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ABSTRACT 
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees 
a good trade off between computational power, scalability and flexibility. The software system is modular and 
its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor 
of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an 
approach to easily parallelize the desired processing application has been presented. In this paper, as case study, 
we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 
2D object detection modules in a real-time scenario. System performance has been evaluated under different 
load conditions such as number of cameras and image sizes. The results show that the software architecture 
scales well with the number of camera and can easily works with different image formats respecting the real time 
constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with 
a low level of overhead. 
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1. INTRODUCTION 

Multi-camera systems are becoming more and more popular thanks to the growing computer processing capabil­
ities and the decreasing prices of high quality cameras. Moreover, the demand of new and more efficient systems 
for several applications such as video surveillance1'2 , 3D acquisition systems3 , virtual rooms4 and immersive 
teleconferencing systems5 , is encouraging the researchers to find new and optimized solutions. The advantages 
of multi-camera systems in these contexts is that they overcome classical problems of mono camera systems 
such as occlusions, limited field of view and the possibility to extract from the scene 3D information. On the 
other hand, multi-camera systems pose challenging problems to the research community mainly related to the 
management and the analysis of the huge amount of data provided by the system. 

A common way to tackle this problem is to develop multi-camera systems using smart cameras6 . The main 
idea of the smart camera is to build a single node that encloses both acquisition and processing algorithms. These 
approaches are well suited for real time image processing since they rely on the presence of dedicated hardware 
such as FPGA and DSP7 . Moreover, they have been also widely used in large camera systems, like sensor 
networks8 , for their low power consumption characteristics. However, this solution has some drawbacks. In fact, 
dedicated hardware can present lack of flexibility, especially for high level image processing tasks. Furthermore, 
the design of cooperative tasks and distributed software is not straightforward9 . Also the communication 
between cameras is a crucial point for the efficiency of the system. 

An alternative solution to tackle these issues ,often used in indoor environments, is based on a centralized 
server architecture, where the central server collects and processes all the data. The main limitations of this model 
are that it is very power demanding, it requires a large bandwidth communication channel and, obviously, it does 
not allow a high degree of scalability2 . An improvement of the centralized server architecture is constituted by 
peer to peer network of computers where different nodes manage different cameras. This model in our view is one 
of the most attractive one since it is an hybrid solution that guarantees a good trade off between flexibility and 
scalability. Many software packages have been developed for on line video processing in network of computers 
environments 10~13 . 
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In this paper we propose a software architecture for efficiently managing multi-camera video processing in 
real time scenarios with off the shelf work stations. The aim of this architecture is to guarantee a good trade off 
between computational power, flexibility and scalability for single node applications. The design and the use of 
multi-camera systems are not straightforward and need a deep knowledge of system details ranging from process 
communication, resource allocation to camera data transfer and multi-threading programming. However, a final 
user, like a computer vision algorithm developer, can not know (and probably does not need to know) all the 
system details. For these reasons, our choice has been to develop an architecture that is able to hide many 
of the multi-camera system details from the user and that can be easily adapted to different video processing 
applications without a great effort. The proposed architecture is scalable since can manage many camera data 
streams; it is flexible because it can work on different hardware platforms and with different kinds of acquisition 
devices. Furthermore, the proposed architecture has a modular structure that allows to easily integrate it with 
custom video processing applications. Moreover, the architecture has been developed in order to be lightweight 
and does not require many computational resources. Finally we propose an approach that allows to easily 
parallelize the desired video processing application in order to exploit the processing capabilities of the host 
machine. 

The proposed software architecture has been tested in a multi-camera system in order to efficiently manage 
multiple 2D object detection tasks in a real-time scenario. As background estimation algorithm the Gaussian 
Mixture Model, presented by Stauffer and Grimson14 , has been used. System performance has been evaluated 
under different load conditions such as variable number of cameras and image sizes. 

The paper is organized as follows: in sec. 2 an overview of the proposed software architecture is given. In sec 3 
the implemented system and the case study are introduced. Results are shown in sec. 4, and finally conclusions 
are drown in sec. 5. 

2. SOFTWARE ARCHITECTURE OVERVIEW 

The development of a multi-camera system presents many critical points to manage such as: process commu­
nication, resource allocation, camera data transfer or efficient multi-threading management strategies. These 
issues can represent a bottleneck in application development for non expert users. Moreover, users like computer 
vision algorithm developers prefer not to deal with all these details. For these reasons we propose a software 
architecture that is able to guarantee a trade off between computational power and flexibility thus shielding the 
final user from many low level details of the multicamera system. 

The proposed software architecture is a scalable, modular and flexible architecture for multi-camera system 
management in real time scenarios. The architecture is scalable since it can manage and process efficiently 
multiple data stream adding small overhead and saving useful computational resources. It is also scalable 
because it can be used with a variable number of cores in multi-core host machines. 

It is modular since it is composed (see the following paragraphs for more details) by functional blocks that 
operate independently in different phases of the overall processing chain. This modularity allows the developer 
to modify and integrate with new software each block without affecting the structure of the others. 

