
Scalable software architecture for on-line multi-camera video
processing

Massimo Camplani and Luis Salgado

Grupo de Tratamiento de Imágenes, Universidad Politécnica de Madrid, 28040, Madrid, Spain

ABSTRACT
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees
a good trade off between computational power, scalability and flexibility. The software system is modular and
its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor
of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an
approach to easily parallelize the desired processing application has been presented. In this paper, as case study,
we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple
2D object detection modules in a real-time scenario. System performance has been evaluated under different
load conditions such as number of cameras and image sizes. The results show that the software architecture
scales well with the number of camera and can easily works with different image formats respecting the real time
constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with
a low level of overhead.

Keywords: Multi-Camera system, on-line video processing, background subtraction, mixture of Gaussians

1. INTRODUCTION

Multi-camera systems are becoming more and more popular thanks to the growing computer processing capabil­
ities and the decreasing prices of high quality cameras. Moreover, the demand of new and more efficient systems
for several applications such as video surveillance1'2 , 3D acquisition systems3 , virtual rooms4 and immersive
teleconferencing systems5 , is encouraging the researchers to find new and optimized solutions. The advantages
of multi-camera systems in these contexts is that they overcome classical problems of mono camera systems
such as occlusions, limited field of view and the possibility to extract from the scene 3D information. On the
other hand, multi-camera systems pose challenging problems to the research community mainly related to the
management and the analysis of the huge amount of data provided by the system.

A common way to tackle this problem is to develop multi-camera systems using smart cameras6 . The main
idea of the smart camera is to build a single node that encloses both acquisition and processing algorithms. These
approaches are well suited for real time image processing since they rely on the presence of dedicated hardware
such as FPGA and DSP7 . Moreover, they have been also widely used in large camera systems, like sensor
networks8 , for their low power consumption characteristics. However, this solution has some drawbacks. In fact,
dedicated hardware can present lack of flexibility, especially for high level image processing tasks. Furthermore,
the design of cooperative tasks and distributed software is not straightforward9 . Also the communication
between cameras is a crucial point for the efficiency of the system.

An alternative solution to tackle these issues ,often used in indoor environments, is based on a centralized
server architecture, where the central server collects and processes all the data. The main limitations of this model
are that it is very power demanding, it requires a large bandwidth communication channel and, obviously, it does
not allow a high degree of scalability2 . An improvement of the centralized server architecture is constituted by
peer to peer network of computers where different nodes manage different cameras. This model in our view is one
of the most attractive one since it is an hybrid solution that guarantees a good trade off between flexibility and
scalability. Many software packages have been developed for on line video processing in network of computers
environments 10~13 .

E-mail: {mac, L.Salgado}@gti.ssr.upm.es. Web: http://www.gti.ssr.upm.es/

http://ssr.upm.es
http://www.gti.ssr.upm.es/

In this paper we propose a software architecture for efficiently managing multi-camera video processing in
real time scenarios with off the shelf work stations. The aim of this architecture is to guarantee a good trade off
between computational power, flexibility and scalability for single node applications. The design and the use of
multi-camera systems are not straightforward and need a deep knowledge of system details ranging from process
communication, resource allocation to camera data transfer and multi-threading programming. However, a final
user, like a computer vision algorithm developer, can not know (and probably does not need to know) all the
system details. For these reasons, our choice has been to develop an architecture that is able to hide many
of the multi-camera system details from the user and that can be easily adapted to different video processing
applications without a great effort. The proposed architecture is scalable since can manage many camera data
streams; it is flexible because it can work on different hardware platforms and with different kinds of acquisition
devices. Furthermore, the proposed architecture has a modular structure that allows to easily integrate it with
custom video processing applications. Moreover, the architecture has been developed in order to be lightweight
and does not require many computational resources. Finally we propose an approach that allows to easily
parallelize the desired video processing application in order to exploit the processing capabilities of the host
machine.

The proposed software architecture has been tested in a multi-camera system in order to efficiently manage
multiple 2D object detection tasks in a real-time scenario. As background estimation algorithm the Gaussian
Mixture Model, presented by Stauffer and Grimson14 , has been used. System performance has been evaluated
under different load conditions such as variable number of cameras and image sizes.

The paper is organized as follows: in sec. 2 an overview of the proposed software architecture is given. In sec 3
the implemented system and the case study are introduced. Results are shown in sec. 4, and finally conclusions
are drown in sec. 5.

2. SOFTWARE ARCHITECTURE OVERVIEW

The development of a multi-camera system presents many critical points to manage such as: process commu­
nication, resource allocation, camera data transfer or efficient multi-threading management strategies. These
issues can represent a bottleneck in application development for non expert users. Moreover, users like computer
vision algorithm developers prefer not to deal with all these details. For these reasons we propose a software
architecture that is able to guarantee a trade off between computational power and flexibility thus shielding the
final user from many low level details of the multicamera system.

The proposed software architecture is a scalable, modular and flexible architecture for multi-camera system
management in real time scenarios. The architecture is scalable since it can manage and process efficiently
multiple data stream adding small overhead and saving useful computational resources. It is also scalable
because it can be used with a variable number of cores in multi-core host machines.

It is modular since it is composed (see the following paragraphs for more details) by functional blocks that
operate independently in different phases of the overall processing chain. This modularity allows the developer
to modify and integrate with new software each block without affecting the structure of the others.

The architecture is flexible since it can be easily adapted to different scenarios. First of all it is flexible in the
sense that it is hardware independent: it can be easily ported on different host machines and it is not related
to any particular model or type of camera. It is also flexible from the point of view of the data, in fact all the
modules are automatically adapted to different image formats or sizes. Moreover, the architecture is designed
to operate in off the shelf machines with commercial operating systems (no Real Time Operating Systems are
required) and without the use of any dedicated hardware.

