Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinacién de Bibliotecas de la Universidad Politécnica de Madrid

MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Confereac
J.C. Samin, P. Fisette (eds.)
Brussels, Belgium, 4-7 July 2011

HIGH PERFORMANCE ALGORITHMS AND IMPLEMENTATIONS
USING SPARSE AND PARALLELIZATION TECHNIQUES ON MBS

Andrés F. Hidalgd” Javier Garcia de Jalér and Santiago Tapid

JINSIA
Universidad Politécnica de Madrid, 28031 Madridaip
e-mail:andr es. f ranci sco. hi dal go@ipm es,

"ETSIl and INSIA
Universidad Politécnica de Madrid, 28031 Madridaip
e-mails:j avi er . gar ci adej al on@pm es, santi ago. t api a@pm es

Keywords: Multibody dynamics, Parallelization, Sparse, Reak.

Abstract. In this paper we will see how the efficiency af MBS simulations can be im-
proved in two different ways, by considering batheaplicit and implicit semi-recursive for-
mulation. The explicit method is based on a dowblecity transformation that involves the
solution of a redundant but compatible system aofaggns. The high computational cost of
this operation has been drastically reduced byrtgknto account the sparsity pattern of the
system. Regarding this, the goal of this methdatlasntroduction of MA48, a high perform-
ance mathematical library provided by Harwell Sulttine Library. The second method pro-
posed in this paper has the particularity that, eleging on the case, between 70 and 85% of
the computation time is devoted to the evaluatibforces derivatives with respect to the
relative position and velocity vectors. Keepingnind that evaluating these derivatives can
be decomposed into concurrent tasks, the main gbéhis paper lies on a successful and
straightforward parallel implementation that hawedlto a substantial improvement with a
speedup of 3.2 by keeping all the cores busy inadgore processor and distributing the
workload between them, achieving on this way a hinge reduction by doing an ideal CPU
usage.

https://core.ac.uk/display/148661953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

1 INTRODUCTION

Too many things can be said about the increasitggast that multibody systems have in
different fields like automobiles, machinery, raleet biomechanics, etc. The work of this pa-
per is mainly focused on achieving high performaalg@rithm implementation on large and
realistic multibody systems. Regarding this, twmseecursive formulations will be used.

It is well known that one of the most important ideans to make when a dynamic simula-
tion program is going to be developed is to chans@ppropriate set of coordinates that un-
ivocally determine the position of each body of #ystem. Taking into account that we are
concerned about real time simulations applied tgeland complex multibody systems, and
considering that the Cartesian coordinates cantiedarge matrices sizes involving very ex-
pensive computation times, in this paper two foatiahs based on the usage of relatives co-
ordinates will be seen.

According to some authors [1] and [2], using refaitoordinates can significantly improve
the efficiency of the formulation due to the redoictof the numerical problems to be solved.
Although the relative coordinates usage in fullgursive formulations have been proved to
be very efficient on large open-chain systems @ven possible to take advantage of this fact
working with closed chain systems too. This cardbee by opening the closed loops of the
system and working at this stage as it would bean chain system. The relative coordi-
nates in an open chain system are independertaimiay, the kinematic and dynamic of the
system can be easily solved. Once the open chagtiegs have been obtained, the closure of
them is performed. The two formulations used os fhaper introduce the closure of open
chain in two different ways; the first one usesardinate partitioning method [3] which has
outstanding stabilization properties, and the séamme enforces the fulfillment of the con-
straint equation by means of penalization and ptmes methods [4], [5] , [6] and [7].

Both formulations have its hotspots and bottlene€ks that reason, two significant en-
hancements have been proposed. The first one espllbe introduction of sparse techniques
by means of MA48 package on semi-recursive formanatwith redundant but compatible
linear system of equations. The second and mosbriaupt contribution, introduces a simple
and straightforward parallelization that achievespaeedupf 3.2 in a commercial quad-core
processor.

Nowadays, multi-core processors have made pamelputing a subject of interest for
programmer, engineer and research communitiesofe €£xperts say, the age of serial com-
puting is over. Most of the currently efficient mibbdy applications run in a serial way, but
in parallel environments, as any commercial mudtiecprocessor are.

Controlling parallelism by thinking in threads, symonization and other low level vari-
ables can be a hard thing if we keep in mind alittherent difficulties the multibody algo-
rithm and implementations have. The goal of a parapplication in a modern computing
environment is to achieve scalability and take athuge of all processor cores. The scalability
can be seriously compromised if the parallel paekagot being used correctly by writing an
inefficient code. Hence, the parallel library taosk is a major decision when we are looking
for a simple and efficient parallel application.gaeding this, threading Building Blocks [8] is
a library provided by Intel® that presents some ynadivantages with respect to other pack-
ages like POSIX threads, MPI and OpenMP includedybé the outstanding advantage is
that Threading Building Blocks by focusing on tgs&sd not in threads, avoid tedious and
error prone low-level programming operations. Amliidnal deep and illustrative explana-
tion about the advantages of Threading BuildingcB$ousage can be found on the quoted
reference.

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

2 TOPOLOGICAL SEMI-RECURSIVE FORMULATIONS

In this section two different formulations are meted. At the beginning we will see a
semi-recursive formulation that involves a doubddogity transformation. This formulation
starts with the dynamic equations set in Cartes@ordinates, and then, by applying these
velocities transformations, the differential eqaasi of motion expressed as a functionmnef
dependentelatives coordinates are obtained.

The second method proposed on this paper congiatsemi-recursive formulation whose
dynamic equations set is based on the usagkepéndentelatives coordinates. The fulfill-
ment of the constraints is imposed by using peaadin coefficients and projections methods.

As mentioned before, the first formulation starithwihe dynamic equations set in Carte-
sian coordinates and then applies two velocitysi@mations that lead to the differential eg-
uations of motion using a setiolependentelative coordinates.

