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Abstract. The training algorithm studied in this paper is inspired by 
the biological metaplasticity property of neurons. Tested on different 
multidisciplinary applications, it achieves a more efficient training and 
improves Artificial Neural Network Performance. The algorithm has been 
recently proposed for Artificial Neural Networks in general, although for 
the purpose of discussing its biological plausibility, a Multilayer Percep-
tron has been used. During the training phase, the artificial metaplastic­
ity multilayer perceptron could be considered a new probabilistic version 
of the presynaptic rule, as during the training phase the algorithm assigns 
higher values for updating the weights in the less probable activations 
than in the ones with higher probability. 

1 Introduction 

Artificial Metaplasticity (AMP) term was first introduced by Andina et al [1] for 
an Artificial Neural Network (ANN) of the Multilayer Perceptron type (MLP), 
referred as AMMLP. During the AMMLP training phase, the matrix weight W 
that models the synaptic strength of its artificial neurons is updated according to 
the probability of the input patterns and therefore of the corresponding synap­
tic activations. The concept of biological metaplasticity was defined in 1996 by 
W.C. Abraham [2] and now is widely applied in the fields of biology, neuro-
science, physiology, neurology and others [2,3,4]. The prefix "meta" comes from 
Greek and means "beyond" or " above". In neuroscience and other fields "meta­
plasticity" indicates a higher level of plasticity, expressed as a change or trans­
formation in the way synaptic efficacy is modified. Metaplasticity is defined as 
the induction of synaptic changes, that depends on prior synaptic activity [3, 5J. 
Metaplasticity is due, at least in part, to variations in the level of postsynaptic 
depolarization that induce synaptic changes. These variations facilitate synap­
tic potentiation and inhibit synaptic depression in depressed synapses (and vice 
versa in potentiated synapses). The direction and the degree of the synaptic 
alteration are functions of postsynaptic depolarization during synaptic activa­
tion. Upregulation -incrementing, reinforcement of synaptic efficacy- is termed 
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long-term potentiation (LTP), whereas downregulation -decrementing inhibing-
is known as long-term depression (LTD). LTP and LTD are believed to be 
fundamental to storage of memory in the brain and hence learning. 

The induction of synaptic changes in the levels of neural activity is explained 
[6] in Fig. 1. Metaplasticity can be represented as variations in curve elongation 
with respect to the level of activity and implies a shift of the LTP threshold 
according to the weight strength of the synapse [6]. Fig. 1 graphically illustrate 
this idea. Understanding metaplasticity may yield new insights into how the 
modification of synapses is regulated and how information is stored by synapses 
in the brain. [7,8,9] 

This paper is organized as follows. Section 2 provides a brief introduction to 
related concepts (e.g. synaptic plasticity). Main postulation regarding the re­
lation between metaplasticity and Shannon's Information Theory is introduced 
in Section 3, to ease the understanding of the proposed model. In Section 4, 
general mathematical theory is applied to describe the proposed implementa­
tion of AMP in a MLP, whose learning process is based on error minimization. 
In Section 5, we implement the AMP algorithm in the MLP neural network, 
which is trained with the BP algorithm with a modified objective function. 
Section 6 presents a discussion on the biological plausibility of the AMMLP al­
gorithm, refering to experimental results. Finally, Section 7 summarizes main 
conclusions. 

2 Synaptic Plasticity and Metaplasticity 

Synaptic plasticity refers to the efficacy modulation of information transmis­
sion between neurons, being related to the regulation of the number of ionic 
channels in synapses. Synaptic plasticity mechanisms involve both molecular 
and structural modifications that affect synaptic functioning, either enhancing 
or depressing neuronal transmission. They include redistribution of postsynaptic 
receptors, activation of intracellular signaling cascades, and formation/retraction 
of the dendrites [10]. The first model of synaptic plasticity was postulated by 
Hebb and it is known as the Hebb rule [11]. 

