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ABSTRACT 
A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded 
systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary 
algorithm is responsible of making the system evolve towards the required performance. A prototype has been 
implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving 
image compression for specific types of images. 

An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to 
allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level 
description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. 

To check the robustness of the system and its adaptation capabilities, different types of images have been 
selected as validation patterns. A direct application of such a system is its deployment in an unknown environment 
during design time, letting the calibration phase adjust the system parameters so that it performs efcient image 
compression. Also, this prototype implementation may serve as an accelerator for the automatic design of 
evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the 
final implementation device, whether it is a HW or SW based computing device. 

The architecture has been built in a modular way so that it can be easily extended to adapt other types of 
image processing cores. Details on this pluggable component point of view are also given in the paper. 

1. INTRODUCTION 

Bringing adaptation to embedded systems is a highly demanded feature which will contribute to solve the ever 
increasing demand on complexity and flexibility. Since deployment may occur in very diverse environments 
which may be even unknown at design time, it is very difficult to foresee all the possible situations that may 
arise during system's lifetime. 

Therefore, if systems are let to operate on their own a self-adaptation mechanism must be implemented 
which responds in the presence of changes in the system's environment. Hence, not only Autonomous Systems 
would benefit from this approach, but, in general, any system (even human-operated devices) that may see its 
operating conditions change from those specified at design time, whether these changes refer to the input data 
characteristics (which depend on the environment somehow) or the system's specification itself. 

This work proposes self-calibration as a way to accomplish these adaptation needs. A generic bio-inspired 
adaptive system for image compression tasks which is suitable to be implemented as a System On Chip (SoC) is 
presented so that its parameters are automatically tuned during a self-calibration phase. Main system blocks are 
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a Discrete Wavelet Transform (DWT) H W core and an Evolutionary Algorithm (EA) responsible of adjusting 
the wavelet filters coefficients. 

To summarize, this work describes an FPGA-based architecture which allows a generic artificial vision system 
to be adapted during a self-calibration phase. This allows the system to efficiently deal with images coming from 
very diverse sources. Hence, it involves the automatic on-line design of a complete new set of wavelet (lifting, as 
introduced below) filters. 

The rest of the paper is organized as follows. Following there is a short introduction to D W T and EAs as 
well as a short review of the current State of the Art in the topic. Section 2 introduces the general architecture 
of the system before Sections 3 and 4 go into the details of the proposed H W architecture and the EA running in 
the embedded processor respectively. Afterwards, Section 5 validates the proposal showing the results achieved 
before concluding the paper in Section 6. 

1.1 D i s c r e t e W a v e l e t T r a n s f o r m for I m a g e C o m p r e s s i o n 

Compression s tandard JPEG2000 1 relies on the D W T for its transform stage, which is a very useful tool for 
(adaptive) image compression algorithms, since it provides a transform framework tha t can be adapted to the 
type of images being handled. This feature allows it to improve the performance of the transform according 
to each particular type of image so tha t improved compression (in terms of quality vs size) can be achieved, 
depending on the wavelet used. 

Sweldens proposed the Lifting Scheme (LS) a lgor i thm 2 , 3 to compute the D W T which has also simplified the 
construction of custom wavelets adapted to specific and different types of data . This is the main reason why it is 
really well suited for the task of using an EA to encode wavelets, since any random combination of lifting filters 
will encode a valid wavelet which guarantees perfect reconstruction. 

