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Abstract

This paper proposes a method for the identi�cation of di�erent partial dis-

charges (PD) sources through the analysis of a collection of PD signals ac-

quired with a PD measurement system. This method, robust and sensitive

enough to cope with noisy data and external interferences, combines the char-

acterization of each signal from the collection, with a clustering procedure,

the CLARA algorithm.

Several features are proposed for the characterization of the signals, being

the wavelet variances, the frequency estimated with the Prony method, and

the energy, the most relevant for the performance of the clustering procedure.

The result of the unsupervised classi�cation is a set of clusters each con-

taining those signals which are more similar to each other than to those

in other clusters. The analysis of the classi�cation results permits both the

identi�cation of di�erent PD sources and the discrimination between original

PD signals, re�ections, noise and external interferences.
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The methods and graphical tools detailed in this paper have been coded

and published as a contributed package of the R environment under a GNU/GPL

licence.
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Nomenclature

αk Damping factor of the prony decomposition.

B Backward shift operator.

CLARA Clustering Large Applications.

∆t Sampling time of a signal.

D̃j jth level detail of an MRA with a DWT.

DWT Discrete Wavelet Transform.

H̃D
j The squared gain function associated with the wavelet �lter at scale

j.

λJ0 Scale J0 of a DWT.

MRA Multiresolution analysis.

ν2X,j Wavelet variance of the scale τj.

ωk Radian frequency of the prony decomposition.

PAM Partitioning Around Medoids clustering method.
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PD Partial Discharge

rν2X,j Proportion of variance for each wavelet variance

SDF Spectral density function.

σ2
X Variance of the time series Xt.

S̃J0 J0th level smooth of an MRA with a DWT.

Sj(f) Spectral density function of a time series of the DWT coe�cients at

scale j.

SX(f) Spectral density function of a time series Xt.

τj Scale j of a DWT.

W̃ N dimensional vector of DWT coe�cients.

W̃ N ×N real-valued matrix de�ning the DWT.

X N dimensional vector containing a real-valued time series.

Xt Real-valued time series.

zk Complex exponentials decomposing a real-valued time series.

1. Introduction

In order to enhance the reliability of high voltage equipment, partial dis-

charge (PD) tests have been carried out for more than 20 years. PD analysis

has been used to asses the condition of the insulation of power systems with

the aim to detect premature degradation in di�erent dielectrics.
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For an accurate diagnosis it is important to have a good sensitivity in

the acquisition process and powerful processing tools, especially when more

than one PD source is present in the test object and when the measure-

ment is performed under noisy conditions and in the presence of electronic

interferences.

The present paper deals with the identi�cation of di�erent PD sources

combining the individual characterization of each captured signal and the

unsupervised classi�cation of the set of signals. This method provides an

e�cient interpretation and evaluation of the phase resolved PD patterns ob-

tained in the PD measurement.

The method is built on three main steps:

1. A partial discharge measuring system �lters and crops an electrical

time series. This system is able to �lter noisy data and to detect

re�ected signals. After this step only a group of signals is retained and

provisionally labeled as original partial discharges (section 2).

2. Each signal is described with a set of features useful to divide the

group of signals in di�erent clusters, and to decide if a signal should be

regarded as a partial discharge or if it can be wiped out as noise or as

external interference (section 3).

3. The matrix of features which describes the collection of signals is the

input of a clustering or unsupervised classi�cation method (section 4).

The result of the clustering procedure is a set of di�erent clusters each

grouping those signals which are similar in the sense of the distance

computed with the features. The analysis of the characteristics of each

cluster allows for the identi�cation of di�erent PD sources present in
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the test object.

Di�erent statistical connections between PD sources and time series pat-

terns have been repeatedly used to link an speci�c discharge pattern to a

PD source [1], commonly using statistical descriptors of the collection (or

parts of it) as suitable features. Several authors [2, 3, 4] divide the voltage

cycle into phase windows, determine di�erent distributions and classify the

patterns with statistical operators summarizing these distributions. In [5]

the collection is characterized with several features such as phase position,

magnitude or shape, while [6, 7] use two fractal features of the whole image

for the pattern recognition.

Others authors [8, 9, 10] propose several signal descriptors to charac-

terize each PD signal, although these individual features are not used for

clustering techniques . The authors of the present paper, describe in [11] a

parametric method where the waveform of each signal is modelled with the

combination of two functions. These functions are de�ned with the main

frequency and with several waveform parameters of the signal. The result of

this parametrization is the input of a clustering method.