At the beginning, when considering the open-loogteay, the geometry of each moving
body is defined in a reference frame attached ¢ontloving body in the input joint by using
natural coordinates, i. e., by defining a set ahfgand unit vectors that describe the geome-
try of the body and its joints.

The geometry of each moving body is defined inclaeference frame attached to it by
using natural coordinates, i. e., by defining adfgboints and unit vectors that describe the
geometry of the body and its joints, as can be seéig. (1). In this way, the geometry be-
comes simpler and clearer than using multiple “reeg’k or additional reference frames at-
tached to the moving bodies. When needed, this ggamnformation is easily transformed
into the global reference frame using the bpdsgition variablesthat are the position vectors
of the origin of the moving reference frameand the transformation matri, .

/

Figure 1: Body geometry defined with points and wectors

The Cartesian velocities and accelerations are defineddigrg

iofo) 2ol

where§ and3§ are respectively the velocity and accelerationhef point attached to the
body that instantaneously coincides with the origin of tieetial reference frame.
VectorsZ andZ are respectively the vectors that contain the Giamevelocities and ac-
celerations of all bodies:
z'={z] z; - z}}, Z7=¢;]Z] 7]} 2)

n

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

Using points and unit vectors, joints between @udus bodies are modeled very easily.
For instance, in a revolute joint between bodiesl andi (see Fig. (2)), an output point and
a unit vector of elemerit— 1 coincide respectively with the input point andtwactor of ele-
menti . For a prismatic joint both elements share a weitor, and the input point of element
i is located on the line defined by the output paintd unit vector of element—1 (see Fig.
(2)); in this case both elements share the samsftranation matrix.

Figure 2: Revolute and Prismatic joints

In this way, all bodies share the same refereng& poordinates, which has important ad-
vantages. For instance, the recursive formulasdivatthe Cartesian velocities and accelera-
tions of bodyi in terms of those of body—1 are very simple because they do not need
transformation matrices:

Zi = Zi—l +biZ

: ; ©))
Z, =27, ,+Db,Z +d,

Vectorsb, andd, depend on the joint type (Revolute or Prismatigt tjoints bodies
andi —1.

l Ui O XUy

o ui} dF:{Zmi_lxui$}
! J

o :{n xui}' de:{<2mi_l+um>x<n xuim]

(4)

: 0 0

The dynamic analysis is easier using Cartesiarcitie Y and acceleration¥ based on
the center of gravity, which are defined in thenfor

- e

(R W e

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

Hence, by using the equations that have been sderebthe virtual power principle leads
to the following expression:

iYi*T(MiYi _Qi):izi*TDiTNiDZi tMe, _Qi):
i=1 i i=1 (7)
=>"77(MZ, -Q,)=0

i=1

where the asterisk (*) indicates the virtual velies. The matrices from the Eq. (7) are:

1)
0o J

mls _rrigi }
m@i ‘Ji - ”ﬂ@@
Qi = DiT(Miei _Q)

_ By implementing a matrix notation for the whole teys, whereM is the inertia matrix,
Q is the force vector and the acceleration vector:

M = diagM ,M ,,.M) (9)
Q" =[Q1.Q;....Q1] (10)

2" =[2123}..2]] (11)

(8)

Mi:DiTMiDi:l

the dynamic Eq. (7) take the form:
Z7(MZ -Q)=0 (12)

In order to eliminate the dependent virtual velesiZ” in Eq. (12), it is possible to intro-
duce a velocity transformation between Cartesiath @pen-loop relative velocities, in the
form:

Z=R,z+R,z+..+R,7 =Rz (13)

Thej-th column of matrixR means the velocities of all the bodies that areasga of joint
J In which a unit relative velocity is introduced kgeping null all the remaining relative ve-
locities.

It is assumed that the input joint of a body hasgame number than this body, and as sug-
gested by Negrut, Serban and Porta [1], that opep-bodies and joints have been numbered
from the leaves to the root of the spanning tresuich a way that each body has a number
lower than its parent. This numbering avoids therllling-in in the Gauss elimination proc-
ess. At this point it is very useful to introdute tpath matrixT that defines the connectivity
of the mechanism. Its rows correspond to bodiesitaneblumns to joints. Elemerdj is 1 if
bodyi is upwards of joini and O otherwise. Then matrikis upper triangular; its column
defines the bodies that are ahead of jairis row] define the joints that are behind bgdy
between the root body and it. Then, Eq. (13) cawiiten in the form:

R = Tdiag(b, b, ;- b,) =TR, (14)

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

whereb, , according to Eq. (3), is the Cartesian velocitylb bodies ahead of joint when
z,=1 andz; =0,] =i. Remember that vectds, represents the velocity of the point that
coincides with the inertial frame origin, whichtiee same for all bodies.

When Eq. (14) is used to put Cartesian velocities @accelerations in terms of their rela-
tive counterparts, this is obtained:

Z=Rz=TR2

- . (15)
Z=TRZ+TR 2

By substituting Eq. (15) into Eq. (12) multiplyitny R} T" and taking into account that the
relative open-loop virtual velocities are indepamigda new set of dynamic equations is ob-
tained:

R{(TTMTR =RT'Q -MTR 7') (16)

The symmetric matrix@ 'MT , which is commonly expressed BE" ,represents the accu-
mulated inertia matrix of the whole system and heach component matrM > are the
composite inertia matrixiescribed by many authors. They represent thenadation of the
inertia matrices of all the elements that are alw#gdinti. It is important to keep in mind that
R, is a diagonal matrix and th > is a symmetric one with a well defined structuieeg
by the path matrixT , therefore this product can be evaluated in a effigient way. Addi-
tionally, the advantage of numbering the bodiesjamds from the leaves to the root becomes
visible during the Gaussian elimination or the factorization of the LHS term of Eq. (16)
because its symmetric pattern and thus, the pattereros is not changed by the algorithm
avoiding the filling and therefore, some additioaathmetic operations. It would be useful to
see how this matrix looks like. So, for an exampéx reference [9].

