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ABSTRACT: In this work a methodology for analysing the lateral coupled behavior of large viaducts and high-speed trains is
proposed. The finite element method is used for the structure, multibody techniques are applied for vehicles and the interaction
between them is established introducing wheel-rail nonlinear contact forces. This methodology is applied for the analysis of the
railway viaduct of the Rı́o Barbantiño, which is a very long and tall bridge in the north-west spanish high-speed line.
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1 INTRODUCTION

In Spain, new railway lines are currently under construction
in regions with very deep valleys. For that reason, strong
winds appear over vehicles and structures and very tall and long
viaducts are being built. Sometimes, due to that, these bridges
have a very low lateral stiffness and lateral dynamic effects, that
may endanger safety of circulation, could appear. In this work
a realistic vehicle-bridge interaction model is proposed which
considers lateral effects for studying this kind of cases.

As it is described in [1], the vehicle-bridge interaction
systems are composed of five main issues: structure and vehicle
modelling, track irregularities, wheel-rail contact and numerical
solution algorithm for equations.

With regard to structure, the finite element method is widely
used in this kind of analysis. Most of the authors use beam and
truss elements, as it can be seen in [1], [2], [3], [4], [5], [6], [7]
and in this work. However, other type of elements, such as shell
[8] or solid [9], are applied too.

Multibody dynamic models, which are composed of rigid
bogies, springs, dampers and constraints, are used for the
vehicles. For vehicle-structure interaction analysis linearized
models are applied, as it can be found in [1], [2], [3], [4], [5], [6],
[7], [10], [11] and [12]. More realisitic models, which consider
nonlinear effects, are described in [13] and [14].

The key point of the vehicle-bridge interaction is to
establish the geometric and dynamic relationships between both
subsystems (see Figure 1). For establishing these relationships
wheel-rail contact theories are used. With regard to the
geometric relationship in the wheel-rail contact it is very
common to consider that wheels have the same state of motion
with their relative points on the rail and it can be seen in [1],
[4], [5], [8], [10], [11], [15], [16] and [17]. Furthermore,
in order to take into account the hunting movement of the
train wheelsets, in some works this movement is imposed as a
sinusoidal relative desplacement between the wheelset and the
track, as it is developed in [1], [4], [5], [11] and [17]. In other
way, other models consider free relative displacements between
wheels and rails. In these cases it is necessary to introduce

the normal and tangential forces which appear in the contact
between wheels and rails. In normal contact, the nonlinear Hertz
theory [18] it is very common and it is used in this work and
in [2], [7], [13] and [14], but in other way, a linearization of
this theory can be applied as in [6]. For tangential contact the
Kalker Linear Theory [19] is widely applied in vehicle-bridge
interaction system as it occurs in [2], [3], [6] and [7]. However,
in other works [13], [14], which are focused only on vehicles,
more realistic tangential models are applied. Kalker USETAB
table [20], which is based on Kalker Variational Theory [21], is
very common in train dynamic analysis and it is used here.

In addition, it is necessary to introduce track irregularities
in the geometric relationships between the wheelset and the
track. Irregularity profiles can be generated using power spectral
density functions as it is explained in [22] and applied on [6],
[7] and in this article. In other way, irregularity profiles can be
measured directly on the track, as in [1], [3] and [4], and then
introduced in the numerical model.

vehicle
(MBS)

wheel-rail contact

bridge
(FEM)

Figure 1. The vehicle-structure interaction system is composed
of the train, the bridge and the interaction forces between
them.
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For solving the dynamic system, both subsystems can be
integrated separately and an iteration is established in each
time time for achieving forces and displacements compatibility
between them. This method is applied in [1], [6], [7], [11] and
[23]. In other way, a single set composed of coupled equations
of both subsystems can be solved directly, as in this work and in
[3], [4], [5], [10] and [16].

To use finite elements, multibody dynamic techniques and
an interaction between them based on contact forces provides
a very flexible and powerful method for analyze any kind
of structures and vehicles. Thus, any kind of nonlinearities
(material, geometric, etc.) and constraints could be introduced
in the formulation using this method.