The present development also focuses on the characterization of each of

the signals captured by the data acquisition system. However, instead of

using a parametric approach, the model structure is not speci�ed a priori

but is instead mostly determined from data. This paper proposes a collection

of features to describe the PD data relying on few assumptions. From the

set of features to be detailed in section 3 the wavelet variance [12], and the

frequency estimated with the Prony method [13, 14, 15] must be highlighted.

The combination of these features and the clustering algorithm (section
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4) constitutes a powerful tool for a better interpretation of phase resolved

PD patterns, grouping the measured and �ltered signals in di�erent clusters.

The improvement in the interpretation of the acquired PD data is very useful

to discriminate di�erent PD sources present in high voltage equipment and

thus more reliable test results can be achieved.

2. Measuring system and denoising procedure

Throughout the document several examples are included to illustrate the

concepts and tools. These examples make use of a dataset comprising a

collection of 9955 signals acquired from a partial discharge o�ine test on a

high-voltage cable.

The experimental arrangement in our laboratory (�gure B.1) is composed

of three sections of XLPE power cable 12/20 kV with two joints. The length

of the test sample is 1500 m. A resonant high voltage generator energizes

the test sample at the nominal voltage of the cable with a frequency around

50 Hz.

This test sample presents surface discharges, and also corona from the

aerial connection. Besides, the resonant generator injects interferences due

to the commutation of the insulated-gate bipolar transistors (IGBTs). Con-

sequently, these interferences are synchronized with the sinusoidal signal from

the generator (�gure B.1).

The PD pulses are captured with a non-intrusive sensor (a high frequency

current transformer, HFCT) placed at the beginning of the power cable. This

HFCT sensor is connected to the PD measuring device. The measuring device

includes a denoising �lter tool and is able to separate the re�ected signals
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from the original PD pulses. Re�ections are identi�ed using a time window

after each original PD signal. The time size of this window is adjusted

according to the length of the circuit and to the amplitude of the PD signal.

Those pulses received inside the time window related to the original PD signal

with lower amplitude are classi�ed as re�ections. These pulses are removed

before the clustering procedure to improve its performance [11, 16].

The �gure B.2a displays a phase resolved partial discharge pattern of this

dataset previous to the �ltering procedure. The energy values have been

previously transformed with the techniques described at section 3.5. Part of

the signals have been labeled as re�ections as a result of the previous analysis.

The �gure B.2b displays the original dataset without the re�ections. This

�gure will be compared with the results of the clustering method (�gure B.3).

3. Features generation

The goal of the feature generation is to discover compact and informative

representations of the obtained data. Since our subsequent interest is to

break the collection of signals into useful groups, the features should lead to

large between-class distance and small within-class variance in the feature

vector space. This means that features should take distant values in the

di�erent classes and closely located values in the same class [17]. Moreover,

due to the large amount of data, there is a compromise between accurate

representation and computational complexity.

In a clustering context with no previous class labels for patterns, the

feature selection method involves a trial-and-error process: various subsets

of features are selected, the resulting patterns clustered, and the output
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evaluated using a validity index [18].

Several features have been previously proposed for partial discharges [1],

commonly using statistical descriptors of the collection (or parts of it) as

suitable features.

Several authors [2, 3, 4] divide the voltage cycle into phase windows rep-

resenting the phase angle axis and determine three distributions: the pulse

count distribution, which represents the number of observed discharges in

each phase window as a function of the phase angle; the mean pulse height

distribution, which represents the average amplitude in each phase window

as a function of the phase angle; the maximum pulse height distribution,

showing the maximum discharge magnitude in each window. Later on, these

distributions are summarized with statistical operators as skewness and kur-

tosis, whose results are used for the classi�cation procedure.

In [5] various descriptors as phase position, magnitude, shape, inception

symmetry, pulse distribution, range, density and magnitude consistency are

related, while [6, 7] use two fractal features (fractal dimension and lacunarity)

of the whole image for the pattern recognition.

Others authors propose several signal descriptors to characterize each

partial discharge signal in the context of PD tests on power transformers

and gas-insulated substations with UHF sensors [8, 9, 10], although these

individual features are not used for clustering techniques. The authors of

the present paper describe in [11] a parametric method where the waveform

of each PD pulse is modelled with the combination of two functions. These

functions are de�ned with the main frequency of the PD pulse and with

several waveform parameters. The results of the model are classi�ed with a
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clustering method and an arti�cial neural network.

