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AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of 

high-power, high-frequency and high-temperature electronics applications. Although significant progress 
has been recently achieved [1], stability and reliability are still some of the main issues under 
investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact 
metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and 
refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability 
assessment of AlGaN/GaN HEMTs.     

After an unbiased storage at 350 oC for 2000 hours, devices with Ni/Au gates exhibited detrimental 
IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after 
similar storage conditions. Further capacitance-voltage characterization as a function of temperature and 
frequency revealed two distinct trap-related effects in both kinds of devices.  

At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high 
temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an 
anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous 
behavior in the C-V characteristics was  also observed in Mo/Au gate HEMTs after 1000 h at a calculated 
channel temperatures of around from 250 oC (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 
420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher 
(Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density 
than Mo/Au metallization (Fig. 2).  

These results highlight that temperature is an acceleration factor in the device degradation, in good 
agreement with [3]. Interface state density analysis is being performed in order to estimate the trap 
density and activation energy.    
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Fig. 1: Gate drain/source C-V characteristics at 100 kHz 
of AlGaN/GaN HEMT after DC-life test (1000 h) using 

Mo/Au gate metal.  

 Fig. 2: Gate drain/source C-V-T characteristics at 1 MHz 
of AlGaN/GaN FAT FET after thermal storage at 350 ºC 

(2000 h) using Ni/Au gate metal.  
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AlGaN/GaN high electron mobility transistors (HEMTs) are key devices for 
next generation of high-power, -frequency and -temperature electronics.

Stability and reliability are still some of the main issues under 
investigation, particularly at high temperature.

Gate contact metallization is one of the weakest points in AlGaN/GaN
HEMTs, hence the reliability of metal gates is crucial.

This work focuses on the thermal stress and reliability assessment of 
AlGaN/GaN HEMTs with Ni/Au or Mo/Au gate metallization.  
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● Gate contact: Ni/Au or Mo/Au
Degradation tests:

Thermal storage: (unbias)

Cycle Duration Temperature

Short 14 hours From RT to 300ºC
(50ºC step + 30 min hold)

Medium 650 hours 300ºC

Long 2000 hours

250ºC

300ºC

350ºC

CONCLUSIONSCONCLUSIONS

Gate contacts of Ni/Au and Mo/Au improves after soft baking (up to 
300ºC), reducing leakage current.   

Mo/Au gate devices turned to be thermally more stable than Ni/Au
gate devices, in particular at 350ºC for 2000 hours.  

However, Mo/Au gate HEMTs degrade after harsh bias stress 
showing an increase of trapping effects.
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Mo/Au gate HEMT devices are more robust
at 350ºC for 2000 h than using Ni/Au

Thermal storage at ≤ 300ºC (≤ 2000 hours)

After AfterBeforeBefore

Both, Ni/Au and Mo/Au     
gate devices show

I-V (HEMT)

C-V-T (FAT-FET)

DC-life test: (bias) (only Mo/Au gate HEMTs, LG= 0.25 µm)

Increased Schottky barrier height (Φb)

High reduction up to 3 orders in 
reverse leakage current (Irev)

Enhanced both Ni/Au &
Mo/Au gate contact induced 
by the soft thermal annealing

Measured at low and high T in vacuum

Strong degradation  
increases  with 

Tmeasurement in Ni/Au gate 
devices after long 

thermal storage at 350 ºC

No significant 
changes in Mo/Au
gate devices after 

long thermal storage 
at 350 ºC

High occupancy of interface 
states was estimated using a 
modified Terman method [1]:

(Dit ~ 1014 cm-2·eV-1 near the
conduction band at RT)

- HEMT (LG= 1.3 µm and LG= 0.25 µm ) 

- FAT-FET (LG= 100 µm)

Devices:

Bias Duration Temperature
Calculated
Channel 

Temperature*

VDS = 25 V
IDS = 420 mA/mm

1000 hours

10ºC 175ºC

57ºC 250ºC

71ºC 275ºC

85ºC 320ºC

High frequency  (f = 1 MHz)
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At VDS>> No trapping effects in Ni/Au

Different mechanisms became dominant

Low frequency  (f = 50 kHz)

Strong C-V dispersion in Ni/Au
gate devices,   in particular for 

Tmeasurement > -100ºC and                 
f< 350 kHz, after  long  thermal 

storage at 350ºC
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Slight presence of slow traps in 
Mo/Au gate devices after long 
thermal storage test at 350ºC

Assuming the rise in C is related to 
presence of traps beneath the gate 

and  one single energy level 
approximation [2], the trap response 

time and energy are estimated

DC DC –– LIFE TESTLIFE TEST

Although Mo/Au scheme leads to high thermally stable gate devices, 
noticeable degradation is still observed after electrical stress probably due 

to AlGaN surface traps. 
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donor defects [3]

Capacitance characteristics in FAT-FET devices correlate the results in HEMTs showing higher thermal stability
in Mo/Au gate devices, even at 350ºC for 2000 hours, in contrast to those using Ni/Au gates.
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Schottky Mo/Au DC-life test carried out at 71ºC

Mo/Au gate HEMTs shows anomalous C-V behaviour

after DC life tests carried out at T > 10ºC (Tchannel> 175ºC)
Temperature activates traps that are noticeable at 

high frequency (1 MHz)  for higher Tmeasurement than
at lower frequencies. 

Estimated
energy

(ET= 2.2 eV)

These results are in good agreement with Malbert et al that showed a degradation in Mo/Au 
HEMTs after a similar DC-life test likely due to surface defects under the gate [5].

These results are in good agreement with Sozza et al
that showed no metal diffusion in AlGaN after a 

similar long themal storage test [4].

= 62 µsτ

-8 -6 -4 -2 0-8 -6 -4 -2 0
0

20

40

60

80

LG= 100 µm

WG= 140 µm

 

Mo/Au gate

 200K (-73ºC)

Mo/Au gate

f= 50 kHz

  

 VG = 0 V

T
measurement

After 2000 h at 350ºC
 200ºC

20ºC

 

 293K (20ºC) initial

 373K (100ºC) 
 473K (200ºC) 
 550K (277ºC) 
 293K (20ºC) final

 

VG = 0 V

f= 50 kHz

Reference

C
ap

ac
ita

nc
e 

(p
F)

 

* Estimated from physical simulations and 3D thermal modeling.


