
Towards Understanding Reasoning Complexity in
Practice

Francisco Martı́n-Recuerda Dirk Walther

Universidad Politécnica de Madrid, Spain
fmartinrecuerda@fi.upm.es

dirk.walther@upm.es

Abstract

Although the computational complexity of the logic underlying the standard OWL 2 for the Web
Ontology Language (OWL) appears discouraging for real applications, several contributions have shown
that reasoning with OWL ontologies is feasible in practice. It turns out that reasoning in practice is often far
less complex than is suggested by the established theoretical complexity bound, which reflects the worst-
case scenario. State-of-the reasoners like FACT++, HERMIT, PELLET and RACER have demonstrated
that, even with fairly expressive fragments of OWL 2, acceptable performances can be achieved. However,
it is still not well understood why reasoning is feasible in practice and it is rather unclear how to study
this problem. In this paper, we suggest first steps that in our opinion could lead to a better understanding
of practical complexity. We also provide and discuss some initial empirical results with HERMIT on
prominent ontologies.

1 Introduction
We start our exposition with an experiment that shall illustrate and motivate our cause. The experiment
shows that the size of an OWL ontology and the expressivity of the language in which it is formulated does
not fully determine the time a reasoner takes to compute the answer to a reasoning problem. As input on-
tologies we use two variants of the well-known biomedical ontology GALEN: GALEN-UNDOCTORED and
its modified version GALEN-DOCTORED [19]. In the experiment, we measure for each concept name of
the ontology, the time needed to determine whether or not it is satisfiable wrt. the ontology. We choose the
state-of-the-art reasoner HERMIT1 to perform this task. We observe that for the majority of concept names
the reasoner is very fast, but, surprisingly, also that it takes significantly longer in some cases. The distribu-
tion of the reasoning times for GALEN-UNDOCTORED are shown in Figure 1(a) (the x-axis shows the time
in milliseconds and the y-axis the number of concept names). HERMIT takes in 82% of the cases less than
150 ms, whereas it takes more than 5 sec. for the other 18%. In practice, depending on the requirements
of the application, such a variance in reasoning time may be tolerated as long as hard cases occur relatively
seldom. On the other hand, when confronted with strict real-time constraints, we may find it unacceptable.
The situation is different for GALEN-DOCTORED, which is GALEN-UNDOCTORED but with 253 axioms
removed (out of 24 091 axioms in total). The modification affected only the internal structure of the ontol-
ogy but not its signature (i.e. the terms defined in it) nor the language it is represented in (i.e. all language
operators are still used). As Figure 1(b) shows, all difficult cases have disappeared. All those concept names
for which HERMIT took several seconds before to determine their satisfiability, they are now checked as
quickly as all the other terms. That is, relatively small changes in the input can have a seemingly dispro-
portionally large impact on reasoning performance. We reduced the size of the ontology by less than 1%
which caused an over 50-fold speed-up of HERMIT for some terms (e.g., for the concept name MonsPubis).
The observed phenomenon is not specific to HERMIT (and its particular optimisations), a similar change in
reasoning time can be observed with other reasoners as well. Thus it seems that implementation details of
reasoners cannot sufficiently explain the phenomenon, even though they can affect reasoning performance

1www.hermit-reasoner.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) GALEN-UNDOCTORED (b) GALEN-DOCTORED

Figure 1: Distribution of reasoning times of HERMIT on variants of GALEN

in unexpected ways [14]. In this paper, we do not consider implementation details nor the actual speed of
computation (by the hardware), we are mainly interested in the input of a reasoner and how it makes reason-
ing hard. We hypothesise that there is a notion that solely depends on the internal structure of an ontology
and that correlates well with reasoning performance. With the help of this notion we may possibly be able
to predict reasoner performance on an ontology.

