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ABSTRACT   

This paper presents a low-power, high-speed 4-data-path 128-point mixed-radix (radix-2 & radix-22) FFT processor for 
MB-OFDM Ultra-WideBand (UWB) systems. The processor employs the single-path delay feedback (SDF) pipelined 
structure for the proposed algorithm, it uses substructure-sharing multiplication units and shift-add structure other than 
traditional complex multipliers.  Furthermore, the word lengths are properly chosen, thus the hardware costs and power 
consumption of the proposed FFT processor are efficiently reduced. The proposed FFT processor is verified and 
synthesized by using 0.13 µm CMOS technology with a supply voltage of 1.32 V. The implementation results indicate 
that the proposed 128-point mixed-radix FFT architecture supports a throughput rate of 1Gsample/s with lower power 
consumption in comparison to existing 128-point FFT architectures.   
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1. INTRODUCTION  
UWB has recently attracted much attention as an indoor short-range high-speed wireless communication [1]. One of the 
most exciting characteristics of UWB is that it can support various data rates from tens of MB/s to hundreds of MB/s, 
thus satisfy most of the multimedia applications such as audio and video delivery. Multiband orthogonal frequency 
division multiplexing (MB-OFDM) is considered as the leading choice by the 802.15.3a standardization group for use in 
establishing a physical-layer standard for UWB communications [2]. OFDM based UWB not only has reliable high-
data-rate transmission in time-dispersive or frequency-selective channels without having complex time-domain channel 
equalizers, but also provides high spectral efficiency [3]. Figure 1 is the UWB physical layer in MB-OFDM frame work. 
In the MB-OFDM systems, the FFT processor conducts total of 128 points, including 100 data tones, 12 pilot tones, 10 
guard tones and 6 null tones.  

 
Figure 1. Multiband UWB physical layer 

The FFT processor is one of the most important and complex modules in the physical layer of UWB, the execution time 
for 128-point should be at most 312.5 ns in order to satisfy the timing constraints. However the traditional FFT 
architecture cannot satisfy both the low power consumption and the high-throughput specification. Thus designers 
should develop high-speed power efficient FFT processor. There are many works focusing on the FFT/IFFT processor. 
Y. W. Lin et al. [3] proposes a mixed radix FFT algorithm by implementing radix-2 and radix-26 FFT. They divide the 
radix-26 FFT into two radix-23 FFT stages, and then realize the radix-23 FFT by 3 radix-2 stages. The architecture is 
designed as four-parallel-paths SDF pipelines, the max work frequency of FFT chip reaches 250MHz under 180nm 
CMOS technology library, the throughput rate is 1G sample/s with power dissipation of 175mW. Sang-In Cho et al. [4] 

VLSI Circuits and Systems V, edited by Teresa Riesgo, Eduardo de la Torre-Arnanz, 
Proc. of SPIE Vol. 8067, 80670E · © 2011 SPIE · CCC code: 0277-786X/11/$18 · doi: 10.1117/12.890303

Proc. of SPIE Vol. 8067  80670E-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

employs a modified radix-24 algorithm and a radix-23 algorithm to significantly reduce the number of complex constant 
multipliers. It also employs four-parallel-path pipelined architecture. The simulation result indicates the FFT processor 
can support a throughput of up to 1G sample/s with a power dissipation of 112mW under 180nm CMOS technology 
library. Z.Wang et al. [5] proposed a two-stage radix-22 and radix-32 FFT algorithm, it uses radix-25 algorithm instead of 
radix-32, four parallel pipelines are employed at the second stage. S.Qiao et al. [6] Proposes radix-2 and radix-64 FFT 
algorithm as [3], however, it develops a non-Cooley-Tukey radix-8 unit in order to save hardware cost. The 
measurement result shows the throughput rate is 409.6M sample/s with area saved by 20% to 63% compared to that of 
radix-2 SDF architecture. Table 1 show out the features of each algorithm. 

Table 1. Feature of other proposed Algorithms 

Algorithm Y. W. Lin 
et al. [3] Sang-In Cho et al.   [4] Z.Wang et al. [5] S.Qiao et al. 