The present development also focuses on the characterization of each of

the signals captured by the data acquisition system. However, instead of

using a parametrical approach, the model structure is not speci�ed a priori

but is instead mostly determined from data. This paper proposes a collection

of features to describe the PD data relying on very few assumptions. It must

be highlighted that the increased robustness of this non-parametric approach

usually requires a large sample size to draw useful conclusions. This drawback

is not a problem since PD measurements usually provide large datasets.

As previously stated, the feature selection method involves a trial-and-

error process: encouraging results have been obtained combining the cluster-

ing procedure detailed at section 4 with these features1:

• Wavelet variances at di�erent scales (subsection 3.1).

• Frequency and damping factors (subsection 3.2).

• Zero-crossing rate (subsection 3.3).

• Energy (subsection 3.4).

• Range (subsection 3.4).

• Maximum location (subsection 3.4).

• Length or number of samples (subsection 3.4).

These features are a compromise between accurate representation and

computational complexity. The most computationally expensive features are

1These features can be computed with the analysis function of the pdCluster package
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the wavelet variance and the frequency and damping factors, but they are

also the most informative for the clustering techniques. By means of variable

importance measures the candidate features can be compared with respect

to their impact in the clustering results. An analysis of variable importance

with random forests [19, 20] identi�es the wavelet variances, frequency and

energy as the most relevant features for the clustering method.

3.1. Wavelet variance

The theoretical development of this section follows the book of Percival

and Walden [21].

Let X be an N dimensional vector containing the real-valued time series

Xt : t = 0, . . . , N − 1. The Discrete Wavelet Transform (DWT) of X is a

transform given by W̃ = W̃X [21]. It is a linear �ltering operation which

produces a set of time-dependent wavelet and scaling coe�cients which are

related to variations over a set of scales.

The time series X can be recovered from the DWT with a multiresolution

analysis (MRA). In this analysis D̃j is jth level detail and S̃J0 is the J0th

level smooth. The jth level detail is associated to a scale τj ≡ 2j−1 while the

J0th level smooth is related to the scale λJ0 ≡ 2J0 .

X = W̃TW̃ =

J0∑
j=1

W̃T
j W̃j + ṼTJ0

ṼJ0 ≡
J0∑
j=1

D̃j + S̃J0 (1)

Besides, the energy decomposition of X can be de�ned only in terms of

the wavelet and scaling coe�cients:

|X|2 = |W̃|2 =

J0∑
j=1

|W̃j|2 + |ṼJ0|2 (2)
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The spectral analysis with the spectral density function, designed to work

with stationary processes, cannot be directly used on nonstationary processes

[22]. As an alternative, the wavelet variance, de�ned both for stationary

and nonstationary processes with dth order stationary backward di�erences,

provides a consistent summary of the information contained in the spectral

density function (SDF) on a octave band basis [21, 12].

Using the energy decomposition of the DWT (equation 2), the contribu-

tion of each scale to the variance of the time series Xt, σ2
X = 1

N
|X|2 − X2

can be determined with2

σ2
X =

1

N

J0∑
j=1

|W̃j|2 (3)

since 1
N
|ṼJ0 |2 ' X

2
.

Suppose that Xt is a stochastic process whose dth order backward di�er-

ence, Yt = (1 − B)d · Xt, is a stationary process (where d is a nonnegative

integer and B is the backward shift operator de�ned by BXt = Xt−1 and

BkXt = Xt−k). Then, the result of the DWT of Xt, if an adequate wavelet

�lter is used, is a set of coe�cients time series, W̃j,t, which can be regarded

as stationary processes whose SDF can be de�ned by:

Sj(f) = H̃D
j (f) · SX(f) (4)

where H̃D
j is the squared gain function associated with the wavelet �lter at

scale j [21].

2The limits of this sum must be corrected to include only those coe�cients which are not

subject to to re�ection conditions and then obtain an unbiased estimator of the variance.

