
 1 

MULTIBODY DYNAMICS 2011, ECCOMAS Thematic Conference 
J.C. Samin, P. Fisette (eds.) 

Brussels, Belgium, 4-7 July 2011 

HIGH PERFORMANCE ALGORITHMS AND IMPLEMENTATIONS 
USING SPARSE AND PARALLELIZATION TECHNIQUES ON MBS 

Andrés F. Hidalgo∗∗∗∗, Javier García de Jalón† and Santiago Tapia† 

∗ INSIA 
Universidad Politécnica de Madrid, 28031 Madrid, Spain 
e-mail: andres.francisco.hidalgo@upm.es,  

† ETSII and INSIA 
Universidad Politécnica de Madrid, 28031 Madrid, Spain 

e-mails: javier.garciadejalon@upm.es, santiago.tapia@upm.es 

Keywords: Multibody dynamics, Parallelization, Sparse, Real-time. 

Abstract. In this paper we will see how the efficiency of the MBS simulations can be im-
proved in two different ways, by considering both an explicit and implicit semi-recursive for-
mulation. The explicit method is based on a double velocity transformation that involves the 
solution of a redundant but compatible system of equations. The high computational cost of 
this operation has been drastically reduced by taking into account the sparsity pattern of the 
system. Regarding this, the goal of this method is the introduction of MA48, a high perform-
ance mathematical library provided by Harwell Subroutine Library. The second method pro-
posed in this paper has the particularity that, depending on the case, between 70 and 85% of 
the computation time is devoted to the evaluation of forces derivatives with respect to the 
relative position and velocity vectors. Keeping in mind that evaluating these derivatives can 
be decomposed into concurrent tasks, the main goal of this paper lies on a successful and 
straightforward parallel implementation that have led to a substantial improvement with a 
speedup of 3.2 by keeping all the cores busy in a quad-core processor and distributing the 
workload between them, achieving on this way a huge time reduction by doing an ideal CPU 
usage. 
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1 INTRODUCTION 

Too many things can be said about the increasing interest that multibody systems have in 
different fields like automobiles, machinery, robotics, biomechanics, etc. The work of this pa-
per is mainly focused on achieving high performance algorithm implementation on large and 
realistic multibody systems. Regarding this, two semi-recursive formulations will be used.  

It is well known that one of the most important decisions to make when a dynamic simula-
tion program is going to be developed is to choose an appropriate set of coordinates that un-
ivocally determine the position of each body of the system. Taking into account that we are 
concerned about real time simulations applied to large and complex multibody systems, and 
considering that the Cartesian coordinates can lead to large matrices sizes involving very ex-
pensive computation times, in this paper two formulations based on the usage of relatives co-
ordinates will be seen. 

According to some authors [1] and [2], using relative coordinates can significantly improve 
the efficiency of the formulation due to the reduction of the numerical problems to be solved. 
Although the relative coordinates usage in fully recursive formulations have been proved to 
be very efficient on large open-chain systems, it is even possible to take advantage of this fact 
working with closed chain systems too. This can be done by opening the closed loops of the 
system and working at this stage as it would be an open chain system. The relative coordi-
nates in an open chain system are independent, in that way, the kinematic and dynamic of the 
system can be easily solved. Once the open chain equations have been obtained, the closure of 
them is performed. The two formulations used on this paper introduce the closure of open 
chain in two different ways; the first one uses a coordinate partitioning method [3] which has 
outstanding stabilization properties, and the second one enforces the fulfillment of the con-
straint equation by means of penalization and projections methods [4], [5] , [6] and [7]. 

Both formulations have its hotspots and bottlenecks. For that reason, two significant en-
hancements have been proposed. The first one explores the introduction of sparse techniques 
by means of MA48 package on semi-recursive formulations with redundant but compatible 
linear system of equations. The second and most important contribution, introduces a simple 
and straightforward parallelization that achieves a speedup of 3.2 in a commercial quad-core 
processor.  

Nowadays, multi-core processors have made parallel computing a subject of interest for 
programmer, engineer and research communities. As some experts say, the age of serial com-
puting is over. Most of the currently efficient multibody applications run in a serial way, but 
in parallel environments, as any commercial multi-core processor are.  

Controlling parallelism by thinking in threads, synchronization and other low level vari-
ables can be a hard thing if we keep in mind all the inherent difficulties the multibody algo-
rithm and implementations have. The goal of a parallel application in a modern computing 
environment is to achieve scalability and take advantage of all processor cores. The scalability 
can be seriously compromised if the parallel package is not being used correctly by writing an 
inefficient code. Hence, the parallel library to chose is a major decision when we are looking 
for a simple and efficient parallel application. Regarding this, threading Building Blocks [8] is 
a library provided by Intel® that presents some many advantages with respect to other pack-
ages like POSIX threads, MPI and OpenMP included. Maybe the outstanding advantage is 
that Threading Building Blocks by focusing on tasks, and not in threads, avoid tedious and 
error prone low-level programming operations. An additional deep and illustrative explana-
tion about the advantages of Threading Building Blocks usage can be found on the quoted 
reference. 
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2 TOPOLOGICAL SEMI-RECURSIVE FORMULATIONS  

In this section two different formulations are presented. At the beginning we will see a 
semi-recursive formulation that involves a double velocity transformation. This formulation 
starts with the dynamic equations set in Cartesian coordinates, and then, by applying these 
velocities transformations, the differential equations of motion expressed as a function of in-
dependent relatives coordinates are obtained. 