2 NUMERICAL MODEL

The vehicle-bridge interaction system is composed of the
vehicle and bridge subsystems and the interaction relationships
between them. Thus, in this Section the equations that govern all
of these parts are presented. Cartesian coordinate axes are used
in both subsystems: x is along bridge lontigudinal direction, z
points upward and y is defined according to the right-hand rule.
In addition, θx, θy and θz correspond to rotations around the
coordinate axes (see Figure 2).
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Figure 2. Vehicle schema.

2.1 Vehicle model

For modelling the vehicle behaviour, the multibody dynamics
method is applied. Thus, car body, bogies and wheelset
are considered rigid bodies, and the primary and secondary
suspension are defined using linear springs and dampers. For
the vehicle model, the following assumptions are considered:
(A1) Small displacements are assumed and nonlinear geometric
effects are neglected.

(A2) The train is supposed to cross the bridge at a constant
speed v and the path of the track to be straight.
(A3) The train is composed of independent cars: neither bogies
nor wheelsets are shared by two different cars.
(A4) A constant velocity v along x axis is considered for all
the bodies of each car, therefore the degrees of freedom of car-
bodies and bogies are y, z, θx, θy and θz. For wheelset, θy is
assumed to be constant because θ̇y = v/r0, being r0 the nominal
rolling radius of wheels.
Using the multibody dynamics method for small displacements,
the equations of motion of the vehicle can be written as:

MV ẌV +CV ẊV +KV XV = FV (1)

where:

MV = diag
[
mV 1 mV 2 · · · mVi · · · mV nV

]
(2a)

CV = diag
[
cV 1 cV 2 · · · cVi · · · cV nV

]
(2b)

KV = diag
[
kV 1 kV 2 · · · kVi · · · kV nV

]
(2c)

XV =
[
xV 1 xV 2 · · · xVi · · · xV nV

]T
(2d)

FV =
[
fV 1 fV 2 · · · fVi · · · fV nV

]T
(2e)

being i = 1, . . . ,nV and nV is the number of cars of the train.
The matrices mVi, cVi and kVi are, respectively, the mass,
damping and stiffness local matrices of the vehicle i. A detailed
description of the terms of these matrices can be found in [3]. fVi

is the local forces vector of the car i. In this article, only gravity
loads are applied on the vehicle.

The degrees of freedom of one car can be expressed as a
function of the degrees of freedom of each body in the car:

xVi =
[
xVi

H xVi
T 1 xVi

T 2 xVi
W1 xVi

W2 xVi
W3 xVi

W4

]T
, (3)

where H, T and W correspond to car body, bogies and
wheelsets, respectively (see Figure 2) and their degrees of
freedom are:

xVi
H =

[
yVi

H zVi
H θVi

x,H θVi
y,H θVi

z,H
]T

(4a)

xVi
T j =

[
yVi

T j zVi
T j θVi

x,T j θVi
y,T j θVi

z,T j
]T

j = 1,2 (4b)

xVi
W j =

[
yVi

W j zVi
W j θVi

x,W j θVi
z,W j
]T

j = 1, . . . ,4 (4c)

2.2 Bridge model

For modelling the bridge, the finite element method has been
applied and beam elements have been used. The assumptions
that have been made are:
(A5) Only small displacements and linear elastic materials are
considered.
(A6) The rails are supossed to be ridigly attached to the deck
section.
(A7) Elastic effects on rails are neglected.
Thus the equations that govern the behaviour of the structure are
written as:

MB ẌB +CB ẊB +KB XB = FB (5)

It is assumed that FB = 0 because no external loads are applied
on the structure. In a section of the bridge with longitudinal
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Figure 3. Bridge deck.

coordinate x, the gravity centre D and track T displacements are
defined as (see Figure 3):

xB
D(x) =

[
yB

D(x) zB
D(x) θ B

x,D(x) θ B
z,D(x)

]T
, (6a)

xB
T (x) =

[
yB

T (x) zB
T (x) θ B

x,T (x) θ B
z,T (x)

]T
. (6b)

The displacement of the centroid of deck beam section D can
be obtained as a function of nodal displacements:

xB
D(x) = TB

D(x)XB, (7)

being TB
D(x):

TB
D(x) =

[
0 · · · 0 TB

D,m(x) T
B
D,m+1(x) 0 · · · 0

]
(8)

and XB:

XB =
[

xB
1 · · · xB

m−1 xB
m xB

m+1 xB
m+2 · · · xB

nB

]T
, (9)

where m and m+ 1 are the nodes of the element in which the
wheelset is over (Figure 4). The nodal degrees of freedom of
the node m of the structure are:

xB
m =

[
xB

m yB
m zB

m θ B
x,m θ B

y,m θ B
z,m
]T

. (10)

i, jNode m Node m+1

Element k

xB
m+1

xB
m+1

x

Figure 4. Wheelset between two nodes of the bridge deck.