However, for ease of exposition, the equation includes the whole set of coe�cients.
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If we denote with ν2X,j the wavelet variance of the scale τj, since the

variance of a stationary process is equal to the integral of its SDF, then:

ν2X,j =

∫ 1/2

−1/2

Sj(f)df =

∫ 1/2

−1/2

H̃D
j · SX(f)df (5)

Therefore, the variance of X is

σ2
X =

J0∑
j=1

ν2X,j (6)

The wavelet variance of each scale represents the contribution to the

SDF in the correspondent octave. The width of the octave of the scale τj is

1/(2j+1∆t), where ∆t is the sampling time of the signal, and the frequency

band of this scale is 1/(2j+1∆t) ≤ f ≤ 1/(2j∆t). The average value of SDF

over this interval is:

SX,j = 2j+1 ·∆t ·
∫ 1

2j∆t

1

2j+1∆t

SX(f)df (7)

Thus, the wavelet variance can be used as an estimator of the average

value of the SDF [21, 12]:

ν2X,j =
SX,j
2j∆t

(8)

The number of decomposition levels are limited by the length of the signal.

A minimum common number of levels must be de�ned for the collection of

signals, since they are di�erent in length (for example, the �rst four levels of

wavelet variance).
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Finally, the wavelet variance depends on the total variance of the signal

(equation (6)). Since another feature is measuring a similar value (energy,

subsection 3.4) the �nal wavelet variance feature3, rν2X,j, is the proportion of

variance for each wavelet variance:

rν2X,j =
ν2X,j
σ2
X

(9)

3.2. Frequency and damping factor: the Prony method

The classical frequency estimation methods, based on periodograms and

FFT algorithms, have a low computational cost. However, they share several

drawbacks, namely aliasing, resolution bias error or picket-fence e�ect and

leakage [23]. On the other hand, with a slight increase in the computational

cost, a parametric method is able to obtain high-accuracy frequency esti-

mates working with a relatively short data set [24]. Among these parametric

methods the Prony's method is a good compromise between accuracy and

computational e�ort.

A high voltage cable can be represented using the transmission line model,

with an in�nite series of distributed resistance, inductance, capacitance and

conductance components. The interaction of a partial discharge phenomenon

with such an structure results in a complex combination of attenuation, dis-

persion and re�ection e�ects. Under these conditions, a clean partial dis-

charge signal can be regarded as a �nite combination of damped complex

exponentials.

3This feature can be computed with the wavVarPD function of the pdCluster package.
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In this context, the Prony's method allows for the estimation of frequency,

amplitude, phase and damping components of the signal [13, 14, 15]. Let y(t)

be a time series, and yn the nth element of its discrete counterpart. If the

Prony assumption holds for yn, then it can be decomposed with L complex

exponentials zk:

yn =
L∑
k=1

akz
n
k (10)

with ak as complex constants, and n ∈ (1, 2, . . . , N) where N is the number

of samples of the time series.

The equation (10) can be solved with a weighted sum of a set of L past

values of the signal:

yn =
L∑
i=1

−ciyn−i (11)

Combining and rearranging equations (10) and (11) the following expression

results:
L∑
k=1

ak

L∑
i=0

ciz
n−i
k = 0 (12)

where c0 = 1. Since zn−i = zn−L · zL−i this equation can be rewritten as:

L∑
k=1

akz
n−L
k ·

L∑
i=0

ciz
L−i
k = 0 (13)

A solution for the equation (13) is

L∑
i=0

ciz
L−i
k = 0 (14)

with c0 = 1. Therefore, the zk complex exponentials that decompose the sig-

nal yn with the equation (10) are the roots of the polynomial of the equation

(14), whose coe�cients ci are the same of the sum of past values (equation

(11)).
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The zk complex exponentials can be expressed as zk = exp(αk+iωk). Here

αk are the damping factors and ωk the radian frequencies. Thus, the Prony's

method is able to provide the amplitude and phase (module and argument of

the complex coe�cients ak), and the damping factors and radian frequencies

for each of the signals composing the time series.

The procedure for the Prony's method4 is as follows:

1. With a �xed number for L, solve the linear equation (11). The solution

is the set of coe�cients ci of the polynomial of the equation (14).

2. Solve the polynomial of the equation (14). The solution is the set of

complex exponentials zk, and therefore the set of damping factors αk

and radian frequencies ωk.

3. The complex amplitudes ak are the solution of the system de�ned by

the equation (10). This is an overdetermined system since N > L. An

approximate solution can be obtained via a least squares method.

As an example of the procedure, the �gure B.4 shows a signal (black line)

approximated by several Prony estimations with di�erent number of complex

exponentials.