The software architecture is fully developed in C + + and the management of image data and the processing
tasks is based on OpenCV libraries15 (version 2.1). This choice is motivated by the fact that this is a widely
used library for computer vision applications. Moreover, OpenCV base developments can be easily implemented
in the software architecture.

As shown in fig. 1 there are two main modules of the software architecture: the Central Unit and the
Processing Unit (PU). These are logic modules and do not correspond necessarily with a physical node (i.e. a

work station): for example, the same work station could be the host of several PUs and the Central Unit. The
Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the
processing phase.

PUn

PU1

PU4

Figure 1. Software Architecture main modules.

2.1 Central Unit

The Central Unit is a lightweight component that initializes, monitors and closes all the processes. First of all
it checks the state of all the cameras in the system and it assigns an identifier camID to each running camera.
The camID is used also to label the acquired images that are univocally identified by it and the time stamp (see
section 2.2.1). The camera settings are acquired (i.e. frame size, gain and other settings) and, thanks to this
information, the PUs are initialized. The Central Unit starts and stops the acquisition. During the acquisition
the Central Unit gathers all the information from the modules of the system, such as frame rate, processing time
and the state of the image buffer (see section 2.2.3). It is also in charge to correctly close all modules and shut
down the system.

Although system initialization, monitoring and shut down are the main tasks of the Central Unit, its func­
tionality can be extended or modified. In particular more complex Central Units can be designed to collect
the results of each processing module and combine them in the case that high level tasks are required by the
application. An example of more sophisticated Control Units can be found in an our previous work16 where the
Control Unit tunes the parameters of a background subtraction algorithm in order to reduce the computational
load.

2.2 Processing Unit

As previously mentioned, the PUs are logical modules that can be executed either in multiple or in a single
physical node. The system is scalable since each PU can be connected with one ore more cameras. The PU is in
charge to manage the incoming data streams and process them and it is constituted by three functional blocks
as shown in fig. 2: the acquisition module (AM), the image buffer manager (IBM) and the processing module
(PM). Basically AM is in charge of continuously acquiring the images and deliver them to the IBM. The IBM
is the module that manages the buffer (of fixed size) where the acquired images are temporally stored. It takes
care of the buffer accesses and manages undesired situations like buffer overflows. The PM reads the images
stored in the buffer and processes them. These modules operate independently and this aspect confers a great
modularity to the global software architecture. The decoupling between AM and PM is very attractive for the
final user, since he can design his processing tasks without taking care of acquisition and camera details. Also
the independence of the IBM is very interesting, since it is possible to use different management strategies as a
function of the desired application. For example, the frame skipping strategy could be changed by replacing the
default implementation that discards the newest frame, with a new strategy that discards the oldest one.

Sync

System

CAMERA 1

CAMERA 2

CAMERA 3

Acquisition

Module

Acquisition

Module

Acquisition

Module

Image Buffer Manager

Image Buffer Manager

Image Buffer Manager

Processing Unit

Processing

Module

Processing

Module

Processing

Module

Figure 2. PU main modules.

2.2.1 Camera and Image Data

The data coming from the camera devices are converted to OpenCV data structure (Mat Class). In fact, as
previously mentioned, the software architecture has been integrated with OpenCV libraries. Moreover, once the
images are acquired, the camera identifier camID and a frame number identifier framelD are assigned to them.
All the other modules of the software architecture work with this meta-data (image and identifiers).

The software architecture hides the low level details of the camera management. In particular, the access to
the device features is possible throughout a class called cameraManager. The use of this class allows to wrap
each device into its corresponding object in the software architecture. The methods of the class allow to modify
device parameters (i.e. frame rate, image size, exposure time, etc.) and open and stop a data stream. This level
of abstraction guarantees a high flexibility to the software architecture since it is possible to use it with different
camera models, without affecting the other software modules that work always with the same object interface.
In our case, we developed cameraManager modules for two different types of cameras: JAI17 and AXIS18 .

Particular attention has to be paid to the camera synchronization system. As it can be observed in fig. 2, this
system does not belong to the PU modules and it can not be completely enclosed in our software architecture.
Camera synchronization is a critical task in multi-camera systems and the required accuracy depends on the
particular application and on the acquisition devices in use. When a very precise synchronization is needed, the
most used solution is hardware synchronization. In other situations, a software synchronization system could
fulfill application requirements, using for example tools and libraries like Network Time Protocol (NTP)19 .
The cameraManager class gives the possibility to set the synchronous (or asynchronous) acquisition, but the
triggering system (software or hardware) is an independent module.

2.2.2 Acquisition Modules

The AM allows to acquire images from the devices and deliver them to the IBM. AM initializes the acquisition
tasks and then it starts a continuous process that is activated when a new image is available. When a new image
is acquired, it is labeled with the corresponding cameralD and imagelD and the data is converted in a OpenCV
data structure. Then the images are delivered to the IBM. It is worth noting that overflow buffer conditions do
not affect the AM since it is the IBM module that is in charge to write the image in the buffer and manage the
overflow condition.

2.2.3 Image Buffer Manager

The image buffer is used to compensate the different rates with which the flow of data is acquired by the AM
and processed by the PM. In fact, whereas the acquisition rate remains constant, the processing rate can present
deviations from a fixed value. This aspect is particularly relevant in our application since it is based on general

purpose processors where the available computational resources have to be shared among different applications.
For this reason, the presence of the image buffer avoids (up to a certain limit) frame skipping. Moreover, the
image buffer confers to the system another degree of modularity: in fact, PM and AM are completely decoupled
and they can be modified (or substituted) without affecting each other because they interact with the IBM.

The IBM is a module that manages the accesses to the buffer. The buffer access is thread safe since a
semaphore system guarantees that only one process can write on the buffer (the AM) and one process can read
an image from it (the PM). A specific policy to handle buffer overflow is defined in this module: it is possible
to eliminate the oldest frame or choose to skip the newest one. The IBM communicates to the Central Unit the
presence of new frames and of the occurrence of overflow condition.