The interpolation matrix TB
D,m(x) is defined as:

TB
D,m+k =




0 N1+k 0 0 0 N̂1+k
0 0 N1+k 0 −N̂1+k 0
0 0 0 N3+k 0 0
0 N′1+k 0 0 0 N̂′1+k


 (11)

Euler-Bernoulli beam elements were used, thus, shape functions
are third order Hermite polynomials (N) for bending defor-
mation interpolacion and linear functions (N̂) for axial and
torsional, being k = 0, 1 and (•)′ = d(•)

dx
. Thus, taking into

account vertical ez and lateral ey track eccentricity and the track
irregularities, displacements of point B can be defined as:

xB
T (x) = TB

T T
B
D(x)xB +Γ (x), (12)

where ΓΓΓ (x) is the track irregularities profile vector [24]:

ΓΓΓ (x) = [Γy(x) Γz(x) Γθx(x) 0]T (13)

whose components are: Γy(x) the lateral aligment irregularity
profile, Γz(x) the vertical surface irregularity profile and Γθx(x)
and the rotation corresponding to cross level irregularity profile.
TB

T is the transformation matrix:

TB
T =




1 0 −ez 0
0 1 ey 0
0 0 1 0
0 0 0 1


 . (14)

Neglecting the first and second time derivatives of TB
T (x), the

velocity and acceleration of T are:

ẋB
T (x) = TB

T T
B
D(x) ẋB +

dΓΓΓ (x)
dx

v , (15a)

ẍB
T (x) = TB

T T
B
D(x) ẍB +

d2ΓΓΓ (x)
dx2 v2 . (15b)

2.3 Vehicle-bridge interaction

For establishing the interaction between the vehicle and the
structure the contact interaction forces between them are
introduced into the equations. In this way, a coupled system of
equations considering the vehicle (1) and bridge (5) equations
and the contact interaction forces is written:
[

MV 0
0 MB

]
Ẍ+

[
CV 0
0 CB

]
Ẋ

+

[
KV 0
0 KB

]
X =

{
FV +FV

c
FB +FB

c

}
,

(16)

where FV
c is the vector of forces applied on the vehicle as a

consequence of the interaction with the structure, and FB
c , on

the structure. X is:

X =

{
XV

XB

}
. (17)

FV
c and FB

c depend on the vehicle and bridge displacements and
velocities and time. FV

c is defined as:

FV
c =

[
fV 1
c fV 2

c · · · fVi
c · · · fV nV

c

]
, (18)

where the interaction forces vector of each vehicle is:

fVi
c =

[
0 0 0 fV 1

c,W1 fV 1
c,W2 fV 1

c,W3 fV 1
c,W4

]
. (19)

fVi
c,W j is the contact forces vector that appear in wheelset j of

vehicle i as a consequence of interaction with the bridge. The
superscript Vi and subscript W j, which refer to the wheelset j
of the vehicle i, are supressed in the rest of the article.

The components of the contact forces vector are fc =
[Fy

c Fz
c Mx

c Mz
c]

T and they are described in Section 2.4.3. Forces
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applied on the bridge deck are obtained as a function of fc (see
Figure 3):

FB
c =−

nV

∑
i=1

4

∑
j=1

TB
F(x)T

B−1

T fc , (20)

where TB
F(x) is defined as:

TB
F(x) =




0
...
0

TB
F,m(x)

TB
F,m+1(x)

0
...
0




, (21)

TB
F,m+k(x) as:

TB
F,m+k(x) =




0 0 0 0
N1+k 0 0 −N′1+k

0 N1+k 0 0
0 0 N3+k 0
0 N̂1+k 0 0

N̂1+k 0 0 N1+k



, (22)

k = 0, 1, and x is the longitudinal position of the wheelset
considered.