Expressive logics facilitate the development of ontologies, but whether we find their computational com-
plexity for reasoning acceptable depends on the application. The W3C currently recommends OWL 2 as
standard for the Web Ontology Language (OWL). The standard is based on the Description Logic SROIQ
(with data types), which was designed with the intent to overcome the expressive limitations of the logic
SHOIN underlying the previous standard OWL-DL. The goal was to provide the ontology developer with
any desirable (but reasonable) expressive means for easy and intuitive modelling as to make the SROIQ
even more useful in practice [10]. In short, SROIQ extends the basic Description Logic ALC [1] with
nominals and qualified number restrictions, and it allows to impose many powerful conditions on roles such
as (ir)reflexivity, symmetry, transitivity and universality, and between roles like complex role inclusions and
disjointness. It seems that in terms of expressivity SROIQ indeed does not leave much to be desired. But
what can be said about its usefulness regarding reasoning? According to the well-known trade-off between
expressivity and computational complexity, more expressivity tends to come at a higher expense of complex-
ity. SROIQ is intractable in general, i.e., reasoning can be too time-consuming to be useful. According to
the current consensus, however, at least for some applications, the benefit of SROIQ’s expressive power
outweighs its intractability. This is, even though its computational complexity was established to be a stag-
gering N2EXPTIME-complete [11]. In the light of this result, complete reasoning with OWL 2 ontologies
seems rather unpromising. One needs to keep in mind though, that such a complexity bound holds for all
possible inputs, including the input most difficult to reason with. Fortunately we do not often deal with worst
cases in practice, because we do not make full use of the expressive power available in the language. For in-
stance, one sure way to reduce complexity of reasoning is to abstain from using certain language constructs,
i.e. to work within a fragment of SROIQ. But developers tend to use the full language when, otherwise,
it would be detrimental to their modelling capability. Besides, we do not necessarily have to restrict our-
selves to fragments in order to enjoy feasible reasoning. The expressivity of a logic does not fully determine
the difficulty inherent in a particular ontology. This will depend too on what is actually formulated in the
ontology.

This observation is well-known in the automated theorem proving community. Theorem provers solve
problem instances formulated in First-Order Logic whose satisfiability problem is undecidable. No reasoner
could possibly compute an answer on every input. Even though there is no hope for complete reasoning,
sound reasoning is feasible for many problem instances as is demonstrated with the library with Thousands
of Problems for Theorem Provers (TPTP)2. Every problem is rated according to its difficulty and this rating
is determined according to the actual performance of state-of-the-art reasoners [17]. Here the notion of

2http://www.tptp.org

difficulty depends on both the input and the reasoner. It remains unclear, however, what exactly makes a
problem difficult.

The example above illustrates a variance in reasoning time when checking the satisfiability of terms
in (variants of) GALEN using HERMIT. We argue that there is a more general principle behind this phe-
nomenon. The performance of reasoners seems to largely depends on the internal structure of an ontology.
We dub ‘practical complexity’ the complexity of reasoning with ontologies occurring in practice, where the
ontologies contain a particular class of structures. An understanding of practical complexity seems to be
relevant to developers and users of ontologies but also to developers of reasoners. It would have an im-
pact on ontology design, maintenance and reuse. Understanding what makes reasoning hard can guide the
modelling process of ontologies as to avoid hard reasoning. In this sense, efficiency becomes a modelling
principle in ontology design. Existing ontologies may be optimised towards efficient reasoning by detecting
and avoiding inefficient modelling. Ontologies may be designed to yield “efficient” modules, which may
make them preferable candidates for reuse. By understanding efficient reasoning, users may choose a selec-
tion of ontologies to be imported that together yield efficient reasoning, and developers of reasoners may be
guided towards implementing more efficient optimisations.

Much existing work in knowledge representation and reasoning seems relevant in this context. We
benefit from a wealth of complexity theoretic results of knowledge representation formalisms, primarily
Description Logics, that inspired the implementation of actual reasoning systems. A recently emerging
area that received much interest is the investigation of the modular structure of ontologies to facilitate their
reuse [7] and also approaches relevant for ontology versioning that study the logical difference and incre-
mental reasoning [13, 4]. The notion of modularity plays a key role in these approaches [7, 12]. However,
these lines of research do not consider, at least not explicitly, reasoning complexity in practice and provide
explanations for it.