[6] 

Architecture Radix-2, 2 × radix-23 Modified radix-24, 
raidx-23 

Two-stage radix-22, 
radix-25 

radix-2 and 
radix-64 

CMOS Technology Library 180nm 180nm 0.13µm & 90nm 180nm 
Throughput rate (Sample/s) 1G 1G 528M 409.6M 

 

A novel mixed radix 128-point FFT algorithm is presented in this paper and multipath pipelined 128-point FFT 
architecture is designed. As most of the power consumption and hardware complexity in FFT processor come from the 
complex multipliers, carefully design will not only lower the power, higher the speed, but also guarantee a good level of 
signal-to-quantization-noise ratio (SQNR). 

The paper is organized as follows. Section 2 describes the novel proposed 128-point mixed-radix FFT algorithm. Section 
3 introduces the hardware architecture designed for the proposed algorithm. Section 4 demonstrates experiment results 
and compares results with existing FFT architectures. At the end, the conclusions are drawn in Section 5. 

2. 128-POINT MIXED RADIX ALGORITHM 
A mixed radix-2 and radix-22 128-point FFT algorithm is proposed and introduced in this section. An N-point discrete 
Fourier transform (DFT) is defined as 
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Where x(n) and X(k) are complex values. The twiddle factor is expressed in (2) 
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To drive the proposed algorithm, n and k are determined by a four-dimensional linear index map: 
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Substitute (3) and (4) into (1), we obtain (5) as follow 
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As we can see in (5), the 128-point FFT is changed into one radix-2 and three radix-4 stages. Therefore, we have stage1 
expressed by 

1 2 3 4 1( , , , )S n n n k , which contains a radix-2 algorithm and a multiplication of twiddle factor 1 2 3 4(16 4 )
128
k n n nW + + , 

as shown in (6).  

1 2 3 41 1

1

1
(16 4 )

1 2 3 4 1 1 2 3 4 2 128
0

( , , , ) (64 16 4 ) k n n nn k

n
S n n n k x n n n n W W + +

=

= + + + ⋅∑                      (6)  

Further decompose 2n and 2k  in (7) and (8), stage2 can be represented by two radix-2 butterflies multiplied by twiddle 

factor 2 3 4(4 )
64
k n nW +  as shown in (9). 
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By using similar method, stage three and four can be represented as (10) and (11) respectively. Figure 2 is the signal 
flow of the proposed FFT algorithm. 
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Note that the inverse FFT (IFFT) of a length-N complex sequence can be obtained by (13) 
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The IFFT can be realized by making the complex conjugate at the input and without changing coefficients, then take the 
conjugate at the output and divide the result by N. 

3. ARCHITECTURE OF THE PROPOSED FFT ALGORITHM 
According to the proposed algorithm, a 4-data-path SDF pipeline processor was proposed. The block diagram of the 
proposed architecture is given in Figure 3. Module one to four represents to stage one to four in signal flow respectively. 
The function of Module 1 is to realize the radix-2 FFT algorithm, while Modules 2 to 4 realize the radix-22 FFT 
algorithm. We defined 3 types of word lengths for our system: input/output word-length (IOWL), system word-length 
(SWL) and twiddle word-length (TWL). In this paper, we choose IOWL =SWL = 10 bits, TWL = 8 bits, the details will 
be discussed in Section 4. 
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Figure 2 . Signal Flow of proposed FFT algorithm 
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Figure 3. Block diagram of proposed four-parallel data-path 128-point mix-radix FFT processor 

Module 1 consists of four register files (each can store 16 pieces of complex data), two complex Booth’s multipliers, 
four radix-2 butterfly units (BU_2), two ROMs and some multiplexers. The function of ROM is used to store TWs for 

1 2 3 4(16 4 )
128
k n n nW + + . By using the periodical property of twiddle factors (TW), only 1/8 periods of the cosine and sine 