The Eq. (16) corresponds to the open-loop dynaamdscan be written more compactly in
the form:

MZ =Q (17)

The vectorQ on Eq. (17) represents all the external and veloiciertia accumulative
forces as shown in the following expression:

Q=R{(Q"+P") (18)

The equation above shows the vect@rs and P* which represent the accumulated exter-
nal forces and the accumulated velocity dependwattia forces respectively. For a hypo-
thetical open-loop system withelements the expressions@f and P” are:

Qr P
Q; ' o P,
Qlt, PP=-M"RZ=-TMTR Z =P’}

o B

njJ

The Eq. (16) or (17) constitute a system of ODEssehcoefficient matrix and right-hand
side vector can be computed recursively in a véigient way.

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

2.1 Coordinate partitioning method

The dynamics of closed-loop multibody systems canfdsmulated by adding the con-
straint equations to the dynamic equations cormedipg to the open-chain system obtained
previously. In that sense, the differential equatad motion in a descriptor form takes the
form:

M@)Z — ®I\ = Q(z, 2) (20)

where®, is the Jacobian matrix of the kinematic constraggsations and the vector of
Lagrange multipliers. The position, velocity anateleration vectors in Eg. (20) must satisfy
the corresponding constraint equation:

®(2)=0 (21)

D(z2)=®,2+® =0 (22)

®(2)=®,2+D,z+D =0 (23)

Eq. (20)-(23) constitute a system of index 3 DAEsnly Eq. (20) and (23) are considered,
the following index 1 DAE system — equivalent to@DE system — is obtained:

e e ok | 20

@ 0|\ |-®z-—

z

The matrix in this system of linear equation is Wnoas theaugmentednatrix (Negrut,
Serban and Porta [1]) or a matrix wahtimizationstructure(Serban, Negrut, Porta and Haug
[10], Von Schwerin [11]). The system of differehtegmuations Eq. (24) suffers from the con-
straint stabilization problems. As only the accafien constraint equations have been im-
posed, the positions and velocities provided by iegrator suffer from the “drift”
phenomenon. On this paper two solutions to thidblpra have been used. The first one,
which is introduced below, consists in eliminatihg Lagrange multipliers from Eq. (24) by
calculating a basis for the null space of the Jaromatrix®,. This basis have been deter-
mined by using a coordinate partitioning method[[3], that divides the coordinategand
the columns of®,) into dependent and independent ones. The segprdach to the stabili-
zation problem, which is used on the next sectiathis paper, is based on the usage of mass-
orthogonal projections of velocities and accelerativectors (Bayo and Ledesma [5] and Cu-
adrado et al. [6]).

Following with the partitioning method, it is polsk to select an independent subset of
relative coordinates, in such a way that a setDE®will be obtained at the end. This is car-
ried out by a new velocity transformation similarthe one introduced by Eq. (15). In this
case, the transformation matrk, will be obtained numerically as in the global fatdiation.

The closing-loop constraint equations are firstrfolated in Cartesian coordinates and
then transformed into relative coordinates. In fraper two ways to set the closed-loop con-
straint equations will be considered. The first @n¢he cutting joint method, which is very
common in the literature. The second method to dperioops consists in the elimination of
the rods (slender bodies with two spherical joams a negligible moment of inertia around
the direction of the axis). This second procedareery interesting in applications, as the car
suspension system considered previously. Refe{@hahows how to take into account rod’s
inertia in an exact way. Here, only the kinematastraints for closing the loops will be con-
sidered.

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

The kinematic constraint imposed by a rod is a @onigdistance condition that can be ex-
pressed as:

(r=r) -)-1a=0 (25)

On the other hand, the kinematic constraints cpmeding to the removal of a Revolute
can be defined with natural coordinates as (only(E@) for a Spherical joint):

r, —r, =0 (3 independent equatior (26)
u, —u, =0 (only 2 independent equatid (27)

The constraint equations (26)-(27) shall be exgeas terms of the relative coordinates
This is not difficult, because pointsandr, , and unit vectorsi; and u, can be expressed as
functions of the relative coordinates of the joimistheir respective branches of the open-
chain system.

It is also necessary to compute the Jacobian matmonstraints (25)-(27) with respect to
relative coordinatez . As the aforesaid constraints are expressed aadidn of Cartesian
coordinates, the chain derivative rule shall bedus®r instance, for the constant distance
constraint (25):

(I)z:(l)r%—i_q)r%:q)ri (I)r %
I 0z k 0z i 0z k 0z
The derivatives with respect to the coordinatesandr, in Eq. (28) are easy to find:

® =2(rf -r/), @ =-—74r-r]) (29)

(28)

"

The derivatives of the position vectarsandr, with respect to the relative coordinates
can be computed from the velocities of these pomdaced by unit relative velocities in the
joints between the fixed body and bodjendk, respectively. For instance, if the joinis a
revolute joint determined by a pointand a unit vectoru,, located between the base body
and pointr,, the velocity of poin} originated by a unit velocity in jointcan be set as:

or. -
8—£:uix(rj—ri):ui(rj—ri) (30)

So it can be assumed that the closure of the loogtaint equation®(z)=0 and their
Jacobian matrix®, are known or easy to compute. Using the coordipatgtioning method
based on Gaussian elimination with full pivotingsipossible to arrive to the following parti-
tioned velocity equation:

z

[@]lzzd} =0, #=-(0) @7 (31)

where it is assumed that matri$b? is invertible. Eq. (31) allows an easy calculatafrthe
transformation matrixR, that relates dependent and independent relatioeities:

s R, {z}: ~(@f) @ i R - ~(@9) '@, (32)
I [

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

If this equation is differentiated with respectitoe, the following equation is obtained:
7=R, 7 +R,? (33)