The second method proposed on this paper consists of a semi-recursive formulation whose 
dynamic equations set is based on the usage of dependent relatives coordinates. The fulfill-
ment of the constraints is imposed by using penalization coefficients and projections methods. 

As mentioned before, the first formulation starts with the dynamic equations set in Carte-
sian coordinates and then applies two velocity transformations that lead to the differential eq-
uations of motion using a set of independent relative coordinates. 

At the beginning, when considering the open-loop system, the geometry of each moving 
body is defined in a reference frame attached to the moving body in the input joint by using 
natural coordinates, i. e., by defining a set of points and unit vectors that describe the geome-
try of the body and its joints. 

The geometry of each moving body is defined in a local reference frame attached to it by 
using natural coordinates, i. e., by defining a set of points and unit vectors that describe the 
geometry of the body and its joints, as can be seen in Fig. (1). In this way, the geometry be-
comes simpler and clearer than using multiple “markers” or additional reference frames at-
tached to the moving bodies. When needed, this geometric information is easily transformed 
into the global reference frame using the body position variables, that are the position vectors 
of the origin of the moving reference frame ir  and the transformation matrix iA . 

 

 

r i 

gi 

 
Figure 1: Body geometry defined with points and unit vectors 

The Cartesian velocities and accelerations are defined by vectors 

 ,     i i
i i

i i

         
≡ ≡   

   
      

s s
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ω ω

ɺ ɺɺ
ɺ

ɺ
 (1) 

where isɺ  and isɺɺ  are respectively the velocity and acceleration of the point attached to the 
body that instantaneously coincides with the origin of the inertial reference frame.  

Vectors Z  and Zɺ  are respectively the vectors that contain the Cartesian velocities and ac-
celerations of all bodies: 

 { } { }1 2 1 2,      T T T T T T T T
n n= =Z Z Z Z Z Z Z Zɺ ɺ ɺ ɺ⋯ ⋯  (2) 
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Using points and unit vectors, joints between contiguous bodies are modeled very easily. 
For instance, in a revolute joint between bodies 1i −  and i  (see Fig. (2)), an output point and 
a unit vector of element 1i −  coincide respectively with the input point and unit vector of ele-
ment i . For a prismatic joint both elements share a unit vector, and the input point of element 
i is located on the line defined by the output point and unit vector of element 1i −  (see Fig. 
(2)); in this case both elements share the same transformation matrix.  
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Figure 2: Revolute and Prismatic joints 

In this way, all bodies share the same reference point coordinates, which has important ad-
vantages. For instance, the recursive formulas that give the Cartesian velocities and accelera-
tions of body i   in terms of those of body 1i −   are very simple because they do not need 
transformation matrices: 
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Vectors ib  and id  depend on the joint type (Revolute or Prismatic) that joints bodies i  
and 1i − . 
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The dynamic analysis is easier using Cartesian velocities Y  and accelerations Yɺ  based on 
the center of gravity, which are defined in the form: 
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Hence, by using the equations that have been seen before, the virtual power principle leads 
to the following expression: 

 
( ) ( )
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where the asterisk (*) indicates the virtual velocities. The matrices from the Eq. (7) are: 
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By implementing a matrix notation for the whole system, where M  is the inertia matrix, 
Q  is the force vector and Zɺ the acceleration vector: 

 ( )1 2diag , ,..., n≡M M M M  (9) 

 1 2, ,...,T T T T
n

 =   
Q Q Q Q  (10) 

 1 2, ,..,T T T T
n

 =   
Z Z Z Zɺ ɺ ɺ ɺ  (11) 

the dynamic Eq. (7) take the form: 

 ( ) 0T∗
− =Z MZ Qɺ  (12) 

In order to eliminate the dependent virtual velocities *Z  in Eq. (12), it is possible to intro-
duce a velocity transformation between Cartesian and open-loop relative velocities, in the 
form: 

 1 1 2 2 ... n nz z z= + + + =Z R R R Rzɺɺ ɺ ɺ  (13) 

The j-th column of matrix R means the velocities of all the bodies that are upwards of joint 
j in which a unit relative velocity is introduced by keeping null all the remaining relative ve-
locities. 

It is assumed that the input joint of a body has the same number than this body, and as sug-
gested by Negrut, Serban and Porta [1], that open-loop bodies and joints have been numbered 
from the leaves to the root of the spanning tree in such a way that each body has a number 
lower than its parent. This numbering avoids the later filling-in in the Gauss elimination proc-
ess. At this point it is very useful to introduce the path matrix T that defines the connectivity 
of the mechanism. Its rows correspond to bodies and its columns to joints. Element ijT  is 1 if 
body i  is upwards of joint j and 0 otherwise. Then matrix T is upper triangular; its column i 
defines the bodies that are ahead of joint i, its row j define the joints that are behind body j, 
between the root body and it. Then, Eq. (13) can be written in the form: 

 ( )1 2diag , , , n d= ≡R T b b b TR⋯  (14) 



Andrés F. Hidalgo, Javier García de Jalón and Santiago Tapia 

 6 

where ib , according to Eq. (3), is the Cartesian velocity of all bodies ahead of joint i  when 
1i =zɺ   and 0,j j i= ≠zɺ . Remember that vector ib represents the velocity of the point that 

coincides with the inertial frame origin, which is the same for all bodies. 
When Eq. (14) is used to put Cartesian velocities and accelerations in terms of their rela-

tive counterparts, this is obtained: 

 
d

d d

= =

= +

Z Rz TR z

Z TR z TR z

ɺ ɺ

ɺ ɺɺɺ ɺ
 (15) 

