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Preliminaries

Preliminaries

Let i be a positive measure in C with compact support €. Let
‘P be the space of polynomials.

@ The hermitian moment matrix M = (cjx)7%_o given by

Gi = / 7*dp, j ke,
Q

is the matrix of the inner product in the canonical basis.

@ There exists a unique orthonormal polynomials sequence
(ONPS) {P,(2)}52 associated with the measure (.

© D is the infinite upper Hessenberg matrix of the
multiplication by z operator in the basis of ONPS in P?(1)
(the closure of P).

@ D is the natural generalization to the hermitian case of Jacobi
matrix.
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Preliminaries

Preliminaries

In this work we consider:
© An analytic Jordan curve [ on the complex plane.
@ A measure i € S(I') belonging to the Szego class for I,
i.e.

supp(p) =T and /rlog,u’(z) |®'(2)||dz| > —oc.

© The upper Hessenberg matrix D associated with p.

Q A Toeplitz matrix T = (¢jx = ck—j)7%—o and its symbol f
given by the Laurent series f(e?) = > k=0 ck_jel k=0,

@ A weakly asymptotically Toeplitz operator A on /2.

Definition [Feintuch 1989, Barria-Halmos 1982]: if there exists
a Toeplitz bounded operator T on ¢? such that

(SPASRu, v) = (Tu,v), for every u,v € 2.

lim
n—oo
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Preliminaries
Riemann mapping theorem

Riemann mapping theorem states that there is a unique conformal
map ¢ : Coo \ D — Cy \ Q (where D the unit disk and Q is a
compact, which is not a point with C, \ € simply connected) such
that ¢(00) = oo and ¢'(c0) = cap(Q). If I = 9Q is a Jordan curve,
¢ is continuous in T. We denote by ® the inverse mapping ¢ 1.
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Introduction

Introduction

Rakhmanov’s theorem [Rakhmanov 1977, 1983]. Let u be a
Borel measure with supp(x) = [—1, 1] and ¢/ > 0 almost everywhere

in [—1,1], then

bo dl 0

ai b1 a

1 0 b

a, — = and b, — 0, where J = a D2

2 0 0 a

Note that in this case : : :
1 1 1 11
@(Z)—2<Z+Z>—2Z+O+2z
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Introduction

Introduction

Under the conditions of Rakhmanov's theorem but with

supp(p) = [a, b],

then the above limits are

b—a a+b
a,,—)T and b, — B

In this case
b—a a+b b-al
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Introduction

Introduction

In this work we show that:

the upper Hessenberg matrix D associated with the measure
p € S(I) is weakly asymptotically Toeplitz to a certain Toeplitz
matrix T such that its symbol agrees with the restriction to
the unit circle (note that it exits by Caratheodory Theorem) of the
Riemann mapping ¢, which applies conformally the exterior of
the unit disk in the exterior of I', the support of the measure pu,
whenever [ is an analytic Jordan curve.
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Introduction

Unit circle T

In the unit circle we have the Hessenberg matrix

1By S0 dyby D3y ,:h°2 ®p_1%0 ,;”01 P
p -
™ o - o — i
1 Py T ¢j®1 Kn72¢n71f1 Kn71¢nfl
D — 0 % — 3D, ;2 ®,_ 1P, ;n’?l ®, P,
n — . . . . . .
; : ; - e
0 0 0 0B, 20,8,
0 0 0 En—2 —$,0,_1
Kpn—1
Geronimous (1971): p € S(T) & Yo% 5 [®n(x, 0)[2 < +o0.
Then,
. . RKnp—1 .
di = lim dpy1,= lim =1,d_ = lim dypyk =0,k =0,1,2,..
n—o00 n—o0  Kp n—00

Note that these limits agree with the Laurent coefficients of the
Riemann mapping function

#(z) = z.
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DT analytic Jordan curves

The diagonals theorem for analytic Jordan curves

Theorem (The diagonals theorem for analytic Jordan curves,
EGST2011)