Empirical results have shown that pathological problems that would lead to worst-case behaviour rarely
occur in realistic applications [9]. Several efforts have been made to produce experimental settings [5, 14, 2]
that facilitate automated evaluation of OWL reasoners. However, performance is measured following a
black-box approach, where the implementation details of the reasoner are abstracted away and only external
variables are considered. These settings are used to identify and classify hard cases, but they say little about
why they are hard. To improve this situation, applications have been created that monitor the inner workings
of a reasoner during execution of a reasoning task, e.g. ‘Tweezers’ [18] for PELLET or a Protégé plug-in
for model exploration based on FACT++ [3]. These implementations seem useful for studying reasoning
complexity in practice, but we are not aware of any systematic study based on them. An alternative ap-
proach is to use justifications, which are minimal subsets of an ontology implying that a certain concept is
satisfiable [8, 2]. The approach is interesting, however, so far it is not clear how reasoning complexity can
be explained.

In this paper, we suggest a different, empirical approach for a systematic study of reasoning complexity
in practice. The general aim is to explain what makes reasoning hard. The actual time needed to perform
the reasoning task depends (besides the hardware) on the reasoner and its input. We therefore investigate
the correlation of reasoning time and other metrics internal to the reasoner (thus avoiding a black-box ap-
proach) with various syntactic features of the input ontology. Here we focus solely on the reasoning task that
determines whether or not a concept name is satisfiable wrt. an ontology. Regarding the syntactic features,
a manual inspection of ontologies seems infeasible, especially with ontologies containing thousands of ax-
ioms. Instead we employ modularisation techniques to determine the relevant part of the ontology involved
in a term’s definition. After extracting a module for a term, we investigate the syntactic properties of the
module and study in how far they correlate with the reasoning time. It turns out, for instance, that the size of
the modules is not a sufficient criterion for telling apart “difficult” from “easy” terms, on which the reasoner
is respectively slow or fast. Modules of “easy” terms can be as large as the modules of “difficult” terms, and
vice versa.

The paper is organised as follows. We skip a preliminary section, where we would formally define
the notion of ontologies and modules, the Description Logics they are represented in and the reasoning
tasks; instead we refer to the relevant literature. In Section 2, we give more details about our empirical
approach to studying practical complexity, i.e., how we measure the performance of HERMIT and how we
analyse ontologies syntactically. We continue with discussing the results of the experiments with real-world
and artificial ontologies in sections 3. The paper closes with conclusions in Section 4. Full details of the
experiments and their evaluation can be found in a long version of the paper.

2 Description of Approach
In this section, we describe in more detail our empirical approach to studying reasoning complexity in prac-
tice. We start with describing what appears to be the main difficulties for such an approach. An analysis of
reasoner behaviour is complicated as reasoners are often badly documented even though they have become
sophisticated applications using optimisations and heuristics (triggered by certain language constructors).
Source code may not be available under open source licenses. Tool support for collecting execution details
of reasoners is rarely available or not well-documented. Configuration details in the test bed (e.g., the op-
erating system chosen) or in the OWL reasoner (manual activation or deactivation of certain optimizations)
can significantly affect the performance measured. With few exceptions like the Tones ontology reposi-
tory3, BioPortal4 and the SEALS infrastructure5 there are no services available for researchers for searching
and retrieving OWL ontologies that have been previously curated and properly documented (annotated).
Moreover, we rely on automated tools as ontologies are often too large for manual inspection.