By substituting Eq. (15) into Eq. (12) multiplying by T T
dR T and taking into account that the 

relative open-loop virtual velocities are independent, a new set of dynamic equations is ob-
tained: 

 ( ) ( )T T T T
d d d d= −R T MT R z R T Q MTR zɺɺɺ ɺ  (16) 

The symmetric matrix TT MT , which is commonly expressed as ΣM ,represents the accu-
mulated inertia matrix of the whole system and where each component matrix i

ΣM are the 
composite inertia matrix described by many authors. They represent the accumulation of the 
inertia matrices of all the elements that are ahead of joint i. It is important to keep in mind that 

dR  is a diagonal matrix and that ΣM  is a symmetric one with a well defined structure given 
by the path matrix T , therefore this product can be evaluated in a very efficient way. Addi-
tionally, the advantage of numbering the bodies and joints from the leaves to the root becomes 
visible during the Gaussian elimination or the LU factorization of the LHS term of Eq. (16) 
because its symmetric pattern and thus, the pattern of zeros is not changed by the algorithm 
avoiding the filling and therefore, some additional arithmetic operations. It would be useful to 
see how this matrix looks like. So, for an example, see reference [9]. 

The Eq. (16) corresponds to the open-loop dynamics and can be written more compactly in 
the form: 

 =Mz Qɺɺ  (17) 

The vector Q on Eq. (17) represents all the external and velocity inertia accumulative 
forces as shown in the following expression: 

 ( )T
d

Σ Σ
= +Q R Q P  (18) 

The equation above shows the vectors ΣQ  and ΣP which represent the accumulated exter-
nal forces and the accumulated velocity dependent inertia forces respectively. For a hypo-
thetical open-loop system with n elements the expressions of ΣQ  and ΣP are: 

 

1 1
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3 3,T T
d d
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Σ Σ ΣΣ Σ
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Q P

Q P
Q T Q P M R z T MTR zQ P

Q P

ɺ ɺɺ ɺ

⋮ ⋮

 (19) 

The Eq. (16) or (17) constitute a system of ODEs whose coefficient matrix and right-hand 
side vector can be computed recursively in a very efficient way. 
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2.1 Coordinate partitioning method 

The dynamics of closed-loop multibody systems can be formulated by adding the con-
straint equations to the dynamic equations corresponding to the open-chain system obtained 
previously. In that sense, the differential equation of motion in a descriptor form takes the 
form: 

 ( ) ( , )T
λ− zM z z Φ = Q z zɺɺ ɺ  (20) 

where zΦ is the Jacobian matrix of the kinematic constraints equations and λ  the vector of 
Lagrange multipliers. The position, velocity and acceleration vectors in Eq. (20) must satisfy 
the corresponding constraint equation: 

 ( )=Φ z 0 (21) 

 ( ) t= + =zΦ z Φ z Φ 0ɺ ɺ  (22) 

 ( ) t= + + =z zΦ z Φ z Φ z Φ 0ɺɺ ɺ ɺɺɺ ɺ  (23) 

Eq. (20)-(23) constitute a system of index 3 DAEs. If only Eq. (20) and (23) are considered, 
the following index 1 DAE system – equivalent to an ODE system – is obtained: 

 
( ) ( ),T

tλ

            =   
     − −      

z

zz

z Q z zM z Φ

Φ z ΦΦ 0

ɺɺ ɺ

ɺ ɺɺ
 (24) 

The matrix in this system of linear equation is known as the augmented matrix (Negrut, 
Serban and Porta [1]) or a matrix with optimization structure (Serban, Negrut, Porta and Haug 
[10], Von Schwerin [11]). The system of differential equations Eq. (24) suffers from the con-
straint stabilization problems. As only the acceleration constraint equations have been im-
posed, the positions and velocities provided by the integrator suffer from the “drift” 
phenomenon. On this paper two solutions to this problem have been used. The first one, 
which is introduced below, consists in eliminating the Lagrange multipliers from Eq. (24) by 
calculating a basis for the null space of the Jacobian matrix zΦ . This basis have been deter-
mined by using a coordinate partitioning method [3]-[12], that divides the coordinates z (and 
the columns of zΦ ) into dependent and independent ones. The second approach to the stabili-
zation problem, which is used on the next section of this paper, is based on the usage of mass-
orthogonal projections of velocities and accelerations vectors (Bayo and Ledesma [5] and Cu-
adrado et al. [6]). 

Following with the partitioning method, it is possible to select an independent subset of 
relative coordinates, in such a way that a set of ODEs will be obtained at the end. This is car-
ried out by a new velocity transformation similar to the one introduced by Eq. (15). In this 
case, the transformation matrix zR  will be obtained numerically as in the global formulation. 

The closing-loop constraint equations are first formulated in Cartesian coordinates and 
then transformed into relative coordinates. In this paper two ways to set the closed-loop con-
straint equations will be considered. The first one is the cutting joint method, which is very 
common in the literature. The second method to open the loops consists in the elimination of 
the rods (slender bodies with two spherical joints and a negligible moment of inertia around 
the direction of the axis). This second procedure is very interesting in applications, as the car 
suspension system considered previously. Reference [9] shows how to take into account rod’s 
inertia in an exact way. Here, only the kinematic constraints for closing the loops will be con-
sidered. 
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The kinematic constraint imposed by a rod is a constant distance condition that can be ex-

pressed as: 

 ( ) ( ) 2 0
T

j k j k jkl− − − =r r r r  (25) 

On the other hand, the kinematic constraints corresponding to the removal of a Revolute 
can be defined with natural coordinates as (only Eq. (26) for a Spherical joint): 

 ( )    3 independent equationsj k− =r r 0  (26) 

 ( )    only 2 independent equationsj k− =u u 0  (27) 

The constraint equations (26)-(27) shall be expressed in terms of the relative coordinates z . 
This is not difficult, because points jr and kr , and unit vectors ju  and  ku  can be expressed as 
functions of the relative coordinates of the joints in their respective branches of the open-
chain system.  