Let I be an analytic Jordan curve on the complex plane and let
be a measure belonging to the Szego class for T.
Let p: C\D — C\ Q (I = 0Q) be the Riemann mapping

c_ Cc_
$(z) =zt + —+ 2 +....
V4 V4

Denote by D = (d;;)75_; the upper Hessenberg matrix associated
with the measure . Then, D is weakly asymptotically Toeplitz,
with symbol the Riemann mapping ¢ restricted to the unit circle T,
ie.,

lim d,_j,=c; forallj=-1,0,1,2,...

n—o00
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DT analytic Jordan curves
Notation for the Proof

doo do1 do2 .. d d-1 do
dio dix dip ... d do d
D = 0 d271 d272 . , T = 0 d1 do
0 0 d3p ... 0 0 di
1 1 . e
o )(z) =caz+c+ C—1; + c_2272 +e =300 jckz s
the Riemann function ¢ : Coo \ D — Co \ Q where I = 9Q =
supp(y1)
o = gi)_l
1 1
0 d(z) =diz+ dp + d—lg + d_2; =300 d_zkis

the symbol of T
@ L is the length of T.
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DT analytic Jordan curves
Sketch of the Proof

@ From the recurrence formula for ONPS ’I5,,, we have

1 ~ = _
L/an(z)P,,j(z)v(z)|dz| =dpt1-jnt+1, J=—1,0,1,2,...,n—1
r
@ Using Szegd theorem [Szegd 1939]

R [ \12
Pue) = (52) 18] @000 < < 1

in the above formula we obtain four summands, three of them
go to zero.
@ Using ¢ to take the measure from I to the unit circle, we have

% /r 2 |Ao(2)| 29 (2)|0"(2)0" 7 (2) v(2)|dz| = ¢
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DT analytic Jordan curves

Remark: Uniformly asymptotically Toeplitz

Barria-Halmos (1982):

A bounded operator A on ¢? is uniformly asymptotically Toeplitz
provided there is a (necessarily bounded and Toeplitz) operator T
on ¢? such that
: n n _
nl'_>ngo||5LA5R Tl[=0

Feintuch's theorem (1989):

A is uniformly asymptotically Toeplitz < A is Toeplitz + compact.

Note that, in the hypothesis of the theorem, whenever D — T is a
compact operator, we have that the convergence is uniform.

In particular, this is the case of matrices D with a finite number of
non null diagonals.
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Examples

Example I: Ellipse

@ Consider the ellipse
z = [acost, bsint].

Let ¢® = a® — b? be the ellipse’s focal distance.

o Consider the weight function

w(z,7) = |22 — 2|77Y/2 with 7 € [0,1].

We will consider two cases
e 7 =1 (Duren,1963).
o 7 =0 (Walsh, 1934).
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Examples

Example I: 7 =1

(Duren, 1963): The monic orthogonal polynomials are analogous to
the Tchebyschev polynomials of second kind on the interval [—c, ¢],
but with different norms:

n=0,1,2,...

I

||ﬁn(2; 0)”2 =27 (%b)2(n+1) + (a%b)2(n+1)

The norms of these polynomials and the recurrence relation allow us
to obtain the Hessenberg matrix D

2 —b2 [ (a+b)2+(a—b)?
0 2 (a+b)4+(a—b)* 0 0
1 /(b +(a=h)* 0 21 [(a+b)i+(a—b"* 0
2\ (a+b)2+(a—b)? 2 (a+b)0+(a—b)0
0 1 [(a+b)0+(a—b)0 0 P2 —b? [(a+b)b+(a—b)0
2\ (a+b)d+(a—b)* 2 (a+b)8+(a—b)8
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Example I: 7 =0

(Walsh, 1934): The monic orthogonal polynomials are analogous to

the Tchebyschev polynomials of first kind on the interval [—c, ¢],

but with different norms:

a+by,, ,a—b,,
R+ ()

1Pa(z; 1)]1? = 27 | ( . n=1,2,...

|Po(z;1)||? = 2ra.

