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Pza. Cardenal Cisneros 3, E-28040 Madrid, Spain

February 15, 2012

Abstract

Large-scale structure formation can be modeled as a nonlinear process that trans-

fers energy from the largest scales to successively smaller scales until it is dissipated,

in analogy with Kolmogorov’s cascade model of incompressible turbulence. How-

ever, cosmic turbulence is very compressible, and vorticity plays a secondary role in

it. The simplest model of cosmic turbulence is the adhesion model, which can be

studied perturbatively or adapting to it Kolmogorov’s non-perturbative approach to

incompressible turbulence. This approach leads to observationally testable predic-

tions, e.g., to the power-law exponent of the matter density two-point correlation

function.

1 Introduction

The evolution of the Universe is ruled by gravity. Although the Einstein equations of
General Relativity (GR) are strongly nonlinear, the early evolution of the Universe can be
described by a FLRW solution plus linear perturbations. Since the FLRW solutions are
unstable, perturbations grow, and they grow faster on smaller scales, becoming nonlinear
and decoupling from the global expansion. As instability is an inherent property of self-
gravitating systems, they are bound to cluster and collapse as long as they can dissipate
their kinetic energy. This dissipation is essentially a transfer of kinetic energy from one scale
to another smaller scale, due to nonlinear mode coupling. The kinetic energy eventually
reaches the smallest scales and disappears (as discussed in page 3).

The nonlinear transfer of kinetic energy from larger to smaller scales is the hallmark of
fluid turbulence and is the basis of Kolmogorov’s cascade model of incompressible turbu-
lence, namely, of turbulent solutions of the Navier-Stokes equations with large Reynolds
number but small Mach number [1]. In cosmology and, in particular, in cold-dark-matter
(CDM) models, the Mach number of the matter fluid has to be large, so the turbulence
is actually very compressible. In contrast, the fluid velocities are non-relativistic (except
on very small scales). Therefore, a Newtonian treatment is generally appropriate. In fact,
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the full Newtonian dynamics is still too complex for an analytical approach, so it is further
simplified as follows.

2 Zeldovich approximation and adhesion model

The Newtonian equation of motion of a test particle in an expanding background is best
expressed in terms of the comoving coordinate x = r/a(t) and the peculiar velocity u =
ẋ = v − Hr. So dv/dt = gT is written as du/dt + Hu = g, in terms of the peculiar
gravitational field, g = gT − gb, with background field gb = Ḣr +H2r, such that 3(Ḣ +
H2) = ∇ · gb = −4πGρb , which is just the dynamical FLRW equation for P = 0 (the dust
model). Of course, g depends on the motion of the remaining particles, and the problem
is nonlinear, like in GR. It can be linearized when the peculiar variables are small, so
the motion is, approximately, x = x0 + b(t) g(x0), where b(t) is the growth rate of linear
density fluctuations. Redefining time as τ = b(t), the motion is simply linear motion,
with a constant velocity given by the initial peculiar gravitational field. Naturally, nearby
particles have different velocities, and, as the linear solution is prolonged into the nonlinear
regime, trajectories cross at caustic surfaces [2], called “Zeldovich pancakes” in this context.
These are supposed to be the first cosmological structures.

Actually, the simplest caustic arises from inward spherical motion (spherical collapse),
which gives rise to a point singularity, that is, a zero-dimensional (degenerate) caustic.
After the multiple collision of particles at one point, their evolution in Newtonian gravity
is undefined. If no kinetic energy is dissipated (adiabatic collapse), the particles cross
(or rebound), returning to their initial positions. This unrealistic evolution takes place
at any caustic, so there is no real structure formation, unless a dissipation mechanism is
introduced. Hence, the linear motion in the Zeldovich approximation is supplemented with
a viscosity term, resulting in the equation

dũ

dτ
≡

∂ũ

∂τ
+ ũ · ∇ũ = ν∇2ũ, (1)

where ũ is the peculiar velocity in τ -time. To this equation, it must be added the no-
vorticity (potential flow) condition, ∇× ũ = 0, implied by ∇× g(x0) = 0. Eq. (1) is the
Burgers equation for very compressible (pressureless) fluids. The limit ν → 0 might seem
to recover the caustic-crossing solutions but actually is the high Reynolds-number limit
and gives rise to Burgers turbulence. Whereas incompressible turbulence is associated to
the development of vorticity, Burgers turbulence is associated to the development of shock
fronts, namely, discontinuities of the velocity. These discontinuities arise at caustics and
give rise to matter accumulation by inelastic collision of particles. The viscosity ν measures
the thickness of shock fronts, which become true singularities in the limit ν → 0. This is
the adhesion model, which produces a characteristic network of sheets, filaments and nodes,
called “the cosmic web.”
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3 Approaches to cosmic Burgers turbulence