It is also necessary to compute the Jacobian matrix of constraints (25)-(27) with respect to 
relative coordinates z . As the aforesaid constraints are expressed as a function of Cartesian 
coordinates, the chain derivative rule shall be used. For instance, for the constant distance 
constraint (25): 

 j jk k

j k j k

∂ ∂∂ ∂
= + = +

∂ ∂ ∂ ∂
z r r r r

r rr r
Φ Φ Φ Φ Φ

z z z z

ɺ ɺ

ɺ ɺ
 (28) 

The derivatives with respect to the coordinates  jr  and kr in Eq. (28) are easy to find: 

 ( ) ( )2 ,          2T T T T
j k j kj k

= − =− −r rΦ r r Φ r r  (29) 

The derivatives of the position vectors jr and kr with respect to the relative coordinates z  
can be computed from the velocities of these points induced by unit relative velocities in the 
joints between the fixed body and bodies j and k, respectively. For instance, if the joint i is a 
revolute joint determined by a point ir  and a unit vector  iu , located between the base body 
and point jr , the velocity of point j originated by a unit velocity in joint i can be set as: 

 ( ) ( )j
i j i i j i

iz

∂
= × − = −

∂

r
u r r u r r

ɺ

ɶ
ɺ

 (30) 

So it can be assumed that the closure of the loop constraint equations ( )=Φ z 0  and their 
Jacobian matrix  zΦ  are known or easy to compute. Using the coordinate partitioning method 
based on Gaussian elimination with full pivoting, it is possible to arrive to the following parti-
tioned velocity equation: 

 ( )
1

,       
d

d i d d i i

i

−
     = = −     
  

z z z z

z
Φ Φ 0 z Φ Φ z

z

ɺ
ɺ ɺ

ɺ
 (31) 

where it is assumed that matrix  dzΦ  is invertible. Eq. (31) allows an easy calculation of the 
transformation matrix  zR  that relates dependent and independent relative velocities: 

 ( ) ( )
1 1

,    ,    
d d i d i

i i

i

− −      − −    
= = =     

           

z z z z
z z

z Φ Φ Φ Φ
z R z z R

z I I

ɺ
ɺ ɺ ɺ

ɺ
 (32) 
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If this equation is differentiated with respect to time, the following equation is obtained: 

 i i
= +z zz R z R zɺɺɺ ɺɺ ɺ  (33) 

Introducing the velocity transformation defined by Eq. (32) and (33) in the equations of 
motion Eq. (16) allows obtaining the final set of ordinary differential equations in the inde-
pendent relative coordinates: 

 ( )T T i T T T T i
d d d d d d

∑ ∑ Σ
= − +z z z z zR R M R R z R R Q R R M R z R R zɺ ɺɺɺ ɺ ɺ  (34) 

All the terms in this equation are known, except for the parenthesis with the derivatives of 
the transformation matrices. It is simpler to compute the two terms jointly. Considering Eq. 
(32), the parenthesis in Eq. (34) can be written as: 

 ( )
( )di i i i i

d d d d d d

d

dt
+ = + = + =

z
z z z z z

R R
R z R R z R R z R R z R R R R z zɺ ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ ɺ ɺ ɺ  (35) 

This derivative can be computed from the product of velocity transformations that relates 
Cartesian and independent relative velocities: 

 i
d d= = = zZ Rz TR z TR R zɺ ɺ ɺ  (36) 

Taking the time derivative of this equation: 

 
( )di i

d

d

dt
= +

z
z

R R
Z TR R z T zɺ ɺɺ ɺ  (37) 

In this equation, the product of the path matrix T  times the searched derivative, can be 
computed as the Cartesian accelerations Zɺ   that would be produced by the true velocities zɺ   
and null relative independent accelerations (i

=z 0). The dynamic equations Eq. (34) can be 
written in the form: 

 
( )dT T i T T T i

d d d

d

dt
∑ ∑

  = −   

z
z z z

TR R
R R M R R z R R Q T M zɺɺ ɺ  (38) 

So, a way to compute the terms in the ODEs set Eq. (38) has been completed. Two velocity 
transformations have been introduced. The first one, from Cartesian to open-chain relative 
velocities, is applied directly and leads to an accumulation of forces and inertias. The second 
one is applied in a fully numerical way to a (usually) smaller system. 

The details about the inertia forces of the rods that have been removed to open the closed 
loops will not be given here. It is enough to point out that a rod introduces coupling terms be-
tween the inertia forces of the two tree branches connected by it. The topological information 
to compute these coupling terms is also contained in the path matrix. 