In Fig.l, the effect of metaplasticity is illustrated. This graphic shows a family 
of curves in which each curve indicates the biological variation in weight, AUJ, 
respective of the neurons activation frequency or postsynaptic activity. If post­
synaptic activity is high, by metaplasticity property, the curve will move to the 
right, reinforcing the LTP. Andina postulates [1] that high postsynaptic activity 
corresponds to high frequent excitations -frequent input classes in an artificial 
model-. In the same way, the left-hand side curves of the family corresponding to 
low previous synaptic activity correspond to low frequent excitations produced 
by patterns of unfrequent classes. During training, postsynaptic activity is the 
same for each training pattern -one excitation by epoch-. As it can be observed 
in Fig.l, for a given postsynaptic activity value, a higher AUJ corresponds to the 
un-frequent classes curves than to the curves corresponding to frequent ones. 
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Fig. 1. Heterosynaptic BCM model [21] illustrates changes in synaptic strength due to 
postsynaptic activity in biological neurons 

2.1 Intrinsic Plasticity 

A third concept about biological plasticity is the intrinsic plasticity, and it must 
not be misunderstood with the previous ones. When neurons are receiving and 
responding to synaptic inputs, the synaptic metaplasticity makes it difficult for 
synaptic weights to become either null or saturated. But the metaplasticity prop­
erty cannot fully avoid these two extreme situations. For totally precluding the 
possibility of either weight annihilation or saturation, another important homeo-
static property of real neurons should be taken into account: the so-called intrin­
sic plasticity [12]. Intrinsic plasticity regulates the position (rightward shift) of 
neurons activation function, according to previous levels of activity [6]. Intrinsic 
plasticity is not modelled in the AMMLP. 

3 Metaplasticity and Shannon Information Theory 

As is well-known within the ANN field, in 1949 Hebb postulated that during the 
learning phase, synaptic connections between biological neurons are strength­
ened due to the correlated activity of presynaptic and postsynaptic neurons [11]. 
This plasticity property of synaptic connections is modeled in many ANNs as a 
change in the connection weights of the artificial neurons or nodes. Therefore, 
synaptic plasticity of biological neural networks has been simulated in artificial 
networks by changing the weight values of the simulated neuronal connections. 
These weights are the most relevant parameters in ANN learning and perfor­
mance. Modeling these new discovered properties of biological neurons that fol­
low metaplasticity rules provides a large potential for improving ANN learning. 
In addition, the results of these simulations may also corroborate the biolog­
ical hypothesis of neuronal metaplasticity. Utilizing the potential of this new 
modeling approach, artificial metaplasticity (AMP) models have been devised 
and tested. A model that closely followed biological metaplasticity and intrinsic 
plasticity was successfully tested in the reinforcing the calcium dysregulation 
hypothesis for Alzheimer's disease [13]. However, of all AMP models tested by 



the authors, the most efficient model (as a function of learning time and per­
formance) is the approach that connects metaplasticity and Shannon informa­
tion theory, which establishes that less frequent patterns carry more information 
than frequent patterns [14]. This model then defines artificial metaplasticity as 
a learning procedure that produces greater modifications in the synaptic weights 
with less frequent patterns than frequent patterns, as a way of extracting more 
information from the former than from the latter. As Biological metaplasticity, 
AMP then favors synaptic strengthening for low-level synaptic activity, while 
the opposite occurs for high level activity. The model is applicable to general 
ANNs. Andina et al. propose general AMP concepts for ANNs, and demonstrate 
them over Radar detection data [1]. 

4 Backpropagation Algorithm and A M P 

The AMP implementation applied tries to improve results in learning conver­
gence and performance by capturing information associated with significant rare 
events. It is based on the idea of modifying the ANN learning procedure such that 
un-frequent patterns which can contribute heavily to the performance, are con­
sidered with greater relevance during learning without changing the convergence 
of the error minimization algorithm. It is has been proposed on the hypothe­
sis that biological metaplasticity property maybe significantly due to an adap­
tation of nature to extract more information from un-frequent patterns (low 
synaptic activity) that, according to Shannon's Theorem, implicitly carry more 
information. 