The architecture is flexible since it can be easily adapted to different scenarios. First of all it is flexible in the 
sense that it is hardware independent: it can be easily ported on different host machines and it is not related 
to any particular model or type of camera. It is also flexible from the point of view of the data, in fact all the 
modules are automatically adapted to different image formats or sizes. Moreover, the architecture is designed 
to operate in off the shelf machines with commercial operating systems (no Real Time Operating Systems are 
required) and without the use of any dedicated hardware. 

The software architecture is fully developed in C + + and the management of image data and the processing 
tasks is based on OpenCV libraries15 (version 2.1). This choice is motivated by the fact that this is a widely 
used library for computer vision applications. Moreover, OpenCV base developments can be easily implemented 
in the software architecture. 

As shown in fig. 1 there are two main modules of the software architecture: the Central Unit and the 
Processing Unit (PU). These are logic modules and do not correspond necessarily with a physical node (i.e. a 



work station): for example, the same work station could be the host of several PUs and the Central Unit. The 
Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the 
processing phase. 

PUn 
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Figure 1. Software Architecture main modules. 

2.1 Central Unit 

The Central Unit is a lightweight component that initializes, monitors and closes all the processes. First of all 
it checks the state of all the cameras in the system and it assigns an identifier camID to each running camera. 
The camID is used also to label the acquired images that are univocally identified by it and the time stamp (see 
section 2.2.1). The camera settings are acquired (i.e. frame size, gain and other settings) and, thanks to this 
information, the PUs are initialized. The Central Unit starts and stops the acquisition. During the acquisition 
the Central Unit gathers all the information from the modules of the system, such as frame rate, processing time 
and the state of the image buffer (see section 2.2.3). It is also in charge to correctly close all modules and shut 
down the system. 

Although system initialization, monitoring and shut down are the main tasks of the Central Unit, its func­
tionality can be extended or modified. In particular more complex Central Units can be designed to collect 
the results of each processing module and combine them in the case that high level tasks are required by the 
application. An example of more sophisticated Control Units can be found in an our previous work16 where the 
Control Unit tunes the parameters of a background subtraction algorithm in order to reduce the computational 
load. 

2.2 Processing Unit 

As previously mentioned, the PUs are logical modules that can be executed either in multiple or in a single 
physical node. The system is scalable since each PU can be connected with one ore more cameras. The PU is in 
charge to manage the incoming data streams and process them and it is constituted by three functional blocks 
as shown in fig. 2: the acquisition module (AM), the image buffer manager (IBM) and the processing module 
(PM). Basically AM is in charge of continuously acquiring the images and deliver them to the IBM. The IBM 
is the module that manages the buffer (of fixed size) where the acquired images are temporally stored. It takes 
care of the buffer accesses and manages undesired situations like buffer overflows. The PM reads the images 
stored in the buffer and processes them. These modules operate independently and this aspect confers a great 
modularity to the global software architecture. The decoupling between AM and PM is very attractive for the 
final user, since he can design his processing tasks without taking care of acquisition and camera details. Also 
the independence of the IBM is very interesting, since it is possible to use different management strategies as a 
function of the desired application. For example, the frame skipping strategy could be changed by replacing the 
default implementation that discards the newest frame, with a new strategy that discards the oldest one. 
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Figure 2. PU main modules. 

2.2.1 Camera and Image Data 

The data coming from the camera devices are converted to OpenCV data structure (Mat Class). In fact, as 
previously mentioned, the software architecture has been integrated with OpenCV libraries. Moreover, once the 
images are acquired, the camera identifier camID and a frame number identifier framelD are assigned to them. 
All the other modules of the software architecture work with this meta-data (image and identifiers). 

The software architecture hides the low level details of the camera management. In particular, the access to 
the device features is possible throughout a class called cameraManager. The use of this class allows to wrap 
each device into its corresponding object in the software architecture. The methods of the class allow to modify 
device parameters (i.e. frame rate, image size, exposure time, etc.) and open and stop a data stream. This level 
of abstraction guarantees a high flexibility to the software architecture since it is possible to use it with different 
camera models, without affecting the other software modules that work always with the same object interface. 
In our case, we developed cameraManager modules for two different types of cameras: JAI17 and AXIS18 . 

Particular attention has to be paid to the camera synchronization system. As it can be observed in fig. 2, this 
system does not belong to the PU modules and it can not be completely enclosed in our software architecture. 
Camera synchronization is a critical task in multi-camera systems and the required accuracy depends on the 
particular application and on the acquisition devices in use. When a very precise synchronization is needed, the 
most used solution is hardware synchronization. In other situations, a software synchronization system could 
fulfill application requirements, using for example tools and libraries like Network Time Protocol (NTP)19 . 
The cameraManager class gives the possibility to set the synchronous (or asynchronous) acquisition, but the 
triggering system (software or hardware) is an independent module. 