The basic LS, shown in Figure 1, consists of three stages: Split, Predict and Update, which t ry to exploit 
the correlation of the input da ta to obtain a more compact representation of the signal.4 

Figure 1. Lifting scheme 

This scheme can be iterated up to n levels, so tha t an original input da ta set SQ will have been replaced with 

the wavelet representation {s_n,d_n,... ,d_i}. Therefore, the algorithm for the LS implementation is: 

for j <— l,n do 
{sj,dj} «— Split(sj+i) 
d 3 = d 3 - P ( S j ) 

sj = sj + U(dj) 
e n d for 

The Split stage (also called the Lazy Wavelet) divides the input da ta into two smaller subsets, Sj_\ and dj_\ 
which usually correspond with the even and odd samples. The Predict and Update stages, also called lifting 
filters, are computed as in eq. (1). Although not shown in Figure 1, at the end of each transform level two 
normalization factors are defined by the lifting scheme if, for example, energy conservation is intended.5 An 
advantage of the lifting scheme is tha t it defines a perfectly invertible transform by just doing a reversal of the 
forward transform operations order (Update, Predict, Merge) and a simple swap of plus and minus signs. 

dJ-Áz) = dÁz) + Piz)sÁz) (1] 

^J-Áz) = ^Áz) + Uiz)dÁz) 



As eq. (1) shows, the search for an optimum set of coefficients for the lifting filters, P and U, is the problem 
that needs to be solved by the EA. Besides, since the target implementation are Embedded Systems based on 
FPGA devices, some restrictions to the computing requirements of the algorithm need to be imposed in order 
to overcome the supercomputing resources needed by the works currently found in the state of the art. 

1.2 Evolutionary Computation for System Optimization 

Evolutionary Computation (EC)6 is a sub-field of Artificial Intelligence (AI) that consists of a series of biologically 
inspired search and optimization algorithms that evolve iteratively better and better solutions. It involves 
techniques inspired by biological evolution mechanisms such as reproduction, mutation, recombination, natural 
selection and survival of the fittest using a population of candidate solutions and bio-inspired operators to search 
for a target solution. 

The algorithm operators are iteratively applied within a loop, where each run is called a generation (g), until 
a termination criterion is met. So-called variation operators (mutation and recombination) create the necessary 
diversity and thereby facilitate novelty while selection acts as a force pushing quality since individuals are 
selected according to the fitness figure scored in the evaluation phase. Mutation delivers a (slightly) modified 
mutant causing a random, unbiased change, while recombination merges (random) information from two (or 
more) parents. A general pseudo-code description of an EA is shown in Algorithm 1. 

Algorithm 1 General scheme of an Evolutionary Algorithm 
1: INITIALIZE population 
2: EVALUATE each candidate 
3: while not_termination_condition do 
4: SELECT parents 
5: RECOMBINE (pairs of) parents 
6: MUTATE resulting offspring 
7: EVALUATE new candidates 
8: SELECT individuals for the next generation 
9: end while 

1.3 Previous work on evolutionary wavelet design 

With the introduction of the LS, custom construction of wavelets adapted to specific signal types was made 
possible. Therefore, instead of dealing with the mathematical construction of new wavelets, an EA can be used 
to design/optimize the constituent wavelet filters. Our previous work7 features a deep review of the current 
State of the Art. However, some brief comments are included here for the readers' convenience. 

First approach in evolutionary wavelet design was tackled by Grasemann and Miikkulainen8'9 who made use 
of a Coevolutionary (subpopulations evolving in parallel) Genetic Algorithm (GA) that encodes wavelets as a 
sequence of lifting steps. The results obtained in this work outperformed the considered State of the Art wavelet 
for fingerprint image compression, the FBI standard based on the D9/7 wavelet, in 0.75 dB. Works10-13 reported 
by Babb, Moore et. al., can be considered the current state of the art, outperforming the D9/7 wavelet in 3 dB. 
They made use of very complex and computationally intensive algorithms, so the training runs were done using 
supercomputing resources. A standard set of 80 images was used for comparison purposes in these works, the 
same one as in this work, as will be shown in Section 5) 

The use of super-computing resources and the training times needed to obtain a solution gives an idea of the 
complexity of these algorithms. This issue makes their implementation as a hardware embedded system highly 
unfeasible, which is precisely what this work addressed in a previous stage of the research,7 to find an adequately 
tuned EA able to keep up with the quality of the transforms evolved in the State of the Art, but feasible enough 
to be implemented in an FPGA. The cut-downs done to the algorithm (a PC-based SW simulator version of the 
work reported in this paper) did undoubtedly affect the search performance, but a trade-off was found which 
validated the proposal, reporting 1.57 dB improvement over the D9/7. 