Introducing the velocity transformation defined By. (32) and (33) in the equations of
motion Eq. (16) allows obtaining the final set aflioary differential equations in the inde-
pendent relative coordinates:

RIRIMR R 7' =RIRIQ* ~RIRIM* R Z +R R 2 (34)

All the terms in this equation are known, excepttfe parenthesis with the derivatives of
the transformation matrices. It is simpler to comeptihe two terms jointly. Considering Eq.
(32), the parenthesis in Eq. (34) can be written as

d(R4R,)
dt

This derivative can be computed from the productedbcity transformations that relates
Cartesian and independent relative velocities:

Z=Rz=TR,zz=TR R} (36)

Rz + RyR,Z = RyR,Z + RyR,2 = (RyR,+ RyR,) Z = pi (35)

Taking the time derivative of this equation:

d(R4R,).;
—dt z (37)

In this equation, the product of the path maffiximes the searched derivative, can be
computed as the Cartesian acceleratiBnghat would be produced by the true velocittes
and null relative independent accelerations=¢ 0). The dynamic equations Eg. (34) can be
written in the form:

Z=TRRZ +T

o~ d(TR.R,)

RIRGIM'R R Z' =RIR{|Q™ - T Z' (38)

dt

So, a way to compute the terms in the ODEs se{38).has been completed. Two velocity
transformations have been introduced. The first, drmen Cartesian to open-chain relative
velocities, is applied directly and leads to anuacalation of forces and inertias. The second
one is applied in a fully numerical way to a (uggasmaller system.

The details about the inertia forces of the rodd tlave been removed to open the closed
loops will not be given here. It is enough to paot that a rod introduces coupling terms be-
tween the inertia forces of the two tree branclmected by it. The topological information
to compute these coupling terms is also containgda path matrix.

2.2 Penalty method

The second method shown on this paper consists penalty formulation based on a
slightly variant of the augmented Lagrangian ordjyrproposed by [5] where relative coor-
dinates are used instead of the Cartesian onesrdndhe position constraints have been di-
rectly introduced within the differential equationt motion. The open-loop kinematic and
dynamic analysis remain the same with respect dsethlthat have been used before. Hence,
starting from Eq. (17), the closed-loop equatioresiatroduced in the differential equation of

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

motion by means of a penalization coefficient tuaces the fulfillment of the position con-
straints. Then, the differential equation of motfona closed-loop system is:

MZ + ®)a® = Q (39)

where « is the penalization coefficient.

The Eq. (39) represents a systemnofifferential equations wittm unknowns. For the
integration of these equations an alternative fofrthe trapezoidal rule has been used, which
consists in expressing the relative velocity andebaration for a particular instant of time
n+1 as function of the relative position vectgy on a timen :

) 2 2 2 2)
Zon = E Z,1 + Z, Z,= _[_h Z, + Zn] (40)

. 4 2 A 4 4. .
Zn+l :an+l+ Zn’ Zn: _[F Zn+_h Zn+ Zn] (41)
wherez, , is the relative velocity vectoy,, , is the relative acceleration vector ands the
integration step. By adding Eq. (41) to Eq. (39 tbllowing non-linear system equations are
obtained:
h? h? h? 2
f(zn+l):Mn+1Zn+1+_(I)I aq)ml__le—i__Mm?'.n:O (42)
4 n+l 4 4
To solve Eq. (42) where the unknown is the veator, it is customary to use the Newton-
Rahpson method, which has a quadratic convergentteeineighborhood of the solution and
usually does not cause serious problems whenrgjasiith a good initial approximation. Us-
ing this iterative method implies the evaluatiormadfingent matrix as indicated in the follow-
Ing expressions:

k

oz)

i (43)

n+1

being k the iteration andh + 1 the time-step. Then, the unknown vectqr, would be:
ZEEiB = ZE(n+1) + AZI((m—l) (44)

The solution of EqQ. (44) assumes the previous et@ln of an approximate tangent matrix
from Eqg. (43) that has the following form:

@) h., K. k
lﬁ - [M @) +-C +7<®Za®z +K) (45)

n n

K= 09 c_ R (46)

0z 0z
This matrix shows ill-conditioning when the timet is very small. According to Bayo
and Ledesma the numerical condition of the tangeaitix is O(h)~*, which sets a lower lim-

it to the practical values of step-sizes.
Then, at timen and iteratiork, the Eq. (42) can be expressed in a more compsaut f

10

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

f(2) = LLi MZ + Eqﬂaq) —EQ(Z 2) k (47)
"4 4 4 =)

During the time integration process the numeringdration yields a set of velocitigs
and accelerationg” that do not satisfy the constraint conditishs= 0 and® = 0 respec-
tively, because both sets of vectors have beeringastanumerically from the integrator and
not by a derivation process of the positions. Terogme the stability problems that appear
during the integration process, which are relatetthits lack of fulfilment on the constraints, a
mass-orthogonal projection in velocities and acedilens have been used. Based on the pro-
jection methods proposed in (Bayo and Ledesmadid)) the optimization introduced on that
(Cuadrado et al. [6]), by using the same tangerttixia the projection equations, the follow-
ing expressions for the velocities are obtained:

h? h?
P+— ®ab,|z=PZ —— ®lad, (48)
4 4
where the matriXP is the weighted matrix proposed on [6] and haddh®a:
h h?