2.2.2 Acquisition Modules 

The AM allows to acquire images from the devices and deliver them to the IBM. AM initializes the acquisition 
tasks and then it starts a continuous process that is activated when a new image is available. When a new image 
is acquired, it is labeled with the corresponding cameralD and imagelD and the data is converted in a OpenCV 
data structure. Then the images are delivered to the IBM. It is worth noting that overflow buffer conditions do 
not affect the AM since it is the IBM module that is in charge to write the image in the buffer and manage the 
overflow condition. 

2.2.3 Image Buffer Manager 

The image buffer is used to compensate the different rates with which the flow of data is acquired by the AM 
and processed by the PM. In fact, whereas the acquisition rate remains constant, the processing rate can present 
deviations from a fixed value. This aspect is particularly relevant in our application since it is based on general 



purpose processors where the available computational resources have to be shared among different applications. 
For this reason, the presence of the image buffer avoids (up to a certain limit) frame skipping. Moreover, the 
image buffer confers to the system another degree of modularity: in fact, PM and AM are completely decoupled 
and they can be modified (or substituted) without affecting each other because they interact with the IBM. 

The IBM is a module that manages the accesses to the buffer. The buffer access is thread safe since a 
semaphore system guarantees that only one process can write on the buffer (the AM) and one process can read 
an image from it (the PM). A specific policy to handle buffer overflow is defined in this module: it is possible 
to eliminate the oldest frame or choose to skip the newest one. The IBM communicates to the Central Unit the 
presence of new frames and of the occurrence of overflow condition. 

The IBM is a quite lightweight module of the PU since the buffer contains pointers to the images: no images 
are copied during reading and writing operations: for each image the space in memory is allocated by the AM 
and released when PM ends the task. 

2.2.4 Processing Module and Task Parallelization 

The PM has one main task: continuously reading images from the buffer and processing them. It is the most 
customizable module of the entire software architecture. This module is the one that has to be developed by 
the final user (i.e. developer of video analysis algorithms) and it can be constituted by any processing task, 
including visualization or image storage. There are a few design specifications for this module. The PM has to 
be implemented as a cascade two blocks: the first block is already provided by our software architecture and 
handles the interface with the IBM, allowing to easily read images from the buffer (in case of empty buffer the 
interface suspends the PM operations until a new frame is available); the second block is the implementation of 
the desired application. 

As aforementioned, the modular architecture guarantees great advantages for the developer since he is able 
to integrate his software without paying attention to other issues like acquisition. Moreover, it could give more 
flexibility to the user application, in the sense that it allows to implement different processing tasks on the 
different data streams. 

The PM is the time-critical point of the entire software architecture. In general, the other modules do not 
perform tasks that require a lot of processing resources, hence, meeting real time constraints will depend on the 
efficiency of the PM implementations. Although there are many programming tricks that can help to reduce the 
processing time of the desired application software, in some cases they turn out to be insufficient. 

An obvious solution could be found performing a parallelization of the application: this solution is indeed 
particularly attractive in the case that a multi-core host machine is used. However, following this approach could 
be time consuming during the application software development and makes more difficult the integration with 
the overall software architecture. 

In order to ease the application software implementation and integration in the PM module, we developed a 
strategy that allows to easily parallelize the application without affecting the modularity and the flexibility of 
the overall architecture. 

The proposed strategy is based on a pipeline scheme, that is one of the most suitable approaches for image 
processing tasks parallelization. Furthermore, this approach allows to parallelize the desired applications at a 
high level, thus shielding the users from thread-level programming details. 

The pipeline is a cascade of several stages that are executed in parallel (i.e. using different threads). Each 
stage performs a specific processing task with the input data coming from the previous stage and passes the 
results to the next stage. This approach allows to implement the desired application using data level parallelism 
or task level parallelism. Data parallelism can be used in case of low level image operations such as preprocessing 
and filtering and all the pixel wise algorithms. In fact, identical image processing tasks are applied to different 
regions of the image. In task level parallelism, each pipeline stage corresponds to a different operation on the 
image. This kind of parallelization method is very convenient in high level tasks, like object tracking or objects 
recognition. The throughput of the pipeline is theoretically limited to the slowest pipeline stage. 

Independently of the type of parallelization that will be applied, the aspect on which the developer has to 
concentrate is the identification of the sub-blocks into which the desired application can be divided. Sub-blocks 



are simple operations that can not be further decomposed, such as filtering operations, lens distortion correction, 
color plane conversion etc. Once the sub-bocks of the desired application have been identified, it is possible to 
design the pipeline stages as single sub-block or a set of them. Then the pipeline is built as a cascade of stages. 
In the proposed software architecture, it has been developed a library containing pipeline stages that perform the 
most common image processing tasks, like filtering, image transformation etc. Also a library containing different 
pipeline models has been implemented. These software components can be reused, combined and extended 
speeding up the software development process of the desired application. The final user can implement in a 
seamless way data parallelism, task parallelism or a mixture of those, but it is recommended to keep the pipeline 
stages balanced as much as possible to avoid continuous pause of threads waiting the end of the previous stage. 
The design flow of processing task is shown in fig. 3. 
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Figure 3. Processing Task design flow. 