We now fix some parameters to narrow down the scope for the study of reasoning complexity in prac-
tice. We start our investigation within the following setting. Instead of dealing with several OWL reasoners
that implement different algorithms together with particular optimisations and heuristics, we focus on one
reasoner only, namely HERMIT v1.3.4. In all experiments we use HERMIT to check for the satisfiability
of concept names wrt. ontologies. HERMIT is a state-of-the-art OWL 2 reasoner able to process SROIQ-
ontologies [16]. The reasoning algorithm is a hybrid of resolution and tableau and it is optimised to reduce
OR- and AND-branching during the creation of the tableau, which have been identified to be main sources
of complexity. In fact, the algorithm exhibits no non-determinism on ontologies such as GALEN, NCI and
SNOMED CT. These ontologies and GO are frequently used for evaluation purposes [19] and we use them
not at least because of their relatively weak languages, that would trigger less optimisations and heuristics
of HERMIT. We also benefit from HERMIT’s open source license and its built-in its debugging and moni-
toring facilities. The lack of documentation was compensated by the readiness of the developers to discuss
implementation details. Of course, these restrictions only partially simplify the problem as we still have to
deal with large ontologies.

In the experiments, we will measure the time needed by HERMIT to perform a SAT-test of a concept
name wrt. an ontology. Moreover, we employ the built-in profiler to collect other execution details to see
how exactly HERMIT spends its time reasoning. On the other hand, we investigate how the concept name
under consideration is defined and related to other terms in the ontology. To this end, we extract the so-called
⊥-local module for the concept name [6] using the ‘Locality Module Extractor’6. Tool support was decisive
for the choice of module, even though there may be irrelevant axioms in these modules [7]. We study the
syntactic characteristics of each module and investigate in how far they correlate with the execution details
of the reasoner.

To characterise the reasoning complexity we commonly rely on time and memory consumption of the
reasoner, but we will also consider other metrics. Note that we decided to exclude the time needed for
HERMIT to load and preprocess the input ontology. This may not be acceptable when comparing the per-
formance of several reasoners. To minimize noise in the measures, we repeated the SAT-test for a concept
names 100 times and we calculated the median of the reasoning times collected for each test (cf. ‘median
SAT-time’ in Table 2). We do not use the mean (or average) of the reasoning times as this notion is more sus-
ceptible to extreme values, which we observe in our experimental setup; see, e.g., [2] for more discussion on
mean vs. median. It is well-known that OR-branching (i.e. the exploration of non-deterministic choices) in
a tableau, is fairly expensive. For studying this specific phenomenon with HERMIT, we monitor the number
of non-deterministic choices explored (‘# branching points’) and the number of backtracks (‘# backtracks’).
For the measuring memory consumption, we only consider the number of nodes in the tableau produced by
the reasoner (‘# tableau nodes’). Apart from the reasoner, we consider a selection of syntactic properties
of the ⊥-local module that includes all the axioms needed for the definition of the concept name. For in-
stance, we consider the expressivity of a module, the number and kind of axioms it contains, and the size
and constituent parts of its signature; cf. Table 2. The goal is to analyse how these variables are correlated .

Next to the ontologies mentioned above, we create artificial ontologies of different sizes by instantiating
certain axiom pattern. Then we study how the performance of HERMIT is affected by inputs of different

3http://owl.cs.manchester.ac.uk/repository/
4http://bioportal.bioontology.org
5http://www.seals-project.eu
6http://krono.act.uji.es/people/Ernesto/safety-

Name Description Axiom Scheme

axiom chain v–chain of concept names of length n whose Ai v Ai+1

final concept is subsumed by the bottom concept An v ⊥
axiom cycle v–cycle of concept names of length n Ai v Ai+1

An v A0

role chain role chain of length n whose leaf concept is Ai v ∃r.Ai+1

subsumed by the bottom concept An v ⊥
role cycle role cycle of length n Ai v ∃r.Ai+1

An v A0

binary tree binary tree of depth n whose leaf concepts are all Ai v ∃r.Ai+1 u ∃s.Ai+1

subsumed by the bottom concept An v ⊥
binary tree (cyclic) binary tree of depth n whose leaf concepts are all Ai v ∃r.Ai+1 u ∃s.Ai+1

subsumed by the root concept An v A0

Table 1: Ontology pattern of size n ≥ 0 (i ranges over {0, . . . , n− 1})

sizes and compare this with the performance on real-world ontologies. Table 1 presents the definition of the
patterns together with a description.

3 Evaluation of the Experiments
In this section, we discuss the results of the experiments. We first describe the experiments with the real
ontologies and then the ones with the artificial ontology pattern.