P=M@) +_-C+—K
@+3¢+7

The expression for the accelerations is:

h? h? : h?
P+— ®ab, |2=PZ —— ®la® z—— ®lad,
4 4 4

3 PERFORMANCE IMPROVEMENTS

This section shows the improvements that have besduced in both of the two formu-
lations developed above. The first implementationststs of the sparse techniques usage for
the solution of a redundant but compatible linggmtem of equation. This formulation has
been integrated with thé"dbrder explicit method of Runge-Kutta. The secamgrovement
and most important contribution of this paper haeasisted of a parallel implementation
within the penalty method whose differential eqoiatof motion has been solved with the im-
plicit method of the Trapezoidal Rule. Finally, ery simple consideration has been used dur-
ing the numerical forces derivatives that havevedid to achieve a significant reduction on
the execution times.

3.1 Sparse implementation of the double velocity transirmation

The coordinate partitioning method shown beforanfficient way to avoid the stability
problems that arise during the integration of motilifferential equations. However, in order
to obtain theR, matrix of Eq. (32), it is necessary to carry dw talculation of the inverse
of the partitioned Jacobian matrix. The solutiorthis problem has a prohibitive computa-
tional cost in large and complex multibody systethse to the need of solvingradundant
but compatiblelinear system of equations. This can be done bgnsef a least squares ap-
proximation, but this computational effort is comtglly out of bond for efficient applications.

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

There are very efficient dense matrix implementedithat can be used to increase the per-
formance of our numerical computation. In a presiowork [13], we have shown how to in-
troduce in our formulation the BLAS functions prded for MKL from Intel®. The main
application of this library was in the most exp&esnumerical algorithms of this implementa-
tion, which are the computation of the matRx from Eq. (32) and the product of matrices to
arrive to Eq. (34) from Eq. (16).

However, when we are looking for increasing thecefhcy, another alternative can be
taken into account, which consists in taking adagetof the sparse pattern that some matri-
ces have. Although saving arithmetical operatiam$ @mputational costs by considering the
non-zero structure of a matrix is not a new subjackBS dynamics, the sparse matrix tech-
niques have mainly had success in global formuiatior in topological ones with flexible
bodies. Despite this, we will show that it is pb#sito exploit the sparsity too in semi-
recursive formulation with relative coordinates whee are modeling large multibody sys-
tems. Actually, one of the goals of this paper &xiesn introducing the usage of the sparse
function MA48 provided by Harwell [14] to obtainghpartitioning coordinate matrik, in a
topological semi-recursive formulation.

Regarding this, an interesting study and benchrobviarious sparse functions can be seen
on (Gonzélez et al. [15]), where the most efficispairse library have been KLU (“Clark
Kent” LU), a solver specially designed for circaitmulation matrices [16]. The Jacobian ma-
trix @, for large and complex MBS often introduces the apgece ofredundantbut com-
patible system of equations. This fact prevents from usiiegkLU subroutine because it only
operates on square matrices [17]. Neverthelesspestine able to deal with this kind of
problems should be used.

The MAA48, is a collection of Fortran 77 subroutihesthe direct solution of a sparse un-
symmetric set of linear equatiodsx = b, where the matripA could be square, rectangular
or rank-deficient anck and b are vectors. The package basically consists afgabroutines,
MA481/1ID, MA48A/AD, MA48B/BD, MA48C/CD. The firstone, set default values for con-
trol parameters and would be called once priorry ealls MA48A/AD, MA48B/BD, or
MA48C/CD. Then, MA48A/AD prepares data structure fectorization, MA48B/BD factor-
izes the matrixA and MA48C/CD uses the factors produced by MA48BtBBolve Ax = b
orA'x =b.

Observing the Eq. (32), and calliRf to those terms of the matriR, related with obtain-
ing z,, the system to be solved in our formulation is:

D;R; = @, (51)

The MA48C/CD does not solve systems with multipleSR therefore, the solution of Eq.
(51) is reached by using MA48C/CD within a loop weeach time a column of matrR¢ is
obtained. The results of this implementation drewsh on the numerical Results section.
There we will be able to see that for large MB&rsp techniques instead of dense ones could
be the right option.

3.2 Parallel implementation (Implicit method)

One of the most expensive computational operatajrthie explained formulation, espe-
cially working on simulations of large and complaxltibody systems, is the computation of
the tangent matrix, specifically the calculationfofces derivatives with respect to relative
position and velocity vectors (70-58% of the elapbsme). Instead, it is not necessary true in
all examples; see [18], for the sake of accuraenegality and robustness, its computation
will not be approximate or neglected in our implerta¢ion. The matrice&K andC from Eq.

12

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

(46) represent the influence that a variation ocheslement of vectorg andz have on the
forcesQ of the mechanical system. At this point it is worthmention that the accuracy on
the evaluation of these forces must not be takemyfanted, specially on those cases where
the external forces acting on the system are nastcained to spring and dampers only, but
more general and complex forces are involved ordttmamic behavior of the MBS. Model-
ing the tyres behavior by means of Pacejka’s migioula, a very important practical situa-
tion could be, for example, the evaluation of ferdetween the tyres and the soil when a
vehicle is passing through an obstacle like a wlaeducer (speed bump) or a pothole. That
kind of situation, when very accurate realistic tinady system models are used, prevents
from neglecting or using huge approximation dutimg forces derivatives evaluation.

Another factor to take into account besides thau@ay is the generality that the imple-
mentation of a formulation should have attending¢bieve a very robust program able to
deal with the most assorted requirements. Thisdaatd demand the appearance of external
forces from different nature, what constitutes mapartant drawback for these general pur-
pose applications. To work out the generalizatioobjems that are likely to appear when a
wide range of force types will be included in thendmic analysis, a very general way to eva-
luate the forces derivatives must be used. Thezefor the sake of generality, a good ap-
proach to this is to evaluate the derivatives nucady.

