

Influence of the epoxy/amine stoichiometry on the thermomechanical properties of nanocomposites based on high T_a epoxy and organophilic clays

M. A. García del Cid^a, M. G. Prolongo^a, R. M. Masegosa^b, C. Arribas^a, C. Salom^a

^a Dpt. Materiales y Producción Aeroespacial ^b Dpt. Física y Química Aplicadas a la Técnica Aeronáutica.

Escuela de Ingeniería Aeronáutica y del Espacio

eiae

INTRODUCTION

In layered silicate-epoxy nanocomposites organic modification of the silicates makes them compatible with the epoxy which intercalates into the clay galleries. The effect of clay dispersion on epoxies of high T_g is not clear. Decreases of the epoxy T_g have been frequently reported. The presence of clay may cause stoichiometry imbalances that conduces to the formation of imperfect networks.

EXPERIMENTAL

Dispersion: Clay was dispersed in DGEBA at 120°C Vacuum 80°C. Adition of DDM 2min. Sonication.

Curing protocols

Materials

- Cloisites: C30B and C93A
- Diglycidyl ether of bisphenol A, DGEBA

OBJECTIVE

To study off-stoichiometry effects in clay-epoxy nanocomposites by analyzing: its influence on curing, glass transition temperature, thermomechanical and mechanical properties of the nanocomposites.

dynamic curing in the DSC at 10°C/min **I** curing in oven: 2h-120°C + 1h- 180°C

4,4'-diaminodiphenylmethane, DDM

Stoichiometric ratio: r = HN/-O- = 0.85 to 1.15

RESULTS AND DISCUSSION

210

DSC: Dynamic curing of clay-epoxy dispersions

-●**-** 0% clay --- 6% C93A 160 (O_o)⁶ 150 -

C93A-DGEBA-DDM C30B-DGEBA-DDM the and exothermal peak temperature shifts to lower values \rightarrow the clays accelerate the curing reaction

 ΔH (J/g epoxy) is lower in nanocomposites than in neat epoxy for r >0,85. The lowest values of ΔH (J/g epoxy) were observed in C93A nanocomposites.

The curing reaction slows when r increases

T = tallow, HT = hydrogenated tallow: 65% C18, 30%C16, 5%C14

WAX-ray Diffraction of nanocomposites

Basal distance d₀₀₁ (nm) clay-epoxy neat clay Clay nanocomposite 1.82 3.4 C30B **C93A** 2.56 3.3

Nanocomposites show intercalated structures $\Delta d_{001} C30B > \Delta d_{001} C93A$

Nanocomposites cured under protocol II: Tensile tests at 25°C

Glassy state: the highest modulus is observed in epoxy-rich compositions (r < 1). A minimum in the modulus appears at r = 1 for neat epoxy thermoset, this behaviour has been explained in base of network topology and packing density.

Glassy state: clay-epoxy nanocomposites show higher modulus, lower strenght and lower elongation to break than neat epoxy thermosets

CONCLUSIONS

Stoichiometry is an important factor determining epoxy thermoset properties,

for $r \le 0.94$, but lower for r > 1.

both in epoxy neat thermosets and clay-epoxy nanocomposites.

> Similar property-stoichiometry trends are observed in epoxy neat thermosets

and clay-epoxy nanocomposites, but the behaviour of nanocomposites is

shifted toward lower stoichiometric ratios.

> The presence of clays modify the stoichiometry, curing and properties.