2. SYSTEM ARCHITECTURE 

The intended system should be able to perform self-calibration prior to its operating phase. In addition, should 
a change in the input data specification happen to occur, a new self-calibration phase has to be triggered. A 
mixed HW/SW architecture has been selected because it offers a reasonable trade-off between performance and 
flexibility. Figure 2 shows the general architecture of the system, outlining the HW/SW partitioning accom­
plished, where the EA is running on the embedded PowerPC processor and the wavelet core is attached to it as 
a peripheral along with some other HW modules which will be described in detail in Section 3. 
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Figure 2. System level architecture. 

Typical implementations of evolutionary optimization engines in FPGAs place the EA in an embedded 
processor. With this approach some degree of performance is sacrificed to gain flexibility in the system (needed 
to fine tuning the algorithm), so that modifications may be easily done to the (software) implementation of the 
EA (which is, of course, much easier than changing its hardware counterpart). Table 1 shows the partitioning 
resulting from applying this design philosophy and the results obtained after doing a software simulation for 
500 generations, which was addressed in a previous stage of this work.7 Each of the EA operators (as will be 
introduced in Section 4) are shown together with further actions to be accomplished: recombination (of the 
selected parents); mutation (of the recombinant individuals to build up a new offspring population); evaluation 
(of each offspring individual); and selection (of the new parent population for the next generation). 

As it can be extracted from Table 1, the most time consuming and core part of the proposed system, the 
DWT, is performed in HW to speed-up the adaptation as well as the normal system operation (the result of the 
previous work yielded a time of 20.479 ms needed to compute a single wavelet transform, whether it is a forward 
or an inverse one). Besides, the sorting of the population according to the measured fitness is also implemented 
in HW not only for timing reasons, but also for simplicity, using an Insert Order Machine (IOM) which acts in 
parallel to the evaluation as results are produced. 

Regarding the evaluation, as it consists in measuring the wavelet performance in compression, after doing a 
forward DWT, a compression stage is needed. Since the remaining compression stages in a typical real compres­
sion algorithm are highly time consuming tasks, all wavelet coefficients dj are zeroed, keeping only the trend level 
of the transform from the last iteration of the algorithm Sj, as suggested in previous works14 dealing with wavelet 
filter evaluation for image compression. For 2 levels of decomposition this severe compression is equivalent to an 
idealized 16:1 compression ratio. This approach was also used in the previous stages of our own work,15 together 
with some other proposals at the algorithmic level which will be analysed in Section 4. 



Table 1. Algorithm code profiling 
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a All results in seconds b Results show computat ion time for both, forward and 
inverse wavelet transform 

Figure 3 shows a high-level flow chart of the proposed EA together with an abstract view of the system to 
show the whole idea of this work: let an EA find an adequate set of coefficients for the lifting filters in order 
to maximize the wavelet transform performance from the compression point of view for a very specific type of 
images. 

The system operates by loading a training image from the Compact Flash memory into the peripheral 
private RAM memory (implemented with on-chip F P G A RAM resources). Afterwards, the EA is initialized 
with a set of random candidate solutions (the initial parent population). This population goes through the 
variation operators (recombination and mutation) to create the offspring population to be evaluated. This 
phase, evaluation, comprises a forward DWT, the ideal compression phase mentioned above, reconstruction of 
the image (inverse DWT) and computation of the fitness function. Once all the offspring population has been 
evaluated and sorted according to the ranking fitness, the new parent population is created after applying the 
(survivor) selection operator. 