This part of the software architecture uses, as a core for the pipeline management, the Intel Thread Building 
Block libraries20(TBB). These libraries allow to easily develop multi-threading and parallel applications. We 
have developed a software layer to adapt these libraries to our software architecture and to the image processing 
field. 

The software development efforts to build a pipeline stage are minimal. In fact, each stage has to be imple­
mented as a class that acts as a wrapper of the assigned sub-blocks. The parameters relative to each sub-block 
(i.e. coefficients, thresholds, image size etc.) are assigned to the wrapper class attributes. The wrapper class 
has a function that is used to execute the pipeline stage. This function has one input, corresponding to the 
data coming from the previous pipeline stage, and one output that is passed to the next pipeline stage. The 
input/output parameter exchanged by pipeline are basically images or more complex data structures containing 
more information. It is necessary to exchange pointers to these data structures to avoid object copy and slow 
down the execution of the stage. It is worth noting that the first pipeline stage has to enclose also the module to 
access the image buffer. The image pointer is propagated to the pipeline and processed by each stage. Usually, 
the acquired image memory is released in the last stage of the pipeline. 

A pipeline has to be designed as an object that contains the pipeline stages and the data structure needed 
to monitor their execution. Information, like processing time, or results are evaluated and passed to the Cen­
tral Unit. It is important to underline that only one thread at a time can execute a pipeline stage: threads 
synchronization is managed by the TBB. 

This approach guarantees that the same pipeline will work correctly in different host machines. For example, 
the same pipeline can be executed in different host machines with different number of cores, as there is no hard 
link between number of pipeline stages and the number of available cores. It is clear that a long pipeline will take 
advantage of the presence of many cores; on the other hand an overestimated pipeline (very long pipeline or few 
data to process) will decrease the overall performance of the software architecture since the overhead introduced 
by the pipeline will be greater than the benefits of parallelization. 

In conclusion, the advantages for the developer in using this parallelization approach are several: sub-block 
level modularity, code reuse, no specific multi threading programming skills required and platform flexibility. 
The point to consider is that the sub-blocks design and the pipeline system have to be carefully designed. 

Stage 1 Stage 2 Stage 3 



3. CASE STUDY: MULTI-CAMERA OBJECT DETECTION 
Multi-Camera systems are well suited for surveillance applications since they can avoid problems encountered 
with single camera one such as occlusions and limited field of view. In this research area one of the most 
challenging problems is objects tracking and positioning in 3D environment. Usually, independent 2D object 
detection algorithms are applied to each camera node and then this information is fused by a 3D tracking module 
(an example can be found in the works by Mohedano et al.21 '22). 

In this paper as case study we apply the proposed software architecture to a multi-camera system to efficiently 
manage multiple 2D object detection modules in a real-time scenario. Each object detection module is based on 
background subtraction algorithm. Background subtraction is a technique that estimates a background model 
of the scene and, then, any deviation from the model is considered as a potential moving object. Different 
background modeling techniques have been presented in the literature23 . 

As background subtraction algorithm we have implemented the one proposed by Stauffer and Grimson14 . 
In this algorithm each pixel is modeled independently as a mixture of Gaussian distributions. The algorithm is 
composed by two fundamental steps: the first step is the estimation of whether or not a pixel belongs to the 
background model; during the second step the Gaussian parameters are updated. This pixel-wise approach is 
computationally demanding since for each pixel all the parameters of the distributions have to be updated. More 
details about mixture of Gaussians algorithms are presented in appendix A. From now on we will refer to this 
background subtraction algorithm as the GM algorithm. 

3.1 OBJECT DETECTION: PROCESSING TASKS 
The block diagram of the object detection module is shown in fig. 4. The processing chain can be decomposed 
in three main processing tasks: pre-processing, GM algorithm and post-processing. 

The pre-processing tasks include Bayer to RGB conversion, white balance operations, lens distortion correc­
tion and color space conversion. We decide to include the tasks of Bayer to RGB conversion and white balance in 
the acquisition module; as it can be noted these tasks in fig. 4 are enclosed in the yellow box. Cameras have been 
calibrated with the calibration toolbox developed in our research group24 and the estimated intrinsic camera 
parameters have been used to correct the lens distortion as suggested by Hartley et al.25 . The color space 
conversion is necessary to switch from RGB color space to YCbCr color space. The original GM algorithm14 is 
applied to the RGB color space: in this work the authors assume the channels of that space are independent; 
however, this hypothesis does not hold and other works have shown that the YCbCr is more noise resilient than 
RGB26 . For these reasons, we decide to apply the GM algorithm to the YCbCr color space without subsampling 
on the color components (YCbCr 4:4:4). 