Despite the numerical evaluation of Eq. (46) hdaedrawback of being a very expensive
computation, on the other hand it has two extrenmalyortant advantages. The first one, as
mentioned before, is its generality; and the seammalis its concurrent computation capabil-
ity, in that sense that each column or groups efrtitould be simultaneously evaluated with-
out interfering with each other.

The main goal of this paper is to propose a veligieht numerical evaluation of the forces
derivatives that are focused on obtaining a higtiopmance implementation, exploiting its
parallelization properties by doing tasks in a corent way.

The form of achieving parallelism could be desatibefour fundamental decompositions,
data parallelism, task parallelism, pipelining kt@sd data parallelism together) and mixed
solutions. A pure data parallelism problem is a plately thread-safeoperation called by
programmers asmbarrassinglyarallel. Thinking in task, the numerical evaluation of mat
cesK andCin parallel is a very straightforward operatiorsirch a way that each column or
groups of them for both matrices can be concuryestttained. Then, the basparallel_for
algorithm offered by Threading Building Blocks cdude applied. This algorithm break the
iteration space into chunks and run each one samedtusly on separated threads. Neverthe-
less, all the work required to perform a columraamique entity and as a part of a whole (a
matrix), should be carefully thought. Regardingstlsupposing an instant of timeand that
the column of matrix K andC are being performed according with the numerigaht

aQn ~ Qn(zin' Zn) - Qn(zn’ Zn)
oz" Az

aQn ~ Qn(zn' Zin) _ Qn(zn’ Zn)
0z Az

(52)

(53)

wherez' andz' are the relative position and velocity vectorsirae n when a variatiomAz

on element of each one is being performed. The Eqg. (52)(&8yl involve the evaluation of

Q from Eq. (18) for each column of matricks andC. In addition to the high computa-
tional cost that should be invested on that, whoakihg for parallel patterns to apply, other
basic important factors take place at this stagdafigh Threading Building Blocks offers a

13

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

high level parallelism environment that relies @anegric programming, allowing a useful ab-
straction of threads by concentrating in tasks,need to know where our application could
present problems likeot being thread-safe mutual exclusionand locks, and correctness
(deadlockandrace conditiong. These considerations will be easily explainethaut getting
into tedious details about the algorithm code imq@atation, we only need to see the expres-
sions that are evaluated to obtain the veQqrwhich are explicitly shown for all the equa-
tions developed before than Eq. (18). Additionallys important to note that each column of
matricesK and C must be evaluated using the same kinematic andndigninformation
about all the bodies of the system, except forvér&ation on vectorg and z as indicate Eq.
(52) and (53). For that reason, before applyimgellel_for we need to see that during each
column evaluation some kinematic and dynamic dagtésian velocities and acceleration,
and forces) had changed their values and consdyuttrety need to be restored; on the other
hand, the chunks must be supplied with its ownlbtifcdata, what implies making a copy for
each one. In that way, a simple form of safety scalable parallelism in a loop has been de-
scribed, because no threads and synchronizaticsiderations were necessary, only a secure
management of data have been demanded. Becauas siatple parallel pattern as data par-
allelism is applied but this application consistghe simplest loop iteration, we can call this
implementation like guasiembarrassinglyarallel.

Once the implementation features have been exptetesbe what we are really concerned
about, thescalability andspeedupable to be achieved by implementing parallelizato this
algorithm.

The Fig. (3) shows two simplified flow diagrams abohe algorithm that integrates the
differential equations of motion with the trapezdidule as implicit integrator, the one on the
left is a sequential program while the other repnés its parallel version inquad-coreproc-
essor. Task 1 is the initial acceleration compatatiAfterwards, gor-loop simulating the
time advance starts. Task 2 is the computationaifioesK andC, task 3 is the evaluation
of the product®a®, and task 4 basically involves the evaluation @f tingent matrix Eq.
(45) together with vectors, z andz . Task 2, 3 and 4 are evaluated within the Newton-
Raphson iteration. Finally, when the error in tbhastraints is sufficiently small, the velocity
and acceleration projections are performed in fask

Task 1 Task 1

For loop [For loop

|TkI2/4| |Tkl2/4| |TkI2/4| |Tkl2/4|
I I I]

Task 3
Task 4

<O

End

Figure 3: Adding parallelism within the iterativigarithm

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

The forces derivatives, represented in task 2 fa@eheaviest workload of the algorithm.
Fortunately this operation is very suitable forgdetism; therefore this workload can be si-
multaneously distributed between all the processwes. On the other hand, adding more
processor cores does not imply that the total tifntlis step would decrease in a direct pro-
portion. At this point we say that the program doesscale This is because the overhead of
distributing and synchronization begins to domirthgeproblem.

According toAmdahl’sLaw, it should be noted that the quantity of paralaliwe can ob-
tain from our application is limited by the serrtion of the program. In that sense, it is a
huge advantage of this formulation that paralléliegportion of the code represents between
the 70 and 85% of the elapsed time. Additionalbgoading toGustafson’d.aw, it is possible
to get more scalability by increasing the workldaat the parallel portion of the code does. In
such way that increases the problem size, thel $m@ion decreases and accordingAim-
dahl’s Law, the scalability improves. Maybe there lies thamdrawback of this method. In
that sense that we can increase the workload belimgdarger and more complex multibody
systems, but, if we are running a particular motied,only way to increase the workload that
parallel portion of code does, is by means of usirggnaller time step integration. This effec-
tively would increase the step total time due ®d@howth of the number of evaluations not of
the workload required for each step, therefore ptioblem does nacale

Finally, two more uses of Threading Building Blodkave been included. The first one is
the usage of scalable memory allocation by reptaalhthe C++ memory routines like mal-
loc, new and delete by the templates provided bylitirary. This basically avoid problems
like false sharing[19], where for example two threads tend to acezsh one to different
elements from two arrays that are located on theesacheline. The other Threading Build-
ing Blocks usage has been introduced to perfornptbguct®’ a® , that is the most expen-
sive after the forces derivatives computation. H#re contribution of the library has been the
usage of a two- dimensional iteration space by medrtheblocked-range2d<T>emplate
with a parallel-for routine. This solution yieldsone parallelism and better cache behavior
making a loop run faster than the sequential edgmia@ven on a single processor.