This prototype system implementation is just a proof of concept, so no considerable effort has been made 
in optimizing the system performance. For instance, as will be analysed in the following Section describing 
the Hardware implementation, the lifting scheme is a direct mapping from its algorithmic description, so no 
optimizations at the level of da ta dependencies has been considered; neither the concurrent access to the internal 
RAM memories so fitness computation could be made in parallel to the inverse D W T as these results are produced 
(as would have been the optimal solution). The only segmentation accomplished has been the population sorting 
phase, which instead of waiting until all the individuals had been evaluated, sorts them as fitness results are 
produced. This way, just some clock cycles after finishing the evaluation of the last individual, will the population 
sorting also be finished. 

2 .1 H W / S W c o m m u n i c a t i o n 

The prototype system, based on the s tandard Xilinx embedded development flow, is made up of a PLB Bus 
based system with a PowerPC processor. Attached to this bus is the adaptive peripheral, configurable through 
a set of registers. Just two registers have been defined; one for the PowerPC to send da ta to the peripheral and 
one for the peripheral to communicate its s tatus to the processor. From the PowerPC side the meaning of these 
registers is: 

• Data/Command register (DC Reg, Write) 

— Data. Configuration da ta (image pixels and filter coefficients) sent to the peripheral. 

— Command. Sets the peripheral into one of the 6 operating modes defined (described in Section 3). 

• Status register (SR, Read). The processor polls the peripheral s ta tus waiting for a command to be finished. 

The architecture of the system is flexible enough so not only easy upgrades of the hard cores are possible, 
but also adding new image processing cores with a set of configuration parameters. These can be adapted and 



(a) (b) 
Figure 3. (a): Flow graph of the algorithm, (b) Idea of the algorithm. 

reconfigured from the PowerPC processor according to the proposed EA, since the evaluation phase is carried out 
by the very same hardware core. The only module which could probably need to be changed is that responsible of 
the fitness computation, but for most image (filtering) processing tasks, it is general enough to fulfill adaptat ion 
requirements. 

3. ADAPTIVE WAVELET HARDWARE CORE 

According to Figure 2 the description of each of the modules of the adaptive wavelet core is as follows: 

• DWT. Performs a D W T , which is defined as a set of lifting filter coefficients. A total of 3 Update and 3 
Predict stages of 4 coefficients each can be configured (this amounts to 26 coefficients, taking into account 
the 2 normalization factors). Since both lifting filters are structurally equal, a general filtering computing 
stage has been designed as a direct mapping of the lifting algorithm, which may be configured to perform 
a Predict or Update stage. Besides, a configuration bit sets the operating mode of the transform, forward 
or inverse, and another one sets whether the ideal compression proposed is done or not. 

As shown in previous w o r k s 1 6 ' i r by other authors, for 8 bits per pixel (bpp) integer inputs from an image, 
a fixed point fractional format of Q2.10 for the lifting coefficients and a bit length in between 10 and 13 
bits for a 2 to 5-level MRA transform for the partial results is enough to keep a rate-distortion performance 
almost equal to what is achieved with floating point arithmetic. This requires Multiply and Accumulate 
(MAC) units of 20-23 bits (10 bits for the fractional part of the coefficients + 10-13 bits for the partial 
transform results). In this prototype implementation the da tapa th has been over-dimensioned to 16 bits 
fractional part and 10 bits integer part , for a total of 26 bits for the result of the transform. 

• Fitness. Computes the fitness function, defined as the Mean Absolute Error (MAE) (2). 

R-lC-l 

MAE= — Y,Y.\I^i)-K^i)\ (2) 
¿=0 j=0 



where i?, C are the rows and columns of the image and I, K the original and transformed images respectively. 
Since dividing by RC just means scaling the summation value, it has not been implemented in HW to save 
resources. Maximum possible fitness value is 255 x (256 x 256) « 2 8 + 8 + 8 = 224. 