2.2 Penalty method 

The second method shown on this paper consists in a penalty formulation based on a 
slightly variant of the augmented Lagrangian originally proposed by [5] where relative coor-
dinates are used instead of the Cartesian ones and only the position constraints have been di-
rectly introduced within the differential equations of motion. The open-loop kinematic and 
dynamic analysis remain the same with respect to those that have been used before. Hence, 
starting from Eq. (17), the closed-loop equations are introduced in the differential equation of 
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motion by means of a penalization coefficient that forces the fulfillment of the position con-
straints. Then, the differential equation of motion for a closed-loop system is: 

 T
αzMz + Φ Φ = Qɺɺ  (39) 

where α  is the penalization coefficient. 
 
The Eq. (39) represents a system of m  differential equations with m  unknowns. For the 

integration of these equations an alternative form of the trapezoidal rule has been used, which 
consists in expressing the relative velocity and acceleration for a particular instant of time 

1n+   as function of the relative position vector nz  on a time n  : 

 1 1

2 2ˆ ˆ;n n n n n nh h+ +

 = + = − +   
z z z z z zɺ ɺ ɺ ɺ  (40) 

 1 12 2

4 4 4ˆ ˆ;n n n n n n nh h h+ +

 = + = − + +   
z z z z z z zɺɺ ɺɺ ɺɺ ɺ ɺɺ  (41) 

where 1n+zɺ  is the relative velocity vector, 1n+zɺɺ  is the relative acceleration vector and h  is the 
integration step. By adding Eq. (41) to Eq. (39) the following non-linear system equations are 
obtained: 

 
1

2 2 2

1 1 1 1 1 1̂ 0
4 4 4n

T
n n n n n n n

h h h
α

+
+ + + + + +
= − + =zf(z ) M z + Φ Φ Q M zɺɺ  (42) 

To solve Eq. (42) where the unknown is the vector 1n+z , it is customary to use the Newton-
Rahpson method, which has a quadratic convergence in the neighborhood of the solution and 
usually does not cause serious problems when starting with a good initial approximation. Us-
ing this iterative method implies the evaluation of a tangent matrix as indicated in the follow-
ing expressions: 

 [ ]( 1) 1
1

k
kk

n n
n

+ +

+

 ∂
  ∆ = −
 ∂ 

f(z)
z f(z)

z
 (43) 

being k  the iteration and 1n+  the time-step. Then, the unknown vector 1n+z  would be: 

 ( 1)
( 1) ( 1) ( 1)
k k k
n n n
+

+ + +
= +∆z z z  (44) 

The solution of Eq. (44) assumes the previous evaluation of an approximate tangent matrix 
from Eq. (43) that has the following form: 

 ( )
2( )

( )
2 4

kk
T

n n

h h
α

  ∂    = + + +   ∂   
z z

f z
M z C Φ Φ K

z
 (45) 

where: 

 ,
∂ ∂

= − = −
∂ ∂

Q Q
K C

z zɺ
 (46) 

This matrix shows ill-conditioning when the time step h  is very small.  According to Bayo 
and Ledesma the numerical condition of the tangent matrix is 3( )O h − , which sets a lower lim-
it to the practical values of step-sizes. 

Then, at time n and iteration k, the Eq. (42) can be expressed in a more compact form: 
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2 2 2

,
4 4 4

k

k T
n

n

h h h
α

  = −   
zf(z) Mz + Φ Φ Q(z z)ɺɺ ɺ  (47) 

During the time integration process the numerical integration yields a set of velocities *zɺ  
and accelerations *zɺɺ  that do not satisfy the constraint conditions =Φ 0ɺ  and =Φ 0ɺɺ  respec-
tively, because both sets of vectors have been obtained numerically from the integrator and 
not by a derivation process of the positions. To overcome the stability problems that appear 
during the integration process, which are related to this lack of fulfillment on the constraints, a 
mass-orthogonal projection in velocities and accelerations have been used. Based on the pro-
jection methods proposed in (Bayo and Ledesma [5]) and the optimization introduced on that 
(Cuadrado et al. [6]), by using the same tangent matrix in the projection equations, the follow-
ing expressions for the velocities are obtained: 

 
2 2

*

4 4
T T

t

h h
α α

  + = −   
z z zP Φ Φ z Pz Φ Φɺ ɺ  (48) 

where the matrix P  is the weighted matrix proposed on [6] and has the form: 

 
2

( )
2 4

h h
= + +P M z C K  (49) 

 
The expression for the accelerations is: 

 
2 2 2

*

4 4 4
T T T

t

h h h
α α α

  + = − −   
z z z z zP Φ Φ z Pz Φ Φ z Φ Φɺɺɺ ɺɺ ɺ  (50) 

 

3 PERFORMANCE IMPROVEMENTS 

This section shows the improvements that have been introduced in both of the two formu-
lations developed above. The first implementation consists of the sparse techniques usage for 
the solution of a redundant but compatible linear system of equation. This formulation has 
been integrated with the 4th order explicit method of Runge-Kutta. The second improvement 
and most important contribution of this paper have consisted of a parallel implementation 
within the penalty method whose differential equation of motion has been solved with the im-
plicit method of the Trapezoidal Rule. Finally, a very simple consideration has been used dur-
ing the numerical forces derivatives that have allowed to achieve a significant reduction on 
the execution times. 