The equation (16) is solved using the HHT Method [25],
which is a implicit time integrator. Due to that, tangent matrices
are needed for solving the system. Thus, the tangent matrices of
contact forces are computed:

Kc =
dFc

dX
, (23a)

Cc =
dFc

dẊ
, (23b)

where:

Fc =

{
FV

c
FB

c

}
. (24)

The expressions of the tangential forces applied in this work
have not an analytical time derivative, and due to that, tangent
matrices have to be calculated using numerical jacobians.

2.4 Nonlinear contact forces

The wheel-rail contact forces are developed in this Section.
Considering some assumptions, that are expossed below, this
problem can be split in three main parts:
Geometric problem: it consists on computing the main geo-
metric variables which depend on the relative displacements
between wheel and rail.
Normal problem: considering the geometric variables obtained
before, the contact ellipse dimensions and the normal stress
distribution is calculated using the Hertz theory [18].
Tangential problem: the tangential forces, which depend on
the contact geometry, normal stresses and relative velocities
between wheel and rail, are computed.

According to [21], if the wheel and rail materials have the
same mechanical properties, the three problems can be studied
separately: geometric problem is solved firstly, normal problem
secondly and tangential problem thirdly.

2.4.1 Geometric contact problem

For obtaining the main geometric variables of the contact
problems serveral assumptions are made:
(A8) Separations between wheel and rail are not allowed.
(A9) The wheel-rail contact appears only in one area.
(A10) Only rigid body movements perpendicular to x axis are
considered for the wheelset and the track.
Considering that the distance between two wheelset of the same
wheelset is 2dW , the geometric variables can be computed as
a function of only variable: the lateral displacement of the
wheelset relative to the track ∆yW . These geometric variables
for wheels A and B (Figure 6) are (see Figure 5):
• rA and rB: the rolling radii of both wheels at the contact point.
• γA and γB: the angle between horizontal and contact plane (the
plane where the contact ellipse is contained).
• ka

A, kb
A, ka

B and kb
B : ellipse dimension coefficients that depend

on the curvatures of wheel and rail in the two main directions at
the contact point (see [18]). a is the ellipse semiaxis along xc,
and b along yc.
• ∆ẑW and ∆θ̂x,W : relative vertical displacement and rotation
between the wheelset and the track, considering only geometric
conditions.

zc γ

xc

yc

rr,y

r

rw,y

Figure 5. Main variables of the contact geometry.

In this article, realistic wheel and rail profiles are considered
(biconic profiles are avoided), due to that, when the relative
lateral displacements of the wheelset respect to the track are
small, the variation of the previous variables is linear. However,
when the displacements become larger, contact between the
flange of the wheel and the rail occurs, and the variation
becomes nonlinear.

The relative displacements of the wheelset of vehicle respect
to the track are:

∆yW = yW − yB
T (x) , (25a)

∆zW = zW − zB
T (x) , (25b)

∆θx,W = θx,W −θ B
x,T (x) , (25c)

∆θz,W = θz,W −θ B
z,T (x) , (25d)
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being yW , zW , θx,W and θz,W the absolute displacements and
rotations of the wheelset.

2.4.2 Normal contact problem

The Hertz theory [18], for solving the shape and dimensions of
the contact surface and the normal stress distribution, take into
consideration the following assumptions:
(A11) At contact point, contact surfaces are continuous and
nonconformal.
(A12) No plastic deformation is considered and strains are
supposed to be small and elastic.
(A13) Stresses are neglected far from contact point.
(A14) Friction between surfaces does not affect to normal
problem.
(A15) Quadratic functions of two variables can be used to
define the wheel and rail surfaces near to contact point.
With these assumptions, contact area is considered an ellipse
and normal stress distribution an ellipsoid.

The ellipse semiaxes can be computed as:

ak = ka
k(∆yW )

(
1−ν

G
Nk
)1/3

(26a)

bk = kb
k(∆yW )

(
1−ν

G
Nk
)1/3

(26b)

where k = {A,B}, G is the shear stress modulus, ν the Poisson
coefficient of wheels and rails and Nk the contact normal force
in wheel-rail pair (it is explained below how to compute these
normal forces). The coefficients ka

k and kb
k , which depend on

∆yW , are computed before the calculation and depend on the
main curvatures of wheel and rail at contact point (see [26]).