• IOM. Insert Order Machine. Sorts the population individuals according to their fitnesses as they are evalu­
ated. It keeps track of the particular individual each fitness value belongs to so that when the processor re­
trieves the result of the evaluation, the values sent are composed of the tuple (fitnessjvalue, individual Jd). 
Since maximum fitness value needs 24 bits for its representation, this tuple can be packed in a single 32 
bit transfer for populations of up to 256 individuals. 

• Communications IF. Module responsible of interfacing with the bus-based system and decoding its 
commands. 

• Control. Global control of the peripheral. Communicates with the Communications IF driving the rest 
of the peripheral according to the commands decoded. 

• Memory and memory controller. Internal peripheral memory implemented with the BRAM blocks 
available in the FPGA. It has been designed to host: 

— The original image (pixels are 8 bit wide integers). 
— The result of the DWT plus the compression if configured (28 bits wide fractional format as explained 

previously). 
— The reconstructed image (8 bit wide integers). 

• Ser/Des (Serializer/Desearializer). Serializer splits the 32 bits data bus into 4 8-bit wide pixels. The 
opposite operation is performed by the Deserializer. 

The system operation phases have been clearly defined in the peripheral by the different operating modes 
it supports, coded as a State Machine in the control module. The communications IF module is in charge of 
decoding the configuration commands sent by the microprocessor to the peripheral, which will set it into a 
different operating mode according to the FSM commands driven by the Control module. These modes are 
described in Table 2. 

Table 2. Control State Machine modes 

Mode Description 

IMG_RCV Image reception from the processor (to be stored in the internal memory of the peripheral) 
CFG_WV Candidate wavelet configuration (filters coefficients sent from the processor) 
IMG_OP Computes DWT over one of the images stored in the memory 
INDIV_FIT Compute fitness figure for the last configured individual 
POP_FIT Sent ordered result of the evaluation of the whole population 
IMG_BACK Sent image back from internal memory to processor (to be stored in Compact Flash) 

In the IMG-RCV mode the processor reads an image from the Compact Flash memory and sends it to 
the peripheral to be stored in the memory module. CFG_WV configures the peripheral to a given wavelet by 
sending it the lifting coefficients (in the correct order to set up a forward or inverse transform) and 6 extra bits 
to configure each of the lifting filters to behave as a Predict or Update stage. IMG-OP computes a 1-level DWT 
of the previously configured DWT, so to perform an n-level DWT, n IMG_OP commands have to be issued, 
being the control module responsible of taking care of the current transform level. When the whole wavelet 
transform has been computed, INDIV-FIT computes the fitness function of the current candidate solution, 
being automatically sent afterwards to the IOM module which will sort this individual according to the obtained 
fitness. Once all the offspring population has been evaluated, and, therefore, ordered, the microprocessor can 
issue a POP-FIT command to retrieve the results of the evaluation (the number of computed fitness values sent 
back to the processor is configurable so that no unneeded transfers are performed). Finally IMG-RACK is in 
charge of reading an image from the internal memory of the peripheral and send it to the microprocessor which 
will store it in the Compact Flash. 



4. P R O P O S E D E V O L U T I O N A R Y A L G O R I T H M D R I V I N G A D A P T A T I O N 

As explained in Section 2 the embedded PowerPC processor is responsible of running the EA, in particular, 
an Evolution Strategy (ES). Previous works done by other authors made use of supercomputing resources to 
evolve state of the art performing wavelets. Since this implementation is targeting embedded systems, several 
and severe simplifications were proposed as compared to these works. Besides, another simplification to the 
standard, simplest ES, has been accomplished. This proposal and the thorough set of tests performed to tune 
the ES and find a suitable set of parameters for evolution to succeed, in the case of adapting the DWT to 
fingerprint images, can be found in our previous work.7 The summary of these proposals and the resulting ES 
are reproduced here for the shake of clarity, pointing to the particular conference papers where they were first 
presented. 