All the improvements that the parallelization hagdduced are shown on the numerical
results part.

3.3 Topology based improvement on forces derivatives

On this section, a simple but efficient improvembas been introduced taking into ac-
count the connectivity that exists between diffederanches from the spanning tree of the
system. The example of the semi-trailer truck thahown on the Results section consists of
a tractor joined to the semi-trailer by means afpaerical joint. These are represented by
means of two branches independent between thers.fatt is illustrated if we observe the
connectivity pattern of the matrix as shown in Fig. (4).

e

Figure 4: Connectivity Pattern of matix

15

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

As we can see in this figure, the block from tipper-left corner and lower-right indicates
that it is possible to evaluate two derivativesdoyering the tree only once. Because of the
same consideration can be done performing ma&rjxa huge reduction of time can be
achieved by performing the derivatives on this wiEpally it is worth to mention that not all
the multibody systems show a connectivity pattet #ilows to perform the derivatives as
mentioned above, but it should always be taken actmount that a new model would be de-
fined.

4 RESULTS

In order to see the improvements, a large and cexngkample has been analyzed: a 40-
dof 5-axle semi-trailer truck. This model is a rbfl vehicle, with realistic suspension ge-
ometry and forces. Two simulations have been datéch consist of a 5s multiple slalom
test along a flat road. For the sparse implememntaa 4th-order Runge-Kutta integrator with
a 10°s time-step has been used, with 20,000 evaluatibtie state vector derivative. On the
other hand, the parallel implementation has bearusing an implicit integrator as the trape-
zoidal rule with two time-step executionéssand 10s.

The example is a multibody model of a completeknwith tractor and semi-trailer. It has
40 dof, 5 axles, 81 bodies (of which 34 are masskexiliary), 89 joints and a driven coordi-
nate for the steering system. All axles have tweelh The tire-ground contact forces are
modeled by Pacejka’s magic formula. The semi-tralespension and the tractor rear suspen-
sion are made up of air springs and dampers, wédractor front suspension is made up of
leaf springs and dampers. The joint between tha-saiter and the tractor has been consid-
ered as a spherical joint.

The semi-trailer truck has 282 Cartesian coordsa®® open-chain relative coordinates,

51 constraint equations (40 independent) and 40edsgf freedom. The Fig. (5) shows two
views of the truck MBS model.

¥ OINSIA .

. P e !

Figure 5: Schematic and CAD MBS model — Semi-trdileck

Table 1 shows the CPU time spent for 20,000 evialsiof each algorithm step, consider-
ing three different implementations: standard C/CBtAS (MKL) and sparse (MA48).
Steps 3 and 8 are the most expensive ones. BothSRiparse routines improve the results
considerably, being the latter the best one.

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

Semi-trailer truck
C/C++| BLAS | SPARSH

bi, A, 3, M, ,MZ=M, +3M * 0.675| 0.665| 0.658

j<i

Algorithm Step

[@¢ @], [LU]=lu(a?) 0.425| 0.927| 0.721

-1
RZ:{*I‘?] @, 4032 | 0655 0616
|

2 =-(0!) @7, recvel:z, d, d 0.289 | 0.361| 0.195
Q, Q. T 0.273 | 0.275| 0.275

c=-b2 R2z=-0°\d2 0258 | 0.198| 0.180
recAccelZ, , Q , Q% 0.193 | 0.194| 0.193
M=RIRMRR, o

b=R!(RIQ*-RIM>(R 2 +R R 2'))
2,=M\(M 2) b,=M 7 M 2 | 0247 | 0258 0.255

3.037 | 2.054 2.044

Elapsed time [s] 9.428| 5.588 5.137

Table 1: CPU times for 5s simulation — Explicitthned

Table 2 shows the results that the parallelizatlpn,means of the Threading Building
Blocks usage, had in the semi-trailer truck modibke columns for each time-step means, the
C++ serial execution (Serial), the Threading BuitgBlocks execution (TBB) and the topol-
ogy based improvement with parallelization too (T Blere, we can see tBpeedumchieved
and how this application does remalewhen the workload is increased by using a snraki
step size.

Semi-trailer truck

Algorithm Step Time-step Fs Time-step 16s
Serial TBB TBI Serial TBB TBI

Z, 0.001 0.001 0.001 0.002 0.00 0.00

M@z) ®(z) @®,(2) Qz2) f(2) 0.192 | 0224 | o0221] 0137 0158 0.5

K=-(Q/az) c=-(aQ/az) 9103 | 2772 | 1523| 4827 1475 0.79%

CI)Ia(I)Z 1.814 0.232 0.221 1309 0.16 0.16B

[of(2)/02];,, 0.116 | 0.126 | 0.119 | 0.084 | 0.088 | 0.088

Az, =-[of(2)/07", \[f(@)\., 0.707 | 0714 | 0675 | 0.508 | 0.512 | 0.506

Convergence evaluation 0.002 0.002 0.003 0.001 0.001 0.00

h? B
z :(P+4 @Iaq)zj Pz

-1
h? . R
z=[F>+71 QIHQZJ (P'z‘ 2 q>§a®;] 0.028 | 0.0290| 0.029] 0.014

Elapsed time [s] 12.051 4.189 2.881) 6.92

Table 2: CPU times for 5s simulation — Implicit imed

5 CONCLUSIONS

We can divide the contribution of this paper ink@ tparts, the first one has been the intro-
duction of sparse techniques for the direct salutba redundant but compatible linear sys-

17

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

tem of equations and the second and most impagtaitof this paper has been the successful
application of parallelization in a commercial mubre processor. Both methods have been
applied on large, complex and very realistic mokip systems.