The norms of these polynomials and the recurrence relation allow us
to obtain the Hessenberg matrix D

2 2
___a—b" 0 0
(a+b)2+(a—b)?
yatb)7H{a=b)” 0 22 [(atb)*+(a—b)* 0
2 2 (a+b)6+(afb)6
2 b2 [(a+b)0+(a—b)0

0 1 [(a+b)0+(a—b)° 0
2\ (arb)d+(a—b)* 2 (a+b)8+(a—b)8
0 0 1 (a+b)8+(a—b)8 0
2\ (a+b)6+(a—b)®
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Examples

Remark: Ellipse

For the ellipse
z =[acost, bsint],

the Riemann mapping is given by

a+b a—bl

Note that in the two cases studied above
lim d B a2 — b? 1 _a-— b
novoo ML 2 \/(a+b)? 2
: 1 a+b
n||—>n<1>o dn+1,n = 2 (3 + b) = 5
lim dypik = 0 forevery k#—1,1,
n—o0

as the theorem asserts.
Moreover, since D — T is compact the convergence is uniform.
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Examples

Remark: Degenerate cases of ellipse

@ For a = b we have a circle of radius a. In both cases, D, is the
shift right multiply by a.

@ For b = 0 we have the interval [—a, a] and we have the following
Hessenberg matrices

o

o onNlw o
oNlv ON|L
- Nlv ONIL ©
oNnlvw ©
o
onNlo og‘m
N
SNl O NIy O
oNlv ©

which are respectively, the Jacobi matrices for the Tchebyschev
polynomials of second and the first kind on the interval [—a, a].
Note that in this case the above theorem can not applied.
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Examples

Example: Ellipse with a non tridiagonal Hessenberg matrix

We consider the ellipse =z =
[acos t, bsin t] with the weight function

B 2 t € [0, 7]
wiz) = { a2 c05(t)2ir b?sin(t)? t € [m,2n]

For a = 3, b = 2, the Riemann mapping
function is ¢(z) = 3z + 1.

By numerical computation we have the next section of D

0.40420303/  0.7689189591 —0.1079262724/  —0.009644390418 —0.01286235839 i —0.002008602409

2.457437865  0.045995046 i 0.5291737642 —0.00920619945 i 0.001872767863 —0.001869959504 i
0.0 2.485334997 0.01209088066 i 0.5024826317 0.0008939829463 i 0.0005005965148
0.0 0.0 2.496997905 0.001173415825 i 0.4995460938 0.0002345682020 i
0.0 0.0 0.0 2.499730018 0.0000299448513 i 0.4999222186
0.0 0.0 0.0 0.0 2.499941936 0.0000109476858 i
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Example: Hypocycloid

We consider [ as a the following
hypocicloid

which is an analytic Jordan curve.

The Riemann mapping is

11
¢r(Z) =z+ 6?, |Z| > 1.
For every p € S(I') we can apply the diagonals theorem, then

: . 1 .
i = LI chia = g fim droip = 0.9k £ 14
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Examples

Non analytic Jordan curves and rectifiable arcs

In the interval we can not apply our
theorem.

The interval [—1,1] is a degenerate case
of ellipse. The image of a circle of radius
r > 1 by the Riemann mapping ¢ for the
interval is the ellipse

1 1
orz) = 5z + ), J2] =1

Applying the theorem
lim dopet = ) fim dysan= o lim dypigx =0, Vk£—1,1
n'_)”(lo n,n+1 = o’ nl—>n;o n+1l,n — 5’ n|—>ngo n,n+k = Y, )

Taking r = 1 we obtain that the limits agree with the Laurent
coefficients of the Riemann mapping ¢.
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Examples

Lemma for non analytic Jordan curves and rectifiable arcs

Let [ be a rectifiable Jordan arc or a connected finite union of
Jordan arcs, such that C, \I' is a simply connected set of the

Riemann sphere C. Let ¢(z) = caz+ o+ 1 + C;; + ... be
z z

the Riemann mapping for I'.
The following result is trivial by uniqueness of the Riemann mapping

Let ¢(z) be the Riemann mapping from the complement of the
unit disk to the complement of the Jordan curve or arc I', such that
¢(00) = 0o with ¢'(00) > 0. If r>1, T, =¢(rT)={rz |z e T}
is an analytic Jordan curve (Walsh 1969). Then the Riemann
mapping ¢.(z) for T, satisfies ¢,(z) = ¢(rz).
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Lemma for non analytic Jordan curves and rectifiable arcs

In the above conditions:
@ [ a rectifiable Jordan curve or arc.