3.1 Sparse implementation of the double velocity transformation  

The coordinate partitioning method shown before is an efficient way to avoid the stability 
problems that arise during the integration of motion differential equations. However, in order 
to obtain the zR  matrix of Eq. (32), it is necessary to carry out the calculation of the inverse 
of the partitioned Jacobian matrix. The solution to this problem has a prohibitive computa-
tional cost in large and complex multibody systems, due to the need of solving a redundant 
but compatible linear system of equations. This can be done by means of a least squares ap-
proximation, but this computational effort is completely out of bond for efficient applications. 
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There are very efficient dense matrix implementations that can be used to increase the per-
formance of our numerical computation. In a previous work [13], we have shown how to in-
troduce in our formulation the BLAS functions provided for MKL from Intel®.  The main 
application of this library was in the most expensive numerical algorithms of this implementa-
tion, which are the computation of the matrix zR  from Eq. (32) and the product of matrices to 
arrive to Eq. (34) from Eq. (16). 

However, when we are looking for increasing the efficiency, another alternative can be 
taken into account, which consists in taking advantage of the sparse pattern that some matri-
ces have. Although saving arithmetical operations and computational costs by considering the 
non-zero structure of a matrix is not a new subject, in MBS dynamics, the sparse matrix tech-
niques have mainly had success in global formulations or in topological ones with flexible 
bodies. Despite this, we will show that it is possible to exploit the sparsity too in semi-
recursive formulation with relative coordinates when we are modeling large multibody sys-
tems. Actually, one of the goals of this paper consists in introducing the usage of the sparse 
function MA48 provided by Harwell [14] to obtain the partitioning coordinate matrix zR in a 
topological semi-recursive formulation.   

Regarding this, an interesting study and benchmark of various sparse functions can be seen 
on (González et al. [15]), where the most efficient sparse library have been KLU (“Clark 
Kent” LU), a solver specially designed for circuit simulation matrices [16]. The Jacobian ma-
trix zΦ for large and complex MBS often introduces the appearance of redundant but com-
patible system of equations. This fact prevents from using the KLU subroutine because it only 
operates on square matrices [17]. Nevertheless, a subroutine able to deal with this kind of 
problems should be used.  

The MA48, is a collection of Fortran 77 subroutines for the direct solution of a sparse un-
symmetric set of linear equations =Ax b , where the matrix A could be square, rectangular 
or rank-deficient and x and b  are vectors. The package basically consists of four subroutines, 
MA48I/ID, MA48A/AD, MA48B/BD, MA48C/CD.  The first one, set default values for con-
trol parameters and would be called once prior to any calls MA48A/AD, MA48B/BD, or 
MA48C/CD. Then, MA48A/AD prepares data structure for factorization, MA48B/BD factor-
izes the matrix A and MA48C/CD uses the factors produced by MA48B/BD to solve =Ax b  
or T

=A x b . 
Observing the Eq. (32), and calling dzR to those terms of the matrix zR  related with obtain-

ing dzɺ , the system to be solved in our formulation is: 

 d d i
=z z zΦ R Φ  (51) 

The MA48C/CD does not solve systems with multiple RHS, therefore, the solution of Eq. 
(51) is reached by using MA48C/CD within a loop where each time a column of matrix dzR is 
obtained.  The results of this implementation are shown on the numerical Results section. 
There we will be able to see that for large MBS, sparse techniques instead of dense ones could 
be the right option. 

3.2 Parallel implementation (Implicit method) 

One of the most expensive computational operations of the explained formulation, espe-
cially working on simulations of large and complex multibody systems, is the computation of 
the tangent matrix, specifically the calculation of forces derivatives with respect to relative 
position and velocity vectors (70-58% of the elapsed time). Instead, it is not necessary true in 
all examples; see [18], for the sake of accuracy, generality and robustness, its computation 
will not be approximate or neglected in our implementation. The matrices K  and C  from Eq. 
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(46) represent the influence that a variation on each element of vectors z  and zɺ  have on the 
forces Q of the mechanical system. At this point it is worth to mention that the accuracy on 
the evaluation of these forces must not be taken for granted, specially on those cases where 
the external forces acting on the system are not constrained to spring and dampers only, but 
more general and complex forces are involved on the dynamic behavior of the MBS. Model-
ing the tyres behavior by means of Pacejka’s magic formula, a very important practical situa-
tion could be, for example, the evaluation of forces between the tyres and the soil when a 
vehicle is passing through an obstacle like a velocity reducer (speed bump) or a pothole. That 
kind of situation, when very accurate realistic multibody system models are used, prevents 
from neglecting or using huge approximation during the forces derivatives evaluation. 

Another factor to take into account besides the accuracy is the generality that the imple-
mentation of a formulation should have attending to achieve a very robust program able to 
deal with the most assorted requirements. This fact could demand the appearance of external 
forces from different nature, what constitutes an important drawback for these general pur-
pose applications. To work out the generalization problems that are likely to appear when a 
wide range of force types will be included in the dynamic analysis, a very general way to eva-
luate the forces derivatives must be used. Therefore, for the sake of generality, a good ap-
proach to this is to evaluate the derivatives numerically.   

Despite the numerical evaluation of Eq. (46) have the drawback of being a very expensive 
computation, on the other hand it has two extremely important advantages. The first one, as 
mentioned before, is its generality; and the second one is its concurrent computation capabil-
ity, in that sense that each column or groups of them could be simultaneously evaluated with-
out interfering with each other.  

The main goal of this paper is to propose a very efficient numerical evaluation of the forces 
derivatives that are focused on obtaining a high performance implementation, exploiting its 
parallelization properties by doing tasks in a concurrent way.  