4.1 Mathematical Definitions 

Let us define an input vector for a MLP with n inputs (bias inputs are assumed 
to exist and be of fixed value set to 1): x e Rn, where Rn is the n-dimensional 
space, i.e. x = (xi,X2, ....,x„), x¿ G R1, i = 1,2, ...,n; and its corresponding j 
outputs given by vector y = (yi,y2, •••, yn), Vi & (0,1), j = 1,2, ...,m [15]. Let 
us consider now the random variable of input vectors X = (Xi, X2, •••, Xn) with 
probability density function (pdf) fx (x) = fx (xi ,xi , . . . ,xn). The strategy of 
MLP learning is to minimize an expected error, EM, defined by the following 
expression: 

EM = e{E(x)} (1) 

where E(x) is the expression of an error function between the real and the 
desired network output, being respectively Y = F(X), with pdf fy (y) and Yd 
the desired output vector, and F (X) is the nonlinear function performed by the 
MLP. The symbol e represents the mathematical expectation value, that is, 

EM= i E (x)fx (x) dx (2) 



4.2 AMP in Gradient Descent Algorithm 

BackPropagation training algorithm applied in MLPs follows Widrow gradient 
descent algorithm over an estimation of this expected error in each training itera­
tion, t G N, for determining the necessary modification in the ANN weight matrix 
W (t) in each bias and weight value in the MLP [15]. The algorithm objective is 
to reduce the output classification error in subsequent training epochs, stopping 
the training phase if the error is low enough to satisfy the design requirements. 

To introduce AMP in the gradient descent algorithm, let us define 

e(x) = E (x) fx (x) 

and manipulate Eq. (2) in the following way: 

f e (x) fx (x) 

e (x) 

where a new probability density function (pdf) fx (x) has been introduced, re­
quiring that fx (x) y^ 0 wherever e (x) ^ 0,Vi e Rn and new mathematical 
expectation, e*, defined in Eq. (3) represents that the minimization of EM can 
also be achieve from statistical inference theory applied to Eq. (3), by estimat­
ing over the weighted function e (x) / fx (x) instead of e (x), under fx (x) pdf, 
through the estimator EM, defined as: 

p 

EM = P^1I%
 (4) 

where x*k, k = 1,2,..., P, are independent sample vectors whose pdf is the weight­
ing function fx (x). Note that many functions may fix to the definition of fx (x), 
in particular: 

[fx(*)\opt = 1^e(x) (5) 

that can be proved by taking Eq. (5) into Eq. (4); only one simple sample vector 
(P = 1) is then required for exactly estimating EM without error. The optimal 
solution for fx (x) given by Eq. (5) is not realizable, because EM is not known 
a priori (it has to be estimated by Eq. (4)). But, a suboptimal solution can be 
used. For example, a common suboptimal solution for fx (x) applied and tested 
succesfully in many applications is: 



where w*x (x) is defined as l/fx (x), N is the number of neurons in the MLP 
input layer, and parameters A and B e R+ are algorithm optimization values 
which depend on the specific application of the AMLP algorithm. Values for 
A and B have been empirically determined. Eq. (6) is a gaussian distribution, 
so it has been assumed that X pdf is Gaussian (if it is not the case, the real 
X pdf should be used instead). Then, w*x (x) has high values for un-frequent x 
values and close to 1 for the frequent ones and can therefore be straightforwardly 
applied in weights updating procedure to model the biological metaplasticity 
during learning. 

5 A M P in MLP Training: A M M L P 

In the case of an MLP trained with BPA applied to L classes, Hi, I = 0,1, ...,L—1, 
previous studies have shown that the output for each class is the MLP inherent 
estimation of a posteriori probability of the class [16], based on Bayes Theorem, 
we then have: 

»aFWNi=ft?';w (7) 
Jx (x) 

This enables a direct implementation of metaplasticity. For each class, by as­
suming the proposed AMP model described in subsection 4.2 can be make 
fx (x) = fx (x) and from Eq.(7) and Eq. (4) 

e(x\Hl)E(x)fx(x\Hl) 

EM, -
-, M, E(xk)fx(x\Hi[ 

Mi ^ fx (xk) 

-, Mi 

1 fc=l v lJ 

where k = 1,2..., Mi, are the independent sample vectors of class I in the training 
set. Then, from Eq. (8) and Eq. (4) 

yi - -^— (9) 

Eq. (7) takes advantage of the inherent a posteriori probability estimation for 
each input class of MLP outputs, so it is used to quantify a pattern's frequency. 
Note that if this is not the case, as it happens in first steps of BPA training 
algorithm, the training may not converge. In this first steps, the outputs of the 
MLP does not provide yet any valid estimation of the a posteriori probabilities, 
but rather random values corresponding to initial guess of the MLP weights, W 
. It is then better in these first steps of training, either to apply ordinary BPA 
training or to use another valid weighting function till BPA starts to minimize 



the error objective. Also, many suboptimal functions may yield good results. 
For example, in the following experiments, a typical approximation premise that 
assumes a Gaussian distribution for the inputs has been implemented, proposing 
the function for weight updating (known as a weighting function) [1], given 
by Eq. (6). 