A drawback of this procedure is that the number of complex exponentials

L must be chosen a priori. It is possible to improve the method to decide the

number of components with a singular value decomposition (SVD)5 and to

cope with noisy signals [15]. However, the procedure as previously exposed

with L being high enough is recommendable because:

4This method is implemented under the prony function of the pdCluster package.
5http://en.wikipedia.org/wiki/Singular_value_decomposition
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• The signals are previously denoised with a wavelet �ltering method

[11, 16].

• Our main interest are only the two or three most important components

of the signal, being those with the highest relative energy of the set.

3.3. Zero-crossing rate

The zero-crossing rate6 is de�ned as [17]:

zcr =
1

2 ·N

N∑
n=1

|sign(xn)− sign(xn−1)| (15)

where the sign operator is de�ned as:

sign(xn) =

1 xn ≥ 0

−1 xn < 0

(16)

This is a basic feature that can be computed easily and provides infor-

mation about the oscillation speed of the signal.

3.4. Other features

There are other remarkable features included in the set: energy, range,

location of the maximum value and length of the signal.

The energy is a very simple feature that can be calculated with:

Ex =
N∑
n=1

x2n (17)

The range, |max(x)−min(x)|, the length of the signal, N , and the max-

imum location are easily computable features that do not deserve additional

explanations.

6This feature can be computed with the nZC function of the pdCluster package.
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3.5. Transformations

This set of features provides a matrix of values whose distributions func-

tions are strongly positively skewed. Thus, before using this matrix with the

clustering algorithm a transformation is recommended [17].

The matrix of features must be conveniently cleaned to wipe out possible

outliers7 and transformed with the family of the Box-Cox power functions8

[25]. These functions create a rank-preserving transformation and are rec-

ognized as a useful data pre-processing technique used to stabilize variance

and make the data more normal distribution-like.

Let x be the original feature and xλ the transformed feature. Then:

xλ =


xλ−1
λ

if λ 6= 0

log(x) if λ = 0

(18)

where λ is calculated for each feature with the Box-Cox method [25].

As an example, the �gure B.5 displays the histograms of the zero-crossing

rate for the partial discharge dataset before and after a Box-Cox transforma-

tion. Two groups can be clearly distinguished after the transformation.

4. Clustering

The subsequent step in this analysis is the unsupervised classi�cation or

clustering of the signal data. There is a wide variety of clustering techniques

[1, 18]. The CLARA algorithm (Clustering Large Applications) [26], a mem-

ber of the partitioning methods has been chosen. This method is a variant of

7The function filterPD of the pdCluster package implements this functionality.
8Available with the transformPD function of the pdCluster package.
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the Partitioning Around Medoids algorithm, PAM, which searches for k rep-

resentative objects, called medoids, among the objects of the data set. These

medoids are computed such that the total dissimilarity of all objects to their

nearest medoid is minimal. The CLARA algorithm is more indicated for

large datasets since it does not store the entire dissimilarity matrix. More-

over, it is possible to construct a quasi-fuzzy technique with consecutive calls

to this algorithm.

The �gure B.3 shows an energy phase resolved pattern9 using a combina-

tion of colours and transparency to show membership and density of points

in �gure B.3a, and encoding the distance to the medoid of each cluster with

colors in �gure B.3b. Those points labeled as re�ections (�gure B.2b) were

removed before entering the clustering procedure and are not shown in the

�gures.

The �gure B.3b displays a separated phase resolved PD pattern for each

cluster. These individual phase resolved patterns are the signatures generated

either by the defects present in the test object or by external interferences.

In most cases, the analysis of these patterns permits the identi�cation of

the defects and to discriminate di�erent interferences sources or un�ltered

background noise.

The relation of each cluster with the defects of the test sample arrange-

ment (section 2) can be deduced from �gures B.3. Cluster no.2 comes from

surface discharges (asymmetrical behaviour in both semicycles of the voltage

waveform and an arched shape in the positive semicycle) and cluster no.5 is

9The function claraPD and the method xyplot of the package pdCluster implement

this functionality.
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related to the corona e�ect (�at pattern in the negative half cycle shifted to

the left side of the crest in the voltage waveform). Cluster no.3 is the result

of the interference from the IGBTs of the voltage generator (pulses occur at

�xed points located over the zero crossings of the voltage waveform). Finally,

clusters no.1 and no.4 are noise data and re�ections (�at patterns all along

the period of the voltage waveform, no pulses synchronized with the applied

voltage) which could not be removed by the �ltering procedure (section 2)

[11, 16].