The first simplifications18 to the algorithm as compared to the previously reported State of the Art are 
summarized below: 

1. Single evolving population opposed to the parallel populations of the coevolutionary genetic algorithm 
proposed in.9 

2. Use of uncorrelated mutations with one step size19 (introduced in Section 4.1) instead of the overcomplex 
CMA-ES method used by Babb et. al.11-12 

3. Evolution of one single set of coefficients for all MRA levels. 

4. Ideal compression for the evaluation of the transform. Since doing a complete compression would turn out 
to be an unsustainable amount of computing time, the simplified evaluation method of Grasemann et al.9 

was further improved with the proposed ideal compression. 

Finally, the last two simplifications were accomplished and validated in a second stage of our work.15 

1. Uniform random distribution. Instead of using a Gaussian distribution for the mutation of the object 
parameters (see Section 4.1 for a description of the parameters), a Uniform distribution was tested for 
being simpler in terms of the HW resources needed for its implementation. 

2. MAE as fitness function. PSNR is the quality measure more widely used for image processing tasks. But, 
as previous works in image filter design via EC show,20 using MAE gives almost identical results because 
the interest lies in relative comparisons among population members. 

4.1 I m p l e m e n t a t i o n of the ES 

This Section describes the ES implemented in the PowerPC processor. In the analysis of previous works done 
in Section 1.3, ESs are the chosen type of EA in the State of the Art results, so this decision seems reasonable. 
However, since works using a Genetic Algorithm also performed well, we decided to make use of the wavelet 
encoding proposed in those works, the lifting scheme, which is also more suitable for an embedded system 
implementation. 

The canonical versions of the ES are denoted by (p/p, A)-ES and (p/p+X)-ES, where p denotes the number of 
parents (parent population, PM), p < p the mixing number (i.e., the number of parents involved in the procreation 
of an offspring), and A the number of offspring (offspring population, P\). The parents are deterministically 
selected from the set of either the offspring, referred to as comma-selection (p < A stands), or both the parents 
and offspring, referred to as plus-selection. The former, comma-selection, is generally preferred in ES over the 
plus-selection, where the selection pool consists of the p+X individuals of the parent and offspring populations, for 
being, in principle, able to leave (small) local optima and not letting survive misfit parameters of the individuals. 
Therefore, no elitism is allowed. 

Standard representation of the individuals in ESs, (x\,..., xn, a), is composed of a set of object parameters 
Xi to be optimized, and a single strategy parameter a, which determines the degree of perturbation of the 
mutation operator. Therefore, the encoding of each wavelet individual is of the form: 

(P1,U1,P2,U2,P3,U3,kl,k2) (3) 



where each P¿, £/¿ is made up of 4 coefficients and ki are single coefficients, yielding the 26 fixed point coefficients 
introduced in previous Section. As a comparison, standard D9/7 wavelet uses (Pi, Ui,P2, U2,kl,k2). 

One of the particular features of ESs is that the individual step sizes of the variation operator for each 
coordinate is governed by self-adaptation. This self-adaptation of the step size a, also known as mutation 
strength (i.e. standard deviation of a normal distribution), implies that a is also included in the chromosomes, 
undergoing variation and selection itself (co-evolving along with the solutions). 

For real-valued search spaces, mutation in ESs is normally performed by adding a normally (Gaussian) 
distributed random value to each component under variation (i.e., to each parameter encoded in the individuals). 
In this work it has been implemented using the standard C-based rand() and srandQ functions, which yield a 
Uniform distribution in the range (0 . . . RAND-MAX) {RAND.MAX = 2147483647) and seed the generator, 
respectively. To obtain a Normal distribution N(0,1) two Uniform distributions U, V are needed according to 
the Marsaglia Polar Method,21 described below: 

zi = d V - 2 x log (fl) x -

22 = ± v
/ - 2 x l o g ( P ) x ^ 

being U, V two independent uniform distributions [7(0,1) and R = U2 + V2 

obtained which follow two standard Normal distributions. 