3.1 Experiments with Real Ontologies
For each of the ontologies considered, Table 2 provides the values for the hardest satisfiability test executed
and the maximum values that we have obtained for a selection of the metrics considered.

Metrics Ontologies

of GALEN-UNDOC. GALEN-DOC. GO NCI SNOMED CT

HERMIT hardest max hardest max hardest max hardest max hardest max
test value test value test value test value test value

median
7 439 7 439 176 176 14 14 250 250 1 389 1 389SAT-time (ms)

branchings
-1 -1 -1 -1 -1 -1 -1 6 152 -1 -1points

backtracks 0 0 0 0 0 0 0 0 0 0
tableau nodes 17 317 17 317 1 368 1 540 17 149 137 403 2 055 2 055

Metrics of
modules

expressivity ALEHIF+ ALEHIF+ ALER+ ALC ALCH ALEH ALEH
axioms in 2 381 2 776 940 1 040 211 176 211 465 412 7 862 642 1 278
≡-axioms 131 202 78 98 0 0 1 1 931 149 264
v-axioms 1 231 1 449 279 386 54 259 205 2 378 204 469

signature size 712 844 349 389 45 129 169 3 516 286 546
concept

551 655 226 256 34 118 158 3 463 275 534names
role names 161 195 123 133 2 4 11 53 11 74
individual

0 0 0 0 9 9 0 0 0 0names

Table 2: Execution details of HERMIT vs. syntactic features of ⊥-local modules

For all ontologies (except NCI), the maximum values for the metrics ‘# branching points’ and ‘# back-

tracks’ are always -1 and 0, respectively. This means that HERMIT works deterministically on those on-
tologies, i.e., it did not have to handle disjunctions during reasoning (OR-branching). These ontologies
are expressed in the Description Logic Horn-SHIQ and they can be translated into Horn-clauses without
“unnecessary” non-determinism [16]. OR-branching is usually very expensive in terms of computational
resources and many optimizations for OWL reasoners have been designed to minimize it [9].

Regarding OR-branching, the results for NCI are also interesting. The maximum values for the met-
rics ‘# branching points’ is ‘6 152’, for ‘# backtracks’ is 0, and for ‘# tableau nodes’ (used for building
the tableau) is 403 (cf. the right part of the column for NCI in Table 2). So, HERMIT has explored thou-
sands of disjunctions without performing any backtrack and keeping the size of the tableau relatively small.
According to the developers of HERMIT, this is due to an optimisation called individual reuse that imple-
ments existential expansion non-deterministically with the goal of creating smaller models and significantly
reducing backtracking [15].

Table 2 also discovers an interesting behaviour of HERMIT for the Gene Ontology (GO). The hardest
concept satisfiability test requires 14 ms and the ‘# tableau nodes’ for building the tableau are 17. However,
the maximum value for ‘# tableau nodes’ is 149. Looking at the results of other concept satisfiability tests,
we found similar cases that required less than 14 ms, but allocated more than 17 nodes for building the
tableau. Two possible explanations where suggested by the developers of HERMIT. The first one is that
the results were affected by the noise of the test environment (i.e., insufficient precision when measuring
time, background processes, etc.). As checking satisfiability of concept names in GO take relatively little
time, the time measured is easily distorted by external factors. However, re-running the experiments several
times yielded similar results. A possible explanation is that HERMIT has to deal with millions of axioms
in GO that slows down the performance due to searching for applicable clauses. This issue requires further
investigation.

Another aspect worthy to discuss is the perception of the hardness of an ontology. Comparing the maxi-
mum values of ‘median SAT-time’ for each of the ontologies considered in this study, GALEN-UNDOCTORED
is the ontology with the highest value, 7 439 ms. This value is about seven times higher than the highest
value for SNOMED CT, 1 389 ms. But SNOMED CT is about 146 times larger than GALEN-UNDOCTORED
and the language used for defining SNOMED CT is slightly less expressive. We see that difficulty of an on-
tology is not determined by the language an ontology is formulated in or its size, but how terms are defined,
i.e. the internal structure of the ontology.