The �gure B.6 displays the density estimates for each feature and cluster.

Colours of �gures B.3a and B.6 identify the same cluster as determined by the

CLARA algorithm. It must be noted that the x-axis shows values previously

transformed with the techniques of section 3.5.

This �gure is a useful tool to understand the information provided by

each feature and the results of the clustering algorithm. As previously said

(section 3), the analysis of variable importance with random forests [19, 20]

identi�es the wavelet variances, frequency and energy as the most relevant

features for the clustering method. This �gure explains graphically these

results: these features generate density functions whose shape and location

are noticeable di�erent for each cluster.

The frequency feature produces sharp, unimodal and distant functions.

Clusters 2 and 5 (surface and corona defects) are located at the upper ex-

treme, clusters 1 and 4 (noise and re�ections) at the lower extreme, and

cluster 3 (IGBTs) at the middle.

The wavelet variances mimic this behaviour although with �atter and

more di�use functions. It is interesting to note that the relative position
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between the functions of wavelet variances of clusters 2 and 5 change from

the �rst to the fourth scale.

These two clusters are clearly separated with the energy feature, with

sharp functions which almost do not intersect. The function of the cluster 3

is located at the upper extreme and, again, the functions of clusters 1 and 4

can be found at the lower extreme.

It must be underlined that none of the variables is able to separate all

the clusters by itself. A cluster can be more clearly visible using a particular

feature (for example, the cluster no.3 is easily identi�ed with the frequency

feature) but the rest of the clusters are not so well de�ned with this same

variable. The adequate results are obtained with the cooperation of the set

of features. For example, the clusters no.2 and no.5 are the most di�cult

(and interesting) to separate. Although they intersect in several features,

their behaviors are di�erent from feature to feature and so the clustering

algorithm is able to distinguish them.

5. Conclusion

This paper proposes a method for the identi�cation of di�erent PD sources

combining the characterization of each signal acquired with a PD measure-

ment system, and the unsupervised classi�cation of the collection of signals.

The collection of signals is the output of a �ltering and cropping proce-

dure applied to the electrical time series produced by the PD measurement

system. Each signal of the collection is described with a set of features using

a non-parametric approach. These features, a compromise between accurate

representation and computational complexity, have been chosen to combine
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adequately with the clustering method, the CLARA algorithm.

A variable importance analysis with random forests identify the wavelet

variances, the frequency estimated with the Prony method and the energy,

as the most relevant features for the clustering method.

This set of features provides a matrix of values whose distributions func-

tions are strongly positively skewed. Thus, before entering the clustering

procedure, the matrix is transformed with the family of the Box-Cox power

functions. Groups which were hidden in the original distributions are clearly

distinguished after the transformation.

The unsupervised classi�cation procedure generates a set of clusters each

grouping those signals more similar in the sense of the distance computed

with the matrix of features. The analysis of the classi�cation results, both

with a phase resolved pattern graphic and with the estimation of the proba-

bility density functions, permits the identi�cation of the di�erent PD sources

and to discriminate between original PD signals, re�ections, external inter-

ferences and noise.

6. Software tool

The methods and graphical tools here exposed have been coded in the

R environment [27] and published as a contributed package [28] under a

GNU/GPL licence. This package includes a reference manual and an intro-

ductory document with examples.
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Appendix A. Graphical exploratory tools

This section provides information about graphical tools suitable for the

exploration of PD datasets. These large multivariate datasets are not ade-

quately represented with conventional approaches. Our �rst proposal com-

bines the conventional phase resolved patterns with the hexagonal binning,

and the second proposal shows relation between variables with enhanced

scatterplot matrices built upon hexagonal binning.

The display of a large number of points in a scatter plot produces hidden

point density, long computation times for selected enhancement operations,

and slow displays. These problems can be circumvented with the estimation

and representation of points densities. A common encoding uses gray scales,

pseudo colors or partial transparency. An improved scheme encodes density

as the size of hexagon symbols inscribed within hexagonal binning region

[29].

The �gure B.7 shows a phase resolved partial discharge pattern build with

a hexagonal binning representation. Darker blues are used for bins with tens

of points, while lighter blues denote those bins where less than ten points are

found. Clusters of points are clearly visible.