The IBM is a quite lightweight module of the PU since the buffer contains pointers to the images: no images
are copied during reading and writing operations: for each image the space in memory is allocated by the AM
and released when PM ends the task.

2.2.4 Processing Module and Task Parallelization

The PM has one main task: continuously reading images from the buffer and processing them. It is the most
customizable module of the entire software architecture. This module is the one that has to be developed by
the final user (i.e. developer of video analysis algorithms) and it can be constituted by any processing task,
including visualization or image storage. There are a few design specifications for this module. The PM has to
be implemented as a cascade two blocks: the first block is already provided by our software architecture and
handles the interface with the IBM, allowing to easily read images from the buffer (in case of empty buffer the
interface suspends the PM operations until a new frame is available); the second block is the implementation of
the desired application.

As aforementioned, the modular architecture guarantees great advantages for the developer since he is able
to integrate his software without paying attention to other issues like acquisition. Moreover, it could give more
flexibility to the user application, in the sense that it allows to implement different processing tasks on the
different data streams.

The PM is the time-critical point of the entire software architecture. In general, the other modules do not
perform tasks that require a lot of processing resources, hence, meeting real time constraints will depend on the
efficiency of the PM implementations. Although there are many programming tricks that can help to reduce the
processing time of the desired application software, in some cases they turn out to be insufficient.

An obvious solution could be found performing a parallelization of the application: this solution is indeed
particularly attractive in the case that a multi-core host machine is used. However, following this approach could
be time consuming during the application software development and makes more difficult the integration with
the overall software architecture.

In order to ease the application software implementation and integration in the PM module, we developed a
strategy that allows to easily parallelize the application without affecting the modularity and the flexibility of
the overall architecture.

The proposed strategy is based on a pipeline scheme, that is one of the most suitable approaches for image
processing tasks parallelization. Furthermore, this approach allows to parallelize the desired applications at a
high level, thus shielding the users from thread-level programming details.

The pipeline is a cascade of several stages that are executed in parallel (i.e. using different threads). Each
stage performs a specific processing task with the input data coming from the previous stage and passes the
results to the next stage. This approach allows to implement the desired application using data level parallelism
or task level parallelism. Data parallelism can be used in case of low level image operations such as preprocessing
and filtering and all the pixel wise algorithms. In fact, identical image processing tasks are applied to different
regions of the image. In task level parallelism, each pipeline stage corresponds to a different operation on the
image. This kind of parallelization method is very convenient in high level tasks, like object tracking or objects
recognition. The throughput of the pipeline is theoretically limited to the slowest pipeline stage.

Independently of the type of parallelization that will be applied, the aspect on which the developer has to
concentrate is the identification of the sub-blocks into which the desired application can be divided. Sub-blocks

are simple operations that can not be further decomposed, such as filtering operations, lens distortion correction,
color plane conversion etc. Once the sub-bocks of the desired application have been identified, it is possible to
design the pipeline stages as single sub-block or a set of them. Then the pipeline is built as a cascade of stages.
In the proposed software architecture, it has been developed a library containing pipeline stages that perform the
most common image processing tasks, like filtering, image transformation etc. Also a library containing different
pipeline models has been implemented. These software components can be reused, combined and extended
speeding up the software development process of the desired application. The final user can implement in a
seamless way data parallelism, task parallelism or a mixture of those, but it is recommended to keep the pipeline
stages balanced as much as possible to avoid continuous pause of threads waiting the end of the previous stage.
The design flow of processing task is shown in fig. 3.

Sub Blocks Design Pipeline Stage Design Pipeline Design

Processing Task

SB3
SB2

j

SB4

Figure 3. Processing Task design flow.

This part of the software architecture uses, as a core for the pipeline management, the Intel Thread Building
Block libraries20(TBB). These libraries allow to easily develop multi-threading and parallel applications. We
have developed a software layer to adapt these libraries to our software architecture and to the image processing
field.

The software development efforts to build a pipeline stage are minimal. In fact, each stage has to be imple­
mented as a class that acts as a wrapper of the assigned sub-blocks. The parameters relative to each sub-block
(i.e. coefficients, thresholds, image size etc.) are assigned to the wrapper class attributes. The wrapper class
has a function that is used to execute the pipeline stage. This function has one input, corresponding to the
data coming from the previous pipeline stage, and one output that is passed to the next pipeline stage. The
input/output parameter exchanged by pipeline are basically images or more complex data structures containing
more information. It is necessary to exchange pointers to these data structures to avoid object copy and slow
down the execution of the stage. It is worth noting that the first pipeline stage has to enclose also the module to
access the image buffer. The image pointer is propagated to the pipeline and processed by each stage. Usually,
the acquired image memory is released in the last stage of the pipeline.

A pipeline has to be designed as an object that contains the pipeline stages and the data structure needed
to monitor their execution. Information, like processing time, or results are evaluated and passed to the Cen­
tral Unit. It is important to underline that only one thread at a time can execute a pipeline stage: threads
synchronization is managed by the TBB.

This approach guarantees that the same pipeline will work correctly in different host machines. For example,
the same pipeline can be executed in different host machines with different number of cores, as there is no hard
link between number of pipeline stages and the number of available cores. It is clear that a long pipeline will take
advantage of the presence of many cores; on the other hand an overestimated pipeline (very long pipeline or few
data to process) will decrease the overall performance of the software architecture since the overhead introduced
by the pipeline will be greater than the benefits of parallelization.

In conclusion, the advantages for the developer in using this parallelization approach are several: sub-block
level modularity, code reuse, no specific multi threading programming skills required and platform flexibility.
The point to consider is that the sub-blocks design and the pipeline system have to be carefully designed.

