) reconstruction schemes. The 3D method has been tested

with SMa and SMb , i.e. grid sizes in z axis of 0.4 mm (a) and 0.8 mm (b) respectively. Ten subsets

and ten complete EM iterations have been performed in all cases, with MAP regularization.
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Figure 18. Line profiles across the Derenzo-type phantoms of figure 17, crossing the 1.2 mm and

2.4 mm rods which are perpendicular to the axial axis.

with σ = 0.5 mm in the x, y and z directions and βr = 0.10. No scatter or attenuation

corrections have been performed.

3.4. Quality phantom

The sensitivity of this study was 78 cps µCi−1 and the acquisition time was 30 min. In

figure 20 the 2D-OSEM and 3D-OSEM reconstructions of the quality phantom study are

shown at different views.

Qualitative results were evaluated over several ROIs defined in hot and cold cylinders and

background regions, leaving spacing of 1 mm with respect to the edges to avoid bias due to
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(a) 3D-OSEM, SMa (b) 3D-OSEM, SMb (c) 2D-OSEM+FORE

Figure 19. Reconstructions of a Derenzo-type phantom simulated with GATE, with rods parallel

to the z axis of the scanner. Coronal and transaxial planes are shown for 3D-OSEM (a)–(b)

and FORE+2D-OSEM (c) reconstruction schemes. SMa (a) and SMb (b) resolution grids were

employed in 3D methods, which correspond respectively to grid sizes in the z axis of 0.4 mm and

0.8 mm. Ten subsets and ten complete EM iterations have been performed in all cases, with MAP

regularization.

 (a) FORE+2D-OSEM (b) 3D-OSEM,SM (c) 3D-OSEM,SMa b

Figure 20. Reconstructions of the quality phantom simulated with GATE. (a), (b) and (c) Transaxial

and coronal sections. (a) FORE+2D-OSEM reconstruction. (b) 3D-OSEM reconstruction. (c)

3D-OSEM reconstruction, with small voxel size. Ten subsets and eight iterations in the three cases.

location misalignments and partial volume errors. Transaxial locations of this ROIs are shown

in figure 21. Note that the cold background region is surrounding the small cylinders in the

lower part of the phantom.

In figure 22 the per cent contrast recovery for the hot cylinder ROI (QH) and cold cylinder

ROI (QC) are shown for 2D and 3D reconstruction modes. Q′
H figure of merit for small

cylinders is shown in figure 23. Cylinder data were measured over ROIs of 10 mm width in

the axial dimension.
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Figure 21. Transaxial view of ROIs defined in the quality phantom.
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Figure 22. Per cent contrast recovery for the hot cylinder and cold cylinder and its evolution

according to the number of iterations over the whole set of subsets of OSEM. Ten subsets were

used in 2D and 3D reconstruction methods.
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Figure 23. Per cent contrast recovery of small cylinders and its evolution according to the number

of iterations for FORE+2D-OSEM and 3D-OSEM methods. Ten subsets have been employed in

both cases.
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Figure 24. CoV (in percentage) of hot background ROI and QC contrast recovery of cold

background ROI. Ten subsets have been employed with FORE+2D-OSEM and 3D-OSEM methods.

The last qualitative measurements over the quality phantom, plotted in figure 24, compare

the coefficient of variance (CoV) (defined as the standard deviation divided by the mean) of the

hot background ROI (see figure 21), as well as the mean activity value of the cold background

ROI, relative to the hot background ROI.

4. Discussion and conclusions

Considering the SM custom simulation, figures 10 and 11 show a very good agreement between

the results obtained by our method and GATE simulations, while the proposed methodology

requires a small fraction of computation time. The comparison was performed over two

voxels located respectively in the centre of the FOV and 15 mm off the axial axis in the central

transaxial plane. Histogrammed coincidences assigned to oblique sinograms showed similar

profile, while the VR method reduced the degree of sparsity of the SM limiting the non-zero

bins due to inter-crystal scatter. The value of σ̄rel associated with representative voxels was

used to select the number of simulated events required for SM modelling.