The scatterplot matrices [30] are based on the technique of small multiples

[31, 32]: small, thumbnail-sized representations of multiple images displayed

all at once, which allows the reader to immediately, and in parallel, compare

the inter-frame di�erences. A scatterplot matrix is a display of all pairwise

bivariate scatterplots arranged in a p×p matrix for p variables. Each subplot

shows the relation between the pair of variables at the intersection of the row

and column indicated by the variable names in the diagonal panels [33].
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The �gure B.8 shows an enhanced version of this tool using a feature

matrix from a collection of partial discharges:

• The diagonal panels include the univariate density function estimation

for each feature.

• The lower panels include a local polynomial regression �tting (loess)

[30] to ease the identi�cation of relations between variables.

• Each panel display represent densities of points with a hexagonal bin-

ning, as described above.

With this dataset, several connections can be observed. The wavelet

variances are linearly related between them. Another linear relation can be

found between the range and the energy. The frequency, the zero-crossing

rate and the wavelet variances are also linearly related although with a higher

dispersion. These variables are connected with the damping factor but in a

non-linear fashion.
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Appendix B. Figures

List of Figures

B.1 Layout of the experimental arrangement used for the partial

test on a high-voltage cable. The resonant high voltage gener-

ator, source of electronic interferences due to IGBTs, is located

at point 1. There is also a corona defect at this point 1, and

a surface defect is present at point 4. . . . . . . . . . . . . . .

B.2 Phase resolved partial discharge pattern of the dataset. The

y-axis shows the energy feature as described in the section

3.4. This feature has been previously transformed with the

tools detailed at section 3.5. The color encoding represents

the number of samples per bin. . . . . . . . . . . . . . . . . .

B.3 Phase resolved partial discharge pattern. The energy values

have been previously transformed (section 3.5). Re�ected sig-

nals (�gure B.2b) are not shown in these �gures. . . . . . . . .

B.4 Prony method with di�erent number of complex exponentials.

B.5 Histograms for the zero-crossing rate feature of a partial dis-

charge dataset before and after a Box-Cox transformation. . .

B.6 Density estimates for each feature and cluster for a partial

discharge dataset: RefMax is the maximum location, Wi is

the wavelet variance corresponding to the i-th level, N is the

number of samples of the signal, nZC is the zero-crossing rate,

freq1 and damp1 are the frequency and the damping factor.

Values of the x-axis are the result of the Box-Cox functions. .

B.7 Phase resolved partial discharge pattern with hexagon binning.
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B.8 Scatterplot matrix of a collection of partial discharges, where

all the variables are confronted together with their kernel den-

sity estimations in the diagonal frames. RefMax is the maxi-

mum location,Wi is the wavelet variance corresponding to the

i-th level, N is the number of samples of the signal, nZC is the

zero-crossing rate, freq1 and damp1 are the frequency and the

damping factor. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure B.1: Layout of the experimental arrangement used for the partial

test on a high-voltage cable. The resonant high voltage generator, source of

electronic interferences due to IGBTs, is located at point 1. There is also a

corona defect at this point 1, and a surface defect is present at point 4.
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Figure B.2: Phase resolved partial discharge pattern of the dataset. The

y-axis shows the energy feature as described in the section 3.4. This feature

has been previously transformed with the tools detailed at section 3.5. The

color encoding represents the number of samples per bin.
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Figure B.3: Phase resolved partial discharge pattern. The energy values have

been previously transformed (section 3.5). Re�ected signals (�gure B.2b) are

not shown in these �gures.
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Figure B.4: Prony method with di�erent number of complex exponentials.
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Figure B.5: Histograms for the zero-crossing rate feature of a partial dis-

charge dataset before and after a Box-Cox transformation.
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Figure B.6: Density estimates for each feature and cluster for a partial dis-

charge dataset: RefMax is the maximum location, Wi is the wavelet variance

corresponding to the i-th level, N is the number of samples of the signal, nZC

is the zero-crossing rate, freq1 and damp1 are the frequency and the damping

factor. Values of the x-axis are the result of the Box-Cox functions.
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Figure B.7: Phase resolved partial discharge pattern with hexagon binning.
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Figure B.8: Scatterplot matrix of a collection of partial discharges, where all

the variables are confronted together with their kernel density estimations

in the diagonal frames. RefMax is the maximum location, Wi is the wavelet

variance corresponding to the i-th level, N is the number of samples of the

signal, nZC is the zero-crossing rate, freq1 and damp1 are the frequency and

the damping factor.
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