Stage 1 Stage 2 Stage 3

3. CASE STUDY: MULTI-CAMERA OBJECT DETECTION
Multi-Camera systems are well suited for surveillance applications since they can avoid problems encountered
with single camera one such as occlusions and limited field of view. In this research area one of the most
challenging problems is objects tracking and positioning in 3D environment. Usually, independent 2D object
detection algorithms are applied to each camera node and then this information is fused by a 3D tracking module
(an example can be found in the works by Mohedano et al.21 '22).

In this paper as case study we apply the proposed software architecture to a multi-camera system to efficiently
manage multiple 2D object detection modules in a real-time scenario. Each object detection module is based on
background subtraction algorithm. Background subtraction is a technique that estimates a background model
of the scene and, then, any deviation from the model is considered as a potential moving object. Different
background modeling techniques have been presented in the literature23 .

As background subtraction algorithm we have implemented the one proposed by Stauffer and Grimson14 .
In this algorithm each pixel is modeled independently as a mixture of Gaussian distributions. The algorithm is
composed by two fundamental steps: the first step is the estimation of whether or not a pixel belongs to the
background model; during the second step the Gaussian parameters are updated. This pixel-wise approach is
computationally demanding since for each pixel all the parameters of the distributions have to be updated. More
details about mixture of Gaussians algorithms are presented in appendix A. From now on we will refer to this
background subtraction algorithm as the GM algorithm.

3.1 OBJECT DETECTION: PROCESSING TASKS
The block diagram of the object detection module is shown in fig. 4. The processing chain can be decomposed
in three main processing tasks: pre-processing, GM algorithm and post-processing.

The pre-processing tasks include Bayer to RGB conversion, white balance operations, lens distortion correc­
tion and color space conversion. We decide to include the tasks of Bayer to RGB conversion and white balance in
the acquisition module; as it can be noted these tasks in fig. 4 are enclosed in the yellow box. Cameras have been
calibrated with the calibration toolbox developed in our research group24 and the estimated intrinsic camera
parameters have been used to correct the lens distortion as suggested by Hartley et al.25 . The color space
conversion is necessary to switch from RGB color space to YCbCr color space. The original GM algorithm14 is
applied to the RGB color space: in this work the authors assume the channels of that space are independent;
however, this hypothesis does not hold and other works have shown that the YCbCr is more noise resilient than
RGB26 . For these reasons, we decide to apply the GM algorithm to the YCbCr color space without subsampling
on the color components (YCbCr 4:4:4).

The second task is constituted by the GM algorithm. Although the GM algorithm can be further decomposed
in two blocks, foreground/background pixel estimation and parameters update, we have decided to implement it
in a single one. This implementation leads to a more efficient algorithm in terms of computational cost. In fact,
the two blocks choice would slow down the algorithm since it would be necessary to iterate on the parameters
twice: one time for pixels classification and the other one for parameters update. Moreover, the parallelization
of these two blocks would not be straightforward, since it would require thread synchronization at pixel level:
when the classification of one pixel has finished the update procedures can start. Therefore, this solution would
introduce an unacceptable overhead in the pipeline: for this reason, this option has been discarded.

In our implementation of GM algorithm in a single block, there is a single structure that contains all the
distributions parameters, that allows to classify the pixel (as part of background or foreground) and update the
parameters in the same iteration. The only disadvantage of this approach is that it is demanding from a point
of view of the memory occupancy since it requires several contiguous memory blocks.

Post-processing tasks are needed to refine the results of the GM algorithm. A typical output of a background
subtraction algorithm is a binary mask that represents the foreground object in the scene (pixels set to 1). This
mask is usually corrupted by noise and errors introduced by the background subtraction algorithm. For these
reasons, useful techniques such as morphological processing are used in order to reduce the errors. A comparative
study27 on different background subtraction algorithms showed that these procedures can significantly improve
the results. In our application we have decided to apply an erosion and a dilation operation with different (size
and shape dependent) structuring elements.

Processing Module

Acquisition Module

Data Stream

Figure 4. Block diagram of the image processing tasks.

3.2 MULTI-CAMERA SYSTEM OVERVIEW

The software architecture has been tested on a multi-camera system composed by 3 cameras and one commercial
work station. Camera models are JAI CB-080 GE28 that is a Giga ethernet camera that delivers 8bit Bayer
images at a maximum resolution of 1032 x 778 with maximum frame rate of 30/ps. The workstation is equipped
with two quad core processors of the Intel Xeon family29 (Intel Xeon X5550), 16GB of RAM and fast HD (15krpm)
in RAID-0 configuration. The work station and the cameras are connected through Giga-Ethernet interfaces
with a point to point connection.

It is important to highlight that in our application high accuracy of image synchronization is required to
correctly fuse the information extracted by the individual 2D object detection modules. For these reasons we
develop an external triggering system that allows to minimize the synchronization error. In particular, the
cameras have been connected in a master-slave configuration where the timing circuit of the master camera is
used to generate the trigger of the system. The acquisition of the cameras, master included, is governed by the
generated trigger signal. The symmetry of the connection circuit guarantees that all the cameras are tightly
synchronized with a synchronization error of the order of /xs.

We decide to build an unique PU that can manage up to three camera streams.

4. RESULTS

In this section the performance of the proposed software architecture will be analyzed taking as testbed the
case study that has been previously described. Two version of the architecture will be compared: one with
a PM module integrated with the pipeline system (PVap) and the other one with the original version of the
application(Oap). In particular, the proposed software system has been tested in different scenarios, varying
the number of cameras, image size and color space. Results will show that the architecture is able to efficiently
manage multiple data streams and that the parallelization approach allows obtaining a sensible reduction of the
processing time.

As far as the image size is concerned, we tested the software architecture with four different image sizes: the
maximum size of the images provided by the camera 1032 x 778; 900 x 670; a SVGA resolution 800 x 600 and a
VGA resolution 640 x 480. From the point of view of the color space we have implemented two options: applying
background subtraction algorithm using all the three components of the YCbCr(4:4:4) space or, conversely, using
only the luminance component Y.