The second task is constituted by the GM algorithm. Although the GM algorithm can be further decomposed 
in two blocks, foreground/background pixel estimation and parameters update, we have decided to implement it 
in a single one. This implementation leads to a more efficient algorithm in terms of computational cost. In fact, 
the two blocks choice would slow down the algorithm since it would be necessary to iterate on the parameters 
twice: one time for pixels classification and the other one for parameters update. Moreover, the parallelization 
of these two blocks would not be straightforward, since it would require thread synchronization at pixel level: 
when the classification of one pixel has finished the update procedures can start. Therefore, this solution would 
introduce an unacceptable overhead in the pipeline: for this reason, this option has been discarded. 

In our implementation of GM algorithm in a single block, there is a single structure that contains all the 
distributions parameters, that allows to classify the pixel (as part of background or foreground) and update the 
parameters in the same iteration. The only disadvantage of this approach is that it is demanding from a point 
of view of the memory occupancy since it requires several contiguous memory blocks. 

Post-processing tasks are needed to refine the results of the GM algorithm. A typical output of a background 
subtraction algorithm is a binary mask that represents the foreground object in the scene (pixels set to 1). This 
mask is usually corrupted by noise and errors introduced by the background subtraction algorithm. For these 
reasons, useful techniques such as morphological processing are used in order to reduce the errors. A comparative 
study27 on different background subtraction algorithms showed that these procedures can significantly improve 
the results. In our application we have decided to apply an erosion and a dilation operation with different (size 
and shape dependent) structuring elements. 
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Figure 4. Block diagram of the image processing tasks. 

3.2 MULTI-CAMERA SYSTEM OVERVIEW 

The software architecture has been tested on a multi-camera system composed by 3 cameras and one commercial 
work station. Camera models are JAI CB-080 GE28 that is a Giga ethernet camera that delivers 8bit Bayer 
images at a maximum resolution of 1032 x 778 with maximum frame rate of 30/ps. The workstation is equipped 
with two quad core processors of the Intel Xeon family29 (Intel Xeon X5550), 16GB of RAM and fast HD (15krpm) 
in RAID-0 configuration. The work station and the cameras are connected through Giga-Ethernet interfaces 
with a point to point connection. 

It is important to highlight that in our application high accuracy of image synchronization is required to 
correctly fuse the information extracted by the individual 2D object detection modules. For these reasons we 
develop an external triggering system that allows to minimize the synchronization error. In particular, the 
cameras have been connected in a master-slave configuration where the timing circuit of the master camera is 
used to generate the trigger of the system. The acquisition of the cameras, master included, is governed by the 
generated trigger signal. The symmetry of the connection circuit guarantees that all the cameras are tightly 
synchronized with a synchronization error of the order of /xs. 

We decide to build an unique PU that can manage up to three camera streams. 

4. RESULTS 

In this section the performance of the proposed software architecture will be analyzed taking as testbed the 
case study that has been previously described. Two version of the architecture will be compared: one with 
a PM module integrated with the pipeline system (PVap) and the other one with the original version of the 
application(Oap). In particular, the proposed software system has been tested in different scenarios, varying 
the number of cameras, image size and color space. Results will show that the architecture is able to efficiently 
manage multiple data streams and that the parallelization approach allows obtaining a sensible reduction of the 
processing time. 

As far as the image size is concerned, we tested the software architecture with four different image sizes: the 
maximum size of the images provided by the camera 1032 x 778; 900 x 670; a SVGA resolution 800 x 600 and a 
VGA resolution 640 x 480. From the point of view of the color space we have implemented two options: applying 
background subtraction algorithm using all the three components of the YCbCr(4:4:4) space or, conversely, using 
only the luminance component Y. 

From now own we will use the acronym pT to indicate a processing time and frmax to indicate the maximum 
frame rate achievable by a processing task. Moreover, each pT reported will be expressed in ms and each frmax 

will be expressed in frame per second (fps). 

In table 1 the pT and the frmax of the overall application (Oap) and of the pT of the three sub-blocks are 
reported for different image sizes and different color spaces. In table 1 the first two columns indicate the color 
space and the image size. It is worth noting that the implemented GM algorithm has been carefully optimized. 



In fact, thanks to our optimized implementation, when applied to the YCbCr space, it does not require a pT 
triple respect to the pT of the algorithm when only the Y component is considered. However, as it can be 
noticed, it is still the bottleneck of the application. For instance Oap at full image size could work with a frmax 

of about « 13/ps if only the luminance plane is considered during the background subtraction algorithm, and 
« 9fps in the case of the YCbCr space. 

These results show that, when considering the full image size, it is not possible to operate on a real time 
scenario, for this reason a speed up of the processing task can be obtained using the pipeline approach. In the 
next sections two examples of the task parallelization and data parallelization using the proposed architecture 
will be presented. It is shown how the original application can be easily redesigned to be adapted to the pipeline. 
Moreover, results show that the overhead introduced by the pipeline system is small with respect to the increasing 
performance of the system. 

Table 1. Processing Time of the image processing task and its sub-blocks (expressed in ms). 