The form of achieving parallelism could be described in four fundamental decompositions, 
data parallelism, task parallelism, pipelining (task and data parallelism together) and mixed 
solutions. A pure data parallelism problem is a completely thread-safe operation called by 
programmers as embarrassingly parallel. Thinking in task, the numerical evaluation of matri-
ces K  and C in parallel is a very straightforward operation in such a way that each column or 
groups of them for both matrices can be concurrently obtained. Then, the basic parallel_for 
algorithm offered by Threading Building Blocks could be applied. This algorithm break the 
iteration space into chunks and run each one simultaneously on separated threads. Neverthe-
less, all the work required to perform a column as a unique entity and as a part of a whole (a 
matrix), should be carefully thought. Regarding this, supposing an instant of time n and that 
the column i of matrix K  and C  are being performed according with the numerical form: 

 
( , ) ( , )n n n n n nn

i
n
i z

−∂
≈

∂ ∆

Q z z Q z zQ
z

ɺ ɺ
 (52) 

 
( , ) ( , )n n n n n nn

i
n
i z

−∂
≈

∂ ∆

Q z z Q z zQ
z

ɺ ɺ

ɺ
 (53) 

where n
iz  and n

izɺ  are the relative position and velocity vectors at time n when a variation z∆  
on element i of  each one is being performed. The Eq. (52) and (53) involve the evaluation of 
Q  from Eq. (18) for each column of matrices K  and C . In addition to the high computa-
tional cost that should be invested on that, when looking for parallel patterns to apply, other 
basic important factors take place at this stage. Although Threading Building Blocks offers a 
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high level parallelism environment that relies on generic programming, allowing a useful ab-
straction of threads by concentrating in tasks, we need to know where our application could 
present problems like not being thread-safe, mutual exclusion and locks, and correctness 
(deadlock and race conditions). These considerations will be easily explained without getting 
into tedious details about the algorithm code implementation, we only need to see the expres-
sions that are evaluated to obtain the vector Q , which are explicitly shown for all the equa-
tions developed before than Eq. (18). Additionally, it is important to note that each column of 
matrices K  and C  must be evaluated using the same kinematic and dynamic information 
about all the bodies of the system, except for the variation on vectors z  and zɺ as indicate Eq. 
(52) and (53). For that reason, before applying a parallel_for we need to see that during each 
column evaluation some kinematic and dynamic data (Cartesian velocities and acceleration, 
and forces) had changed their values and consequently, they need to be restored; on the other 
hand, the chunks must be supplied with its own block of data, what implies making a copy for 
each one. In that way, a simple form of safety and scalable parallelism in a loop has been de-
scribed, because no threads and synchronization considerations were necessary, only a secure 
management of data have been demanded. Because not as simple parallel pattern as data par-
allelism is applied but this application consists in the simplest loop iteration, we can call this 
implementation like a quasi embarrassingly parallel.  

Once the implementation features have been exposed, let see what we are really concerned 
about, the scalability and speedup able to be achieved by implementing parallelization on this 
algorithm.   

The Fig. (3) shows two simplified flow diagrams about the algorithm that integrates the 
differential equations of motion with the trapezoidal rule as implicit integrator, the one on the 
left is a sequential program while the other represents its parallel version in a quad-core proc-
essor. Task 1 is the initial acceleration computation. Afterwards, a for-loop simulating the 
time advance starts. Task 2 is the computation of matrices K  and C , task 3 is the evaluation 
of the product T

αz zΦ Φ  and task 4 basically involves the evaluation of the tangent matrix Eq. 
(45) together with vectors z , *zɺ  and *zɺɺ . Task 2, 3 and 4 are evaluated within the Newton-
Raphson iteration. Finally, when the error in the constraints is sufficiently small, the velocity 
and acceleration projections are performed in task 5.   

Task 1

Task 2

Task 3

Task 4

Task 5

Task 3

Task 4

Task 5

Tk 2/4Tk 2/4Tk 2/4Tk 2/4

Task 1

End End

For loop For loop

 
Figure 3: Adding parallelism within the iterative algorithm 
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The forces derivatives, represented in task 2 are the heaviest workload of the algorithm. 
Fortunately this operation is very suitable for parallelism; therefore this workload can be si-
multaneously distributed between all the processor cores. On the other hand, adding more 
processor cores does not imply that the total time of this step would decrease in a direct pro-
portion. At this point we say that the program does not scale. This is because the overhead of 
distributing and synchronization begins to dominate the problem.   

According to Amdahl’s Law, it should be noted that the quantity of parallelism we can ob-
tain from our application is limited by the serial portion of the program. In that sense, it is a 
huge advantage of this formulation that parallelizable portion of the code represents between 
the 70 and 85% of the elapsed time. Additionally, according to Gustafson’s Law, it is possible 
to get more scalability by increasing the workload that the parallel portion of the code does. In 
such way that increases the problem size, the serial fraction decreases and according to Am-
dahl’s Law, the scalability improves. Maybe there lies the main drawback of this method. In 
that sense that we can increase the workload by modeling larger and more complex multibody 
systems, but, if we are running a particular model, the only way to increase the workload that 
parallel portion of code does, is by means of using a smaller time step integration. This effec-
tively would increase the step total time due to the growth of the number of evaluations not of 
the workload required for each step, therefore, the problem does not scale. 

Finally, two more uses of Threading Building Blocks have been included. The first one is 
the usage of scalable memory allocation by replacing all the C++ memory routines like mal-
loc, new and delete by the templates provided by the library. This basically avoid problems 
like false sharing [19], where for example two threads tend to access each one to different 
elements from two arrays that are located on the same cache line. The other Threading Build-
ing Blocks usage has been introduced to perform the product T

αz zΦ Φ , that is the most expen-
sive after the forces derivatives computation. Here, the contribution of the library has been the 
usage of a two- dimensional iteration space by means of the blocked-range2d<T> template 
with a parallel-for routine. This solution yields more parallelism and better cache behavior 
making a loop run faster than the sequential equivalent even on a single processor. 