From now own we will use the acronym pT to indicate a processing time and frmax to indicate the maximum
frame rate achievable by a processing task. Moreover, each pT reported will be expressed in ms and each frmax

will be expressed in frame per second (fps).

In table 1 the pT and the frmax of the overall application (Oap) and of the pT of the three sub-blocks are
reported for different image sizes and different color spaces. In table 1 the first two columns indicate the color
space and the image size. It is worth noting that the implemented GM algorithm has been carefully optimized.

In fact, thanks to our optimized implementation, when applied to the YCbCr space, it does not require a pT
triple respect to the pT of the algorithm when only the Y component is considered. However, as it can be
noticed, it is still the bottleneck of the application. For instance Oap at full image size could work with a frmax

of about « 13/ps if only the luminance plane is considered during the background subtraction algorithm, and
« 9fps in the case of the YCbCr space.

These results show that, when considering the full image size, it is not possible to operate on a real time
scenario, for this reason a speed up of the processing task can be obtained using the pipeline approach. In the
next sections two examples of the task parallelization and data parallelization using the proposed architecture
will be presented. It is shown how the original application can be easily redesigned to be adapted to the pipeline.
Moreover, results show that the overhead introduced by the pipeline system is small with respect to the increasing
performance of the system.

Table 1. Processing Time of the image processing task and its sub-blocks (expressed in ms).

Color Plane

YCbCr

Y

Img. Size
640x480
800x600
900x680
1032x778
640x480
800x600
900x680
1032x778

pTO a p

40.30
62.98
79.57
106.96
29.60
45.42
57.49
75.69

fr O
11 raaxuap 24.81

15.88
12.57
9.35
33.79
22.02
17.39
13.21

pT Pre-proc.
12.56
19.70
24.87
33.59
12.76
19.59
24.83
32.76

pT GM
25.87
40.41
51.08
68.59
14.94
22.99
29.05
38.27

pT Post-proc.
1.88
2.86
3.62
4.78
1.89
2.84
3.61
4.66

4.1 P I P E L I N E F O R T A S K P A R A L L E L I Z A T I O N

In this section a task parallelization strategy for the proposed case study is presented. The processing module
could be parallelized using a three stage pipeline where each stage is constituted by one of the three sub-blocks
previously identified: pre-processing (including lens distortion correction and color space conversion), the GM
algorithm and the post-processing block. The proposed pipeline model and its stages are reported in fig 7.

STAGE-1 STAGE-2 STAGE-3

Pre-Processing
GM

Algorithm
Post-Processing

Figure 5. Implemented three stages pipeline.

In table 2 the frmax of the Oap and of the pipeline version of the application (PVap) are reported for different
image sizes and in the case of the luminance color space. The first column represents the image size, the second
and the third one are the frmax of the algorithm expressed in fps for Oap and PVap. As it can be noticed, PVap

leads to a gain of « 90% for all image sizes. By using PVap the processing task can work with a frmax of about
~ 25fps with full image size. The speed up gain has been calculated as:

G = ¿_rnax _ X) . 1 0 0 (1)

\ J i max /

where fr^™x and / r^"*| are respectively the frmax of the application that we want to evaluate and the frmax

of the application used as a reference. By Considering eq. 1, a negative value of Gs corresponds to a decrease of
the performance.

These results show that the idea to design the processing algorithm in a pipeline fashion is very positive
since it allows to speed up the entire application without a great effort from the point of view of the final user.

Table 2. frr, Gs and overhead of PVa,

Image Size
640x480
800x600
900x680
1032x778

J^'max ^ap

33.79
22.02
17.39
13.21

J^'max -L v ap

64.39
41.44
32.37
24.98

Gs (%)
90.57
88.22
86.10
89.08

Overhead (ms)
0.59
1.14
1.84
1.77

Moreover, these results show tha t the overhead introduced by the pipeline of the software architecture, presented
in the fourth column of table 2, is very low (< 2ms). The overhead has been calculated as the difference of
the pT of PVap with respect to pT of the ideal pipeline, where the throughput is limited by the GM algorithm.
The throughput of the ideal pipeline, in the case of full size images, is « 26 fps. As it can be noticed, with the
proposed pipeline the obtained throughput is « 25fps.

This software architecture and this pipeline model have been applied to all da ta streams coming from more
than one camera simultaneously. Results of these experiments are reported in fig. 6 and table 3. Straight lines
fig. 6 represent the of Oap, and dashed lines represent
scenarios with different number of cameras

frr,
of PVap. Different colors are used to identify

£

&

100-

90-

80-

70-.

60-

50-

40-

30-

20-

10-

0

-B- Orig. Application one camera
-0- Orig. Application two cameras
-0- Orig. Application three cameras
-B- Pipeline one camera
-0- Pipeline two cameras
-0- Pipeline three cameras

G
E

>0<la

- : . : : : : : = = £= = - ; ; ; :
j . , . - - - - - :

JQ"""

.g:--':::::

_ _ _ - - -
" _ " , . " _ " - <

, - - - <
1----^

•j

3

0.3 035 0.4 0.45 0.5 0.55 0.6 0.65

Image Size[Mpixel]
0.7 0.75 0.1

Figure 6. of Oap (solid line) and of PVap (dashed line) as a function of the image size. Blue lines refer to one
frmax " x ^apV^^ ' " ' ^ » " " fr

camera scenario, red and black lines refer respectively to two and three camera scenarios

Let us consider the proposed software architecture without the pipeline approach (solid lines in fig. 6), it is
possible to see tha t the software architecture guarantees the same performance (good scalability) with one or
two cameras (where blue and red line are overlapped). The three cameras case leads to a increase of the

frmax '

This is probably due to the intrinsic limitations of the specific case study. In fact the GM algorithm is not only
computational demanding (continuous update of Gaussian parameters) , but it requires a lot of available memory
since it is necessary to store several parameters for each Gaussian model of each pixel. The software architecture
guarantees good performance since a three cameras system could be able to process an image stream of the size
800 x 600 (« 0.5Mpixel) with a frame rate of « 20fps, thus satisfying real time requirements. On the contrary,

the three cameras case is too slow for a real time application when using a full image size (frame rate of « 12 fps);
also in this case the performance can be improved using the pipeline approach.