To analytically introduce AMP in an arbitrary MLP training, all that has to 
be done is to introduce the weighting function in the error function between the 
real and the desired network output, as a function of the weights matrix W (t) 
in each training iteration, t, that is 

•̂e>] = ™ do, 

And apply the BPA [15] to the weighted error E* (W) for weights reinforcement 
in each iteration t G N. If s, j , i e N are the MLP layer, node and input counters 
respectively, for each W (t) component, wf-' (t) G R, and being r¡ G R+ the 
learning rate, then the weight reinforcement in each iteration is given by: 

„f« + i) = » -« ) - ,™ff i 

=„g>(()_^ra (11) 

So, as the pdf weighting function proposed is the distribution of the input pat­
terns that does not depend on the network parameters, the AMMLP algorithm 
can then be summarized as a weighting operation for updating each weight in 
each MLP learning iteration as: 

A*w = w* (x) Aw (12) 

being Aw = w(t + I) — w(t) the weight updating value obtained by usual BPA 
and w* (x) the realization of the described weighting function w* (x) for each 
input training pattern x. During the training phase, the artificial metaplasticity 
multilayer perceptron could be considered a new probabilistic version of the 
presynaptic rule, as during the training phase the algorithm assigns higher values 
for updating the weights in the less probable activations than in the ones with 
higher probability. 

6 Discussion 

Plasticity and Metaplasticy still pose a considerable challenge for research in 
terms of experimental design and interpretation [22]. Along the years, differ­
ent mathematical models of synaptic computation have been proposed. In the 
classical Hebb model [11], the curve relating the increment of synaptic weight 
to postsynaptic activation is a straight line without synaptic depression. In Se-
jnowski's covariance model [23,24], regions of potentiation and depression are 



separated by a LTP threshold. In [25] Abraham and Bear consider it as a ho-
mosynaptic property (i.e. involving only the synapse under study, without the 
need of considering the influence of nearby synapses). Whereas the model by 
Bienenstock, Cooper and Munro [21] yields a curve that is closer to reality, with 
LTP threshold determined by postsynaptic activation and without LTD thresh­
old. In the BCM model, the LTP threshold is the same for all neuron synapses, 
so that metaplasticity would affect even non-active synapses (heterosynaptic 
plasticity). But despite its unquestionable biological characteristics, the BCM 
model, cannot be regarded to be the ultimate model of synaptic metaplasticity. 
According to Mockett and colleagues [27] metaplasticity is inherently a homosy-
naptic phenomenon in contrast to the heterosynaptic nature of the BCM rule. 
Finally, Artola, Brocher and Singer's [28]) extended model (ABS model) is not 
analytical, as those just discussed, but is based on empirical experimental data. 
In the ABS model, LTP and LTD thresholds shift to lower values for higher 
levels of the activation of neighbouring synapses. 

In its implementation characteristics, the proposed AMP model follows closer 
to the BCM model. We do not pretend to determine its superiority, but neurobi­
ology inspires computer science and vice versa, and we report that the empirical 
results of AMP show a great potential, in terms of improving learning and there­
fore performance in most cases, no matter in what multidisciplinary application 
is applied [1,17,18,28]. 

7 Conclusion 

We describe and discuss the biological plausibility of an artificial model of meta­
plasticity, a relevant property of neurons. Tested on different multidisciplinary 
applications, it achieves a more efficient training and improves Artificial Neu­
ral Network Performance. The model follows the BCM heterosynaptic biological 
model. During the training phase, the artificial Artificial Metaplasticity Multi­
layer Perceptron could be considered a new probabilistic version of the presynap­
tic rule, as it assigns higher values for updating the weights in the less probable 
activations than in the ones with higher probability. 
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