As it was mentioned in the introduction, it is also interesting to see the impact on the performances of
HERMIT when 243 axioms were deleted in GALEN-UNDOCTORED to create GALEN-DOCTORED. In the
case of the former, the hardest concept satisfiability test requires 7 439 ms and 17 317 nodes where allocated
for building the tableau. For GALEN-DOCTORED, however, the hardest concept satisfiability test requires
176 ms (42 times less) and only 1 368 nodes in the tableau were allocated (13 times less). That is, the
reasoner now creates a much smaller tableau and requires much less time for it. This is because removing
the axioms causes HERMIT to apply fewer existential expansions. For a more precise explanation, we need
to study the internal behaviour of HERMIT more closely.

Finally, we investigate in how far the metrics correlate to one another. A strong correlation between
metrics can indicate a causal relation between them possibly explaining what makes reasoning hard. Table 2
contains only fairly simple syntactic metrics that are related with the size of modules. Unfortunately, we
did not find strong correlations between the input metrics and the metrics of the reasoner. However, this
negative result is preliminary and we cannot conclude that there are no correlations between the certain
syntactic properties and reasoning time. We plan to extend the syntactic metrics to additionally take into
account the internal structure of the ontologies.

Next we evaluate the experiments with ontologies whose structure is well-understood – the artificial
ontology pattern.

3.2 Artificial Ontology Patterns
Here we evaluate the experiments with the six ontology patterns defined in Table 1. We are interested in
the degree of difficulty of a pattern, i.e., in how far reasoning time increases with increasing size of pattern
instances. Table 3 shows the time HERMIT needs to determine whether the concept name A0 is satisfiable
wrt. instances of the patterns. The size of the pattern instances ranges over 1 000, 5 000, 10 000, 50 000
and 100 000. Note that we restrict ourselves to pattern size here, but, given the pattern size and pattern

definition in Table 1, we can easily determine the actual size (i.e. counting all symbols) of the respective
pattern instance.

Pattern SAT-test time (in ms)

size n axiom axiom role role binary binary tree

chain cycle chain cycle tree (cyclic)

1 000 1 5 8 8 23 23

5 000 5 5 172 170 389 403

10 000 11 11 632 634 1 646 1 647

50 000 121 122 32 939 33 001 109 983 82 976

100 000 205 225 152 352 151 253 344 846 345 381

Table 3: SAT-times of HERMIT on ontology patterns of increasing size

We observe that both pattern ‘axiom chain’ and ‘axiom cycle’ are far easier to reason with than all the
other patterns. The reasoning time grows nearly linearly with the input size and, as expected, the size of
the tableau is always 1. The other patterns cause a significantly stronger increase in reasoning time with
increasing pattern size. The time for the patterns ‘binary tree’ and ‘binary tree (cyclic)’ grows 2-3 times
faster than ‘role chain’ and ‘role cycle’. We notice that cyclicity (as modelled in the patterns) does not much
affect reasoning time, but we suspect the depth of role nesting to have a significant impact.

4 Conclusion
We are interested in explaining reasoning complexity in practice, where we often do not encounter compu-
tational worst-case scenarios. The goal of this paper is to define and validate the initial stages of a more
broad study that contribute to improve our understanding of reasoning complexity in practice. To this end,
we introduced several restrictions to simplify the problem in order to facilitate a systematic empirical study.
We investigated practical complexity by performing some experiments with prominent biomedical ontolo-
gies such as GALEN, GO, NCI and SNOMED CT using the OWL 2 reasoner HERMIT. As reasoning task
we focussed on the satisfiability test of a concept name wrt. an ontology. Clearly, the actual time needed to
perform the reasoning task depends (besides the hardware) on the reasoner and the input. We had a closer
look at both, i.e., we studied various variables ranging over syntactical features of the input ontologies (the
module for the concept name to be precise) and over some performance details from HERMIT (obtained via
its internal profiling function). The goal is to check in how far any of these variables correlate, possibly
indicating a causal relation between them, which may help us to identify what makes reasoning hard. It
turns out that reasoning time cannot sufficiently explained with the syntactic features of modules that were
considered in this work. This finding suggests to consider more refined structural information of the on-
tologies. We leave this for future work as well as contrasting these findings with the performance of other
reasoners, e.g., PELLET. We also investigated the time required by HERMIT to reason with various simple
ontology pattern. The experiments show that module size for a concept name is not sufficient to predict a
certain time needed to check for satisfiability. The internal structure of the ontology needs to be taken into
account as well.