Let us focus on the performances of the proposed software architecture coupled with the pipeline approach:
the corresponding curves are depicted with dashed lines in fig. 6. It is important to notice that PVap with
multiple cameras performs even better (obtaining a positive Gs) if compared with Oap using a single camera. In
fact, as it can be noticed from fig. 6 dashed lines stay below the solid line corresponding to Oap with one camera.
It is worth noting that also in this case the software architecture scales well with the number of cameras.

These results are clearly reported in table 3 where the frmax of the Oap and the PVap are reported for
different image sizes and number of cameras. The Gs is calculate with respect to Oap applied to a single camera
(see second column of table 2). As it can be noticed, if Oap is used, a small and negative Gs is obtained for
the two cameras system and a negative one is obtained (« 10%) in the three cameras system. By using PVap,
positive Gs is always obtained. For example, in the case of three cameras and at the maximum image size, the
gain is « 22%, this means that the multi-camera system can work with a frame rate of « 17fps, whereas Oap

with one camera has a frame rate of « 13fps.

Table 3. frmax and Gs in multi-camera scenarios.

Cameras

2

3

Img. Size
640x480
800x600
900x680
1032x778
640x480
800x600
900x680
1032x778

J^'max ^ ap

33.83
21.76
17.24
13.05
30.52
20.02
15.60
11.92

Jfmax i vap

59.43
37.85
29.72
22.16
42.75
26.98
21.19
17.11

^ s ^ ap

0.14
-1.19
-0.88
-1.21
-9.66
-9.08

-10.33
-9.79

Gs PVap

75.91
71.91
70.85
67.74
26.52
22.55
21.84
29.51

4.2 H Y B R I D P I P E L I N E

In this section, another example is given in order to prove the modularity and flexibility of the proposed architec­
ture and that will demonstrate the possibility to easily re-design and re-integrate a different PM. This example
highlights the advantage of using the pipeline approach that combines both data and tasks parallelism.

Let us consider our case study with one camera, full image size and the GM algorithm applied to the entire
color space. By following the results obtained in sec. 4.1, it is possible to see that a task parallelization approach
would lead theoretically to a frmax very close to « lAfps, limited by the speed of the GM algorithm.

A more efficient solution could be obtained combining data and task parallelization. In particular, we decide
to implement a four stage pipeline where the first stage is composed by the preprocessing sub-block, and the
other three pipeline stages apply the GM algorithm and the post-processing tasks to three different regions of
the image. The proposed pipeline model and its stages are reported in fig 7.

STAGE-1 STAGE-2 STAGE-3 STAGE-4

Pre-Processing
3M & Post-Proc.

Region 1
t GM & Post-Proc.

Region 2

GM & Post-Proc.

Region 3

Figure 7. Implemented hybrid pipeline.

Table 4 reports the frmax for different image sizes (first column). The second column contains the frmax

of Oap; the third one contains the frmax of PVap; the fourth one represents the obtained Gs and the last one
contains the overhead introduced by the pipeline. As it can be noticed, the designed pipeline allows to reach a
considerable value of Gs, always greater than 130%. For example considering a data stream of full size images

with Oap it is possible to manage a stream of « 9/ps, using PVap it is possible to process a stream of about
~ 25fps. Furthermore, it has to be noticed that in the case with full size images, an higher gain is obtained
respect to the low resolution case. In the low resolution case the regions on which each pipeline stage operates are
probably too small and the overhead effect is much more evident. In this case, it is more suitable to implement a
smaller pipeline. The overhead has been calculated with respect to the ideal pipeline limited by the slowest stage.
In this case, by splitting the GM algorithm in three parts, the slowest task would become the pre-processing one
(see table 4). For instance, let us consider the fifth row (YCbCr case, full size image): the GM algorithm has a
pT equal to 68.59 and the pre-processing stage a pT of 33.59; if we split the GM algorithm into three sub-block,
having pT equal to 22.86 then the pre-processing stage will be the slowest. As it can be noticed in table 4,
the overhead introduced by the pipeline is small with respect to the obtained gain. In this case the introduced
overhead is higher with respect to the results shown in table table 2 since this pipeline model has one stage more.

Table 4. frmax and Gs for hybrid pipeline.

Image Size
640x480
800x600
900x680
1032x778

J^'max ^ ap

24.81
15.88
12.57
9.35

J^'max -L v ap

58.26
38.63
31.60
24.90

u s "Kip
134.79
143.27
151.40
166.32

Overhead (ms)
4.61
6.18
6.78
6.58

5. CONCLUSIONS A N D FUTURE WORKS

Multi-camera systems are used in several computer vision applications. Some systems are based on smart
cameras, others are centralized server systems. The first approach lacks of flexibility, the second one does not
scale well with the number of cameras. An attractive solution for the multi-camera system is based on a network
of peer to peer computers that guarantees a good trade off between flexibility and scalability.

In this paper we have presented a software architecture for easily manage multi-camera systems in single
node application. The proposed software architecture, developed in C++, is a scalable, flexible and modular
architecture for multi-camera system management in real time scenarios. The architecture is scalable since it
can manage and process efficiently multiple data stream adding small overhead and saving useful computational
resources. It is scalable since can manage different camera data streams; it is flexible because it can work on
different platform and with different acquisition devices and it is very easy to integrate thanks of its high degree
of modularity.

Moreover, we propose a strategy that guarantees a trade off between reduction of computational time, flexibil­
ity and modularity. We offer the option to integrate the desired application in a parallel-fashion in a transparent
way from the thread-level programming point of view. In this way it is possible to speed up the processing
algorithm enabling data or task parallelism.