waveforms are stored in ROM. At the first 16 cycles, the first 64 input data are stored in the register file. Then from the 
17th cycle, the BUs begin to execute the complex addition and subtraction between x(n) and x(n+64) during the next 16 
clock cycles. The results of addition (x(i)) will be fed to Module 2 directly as no multiplications are needed, while the 
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results of subtraction (y(i)) are multiplied by TW and then stored into the register file before they are sent to Module 2. 
Generally speaking, four complex multipliers are needed in the four-parallel approach to implement the radix-2 FFT 
algorithm, thus the utilization rate of the complex multiplier is only 50%. While in our proposed architecture, as Module 
2 needs 32 clock cycles to process x(i), we can share the complex multiplier for four paths separately during these 32 
cycles. The detailed operation is described below.  When y(i) are generated from BUs, two of the y(i), y(0) and y(1), are 
multiplied by the appropriated twiddle factors first while y(2) and y(3) are going to the register files. 16 clock cycles 
later, other two, y(2) and y(3), are multiplied then be fed to Module 2 at the same time with the results of y(0) and y(1). 
By using this rescheduling architecture, only two complex multipliers are needed, thus 50% of multipliers are saved and 
a 100% utilization of the multipliers is achieved. 

Module 2 consists of four-parallel radix-22 SDF architectures and a complex multiplier module for 64
nkW  as shown in 

Figure 4.  As can be seen in Figure 3, the output data generated by the BU2 between the first step and second step should 
be multiplied by j, which can be implemented efficiently by just exchanging the real part and imaginary part with each 
other. In order to simplify the complexity of the complex multipliers, we do a further modification for the approach 
proposed in [3]. The twiddle factors of the modified complex multiplier are 

64
2exp( )
64

p
p p

j pW X jYπ
= − = − , where 

cos(2 / 64)pX pπ= , sin(2 / 64)pY pπ= , p is from 0 to 45.  The twiddle factor of 64 can be divided into eight regions as 
shown in Figure 5. Region A consists of values with p from 0~8, the values in other seven regions can be represented by 
transforming the data of region A according to Table 2. Therefore, through the mapping method, only nine sets of constant 
values are needed. In practice, we only need to implement eight sets of constant values in region A, since the first pair of 
constant values (1, 0) is trivial. In addition, these constant values can be realized more efficiently by using 8-bit shift-add 
multiplier [7].  

 
Figure 4.  Modified Complex Multiplier 

 
Figure 5.  Twiddle factor of 64 can be divided into eight regions 

Table 2.  Mapping table for twiddle factor in different region 
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Region Real Imaginary 
A 

(p=x*) Xp -Yp 

B 
(p=16-x) Yp -Xp 

C 
(p=x-16) -Yp -Xp 

D 
(p=32-x) -Xp -Yp 

E 
(p=x-32) -Xp Yp 

F 
(p=48-x) -Yp Xp 

Table 3 shows the schedule of the twiddles for the four paths. The table only shows 16 clock cycles because the values of 
twiddle factor are repeated every 16 cycles. After mapping according to Table 2, the results of the coefficient value and 
corresponding regions are shown in Table 4 and Table 5. It can be clearly seen from Table 4 that the twiddle factor of four 
paths in each time slot has different values, except for the first 4 cycles which no multiplications are needed. As can be 
seen from the block diagram of the complex multiplier in Figure 4, when the inputs come in the first module, the four path 
data are mapped into different complex constant multipliers according to the schedule in Table 4. After the 
multiplications, the regions are selected at second module according to Table 5 and Table 2. By using the modified 
complex multiplier, the system is much simpler, efficient in time and energy as only few registers and adders are needed. 

Table 3. Scheduling of the twiddle factor, , where x is the value shown in the table 

L1 0 0 0 0 0 8 16 24 0 12 24 36 0 4 8 12 
L2 0 0 0 0 2 10 18 26 3 15 27 39 1 5 9 13 
L3 0 0 0 0 4 12 20 28 6 18 30 42 2 6 10 14 
L4 0 0 0 0 6 14 22 30 9 21 33 45 3 7 11 15 

 

Table 4. Scheduling of the twiddle factor after mapping 

L1 0 0 0 0 0 8 0 8 0 4 8 4 0 4 8 4 
L2 0 0 0 0 2 6 2 6 3 1 5 7 1 5 7 3 
L3 0 0 0 0 4 4 4 4 6 2 2 6 2 6 6 2 
L4 0 0 0 0 6 2 6 2 7 5 1 3 3 7 5 1 

 

Table 5. Scheduling of the region after mapping 

L1 A A A A A A B C A B C E A A A B 
L2 A A A A A B C D A B D E A A B B 
L3 A A A A A B C D A C D F A A B B 
L4 A A A A A B C D B C E F A A B B 

Module 3 consists of four-parallel BU_2s and only three substructure-sharing multiplication units for TW 16
nkW  according 

to the proposed algorithm, which is one less than that in [4]. Furthermore, as the TWL of the proposed FFT is 2 bits less 
than that of [3] and [4], fewer additions are needed, the hardware cost is reduced, and the speed is improved.  