We also conclude that the built-in profiler of HERMIT can be used as an analytical tool for a better
understanding of practical complexity. Unfortunately, due to the lack of documentation, this tool should be
hardly accessible for non-developers.

Acknowledgements

This work has been supported by the EU project SEALS (FP7-ICT-238975), the ‘Juan de la Cierva’ program
(MICINN-JDC, ref. JCI-2009-05801) and by the SAS Institution7. We would also like to thank Birte Glimm,
Boris Motik and Ernesto Jiménez-Ruiz for their valuable support.

7http://www.sas.com

References
[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Descrip-

tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.

[2] S. Bail, B. Parsia, and U. Sattler. Justbench: a framework for owl benchmarking. In Proceedings of
ISWC’10, pages 32–47, Springer, 2010.

[3] J. Bauer, U. Sattler, and B. Parsia. Explaining by example: Model exploration for ontology compre-
hension. In Proceedings of DL’09. CEUR-WS, 2009.

[4] B. Cuenca Grau, C. Halaschek-Wiener, Y. Kazakov, and B. Suntisrivaraporn. Incremental classification
of description logics ontologies. Journal of Automated Reasoning, 44:337–369, 2010.

[5] T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an automated comparison of description logic
reasoners. In Proceedings of ISWC’06, pages 654–667. Springer, 2006.

[6] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount: extracting modules from
ontologies. In Proceedings of WWW’07, pages 717–726. ACM, 2007.

[7] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies: theory and practice.
Journal of Artificial Intelligence Research, 31:273–318, February 2008.

[8] M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in owl. In Proceedings of
ISWC’08, pages 323–338. Springer, 2008.

[9] I. Horrocks. Implementation and optimisation techniques. In The Description Logic Handbook: The-
ory, Implementation, and Applications, Chapter 9, pages 306–346. Cambridge University Press, 2003.

[10] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proceedings of KR06, pages
57–67. AAAI Press, 2006.

[11] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In Proceedings of KR08, pages 274–284. AAAI
Press, 2008.

[12] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularisation. In Modular
Ontologies, LNCS, pages 25–66. Springer, 2009.

[13] B. Konev, D. Walther, and F. Wolter. The logical difference problem for description logic terminolo-
gies. In Proceedings of IJCAR’08, pages 259–274. Springer, 2008.

[14] M. Luther, T. Liebig, S. Böhm, and O. Noppens. Who the heck is the father of bob? In Proceedings of
ESWC’09, pages 66–80. Springer, 2009.

[15] B. Motik and I. Horrocks. Individual Reuse in Description Logic Reasoning. In Proceedings of
IJCAR’08, volume 5195 of LNAI, pages 242–258. Springer, 2008.

[16] B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description Logics. Journal of
Artificial Intelligence Research, 36:165–228, 2009.

[17] G. Sutcliffe and C. Suttner. Evaluating General Purpose Automated Theorem Proving Systems. Arti-
ficial Intelligence, 131(1–2):39–54, 2001.

[18] T. D. Wang and B. Parsia. Ontology performance profiling and model examination: first steps. In
Proceedings of ISWC’07/ASWC’07, pages 595–608. Springer, 2007.

[19] M. Yatskevich, G. Stoilos, I. Horrocks, and F. Martin-Recuerda. D11.1 Evaluation design and col-
lection of test data for advanced reasoning systems. Technical report, 2009. http://about.

seals-project.eu/downloads/category/1-