The proposed software architecture has been tested in a multi-camera system in order to efficiently manage
multiple 2D object detection tasks in a real-time scenario. System performance has been evaluated under different
load conditions such as number of cameras and image sizes. Results show that the software architecture can be
efficiently used in multi-camera environments for on line video processing. The software architecture scales well
with the number of cameras and can easily works with different image formats. The desired application can be
easily designed and integrated in the software architecture. Moreover, the parallelization approach can be used
in order to speed up the processing tasks.

Future research will be related to the extension of the software architecture in order to manage a more complex
multi-camera system, based on a peer to peer network of computers. Furthermore, we will test our system with
more sophisticated Central Unit models that allow to perform high level tasks such as the 3D tracking system.

APPENDIX A. MIXTURE OF GAUSSIANS MODEL
One of the most popular approaches to detect moving objects in video sequences is based on background sub­
traction techniques. The main idea of the background subtraction techniques is to estimate a background model
of the scene and consider any deviation from it a moving (foreground) object. In literature several background
modeling techniques have been presented2 3 .

The algorithm presented by Stauffer and Grimson1 4 aims at estimating a background model of the scene as a
mixture of Gaussian distributions. The algorithm does not take into account the spatial correlation in the image,
since it models each pixel independently. The algorithm is composed by two fundamental steps. The first step
is the estimation of whether or not a pixel belongs to the background model. In the second step the Gaussian
parameters are recursively updated.

The main idea of the algorithm is to model each pixel of the background as a mixture of Gaussians. The
probability to find a pixel at time t of intensity X is defined as:

K

P(Xt) = ^2cJi,fV(Xt,tM,t,'Si,t) (2)
¿=i

Where K is the number of Gaussians, w^t is the weight associated at time t to the ith Gaussian at the time t
with mean pit and the covariance matrix E¿ t . If the RGB planes are considered independent the form of the
covariance matrix can be considered as E j i t = OitI.

In the first step for each incoming pixel there is the estimation of whether or not it belongs to the background
model. The K distributions are ordered using as criterion the ratio

U,t = ^ - (3)

The first B distributions tha t exceed a certain threshold T are used for the background model:

B = argmin i ^ w M >T\ (4)

T is a measure of the minimum portion of the da ta tha t should be accounted for by the background. For small
value of T is obtained a background modeled by few distribution, at the limit a unimodal Gaussian distribution. I
T is higher is obtained a multi-modal background model, tha t can include more than one color in the background
model.

A pixel, at t ime t + 1, belongs to one of the K distributions if the equation (5) is satisfied:

y(Xt+i - Pi,t) S ^ 1 (X t + i - /xiit) < 2.5<riit (5)

If the pixel belongs to one of the background distributions it will be classified as a background pixel, otherwise
it is classified as a foreground pixel. If a match is found, the parameters of the matching Gaussian are updated
with the following equations:

w¿, t+i = w i i t (l -a) + a (6)

p = a -r](Xt+i,fJ,itt, £¿,t) (7)

Pi,t+i = M ¿ , Í (1 - P) + pXt+i (8)

°f,t+i = alÁl ~ P) + p(Xt+i - Pi,t+i) (Xt+1 - Pi,t+i) (9)

where a is the so called learning rate. The learning rate a determines the speed of adaptat ion to changes in
the scene (i.e, illumination) and the speed of the incorporation of foreground objects to the background. For the
unmatched Gaussians all their parameters remain unchanged except the weight:

°i,t+l t (l - a) (10)

If no match is found the least probable distribution is substi tuted by a distribution with a low weight, a high
variance and a mean equal to the pixel value. When all the parameters have been update , the weights are
normalized in order to obtain J2i=1 <¿>i,t+i = 1-

Many variations of the algorithm have been presented in order to overcome different problems like, sudden
changes of illumination, shadows of moving objects, real time constraints, memory requirements etc. For a
complete review of these algorithms see the review of Bouwmans et al.30 . However we have implemented the
original proposal of Stauffer and Grimson except for a small change in the parameters update . In fact, in our
experiments we slightly modified the original algorithm in order to reduce the processing time. Following the
solution proposed by Power and Schoonees31 the equation (7) is substi tuted by:

' = 7- (11)

A C K N O W L E D G E M E N T S

This work has been supported by the Ministerio de Ciencia e Innovacin of the Spanish Government under project
TEC2007-67764 (SmartVision).

R E F E R E N C E S

[1] Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., and
Hasegawa, O., "A system for video surveillance and monitoring," Tech. Rep. CMU-RI-TR-00-12, Robotics
Insti tute, Pi t tsburgh, PA (May 2000).

[2] Bellotto, N., Sommerlade, E., Benfold, B., Bibby, C , Reid, I., Roth, D., Fernández, C , Gool, L. V.,
and González, J., "A distributed camera system for multi-resolution surveillance," in [Proc. of the 3rd
ACM/IEEE Int. Conf. on Distributed Smart Cameras (ICDSC)], (2009).

[3] Stoykova, E., Alatan, A., Benzie, P., Grammalidis, N., Malassiotis, S., Ostermann, J., Piekh, S., Sainov,
V., Theobalt, C , Thevar, T., and Zabulis, X., "3-d time-varying scene capture technologies—a survey,"
Circuits and Systems for Video Technology, IEEE Transactions on 17, 1568 -1586 (nov. 2007).

[4] Svoboda, T., Hug, H., and Gool, L. V., "Viroom - low cost synchronized multicamera system and its self-
calibration," in [Pattern Recognition, 24-th DAGM Symposium, number 2449 in LNCS], 515-522, Springer
(2002).

[5] Baker, H. H., Bhat t i , N., Tanguay, D., Sobel, I., Gelb, D., Goss, M. E., Culbertson, W. B., and Malzben-
der, T., "Understanding performance in coliseum, an immersive videoconferencing system," ACM Trans.
Multimedia Comput. Commun. Appl. 1(2), 190-210 (2005).