2.4.3 Tangential contact problem

In this problem the tangential contact forces are computed. They
appear as a consequence of a rolling and sliding motion between
wheels and rails. In each point of the contact surface the shear
stress value can not be greater than the normal stress times
friction coefficient. Thus, in the contact ellipse adhesion and
slip areas could appear.

The main variables of the tangential contact are the creepages,
which are defined as the non dimensional relative velocities
between wheel and rail. ζ k

x , ζ k
y and ζ k

R are, respectively,
longitudinal, lateral and rotational creepages of wheel-rail pair
k and can be expressed as:

ζ k
x = 1− rk

r0
± ∆θ̇z,W

v
dW (27a)

ζ k
y =

1
v

[(
∆ẏW +∆θ̇x,W rk

)
cosγk

+
(
∆żW ±∆θ̇x,W dW

)
sinγk

] (27b)

ζ k
R =− sinγk

r0
(27c)

where the upper sign of ± and ∓ in the above equations
corresponds to the wheel-rail pair A, and the lower, to B (see
Figure 6).

Depending on the assumed hypothesis, different methods
for solving tangential contact exist. The Kalker Variational

Method [21] is a very accurate method for computing tangential
forces, however, due to it is computationally very expensive,
it can not be applied in an analysis like that. The USETAB
approximation [20], proposed by Kalker, is used in this work.
This method obtains the tangential forces in a pre-calculated
table whose input variables are the contact normal force, the
ellipse semiaxes, the friction coefficient and the creepages, and
the output variables are the tangential forces in longitudinal
T k

x and lateral T k
y local directions and moment around normal

direction Mk
z . The values of this table have been computed using

the Kalker Variational method for different values of the input
variables.

2.4.4 Vehicle-structure interaction forces

As it has been seen above, vertical relative displacement ∆zW
and relative rotation ∆θx,W can be computed as geometric
variables, without regard to dynamic aspects. Thus, the
relative displacements computed as geometric variables and
those obtained from the dynamic response of vehicle and
structure must be equal:

∆zW = ∆ẑW (∆yW ) , (28a)

∆θx,W = ∆θ̂x,W (∆yW ) . (28b)

For imposing these constraints, a penalty force and moment are
introduced in wheelsets gravity centre:

Fz
c = kz (∆ẑW (∆yW )−∆zW )3/2 , (29a)

Mx
c = kθ

(
∆θ̂x,W (∆yW )−∆θx,W

)3/2
. (29b)

These nonlinear penalty expresions derive from the approach
expression bewtween two bodies of the Hertz theory. Stiffness
coefficients kz and kθ depend on ∆yW and Nk

W , but in order to
simplify the equations, they are computed considering only the
train own weight in a static case and ∆yW = 0.

2dW

Fz,c Mz,c
Fy,c

Mx,c

MA
z

γA
γB rBrA

NA

T A
y

NB T B
y

MB
z

z

yθx

Figure 6. Wheelset equilibrium.

The forces applied on the wheelset gravity centre, shown in
Figure 6, can be written as:

Fy
c =−NA sinγA +T A

y cosγA−NB sinγB +T B
y cosγB , (30a)

Fz
c = NA cosγA +T A

y sinγA +NB cosγB +T B
y sinγB , (30b)

Mx
c =

(
−NA cosγA−T A

y sinγA +NB cosγB

+ T B
y sinγB

)
dW +

(
T A

y cosγA−NA sinγA
)

rA

+
(
−NB sinγB +T B

y cosγB
)

rB ,

(30c)

Mz
c =

(
T A

x −T B
x
)

dW +MA
z cosγA +MB

z cosγB . (30d)
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Using equations (29), (30b) and (30c), normal forces NA and
NB, which are needed to compute the tangential forces and
moments, can be obtained and applied to compute the values
of Fy

c and Mz
c. Thus, the equation set (30) is nonlinear and,

in order to solve a linear system, as it is proposed in [13],
the normal forces computed in the previous time step are used
for computing the tangential forces in the current time step.
Before obtaining Fy

c and Mz
c, the contact forces T A

y , T B
x , T B

y and
moments MA

z and MB
z must be computed using normal forces of

the previous time step and the creepages of current step.