For the survivor selection after creating A offspring and calculating their fitnesses, the best p individuals 
are selected deterministically for the new parent population based on the ranking of the individuals' fitness. The 
selection scheme used is the comma-selection. 

Regarding the recombination process, intermediate recombination has been selected, where the object and 
strategy parameters of the selected parents are averaged. The selection of these p recombinants is done randomly 
from the parent population. 

Table 3 summarizes the proposed ES in charge of looking for the optimum coefficients throughout the search 
space. 

5. R E S U L T S 

5.1 Exper imenta l S e t - U p 

The prototype system has been implemented in a Xilinx ML507 board featuring a Virtex-5 FPGA (XC5VFX70T) 
with an embedded PowerPC® 440 processor. Since the algorithm has already been validated in our previous 
works making use of a software version of the system, the aim of this Section is to validate the FPGA imple­
mentation. 

5.2 A d a p t a t i o n Resu l t s 

5.2.1 Evolution results for fingerprint images 

The specific type of images chosen to demonstrate the adaptation capabilities of the system are fingerprints, 
in particular, the first set of 80 images of the FVC200022 fingerprint verification competition. Images were 
greyscale, sized 300 x 300 pixels at 500 dpi resolution. One random image was used for training and the whole 
set of 80 images for testing the best evolved individual in each optimization process. Every result shown in this 
work is compared with the performance obtained with the standard D9/7 wavelet. Since evolution time depends 
on the time spent evaluating candidate solutions, which involves the whole chain of forward DWT + compression 
+ inverse DWT, the smaller the images, the lower the time to do a transform and hence achieve adaptation. 
For this reason, images were resized to 256 x 256. 

Table 4 gathers the performance (MAE) results of the adaptation of the system for the training images and 
for a couple of test images of the same type not seeing during evolution to demonstrate the generality of the 
result. The best evolved individual (Evo-FP) is compared with the standard D9/7, clearly showing a performance 
improvement. 

(4) 
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Table 3. Proposed Evolution Strategy 

Parameter / Operator 

Representation 

Wavelet Encoding 

Mutationa b 

Learning rate T 

Evaluation 

Selection 

Recombination 

Parent population size 

Offspring population size 

Seed for initial population 

Value 

\X\, . . . , X n , 0~j 

n = 26, fixed point coefficients 

{PuUuP2,U2,P3,U3,kuk2) 

a' = a- exp -^ 0 ' 1 ) 
x¡ = Xi + a' • Ui(-a',a') 

T oc 1/A/CTO, a = {1, 2} 

MAE 

Comma 

Intermediate, p = 5 

H= 10 

A = 70 

Random 
a N(0,1): draw from the standard normal distribution 
b Ui(— a', a'): separate draw from the discrete uniform dis­
tribution for each variable i 

Table 4. Results for fingerprint images 

Wavelet Training image Tl Test image Tl # 1 Test image Tl # 2 

D9/7 6.64 6.80 7.28 
Evo-FP 4.97 5.05 5.96 

5.2.2 Test evolved wavelet on a different type of images (T2) 

Another test has been performed simulating the case of a change in the input type of images. In this case, 
Magnetic Resonance Images (MRI) have been used. Table 5 gathers the results of applying the standard D9/7 
wavelet (first row) over this new type of images and its comparison with the performance obtained with the 
current wavelet transform configured in the system, Evo.FP, which is adapted to fingerprints (second row). As 
expected, since this wavelet was adapted to deal with a different type of images the performance could improve 
if a new self-calibration phase is triggered. The results after the system adapts itself for this new type of input 
data are shown in the last row of Table 5. 