We name the three complex multipliers in module 3 as TCM_1, TCM_2, and TCM_3. Table 6 is the time schedule of 
TCM_1, TCM_2 and TCM_3, the value in the table represents to p in 16

pW , the table shows that the values of the 

multipliers repeat every 4 cycles. Besides, 0
16 1W = , which is trivial, therefore only 3 twiddle factors should be designed in 

each multipliers. According to Table 6, we can calculate the coefficients that are needed to represent all the twiddle factors 
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in each multiplier. Table 7 is the coefficient table which shows that TCM_1 and TCM_3 require three coefficients while 
TCM_2 needs only one coefficient.  

Table 6. Time Schedule for TCM_1, TCM_2 and TCM_3 

TCM_1 0 2 3 1 
TCM_2 0 4 6 2 
TCM_3 0 6 9 3 

Table 7. Coefficient Table 

TCM_1 cos , cos ,sin
4 8 8
π π π  

TCM_2 cos
4
π  

TCM_3 cos , cos ,sin
4 8 8
π π π  

The architecture of TCM1 is shown in Figure 6. TCM1_S1 controls whether to exchange the real part with the imaginary 

part at the input, TWD1 in Figure 6 is the coefficient multiplier which multiplies the input by cos
4
π , cos

8
π , sin

8
π at the 

same time, the three outputs are selected by control signal TCM1_S2. Finally, the computed results are selected by 
TCM1_S3. TCM2 (Figure 7) and TCM3 (Figure 8) have similar structure with TCM1, only with different time schedule. 

 
Figure 6. Architecture of TCM_1 

 
Figure 7. Architecture of TCM_2 

Proc. of SPIE Vol. 8067  80670E-7



 

 

 
Figure 8. Architecture of TCM_3 

Table 8 shows the 2’s complement values of the coefficients for TWD1 in TCM_1 and TCM_3. We notice that the binary 
values of a, b and c have some parts in common, therefore to reduce the hardware cost, we decompose the binary values to 
find the sharing parts. The proposed architecture of TWD1 and TWD2 are shown in Figure 9 and Figure 10. By using the 
proposed shift-add method, the complex multipliers in Module 3 are even faster and less power consume compared with 
that proposed in Module 2. Thus, a very high speed, low-power system is realized during this stage. 

Table 8. 8 bits Binary of the coefficients and decomposition (for TCM_1 and 3) 

Coefficients 2’s complement 2’s complement decomposition 

cos
8

a π
=  01110110 

00110110 

01000000 

sin
8

b π
=  00110001 

00110000 
00000001 

cos
4

c π
=  01011011 

00011011 
01000000 

 
Figure 9. Architecture of TWD1 

4
cos π

⋅y

 
Figure 10. Architecture of TWD2 

Module 4 has two stages of BU_2s, only one twiddle factor of ‘j’ is needed which can be realized by exchanging the real 
part and imaginary part of the complex data.  
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4. EXPERIMENTAL RESULTS 
Before implementing the hardware module, the proposed architecture is verified in Simulink. In order to choose properly 
the bit length for the system, we employ fix-point tool box to estimate the relationship between the Signal to Quantization 
Noise Ratio (SQNR) of the outputs and different IOWLs, SWLs and TWLs.  As the word lengths increase, the average 
output SQNR will increase, while the hardware cost will increase as well. Thus choose the word length is a trade-off 
problem. We employ fix point tool box in MATLAB to simulate the affect of word length on GR. Three types of word 
lengths are defined: input/output word-length (IOWL), system word-length (SWL) and twiddle word-length (TWL). [8] 
proves that SQNR of FFT module in UWB should be enough when IOWL=6bits, SWL=TWL= 11bits. We also notice 
that in [4] the SQNR reaches 35 dB with SWL=TWL=IOWL=10 bit.  

