Application of Ultraintense Lasers to validate materials for laser fusion: production of ions and other relevant species / J. Alvarez, K. Mima, K. Tanaka, M. Perlado

Instituto de Fusión Nuclear INDUSTRIALES ETSII | UPM

ULIS 2011 - 3rd international conference on Ultra-intense Laser Interaction Science Lisbon, October 11th 2011

The Instituto de Fusión Nuclear is responsible for Chamber Design and materials research within the HiPER project.

CONTENT

- Justification of the need and demand of experimental facilities to test and validate materials for first wall in laser fusion reactors
 - Characteristics of the laser fusion products
 - Current "possible" facilities for tests
- Ultraintense Lasers as "complete" solution facility
 - Generation of ion pulses
 - Generation of X-ray pulses
 - Generation of other relevant particles (electrons, neutrons..)

PRODUCTS OF LASER FUSION

X-ray and lon products of a 48MJ Target				
Particle	Energy (keV)	Av. E (keV)	Particles	
X-ray	655	8,8	1,5e14	
Н	270	143	1.2e19	
D	3200	191,4	1e20	
Т	3550	235	9.4e19	
4He	3630	1334	1.7e19	
12C	1680	760	1.4e19	

For a 5 m radius chamber

Energy Fluences: 40kJ/m² Pulse Duration: 2.5 µs Peak. Intensity: 1TW/m² X-rays Av. Intensity: 16GW/m² Ion flux: 1e24p/m²/s

CHARACTERISTICS OF PRODUCTS

HIGH FLUXES OF ENERGETIC PARTICLES

SHORT PULSES BROAD ENERGY SPECTRA

CAUSING THERMO-MECHANICAL AND ATOMISTIC DAMAGE

THOUSAND/ MILLIONS OF SHOTS

Magnetic fusion facilities "seem" to be valid for laser fusion from a thermal point of view. However penetration depth and atomistic damage are not reproducible.

MECHANICAL AND ATOMISTIC CHANGES

Similar heat flux parameter and temperatures in magnetic and laser fusion implies very different total delivered energy-> different thermo-mechanical effects.

CURRENT FACILITIES FOR ION BEAMS

Linear Accelerators High energies achieved but low fluxes (1e14 p/m²/s) and long pulses.

Plasma Guns

Relatively short pulses < 0,5 msPeak Intensity $< 100 \text{ GW/cm}^2$ Energy Fluence $< 40 \text{ MJ/m}^2$ Similar Fluxes But... low ion energies

Rhepp-1

Pulses of 100-500ns He energies of 800 keV High Intensities 16GW/m2 Good fluxes ...but being deccommisioned!

Spalation sources Pulses of 1.5ms (maybe less) High energy protons (50MeV) Intensities > 4GW/m2

CURRENT FACILITIES FOR X-RAY BEAMS

XAPPER (LLNL) Plasma pinch - X-ray (100 eV) X-ray fluence ~1 J/cm2 Pulse duration ~10 ns Samples can be irradiated with up to 10⁶ pulses

Fig. 1. The XAPPER X-ray spectrum ranges from ${\sim}80$ to 140 eV.

Z-pinch (SANDIA)

Black body at 300eV with 10% at 600eV Pulse duration ~10 ns

Thermal load, Secondary e⁻ and E-M pulses

LASER FUSION FACILITIES

LASER DRIVEN ION PULSES

M. Borghesi et al. Fus. Sci. Tech. 49 (2006) 412 J. Fuchs et al. Nature Physics 2, (2006) 48

PROTON SPECTRUM

LASER DRIVEN PROTON PULSES

J. Alvarez, D. Garoz, K. Mima, N. Gordillo, A. Ribera, R. Gonzalez-Arrabal, J.M. Perlado Instituto de Fusión Nuclear, Univesidad Politécnica de Madrid, Spain KA Tanaka, K Kikuyama, T Kono Graduate School of Engineering, Osaka University, Japan Y Hirooka and I Ashikawa National Institute for Fusion Science, Toki, Gifu Japan K Kondo, M Nishiuchi, T Tanimoto, P Alexander Kansai Photon Science Institute, JAEA

LASER DRIVEN PROTON PULSES

Several protron spectra were generated

•From 2J laser pulse energy and intensity of $7x10^{19}$ W/cm² for which proton flux conversion efficiency was estimated to be around 0.4% •To 20J laser pulses and intensities of $7x10^{20}$ W/cm² on target for which proton flux conversion efficiency was estimated to be around 4%.

LASER DRIVEN ION PULSES

H isotopes, Carbon and High Z ions

Rear side of 100 nm-thick Al targets for laser incident angles of 0° and 35° . Laser pulses with energy 5 J (on the target), duration 50 fs and intensity $6-7 \times 10^{20}$ W/cm² From P. McKenna et al. New J. Phys. 12 (2010) 045020

Even He pulses

FIG. 2 (color online). (a) The shadowgraph image for a mixture of He gas and CO_2 clusters. The red (or gray) line shows the initial atom density profile. (b) The shadowgraph image for a pure He gas target. (From Fukada, PRL 165002 (2009)

> L.Willingale et al. PRL 96, 245002 (2006) L. Willingale et al. IEEE Transactions on plasma science, 36 (2008)

LASER DRIVEN X-RAY PULSES

ULIS 2011- October 11th 2011

LASER AS A NEUTRON SOURCE

J. Perkins et al. Nuc. Fus. 40, 1 (2000) Laser energies 100J-rep.rate100 Hz neutron flux: 10¹⁴-10^{15/}cm²/s Pros:

- D-T reactions-> 14.1 MeV n.
- cost effective small source
- Available over extended times

Table 2. Overview of currently achievable neutron strengths for different commercially available neutron sources. Recent experimental results for laser-generated neutrons are added for comparison. Average neutron source strengths were calculated assuming one laser shot every 30 min. Peak neutron source strengths were estimated assuming 1 ns neutron pulse length.

Stationary Neutron Sou	rces S ⁻¹	Flux [neutrons·cm ^{-2}]			
Traditional Reactor		from 10^7 to 10^{13}			
High Flux Research Reactor		up to 10^{15}			
Accelerator Driven Spallatio	n	up to 10^{14}			
Compact and Portable N	leutron Sources	Typical Source Strength [neutrons $\cdot s^{-1}$]			
Radioactive Neutron Source	8	$10^5 \text{ to } 10^7$			
Spontaneous Fission Sources	3	around 10 ¹⁰			
Portable Neutron Generator	s	10^8 to 10^{10}			
Lasers on Solid Targets	Reaction(s) Used	Measured Source Strength	Laser Energy		
		[neutrons/shot]	[J/shot]		
Lancaster [30]	$^{7}Li(p,n)^{7}Be$	$2 \cdot 10^8 sr^{-1}$	69		
Yang [29]	natZn(p,xn)Ga	$\approx 10^{10}$	230		
Yang [29]	$^{7}Li(p,n)^{7}Be$	$5 \cdot 10^{10}$	230		
Zagar [28]	natPb(p,xn)Bi	$2 \cdot 10^9$	400		

Eur. Phys. J. Special Topics 175, 147-152 (2009)

K W D Ledingham and W Galster. New J. Phys. 12 045005 (2010) presents a nice discussion on this topic.

LASER AS A ELECTRON SOURCE

B. Hidding et al. Nuclear Instruments and Methods in Physics Research A 636 (2011) 31–40 **For testing electronics/diagnostics**

CONCLUSIONS

The Laser Fusion Community needs Ultraintense laser systems

ANYONE INTERESTED IN COLLABORATING WITH US?

THANKS FOR YOUR ATTENTION