@ ¢(z) the Riemann from the complement of the unit disk to
the complement of I'.

o [ =¢(rT)={rzlz € T} with r > 1

Corollary

Let yn € S(I'y). Denote by {Isn(r,z)} the ONPS associated with
[+ and mu, and let D(r) = (d;j(r)){5-, be the Hessenberg matrix
associated to the multiplication by z operator on Pﬁ.

Then

limd, jn(r)=—¢r?, j=-1,012...
n
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Example: Drop-like set

We take I' as a drop-like set of parametric

(eit)2
equation z(t) = which is not

1+ 2eit’
an analytic Jordan curve and its Riemann
mapping is
= 1
k —k
ér(z)= > (-1) +12k+2z . |z > 1.
k=-1

Now, ', = ¢r(rT) is an analytic Jordan curve Vr > 1. For every
€ S(I',) we can apply the diagonals theorem, then

1
. _ k+1 —k
Jim dn () = (FD)F
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Examples

Example: Hypocycloid

We take I as a hypocicloid of parametric

equation z(t) = et + = which

4 eit)4’
is not an analytic Jordan curve and its
Riemann mapping is

11
or(z)=z+ 154 |z| > 1.
Now, ', = ¢r(rT) is an analytic Jordan curve Vr > 1. For every
€ S(I',) we can apply the diagonals theorem, then

: : 1 4
im dp_yn(r) =r, lim dnian(r) = i 4 lim dy_n(r) =0,k # -1,
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Examples
Example: Cross-like set

We take I as a cross-like set formed by
the intervals [—a, a] y [—bi, bi] such that
its Riemann mapping is

2(22+ 12+ b2(22 — 1)2
o) = VI T TR

,|z| > 1.

In the particular case of a=b =1,

o(2) :f\/ﬁ:

The diagonals Theorem can be applied when we consider a measure
1 in the Szego class for I, for every r > 1.
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DT for rectifiable Jordan arcs

The diagonals theorem for rectifiable Jordan arcs

Theorem (The diagonals theorem for rectifiable Jordan arcs

Let D = (dj i=1 be a Hessenberg matrix associated with a measure

w with compact support on the complex plane. Assume that:

@ The measure yu is regular with support supp(u) a Jordan arc or
a connected finite union of Jordan arcs I' such that C\ T is a
simply connected set of the Riemann sphere C.

@ There exists a Hessenberg-Toeplitz matrix T such that D — T
defines a compact operator in ¢ with its rows in (1.

Then, the symbol of T is the Riemann function
¢:Coo \D— Cx \T.
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DT for rectifiable Jordan arcs

Example: Arcs of the unit circle T

[Golinskii-Nevai-Van Assche, 1995] 3y regular measure on I, an arc

- ~ 1
of the unit circle T, for which Py(0) =1 and P,(0) = 3 (a>1),if
n > 1, and the Hessenberg matrix D is

1 (2 — l/? (2 — 1)2/2 (22 — 1)3/2 (2 — 1)4/?
T3 B a2 B a3 - a* - ad
(& — 1)1/2 1 (22 ~1yl/? (% —12/2 (2 —13/?
- . T2 - 3 - 4 - 5
2 (& 7'31)1/2 al (a f1)1/2 (a fl)z/z
0 = 7 I — —
a a2 a3 a4
(&% —l/2 1 (2% — 1)1/2
0 0 = -= = 7
a 32 33
a—1 (a2 —1)/2(a—1) (22 —1)(a—1)
T2 - a3 - a*
Note that D— T = ’ S S o ]is

compact.
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DT for rectifiable Jordan arcs
Example: Arcs of the unit circle T

According to DT for arcs, the expression of the
Riemann mapping as a Laurent series is

z(a_mz)
=== m

a2 —1 1 a—1 o 1
- Z —_—,_——,—_—_—_— PR .
a a2 asz z2

Moreover, we can apply DT for analytic Jordan curvesin ', = ¢(r T)
for all p € S(I'y).

J

1
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