The coordinate partitioning method has outstanditadpilization problems but being the
differential equation of motion solved with an dgjtlintegrator like a # order Runge-Kutta
method the usage of very small time step integnadi@manding a big number of evaluations
per unit of time has been required. The efficientyhis method has been significantly im-
proved by including sparse techniques but this mtdvents from obtaining real time simula-
tions on a huge multibody system as the semi-trailiek example.

To increase the time step integration size an rpinethod has been used but once
achieved this, the necessity of accuracy and gktyelnave demanded the introduction of an
expensive numerical forces differentiation. On tilkeer hand, the numerical differentiation
process is very suitable for parallelism, then Hitient CPU usage consisting in keeping
busy all the processor cores, has given us a héglonmance algorithm reaching real time
simulation by scaling the application witlspeedupf 3.2 in a commercial quad-core proces-
sor. Finally, according tdmdahlandGustafson’d_aws it is possible to scale with large mul-
tibody systems but it will not be the case if, fmrcuracy sake, we increase the workload of
the parallel fraction of code by decreasing theetstep size.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the Minisfr$cience and Innovation of Spain
under Research Project TRA2009-14513-C02-01 (OFRT@AST).

REFERENCES

[1] D. Negrut, R. Serban, and F. A. Potra. A Topolog@s®&l Approach for Ex-ploiting
Sparsity in Multibody Dynamics. Joint Formulatidlechanics of Structures and Ma-
chines 25 (2), 1997.

[2] J.l. Rodriguez, J. M. Jiménez, F. Funes, and &i&ade Jaldén. Recursive and Residual
Algorithms for the Efficient Numerical Integratiasf Multi-body SystemsMultibody
System Dynamicgl, 295-320, 2004.

[3] R. Wehage and E. J. Haug. Generalized Coordinatéiétang for Dimension Reduc-
tion in Analysis of Constrained Mechanical Syste®hSME Journal of Me-chanical
Design 104, 247-255, 1982.

[4] E. Bayo, J. Garcia de Jalén and M. A. Serna. A fitedliLagrangian Formulation for
the Dynamic Analysis of Constrained Mechanical 8yst. Computer Methods In Ap-
plied Mechanics and Engineeringl, 183-195, 1988.

[5] E. Bayo and R. Ledesma. “Augmented Lagrangian amgsMDrthogonal Projection
Method for Constrained Multibody Dynamicsdournal of Nonlinear Dynami¢s9,
113-130, 1996.

[6] J. Cuadrado, J. Cardenal, P. Morer and E. Bayelliggnt simulation of multibody dy-
namics: space-state and descriptor methods in s@gluand parallel computing envi-
romentsMultibody System Dynamic$ 55-73, 2000.

J. Cuadrado and D. Dopico. A hybrid global-topotedireal-time formulation for mul-
tibody Systems. Fourth Symposium on Multibody Dyimand Vibration, at the

18

Andrés F. Hidalgo, Javier Garcia de Jalon and 8gmfiapia

ASME Nineteenth Biennial Conference on Mechanicddration and Noise, Chicago,
lllinois, USA, September 2-6, 2003.

J. Reindersintel Threading Building Block€D'Reilly, 2007.

J. Garcia de Jaldn, E. Alvarez, F. A. de RiberRodriguez and F. J. Funes. A Fast and
Simple Semi-Recursive Dynamic Formulation for MdRigid-Body SystemsAd-
vances in Computational Multibody SystethsAmbrésio, Springer-Verlag, 1-24, 2005.

R. Serban, D. Negrut, F. A. Potra, and E. J. HaagTopology Based Approach for
Exploiting Sparsity in Multibody Dynamics. Cartesidormulation”. Mechanics of
Structures and Maching&5 (3), 1997

R. Von SchwerinMultibody System SimulatioNumerical Methods, Algorithms and
Software. Springer, 1999.

M. A. Serna, R. Avilés, and J. Garcia de Jalon.ddyic Analysis of Plane Mechanisms
with Lower Pairs in Basic Coordinatédechanisms and Machine Thepty, 397-403,
1982.

J. Garcia de Jalon, A. Callejo, A. F. Hidalgo and &pia. Simple and Efficient Multi-
body Vehicle Dynamics using Matlab and C++. FISIWorld Automotive Congress,
Budapest, Hungary, 30 May-4 June, 2010.

I. S Duff and J. K Reid. The Design of MA48: A cotte the Direct Solution of
Sparse Unsymetric Linear Systems of Equatiéf@M Transactions on Mathematical
Software 22, 187-226, 1996.

M. Gonzalez, F. Gonzalez, D. Dopico and A. Luac@s.the effect of linear algebra

implementations in real-time multibody system dyr@nComputationalMechanics
41, 607-615, 2008.

T. A. Davis, K. Stanley. KLU: a Clark Kent Sparse Eactorization Algorithm for Cir-
cuit Matrices. SIAM Conference on Parallel Proaegdior Scientific Computing, San
Francisco CA, USA, February 25-27, 2004.

T. A. Davis, E. Palamadai. User Guide for KLU an@F Dept. of Computer and In-
formation Science and Enginnering, Univ. of Florid&ainesville, FL, USA.
http://www.cise.ufl.edu/~davisMarch 24, 2009.

F. Gonzélez, A. Luaces, U. Lugris, M. Gonzalez. i\drusive parallelization of multi-
body system dynamic simulatior@omputational Mechani¢g4, 493-504, 2009.

B. Chapman, G. Jost and R. Van Der Rdsing OpenMP: portable shared memory
parallel programming The MIT Press, Cambridge, 2008.