Unlike the Navier-Stokes equation of incompressible fluids, the Burgers equation is inte-

grable and, therefore, keeps memory of initial conditions. On the other hand, in both
incompressible and Burgers turbulence, kinetic energy cascades down to smaller scales
until it is dissipated. This dissipation is of thermal nature in normal fluids; but, in cosmol-
ogy, while baryons experience thermal dissipation, the “dissipation” in CDM has mainly
gravitational origin [3]. Therefore, it is not sensible to just neglect the dissipated energy
in Eq. (1). Moreover, the gravitational equations of motion are chaotic, like the Navier-
Stokes equation, and tend to lose memory of initial conditions. In Burgers turbulence, we
can recover the dissipated energy and have a stationary state with no memory of initial
conditions (a fractal attractor, actually) by adding a “noise” to Eq. (1), giving rise to the
stochastic adhesion model. A white noise is appropriate for thermal fluctuations, but we
must allow for non-thermal fluctuations and also take into account the large-scale energy
pumping. Both can be modeled together as some “colored” stochastic forcing. Therefore,
the total random force, which must derive from a potential, f = ∇η, is just assumed to
be Gaussian, with zero mean and white-in-time covariance:

〈η(x, t) η(x′, t′)〉 = D(x− x′) δ(t− t′). (2)

This stochastic adhesion model correctly describes the cosmic web structure as a “quasi-
Voronoi” tessellation of shock fronts [4].

Let us see, first, a perturbative approach to this model and, second, a non-perturbative
one, based on the Kolmogorov approach to incompressible turbulence [5].

3.1 Perturbative approach

The stochastic Burgers equation has been studied in a very different context, namely, the
statistical description of surface growth: when surface’s height is identified with velocity
potential, the KPZ equation for surface growth is equivalent to the stochastic Burgers
equation [6, p. 61]. It can be studied with perturbation theory, which shows that a dy-
namical scaling appears at the fixed points of the dynamical renormalization group [6].
Unfortunately, the nontrivial fixed point is repulsive (in three spatial dimensions), so the
nonlinear term of the Burgers equation is irrelevant (in the renormalization-group sense)
and the viscous term dominates in the perturbative stationary state. Therefore, turbulence
can only occur in the strong-coupling, non-perturbative regime.

In fact, the effective coupling constant in the renormalization group equations has the
generic expression λ2D/ν3 [6], where λ is a coupling constant for the nonlinear term in
Eq. (1), D is the noise strength, as in Eq. (2), and ν is the viscosity. As turbulence occurs
when ν → 0, the coupling must be strong. More precisely, the effective coupling constant
is actually proportional to the cube of the Reynolds number, which has to be very large,
making perturbation theory unreliable.
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3.2 Kolmogorov like approach

A non-perturbative approach can be based on Kolmogorov’s universality assumptions,
namely, statistical homogeneity, isotropy, and velocity scaling laws [1]. These laws stem
from the principle that the only parameter relevant for the turbulent cascade is the energy
flux across the scales, per unit time and per unit mass, ε. Therefore, velocity correlation
functions, for example, must be power-laws, with exponents determined by dimensional
analysis; in particular,

〈ũ(x) ũ(x′)〉 ∝ (ε|x− x′|)2/3.

From this expression and the relation ∇ · ũ ∝ ∇ · g ∝ δρ = ρ − ρb, we can deduce the
matter-density reduced two-point correlation function:

〈δρ(x) δρ(0)〉/ρ2
b
∝ 〈∇ · ũ(x)∇ · ũ(0)〉 ∝ |x|−4/3. (3)

In fact, the preceding relation between ũ and ρ is only approximate and, furthermore, one
should take account of intermittency, which causes deviations from Kolmogorov’s scaling
laws [1]. Intermittency is due to spatial variations of ε, which are especially strong in
Burgers turbulence, because dissipation takes place in caustics. A detailed analysis [5]
shows that Eq. (3) holds, but the power-law exponent absolute value can be in the range
(1, 4/3), depending on the noise strength. These values are smaller than the observational
value, about 1.7 [7].

4 Discussion

The derivation of the adhesion model involves drastic simplifications, and one could object
to Eq. (1) that it has almost lost track of gravity, which only survives in the definition of
τ . However, the essential feature of the adhesion model is that it gives rise to caustics, and
this is a general feature of the irrotational motion of pressureless matter in Newtonian dy-
namics or in GR (the significance and genericity of caustic singularities in GR are discussed
by, e.g., Landau and Lifshitz [8]). Since GR is nonlinear, just the definition of sheet, fila-
ment, and node singularities demands a special study [9]. Nodes, as point singularities, are
the strongest singularities and must give rise to black holes. A black hole has (quantum)
internal configurations and entropy, which reflect the energy dissipated in its formation.
Moreover, black holes have negative specific heat (like Newtonian self-gravitating systems)
and cannot reach thermal equilibrium in an unbounded environment [10], so they have to
keep growing. Black-hole growth involves a “mixmaster” dynamics that exemplifies the
“gravitational turbulence” of general solutions of the Einstein equations [11]. The forma-
tion and growth of super-massive black holes are probably the most dissipative processes
in astrophysics and surely have contributed greatly to shape our present universe.

In any case, the adhesion model, in which all these small-scale processes are lumped
into an effective viscosity, seems to be adequate to describe the formation of large-scale
structure, at least, in an early stage and semiquantitatively. The construction of more
realistic models of cosmic turbulence, whether Newtonian or relativistic, demands further
theoretical developments.
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