[6] Lin, C. H., Wolf, M., Koutsoukos, X., Neema, S., and Sztipanovits, J., "System and software architectures
of distributed smart cameras," ACM Trans. Embed. Comput. Syst. 9(4), 1-30 (2010).

[7] Appiah, K., Hunter, A., Owens, J., Aiken, P., and Lewis, K., "Autonomous real-time surveillance sys­
tem with distributed ip cameras," in [Distributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE
International Conference on], 1 - 8 (sept. 2009).

[8] Rinner, B., Winkler, T., Schriebl, W., Quaritsch, M., and Wolf, W., "The evolution from single to pervasive
smart cameras," in [Proc. Second ACM/IEEE Int. Conf. Distributed Smart Cameras ICDSC 2008], 1-10
(2008).

[9] Valera, M. and Velastin, S. A., "Intelligent distributed surveillance systems: a review," IEE Proceedings
-Vision, Image and Signal Processing 152(2), 192-204 (2005).

[10] Straw, A. and Dickinson, M., "Motmot, an open-source toolkit for realtime video acquisition and analysis,"
Source Code for Biology and Medicine 4(1), 5 (2009).

[11] Wang, S., Bevans, A., and Antle, A. N., "Stitchrv: multi-camera fiducial tracking," in [TEI '10: Proceedings
of the fourth international conference on Tangible, embedded, and embodied interaction], 287-290, ACM,
New York, NY, USA (2010).

[12] Doubek, P., Svoboda, T., and Van Gool, L., "Monkeys a software architecture for viroom low-cost mul-
ticamera system," in [Computer Vision Systems], Crowley, J., Piater, J., Vincze, M., and Paletta, L., eds.,
Lecture Notes in Computer Science 2626, 386-395, Springer Berlin / Heidelberg (2003).

[13] Vezzani, R. and Cucchiara, R., "Event driven software architecture for multi-camera and distributed surveil­
lance research systems," in [Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE
Computer Society Conference on], 1 - 8 (2010).

[14] Stauffer, C. and Crimson, W. E. L., "Adaptive background mixture models for real-time tracking," Com­
puter Vision and Pattern Recognition, IEEE Computer Society Conference on 2, 2246-252 Vol. 2 (August
1999).

[15] "Opencv 2.1 reference guide." h t t p : / / o p e n c v . w i l l o w g a r a g e . c o m / d o c u m e n t a t i o n / c p p / i n d e x . h t m l .

[16] Camplani, M. and Salgado, L., "Adaptive multi-camera system for real time object detection," in [Consumer

Electronics (ICCE), 201 Digest of Technical Papers International Conference on], (2011).
[17] h t t p : / / w w w . j a i . c o m .

[18] h t t p : / / w w w . a x i s . c o m .

[19] h t t p : / / w w w . n t p . o r g / .

[20] h t t p : / / w w w . t h r e a d i n g b u i l d i n g b l o c k s . o r g / .

[21] Mohedano, R., del Bianco, C , Jaureguizar, F. , Salgado, L., and Garcia, N., "Robust 3d people tracking
and positioning system in a semi-overlapped multi-camera environment," in [Image Processing, 2008. ICIP

2008. 15th IEEE International Conference on], 2656 -2659 (12-15 2008).
[22] Mohedano, R. and Garcia, N., "Robust multi-camera 3d tracking from mono-camera 2d tracking using

bayesian association," IEEE Transaction on Consumer Electronics 56(1), 1-8 (2010).
[23] Piccardi, M., "Background subtraction techniques: a review," Systems, Man and Cybernetics, 2004 IEEE

International Conference on 4, 3099 - 3104 vol.4 (oct. 2004).
[24] "Gti camera calibration toolbox user manual," tech. rep., G.T.I. Image Processing Group, Universidad

Politcnica de Madrid, Spain (2010).
[25] Hartley, R. I. and Zisserman, A., [Multiple View Geometry in Computer Vision], Cambridge University

Press, ISBN: 0521540518, second ed. (2004).
[26] Ribeiro, H. and Gonzaga, A., "Hand image segmentation in video sequence by gmm: a comparative anal­

ysis," in [Computer Graphics and Image Processing, 2006. SIBGRAPI '06. 19th Brazilian Symposium on],

357-364 (8-11 2006).
[27] Parks, D. and Fels, S., "Evaluation of background subtraction algorithms with post-processing," in [Ad­

vanced Video and Signal Based Surveillance, 2008. AVSS '08. IEEE Fifth International Conference on], 192
-199 (1-3 2008).

[28] h t t p : / / w w w . j a i . c o m / P a g e s / R e g i s t e r T o D o w n l o a d . a s p x ? R e t u r n U r l = / P r o t e c t e d D o c u m e n t s / M a n u a l s /
Manual_CM-080GE_CB-080GE.pdf.

[29] h t t p : / / w w w . i n t e l . c o m / p / e n _ U S / p r o d u c t s / s e r v e r / p r o c e s s o r / x e o n 5 0 0 0 .
[30] Bouwmans, T., El Baf, F., and Vachon, B., "Background modeling using mixture of gaussian for foreground

detection," Recent Patent on Computer Science 1 (2008).
[31] Power, W. P. and Schoonees, J. A., "Understanding background mixture models for foreground segmenta­

tion," Imaging and Vision Computing NewZeland 2002 (nov. 2002).

http://opencv.willowgarage.com/documentation/cpp/index.html
http://www.jai.com
http://www.axis.com
http://www.ntp.org/
http://www.threadingbuildingblocks.org/
http://www.jai.com/Pages/RegisterToDownload.aspx?ReturnUrl=/ProtectedDocuments/Manuals/
http://www.intel.com/p/en_US/products/server/processor/xeon5000