Color Plane 

YCbCr 

Y 

Img. Size 
640x480 
800x600 
900x680 
1032x778 
640x480 
800x600 
900x680 
1032x778 

pTO a p 

40.30 
62.98 
79.57 
106.96 
29.60 
45.42 
57.49 
75.69 

fr O 
11 raaxuap 24.81 

15.88 
12.57 
9.35 
33.79 
22.02 
17.39 
13.21 

pT Pre-proc. 
12.56 
19.70 
24.87 
33.59 
12.76 
19.59 
24.83 
32.76 

pT GM 
25.87 
40.41 
51.08 
68.59 
14.94 
22.99 
29.05 
38.27 

pT Post-proc. 
1.88 
2.86 
3.62 
4.78 
1.89 
2.84 
3.61 
4.66 

4.1 P I P E L I N E F O R T A S K P A R A L L E L I Z A T I O N 

In this section a task parallelization strategy for the proposed case study is presented. The processing module 
could be parallelized using a three stage pipeline where each stage is constituted by one of the three sub-blocks 
previously identified: pre-processing (including lens distortion correction and color space conversion), the GM 
algorithm and the post-processing block. The proposed pipeline model and its stages are reported in fig 7. 

STAGE-1 STAGE-2 STAGE-3 

Pre-Processing 
GM 

Algorithm 
Post-Processing 

Figure 5. Implemented three stages pipeline. 

In table 2 the frmax of the Oap and of the pipeline version of the application (PVap) are reported for different 
image sizes and in the case of the luminance color space. The first column represents the image size, the second 
and the third one are the frmax of the algorithm expressed in fps for Oap and PVap. As it can be noticed, PVap 

leads to a gain of « 90% for all image sizes. By using PVap the processing task can work with a frmax of about 
~ 25fps with full image size. The speed up gain has been calculated as: 

G = ¿_rnax _ X ) . 1 0 0 (1) 

\ J i max / 

where fr^™x and / r^"*| are respectively the frmax of the application that we want to evaluate and the frmax 

of the application used as a reference. By Considering eq. 1, a negative value of Gs corresponds to a decrease of 
the performance. 

These results show that the idea to design the processing algorithm in a pipeline fashion is very positive 
since it allows to speed up the entire application without a great effort from the point of view of the final user. 



Table 2. frr, Gs and overhead of PVa, 

Image Size 
640x480 
800x600 
900x680 
1032x778 

J^'max ^ap 

33.79 
22.02 
17.39 
13.21 

J^'max -L v ap 

64.39 
41.44 
32.37 
24.98 

Gs (%) 
90.57 
88.22 
86.10 
89.08 

Overhead (ms) 
0.59 
1.14 
1.84 
1.77 

Moreover, these results show tha t the overhead introduced by the pipeline of the software architecture, presented 
in the fourth column of table 2, is very low (< 2ms). The overhead has been calculated as the difference of 
the pT of PVap with respect to pT of the ideal pipeline, where the throughput is limited by the GM algorithm. 
The throughput of the ideal pipeline, in the case of full size images, is « 26 fps. As it can be noticed, with the 
proposed pipeline the obtained throughput is « 25fps. 

This software architecture and this pipeline model have been applied to all da ta streams coming from more 
than one camera simultaneously. Results of these experiments are reported in fig. 6 and table 3. Straight lines 
fig. 6 represent the of Oap, and dashed lines represent 
scenarios with different number of cameras 

frr, 
of PVap. Different colors are used to identify 
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Figure 6. of Oap (solid line) and of PVap (dashed line) as a function of the image size. Blue lines refer to one 
frmax " x ^apV^^ ' " ' ^ » " " fr 

camera scenario, red and black lines refer respectively to two and three camera scenarios 

Let us consider the proposed software architecture without the pipeline approach (solid lines in fig. 6), it is 
possible to see tha t the software architecture guarantees the same performance (good scalability) with one or 
two cameras (where blue and red line are overlapped). The three cameras case leads to a increase of the 

frmax ' 

This is probably due to the intrinsic limitations of the specific case study. In fact the GM algorithm is not only 
computational demanding (continuous update of Gaussian parameters) , but it requires a lot of available memory 
since it is necessary to store several parameters for each Gaussian model of each pixel. The software architecture 
guarantees good performance since a three cameras system could be able to process an image stream of the size 
800 x 600 ( « 0.5Mpixel) with a frame rate of « 20fps, thus satisfying real time requirements. On the contrary, 



the three cameras case is too slow for a real time application when using a full image size (frame rate of « 12 fps); 
also in this case the performance can be improved using the pipeline approach. 

Let us focus on the performances of the proposed software architecture coupled with the pipeline approach: 
the corresponding curves are depicted with dashed lines in fig. 6. It is important to notice that PVap with 
multiple cameras performs even better (obtaining a positive Gs) if compared with Oap using a single camera. In 
fact, as it can be noticed from fig. 6 dashed lines stay below the solid line corresponding to Oap with one camera. 
It is worth noting that also in this case the software architecture scales well with the number of cameras. 