The transaxial views in figure 14 exhibit similar spatial resolution for both 3D and 2D

methods as the voxel size is the same for all methods in x and y dimensions, and 2D rebinning

methods project LORs without errors in these dimensions. On the other hand, coronal views

in figure 14 demonstrate higher resolution when SMa is employed. SSRB+2D-OSEM show

worse axial spatial resolution results in the extremes of the FOV, although this effect is less

significant in the upper row of the point sources because the maximum value of axial rebinning

has not been reached.

The quantitative results of figure 15 confirm the visual evidence of figure 14, and a sub-

millimetre spatial resolution has been achieved by 3D reconstruction with SMa which clearly

outperforms the reconstruction with the FORE+2D-OSEM method.

Noise-resolution curves in figure 16 show a superior performance of 3D-OSEM with

SMa in terms of spatial resolution due to a better sampling in z. This method outperforms 3D

reconstructions with SMb as well as the 2D method.

In the line profiles shown in figure 18, the highest z resolution is obtained with the 3D

reconstruction method with the smallest SM voxel size of 0.4 mm in the z direction. The

3D reconstructed images with voxel size of 0.8 mm in the z direction have an intermediate

resolution, while the 2D case gets worse specially in rods far from the centre of the FOV.
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In figure 19, where the Derenzo-type phantom is positioned with the active rods parallel

to the axial axis of the scanner, no difference is appreciated between resolution recovery in

2D and 3D reconstruction methods since the voxel size in the x–y plane is fixed to 0.4 mm in

all cases. Furthermore, the rod alignment along the z direction of the scanner guarantees that

the rebinning process does not degrade the resolution in the transaxial plane, except at the rod

extremes.

In figure 20 (quality phantom study), the improvement in spatial resolution of the 3D

method with a high-resolution SM can be observed in the axial direction along the edges

between regions with different activity concentrations.

Data shown in figure 22 demonstrate that recovery coefficients are better in 3D modes.

The improvement is more significant in measurements performed in the hot cylinder ROI,

while the cold cylinder ROI contrast recovery gives poorer results due to the lack of scatter

and attenuation corrections.

From figure 23 it can be noted that the highest cylinder contrast is obtained for all cases

with the 3D reconstruction mode, although in the first iterations, the 2D reconstruction mode

has a higher recovery coefficient.

CoV and recovery coefficient measurements over the quality phantom (figure 24) show

better contrast in 3D reconstruction modes except during early iterations, where CoV and

relative mean ratios are similar in 2D-OSEM. In latter iterations, CoV values are greater in

2D-OSEM due to the characteristic noise amplification in unregularized OSEM reconstruction,

while the mean average ratio of cold and hot background regions remain stable at values nearly

two times smaller.

A fast fully 3D-OSEM reconstruction algorithm has been developed, implemented and

evaluated for a high-resolution rotating head PET scanner composed of two pairs of opposed

planar pixelated blocks. The proposed scheme employs a pre-calculated SM based on MC

methods, efficiently stored with sparse matrix format. Rotation and reflection symmetries in

the transaxial plane are compatible with the simulated SM matrix and allow us to model only

the eighth part of voxels in a transaxial plane. Axial redundancies and reflection symmetries,

combined with the shifted axial grid alignment imply that only two transaxial planes need to

be simulated for the finest grid resolution. Total simulation time is maintained below 100 h in

this case.

The full SM can be loaded in RAM in a standard PC, speeding-up the reconstruction

process. We use a model of the scanner which incorporates crystal attenuation and scatter

effects.

2D-OSEM has also been implemented with a post-processing of the 3D SM. Experiments

have shown that these fast methods exhibit similar resolution to the equivalent 3D ones in the

transaxial plane, being surpassed in measurements related to the axial axis.

The experiments performed with simulated phantoms show that the 3D-OSEM algorithm

improves resolution when compared to 2D-OSEM reconstruction methods when voxel size in

the z dimension is fixed to one-quarter the length of the pixelated crystal row.
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