All the improvements that the parallelization has introduced are shown on the numerical 
results part.    

3.3 Topology based improvement on forces derivatives 

On this section, a simple but efficient improvement has been introduced taking into ac-
count the connectivity that exists between different branches from the spanning tree of the 
system. The example of the semi-trailer truck that is shown on the Results section consists of 
a tractor joined to the semi-trailer by means of a spherical joint. These are represented by 
means of two branches independent between them. This fact is illustrated if we observe the 
connectivity pattern of the matrix K as shown in Fig. (4). 

 
Figure 4: Connectivity Pattern of matrix K.  



Andrés F. Hidalgo, Javier García de Jalón and Santiago Tapia 

 16 

 As we can see in this figure, the block from the upper-left corner and lower-right indicates 
that it is possible to evaluate two derivatives by covering the tree only once. Because of the 
same consideration can be done performing matrix C , a huge reduction of time can be 
achieved by performing the derivatives on this way. Finally it is worth to mention that not all 
the multibody systems show a connectivity patter that allows to perform the derivatives as 
mentioned above, but it should always be taken into account that a new model would be de-
fined.  

4 RESULTS 

In order to see the improvements, a large and complex example has been analyzed: a 40-
dof 5-axle semi-trailer truck. This model is a real-life vehicle, with realistic suspension ge-
ometry and forces. Two simulations have been done, which consist of a 5s multiple slalom 
test along a flat road. For the sparse implementation, a 4th-order Runge-Kutta integrator with 
a 10-3s time-step has been used, with 20,000 evaluations of the state vector derivative. On the 
other hand, the parallel implementation has been run using an implicit integrator as the trape-
zoidal rule with two time-step executions 5-3s and 10-2s. 

The example is a multibody model of a complete truck with tractor and semi-trailer. It has 
40 dof, 5 axles, 81 bodies (of which 34 are massless auxiliary), 89 joints and a driven coordi-
nate for the steering system. All axles have two wheels. The tire-ground contact forces are 
modeled by Pacejka’s magic formula. The semi-trailer suspension and the tractor rear suspen-
sion are made up of air springs and dampers, while the tractor front suspension is made up of 
leaf springs and dampers. The joint between the semi-trailer and the tractor has been consid-
ered as a spherical joint. 

The semi-trailer truck has 282 Cartesian coordinates, 80 open-chain relative coordinates, 
51 constraint equations (40 independent) and 40 degrees of freedom. The Fig. (5) shows two 
views of the truck MBS model. 

 
Figure 5: Schematic and CAD MBS model – Semi-trailer truck 

Table 1 shows the CPU time spent for 20,000 evaluations of each algorithm step, consider-
ing three different implementations: standard C/C++, BLAS (MKL) and sparse (MA48). 
Steps 3 and 8 are the most expensive ones. Both BLAS/sparse routines improve the results 
considerably, being the latter the best one. 
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Algorithm Step
Semi-trailer truck

C/C++ BLAS SPARSE

1 0.675 0.665 0.658

2 0.425 0.927 0.721

3 4.032 0.655 0.616

4 0.289 0.361 0.195

5 0.273 0.275 0.275

6 0.258 0.198 0.180

7 0.193 0.194 0.193

8 3.037 2.054 2.044

9 0.247 0.258 0.255

Elapsed time [s] 9.428 5.588 5.137
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Table 1:  CPU times for 5s simulation – Explicit method 

Table 2 shows the results that the parallelization, by means of the Threading Building 
Blocks usage, had in the semi-trailer truck model. The columns for each time-step means, the 
C++ serial execution (Serial), the Threading Building Blocks execution (TBB) and the topol-
ogy based improvement with parallelization too (TBI). Here, we can see the speedup achieved 
and how this application does not scale when the workload is increased by using a small time-
step size. 
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Table 2: CPU times for 5s simulation – Implicit method 

5 CONCLUSIONS 

We can divide the contribution of this paper into two parts, the first one has been the intro-
duction of sparse techniques for the direct solution of a redundant but compatible linear sys-
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tem of equations and the second and most important goal of this paper has been the successful 
application of parallelization in a commercial multi core processor. Both methods have been 
applied on large, complex and very realistic multibody systems. 

The coordinate partitioning method has outstanding stabilization problems but being the 
differential equation of motion solved with an explicit integrator like a 4th order Runge-Kutta 
method the usage of very small time step integration demanding a big number of evaluations 
per unit of time has been required. The efficiency of this method has been significantly im-
proved by including sparse techniques but this still prevents from obtaining real time simula-
tions on a huge multibody system as the semi-trailer truck example. 

To increase the time step integration size an implicit method has been used but once 
achieved this, the necessity of accuracy and generality have demanded the introduction of an 
expensive numerical forces differentiation. On the other hand, the numerical differentiation 
process is very suitable for parallelism, then an efficient CPU usage consisting in keeping 
busy all the processor cores, has given us a high performance algorithm reaching real time 
simulation by scaling the application with a speedup of 3.2 in a commercial quad-core proces-
sor. Finally, according to Amdahl and Gustafson’s Laws, it is possible to scale with large mul-
tibody systems but it will not be the case if, for accuracy sake, we increase the workload of 
the parallel fraction of code by decreasing the time step size. 
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