These results are clearly reported in table 3 where the frmax of the Oap and the PVap are reported for 
different image sizes and number of cameras. The Gs is calculate with respect to Oap applied to a single camera 
(see second column of table 2). As it can be noticed, if Oap is used, a small and negative Gs is obtained for 
the two cameras system and a negative one is obtained (« 10%) in the three cameras system. By using PVap, 
positive Gs is always obtained. For example, in the case of three cameras and at the maximum image size, the 
gain is « 22%, this means that the multi-camera system can work with a frame rate of « 17fps, whereas Oap 

with one camera has a frame rate of « 13fps. 

Table 3. frmax and Gs in multi-camera scenarios. 

# Cameras 

2 

3 

Img. Size 
640x480 
800x600 
900x680 
1032x778 
640x480 
800x600 
900x680 
1032x778 

J^'max ^ ap 

33.83 
21.76 
17.24 
13.05 
30.52 
20.02 
15.60 
11.92 

Jfmax i vap 

59.43 
37.85 
29.72 
22.16 
42.75 
26.98 
21.19 
17.11 

^ s ^ ap 

0.14 
-1.19 
-0.88 
-1.21 
-9.66 
-9.08 

-10.33 
-9.79 

Gs PVap 

75.91 
71.91 
70.85 
67.74 
26.52 
22.55 
21.84 
29.51 

4.2 H Y B R I D P I P E L I N E 

In this section, another example is given in order to prove the modularity and flexibility of the proposed architec­
ture and that will demonstrate the possibility to easily re-design and re-integrate a different PM. This example 
highlights the advantage of using the pipeline approach that combines both data and tasks parallelism. 

Let us consider our case study with one camera, full image size and the GM algorithm applied to the entire 
color space. By following the results obtained in sec. 4.1, it is possible to see that a task parallelization approach 
would lead theoretically to a frmax very close to « lAfps, limited by the speed of the GM algorithm. 

A more efficient solution could be obtained combining data and task parallelization. In particular, we decide 
to implement a four stage pipeline where the first stage is composed by the preprocessing sub-block, and the 
other three pipeline stages apply the GM algorithm and the post-processing tasks to three different regions of 
the image. The proposed pipeline model and its stages are reported in fig 7. 

STAGE-1 STAGE-2 STAGE-3 STAGE-4 

Pre-Processing 
3M & Post-Proc. 

Region 1 
t GM & Post-Proc. 

Region 2 

GM & Post-Proc. 

Region 3 

Figure 7. Implemented hybrid pipeline. 

Table 4 reports the frmax for different image sizes (first column). The second column contains the frmax 

of Oap; the third one contains the frmax of PVap; the fourth one represents the obtained Gs and the last one 
contains the overhead introduced by the pipeline. As it can be noticed, the designed pipeline allows to reach a 
considerable value of Gs, always greater than 130%. For example considering a data stream of full size images 



with Oap it is possible to manage a stream of « 9/ps, using PVap it is possible to process a stream of about 
~ 25fps. Furthermore, it has to be noticed that in the case with full size images, an higher gain is obtained 
respect to the low resolution case. In the low resolution case the regions on which each pipeline stage operates are 
probably too small and the overhead effect is much more evident. In this case, it is more suitable to implement a 
smaller pipeline. The overhead has been calculated with respect to the ideal pipeline limited by the slowest stage. 
In this case, by splitting the GM algorithm in three parts, the slowest task would become the pre-processing one 
(see table 4). For instance, let us consider the fifth row (YCbCr case, full size image): the GM algorithm has a 
pT equal to 68.59 and the pre-processing stage a pT of 33.59; if we split the GM algorithm into three sub-block, 
having pT equal to 22.86 then the pre-processing stage will be the slowest. As it can be noticed in table 4, 
the overhead introduced by the pipeline is small with respect to the obtained gain. In this case the introduced 
overhead is higher with respect to the results shown in table table 2 since this pipeline model has one stage more. 

Table 4. frmax and Gs for hybrid pipeline. 

Image Size 
640x480 
800x600 
900x680 
1032x778 

J^'max ^ ap 

24.81 
15.88 
12.57 
9.35 

J^'max -L v ap 

58.26 
38.63 
31.60 
24.90 

u s "Kip 
134.79 
143.27 
151.40 
166.32 

Overhead (ms) 
4.61 
6.18 
6.78 
6.58 

5. CONCLUSIONS A N D FUTURE WORKS 

Multi-camera systems are used in several computer vision applications. Some systems are based on smart 
cameras, others are centralized server systems. The first approach lacks of flexibility, the second one does not 
scale well with the number of cameras. An attractive solution for the multi-camera system is based on a network 
of peer to peer computers that guarantees a good trade off between flexibility and scalability. 