We simulate 18 groups of test data by implement different word lengths on GR, Table 9 shows the results. As the SQNR 
reaches 27.4dB when the word lengths are the same as [8], similarly as [4], the average SQNR is 36.7dB when bit length 
equals to 10. As aforementioned, besides the design of HW architecture, the word-length decision helps to reduce the 
power consumption. Thus to be reasonable, for instance we keep the IOWL and SWL as 10 bits, while reduce the TWL to 
8 bits to slightly lower the SQNR, as see in Figure 11, the average SQNR is 34.1 dB which still satisfy the requirement of 
MB-OFDM UWB protocol. 

Table 9. Output SQNR summary table 

IOWL,SWL,TWL(bit) 10,10,10 6,11,11 10,10,8 
Worst output SQNR 35.6 26.6 33.3 
Best output SQNR 38.4 27.9 34.7 

Average SQNR 36.7 27.4 34.1 

 
Figure 11. SQNR of proposed FFT processor (IOWL=SWL=10bits, TWL=8bits) 

After that, a manually optimized implementation in Verilog HDL of the proposed FFT processor has been obtained. The 
hardware module is verified and the outputs SQNRs of different input data are calculated, the average SQNR is 34dB.  

At the end, the proposed FFT architecture is synthesized by using the UMCL130E 0.13 µm CMOS technology with a 
supply voltage of 1.32V. Table 10 compares the implementation results of the proposed FFT processor with the existing 
works. It indicates that the proposed FFT processor can support a data processing rate of 1 G sample/s with power 
dissipation of 43.79 mW at 250 MHz. In order to compare the power consumption with [3] and [4], which use 0.18µm 
technology, the power consumption might be multiplied by a factor of around 1.4, thus is 61 mW, which is around 50% of 
that of [4]. 

Table 11 compares the hardware cost, FFT algorithm and throughput rate with two existing 128-point four-parallel data-
path FFT architectures. During the test of circuit, we find that the critical path of the FFT processor lies in the two 
multipliers at stage 1, we employ Booth’s multiplier, thus, the critical path is shortened and hardware cost of these 
multipliers is 75% of [3]. In the proposed architecture, only 3 trivial multipliers are needed, and their complexities are 
reduced because of the properties of the data stream and the sharing structure. As a result the hardware cost of the three 
trivial multipliers is 40% of [4] and 63.7% of [3]. The complex multiplier in stage 2 not only uses less constant complex 
multipliers than that of [3], but the bit-length of the TW is less as well.  
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Table 10. Comparison synthesis results of the FFT processor 

Algorithm Proposed 
algorithm 

Y. W. Lin 
et al. [3] 

Sang-In Cho et al.   
[4] 

CMOS Technology Library 130nm 180nm 180nm 
Working Frequency(MHz) 250 250 250 

Equivalent 2*1Nand Gate Count 80,424 N/A 80,100 
Dynamic Power /mW 43.79 175 112 

Table 11. Comparison synthesis results of the FFT processor 

Algorithm Proposed algorithm Y. W. Lin et al. [3] Sang-In Cho et al. [4] 
Architecture Radix-2, 2 × radix-22 Radix-2, 2 × radix-23 Modified radix-24, raidx-23 

No. of complex registers 124 124 124 
No. of nontrivial multipliers 4 0.55 2 0.58× + ×  2 4 0.62+ ×  4 0.6×  

No. of trivial multipliers 2 1.5 1 0.82× + ×  6 4 1.97 2 0.82× + ×  
No. of complex adders 48 48 48 

Throughput rate (R: clock rate) 4R 4R 4R 

5. CONCLUSIONS 
In this paper, we propose a novel mixed radix 128-point FFT algorithm by combining modified radix-2 and radix-22 
algorithms together. A low-power, high throughput rate FFT processor is built. Thanks to the algorithm, we are able to 
significantly reduce the number and complexity of the complex multipliers. The power consumption of the whole system 
has been reduced by around 50% compared with that of existing work. The implementation results indicate that the 
throughput rate of the proposed FFT processor with 10-bit IOWL, SWL and 8-bit twiddle factor word-length can support 
1 Gsample/s with a power consumption of 43.79 mW at 250 MHz by using 0.13 µm CMOS technology. 

We are currently finishing the design of the other modules of UWB system and, at the same time, refining the design 
method to assure first-silicon access. 
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