3 RESULTS

3.1 General information

An application of the method presented above is shown in
this Section. For this example, the Barbantiño bridge, in
the northwest spanish high speed line (under construction), is
studied when the vehicle Siemens ICE 3 crosses it.

The deck of Barbantiño bridge is a 1176 m length continuous
beam and it is composed of 18 spans, as shown if Figure 7. The
1st and 18th span are 52 m length and the rest are 67 m length,
and some of its piers are larger than 90 m. For that reason, the
lateral frequencies of the bridge are very low (see Table 1). The
first vibration mode can be seen in Figure 8. The deck section

Table 1. First natural frequencies of the Barbantiño bridge
(values in Hz).

1st 2nd 3rd 4th
0.294 0.424 0.456 0.589

is a prestressed concrete girder whose width and depth are 14 m
and 4.94 m, respectively, and its eccentricities, which appear in
(14), are ey = 2.50 m and ez = 2.05 m.

The Rayleigh damping method has been used for determining
the damping matrix of the structure subsystem. The first two
natural frequencies and 2% damping ratio have been used.

The train that has been used in the calculations is an
approximation of the Siemens ICE 3 (real data is not known)
composed of 8 cars (see Figure 9) whose length is 24.775 m. It
is a distributed power train, and, for that reason, all the cars

Figure 8. First vibration mode of Barbantiño bridge.

Figure 9. Siemens ICE 3 train.

ares supposed to have the same geometrical and mechanical
properties.

Irregularity profiles have been generated using a power
spectral density method defined in [22] and a 100 m sample can
be seen in Figure 10.

0 20 40 60 80 100

−2

0

2

x [m]

Γ y
,

Γ z
[m

m
]

Γy
Γz

Figure 10. Sample of 100 m length of the lateral and vertical
alignment irregularities used in the analysis.

In Section 3.2 the dynamic response of the structure and the
vehicle, when the train crosses the bridge at different velocities,
are shown.

3.2 Bridge and vehicle response

In Figures 11 and 12 lateral displacements of centre of the 8th
span (near to the tallest pier) at point T (see Figure 3) can be seen
for train velocities 200 km/h and 350 km/h. In these figures the
results obtained with the method propossed above are compared
with those obtained using the moving loads method (see [27])
which does not consider the interaction between vehicle and
structure. As it is shown in these figures, the responses obtained
with both methods are very similar. However, big differences
can be appreciated in accelerations (Figures 13 and 14) due to
the moving loads method does not take into consideration track
irregularities which are an important source of excitation.

With regard to the vehicle response, the lateral accelerations
of the passenger car body of the 4th vehicle can be seen
in Figures 15 and 16. As in the case of the lateral bridge
accelerations, the higher the speed, the greater the accelerations,
but in both cases, the maximum values remain small.
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Figure 7. Global view of Barbantiño bridge.
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Figure 11. Lateral displacements of the centre of the 8th span
of the bridge for a train speed v = 200 km/h.
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Figure 12. Lateral displacements of the centre of the 8th span
of the bridge for a train speed v = 350 km/h.

The analysis presented in this article does not consider the
wind action, but it is going to be introduced in future works and
as a consequence, adding wind forces to the vehicle response,
train safety may be endangered.

4 CONCLUSIONS

A realistic vehicle-bridge interaction method has been proposed.
This method uses the linear beam elements for the structure and
a linearized multibody model for the the vehicle. Furthermore,
an interaction based on nonlinear wheel-rail contact forces is
established between them. This methodology can be applied
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Figure 13. Lateral accelerations of the centre of the 8th span of
the bridge for a train speed v = 200 km/h.
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Figure 14. Lateral accelerations of the centre of the 8th span of
the bridge for a train speed v = 350 km/h.

considering no linealization of vehicle and structure and using
other types of finite elements.

As an example, the method has been used for solving the
dynamic interaction between a train Siemens ICE 3 and very
long a tall viaduct of a high-speed railway line at the northwest
of Spain.
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