Table 5. Results for MRI images 

Wavelet Training image T2 Test image T2 # 3 Test image T2 # 4 

D9/7 9.14 8.08 7.58 
Evo-FP 8.15 7.46 6.76 
Evolved 7.96 6.95 6.57 

5.3 I m p l e m e n t a t i o n Resu l t s 

The implementation results for this prototype featuring an over-dimensioned datapath (Q10.16) introduced in 
Section 3 can be found in Table 6. Since this is just a proof-of-concept implementation, no effort has been put 
into improving overall system performance and architectural resource consumption (any of the multiple lifting 
scheme FPGA or VLSI implementations which can be found on the literature can benefit from this approach to 
coefficients adaptation). 



Table 6. Implementation results for the main modules in the system. 

Module 

DWT 

Compression 

Fitness function 

IOM 

Image memory 

Slice LUTs 

2818 / 44800 

43 / 44800 

95 / 44800 

3920 / 44800 

34 / 44800 

Resources 

Slice Registers DSP48Es 

4417 / 44800 

39 / 44800 

66 / 44800 

2209 / 44800 

27 / 44800 

76/128 

-

-

-

-

BRAM (Kb) 

-

-

-

-

2304 / 5328 

Frequency (MHz) 

112.67 

391.34 

341.88 

231.93 

-

5.3.1 Adaptation time 

Measured latency of the DWT module is 56 clock cycles. Therefore, for the size of images used for evolution, 
the number of clock cycles needed to compute the first forward transform level, Sjj — 1, is: 

((256 x 256) + 56) x 2 = 131184 

Equivalently, for the second transform level, s¿-2, where the smaller subset (compared to the original input 
Sj) Sj-i is used as input, the number of clock cycles needed for its computation is 32880. This means that a 
whole 2-level forward DWT takes 164064 clock cycles. The same analysis can be applied for the 2-level inverse 
inverse DWT, since the computation stages are right the same. As for the compression module, it needs to 
retrieve the whole image from memory to perform its operation, which yields 256 x 256 = 65536 clock cycles. 
The same applies for the fitness module. 

Based on this previous analysis, it can be concluded that the evaluation of one individual takes 164064 + 
65536 + 164064 + 65536 = 459200 clock cycles. If system frequency is set to 100 MHz, 4.592 ms are needed 
for the evaluation of a single candidate wavelet. Since system is let to evolve during 1000 generations, doing 70 
evaluations per generation, around 5.34 minutes are needed for evolution to finish. 

Previous timing analysis applies to the adaptive wavelet core timing. However, ES running in the PowerPC 
processor will add more time to the evolution. The final time measured increases to 12 minutes, which means 
that the system is able to adapt to a new type of input data in this time. This may look like a huge amount of 
time, but as shown in our previous work,7 between generations 100 and 300 the system has already evolved a 
better solution. This reduces the effective evolution time to between just 1.2 and 3.6 minutes. 

6. C O N C L U S I O N 

A self-adaptive FPGA-based architecture for image compression in embedded systems has been proposed and 
validated. The system improves existing standard wavelets like D9/7 used in JPEG2000. Besides, it is able to 
self-adapt to changes in the type of input data (images) being dealt with. As Section 5.2 shows, the system 
is able to optimize standard compression performance. While the quality of results depends on a particular 
application domain, better than the standard wavelets are still obtained in both cases tested. 

Future work will center in improving system performance. The timing analysis and the architecture descrip­
tion clearly show that a great amount of time can be saved if a better memory architecture and system pipelining 
is used, since compression could be done without previously saving the forward DWT in memory. The same 
applies for the inverse DWT and the fitness computation. This results in 164064 + 164064 = 328128 clock cycles 
for the evaluation of an individual, which means saving around 29% of the HW computation time. 

Besides, a Uniform mutation may also be used for the mutation of the strategy parameter, a. This simplifi­
cation could lead to further reduce computation time. However, optimization performance of the evolutionary 
search should be checked as was done previously with the object parameters. 

Using images sized 128 x 128 pixels will also help in reducing even more the evaluation time, but, again, 
results have to be carefully checked to make sure the solution is general enough. 
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