In this paper we have presented a software architecture for easily manage multi-camera systems in single 
node application. The proposed software architecture, developed in C++, is a scalable, flexible and modular 
architecture for multi-camera system management in real time scenarios. The architecture is scalable since it 
can manage and process efficiently multiple data stream adding small overhead and saving useful computational 
resources. It is scalable since can manage different camera data streams; it is flexible because it can work on 
different platform and with different acquisition devices and it is very easy to integrate thanks of its high degree 
of modularity. 

Moreover, we propose a strategy that guarantees a trade off between reduction of computational time, flexibil­
ity and modularity. We offer the option to integrate the desired application in a parallel-fashion in a transparent 
way from the thread-level programming point of view. In this way it is possible to speed up the processing 
algorithm enabling data or task parallelism. 

The proposed software architecture has been tested in a multi-camera system in order to efficiently manage 
multiple 2D object detection tasks in a real-time scenario. System performance has been evaluated under different 
load conditions such as number of cameras and image sizes. Results show that the software architecture can be 
efficiently used in multi-camera environments for on line video processing. The software architecture scales well 
with the number of cameras and can easily works with different image formats. The desired application can be 
easily designed and integrated in the software architecture. Moreover, the parallelization approach can be used 
in order to speed up the processing tasks. 

Future research will be related to the extension of the software architecture in order to manage a more complex 
multi-camera system, based on a peer to peer network of computers. Furthermore, we will test our system with 
more sophisticated Central Unit models that allow to perform high level tasks such as the 3D tracking system. 



APPENDIX A. MIXTURE OF GAUSSIANS MODEL 
One of the most popular approaches to detect moving objects in video sequences is based on background sub­
traction techniques. The main idea of the background subtraction techniques is to estimate a background model 
of the scene and consider any deviation from it a moving (foreground) object. In literature several background 
modeling techniques have been presented2 3 . 

The algorithm presented by Stauffer and Grimson1 4 aims at estimating a background model of the scene as a 
mixture of Gaussian distributions. The algorithm does not take into account the spatial correlation in the image, 
since it models each pixel independently. The algorithm is composed by two fundamental steps. The first step 
is the estimation of whether or not a pixel belongs to the background model. In the second step the Gaussian 
parameters are recursively updated. 

The main idea of the algorithm is to model each pixel of the background as a mixture of Gaussians. The 
probability to find a pixel at time t of intensity X is defined as: 

K 

P(Xt) = ^2cJi,fV(Xt,tM,t,'Si,t) (2) 
¿=i 

Where K is the number of Gaussians, w^t is the weight associated at time t to the ith Gaussian at the time t 
with mean pit and the covariance matrix E¿ t . If the RGB planes are considered independent the form of the 
covariance matrix can be considered as E j i t = OitI. 

In the first step for each incoming pixel there is the estimation of whether or not it belongs to the background 
model. The K distributions are ordered using as criterion the ratio 

U,t = ^ - (3) 

The first B distributions tha t exceed a certain threshold T are used for the background model: 

B = argmin i ^ w M >T\ (4) 

T is a measure of the minimum portion of the da ta tha t should be accounted for by the background. For small 
value of T is obtained a background modeled by few distribution, at the limit a unimodal Gaussian distribution. I 
T is higher is obtained a multi-modal background model, tha t can include more than one color in the background 
model. 

A pixel, at t ime t + 1, belongs to one of the K distributions if the equation (5) is satisfied: 

y(Xt+i - Pi,t) S ^ 1 ( X t + i - /xiit) < 2.5<riit (5) 

If the pixel belongs to one of the background distributions it will be classified as a background pixel, otherwise 
it is classified as a foreground pixel. If a match is found, the parameters of the matching Gaussian are updated 
with the following equations: 

w¿, t+i = w i i t ( l -a) + a (6) 

p = a -r](Xt+i,fJ,itt, £¿,t) (7) 

Pi,t+i = M ¿ , Í ( 1 - P) + pXt+i (8) 

°f,t+i = alÁl ~ P) + p(Xt+i - Pi,t+i) (Xt+1 - Pi,t+i) (9) 



where a is the so called learning rate. The learning rate a determines the speed of adaptat ion to changes in 
the scene (i.e, illumination) and the speed of the incorporation of foreground objects to the background. For the 
unmatched Gaussians all their parameters remain unchanged except the weight: 

°i,t+l t ( l - a ) (10) 

If no match is found the least probable distribution is substi tuted by a distribution with a low weight, a high 
variance and a mean equal to the pixel value. When all the parameters have been update , the weights are 
normalized in order to obtain J2i=1 <¿>i,t+i = 1-

Many variations of the algorithm have been presented in order to overcome different problems like, sudden 
changes of illumination, shadows of moving objects, real time constraints, memory requirements etc. For a 
complete review of these algorithms see the review of Bouwmans et al.30 . However we have implemented the 
original proposal of Stauffer and Grimson except for a small change in the parameters update . In fact, in our 
experiments we slightly modified the original algorithm in order to reduce the processing time. Following the 
solution proposed by Power and Schoonees31 the equation (7) is substi tuted by: 

' = 7- (11) 
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